JP5623709B2 - Gear for power device and method for manufacturing gear for power device - Google Patents

Gear for power device and method for manufacturing gear for power device Download PDF

Info

Publication number
JP5623709B2
JP5623709B2 JP2009119950A JP2009119950A JP5623709B2 JP 5623709 B2 JP5623709 B2 JP 5623709B2 JP 2009119950 A JP2009119950 A JP 2009119950A JP 2009119950 A JP2009119950 A JP 2009119950A JP 5623709 B2 JP5623709 B2 JP 5623709B2
Authority
JP
Japan
Prior art keywords
gear
hard carbon
tooth surface
carbon film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009119950A
Other languages
Japanese (ja)
Other versions
JP2010266042A (en
Inventor
努 棚橋
努 棚橋
安則 小那覇
安則 小那覇
加藤 秀夫
秀夫 加藤
鈴木 秀明
秀明 鈴木
直紀 坂本
直紀 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009119950A priority Critical patent/JP5623709B2/en
Publication of JP2010266042A publication Critical patent/JP2010266042A/en
Application granted granted Critical
Publication of JP5623709B2 publication Critical patent/JP5623709B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gears, Cams (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)

Description

本発明は、動力装置に組み込まれて駆動力を伝達する歯車の表面を炭素硬質皮膜で被覆した状態で使用する動力装置用歯車と、その歯車の製造方法とに関する。 The present invention relates to a gear for a power unit that is used in a state where a surface of a gear that is incorporated in a power unit and transmits a driving force is covered with a hard carbon film, and a method for manufacturing the gear.

歯車の歯面にDLC(ダイヤモンド・ライク・カーボン)等の硬質炭素皮膜を施すとともに特定成分を含有する潤滑剤と組み合わせることで、歯面の摩擦抵抗を低減して動力伝達効率を高める技術が、下記特許文献1により公知である。   A technology that increases the power transmission efficiency by reducing the frictional resistance of the tooth surface by applying a hard carbon film such as DLC (Diamond Like Carbon) to the tooth surface of the gear and combining it with a lubricant containing a specific component. It is known from Patent Document 1 below.

特開2005−61610号公報JP 2005-61610 A

ところで動力装置に組み込まれた歯車には、その動力装置の加速時に駆動力を伝達する歯面と減速時に駆動力(制動力)を伝達する歯面とが存在し、前者の歯面(加速歯面)が受ける負荷の大きさや負荷の頻度は後者の歯面(減速歯面)に比べて大きくなる。しかしながら上記従来のものは、加速歯面および減速歯面の硬質炭素皮膜の厚さを考慮していないため、加速歯面の硬質炭素皮膜の厚さを該加速歯面の耐久性を満たす大きさに設定すると、減速歯面の硬質炭素皮膜の厚さが過剰になって無駄なコストが嵩む問題がある。また減速歯面の硬質炭素皮膜の厚さを該減速歯面の耐久性を満たす大きさに設定すると、加速歯面の硬質炭素皮膜の厚さが不足して該加速歯面の耐久性が不足する問題がある。   By the way, the gear incorporated in the power unit includes a tooth surface that transmits a driving force when the power device is accelerated and a tooth surface that transmits a driving force (braking force) when the power device is decelerated. Surface) and the frequency of the load are larger than those of the latter tooth surface (deceleration tooth surface). However, since the conventional one does not consider the thickness of the hard carbon film on the accelerating tooth surface and the deceleration tooth surface, the thickness of the hard carbon film on the accelerating tooth surface is large enough to satisfy the durability of the accelerating tooth surface. If set to, the thickness of the hard carbon film on the speed reduction tooth surface becomes excessive, and there is a problem that wasteful costs increase. In addition, if the thickness of the hard carbon coating on the deceleration tooth surface is set to a size that satisfies the durability of the deceleration tooth surface, the thickness of the hard carbon coating on the acceleration tooth surface is insufficient and the durability of the acceleration tooth surface is insufficient. There is a problem to do.

本発明は前述の事情に鑑みてなされたもので、歯車の加速歯面および減速歯面の硬質炭素皮膜の厚さを特定することでコストおよび耐久性を両立させた動力装置用歯車と、その歯車の製造方法とを提供することを目的とする。   The present invention has been made in view of the above circumstances, and a gear for a power device that achieves both cost and durability by specifying the thickness of the hard carbon coating on the accelerating tooth surface and the reducing tooth surface of the gear, and its An object of the present invention is to provide a method for manufacturing a gear.

上記目的を達成するために、請求項1に記載された発明によれば、動力装置に組み込まれて駆動力を伝達する歯車の表面を硬質炭素皮膜で被覆した状態で使用する動力装置用歯車であって、前記動力装置の加速時に負荷の加わる歯面の硬質炭素皮膜の厚さを他の歯面の硬質炭素皮膜の厚さよりも大きくしたことを特徴とする動力装置用歯車が提案される。 In order to achieve the above object, according to the first aspect of the present invention, there is provided a gear for a power unit that is used in a state in which a surface of a gear that is incorporated in a power unit and transmits a driving force is coated with a hard carbon film. Thus, there is proposed a gear for a power device, wherein the thickness of the hard carbon film on the tooth surface to which a load is applied during acceleration of the power device is made larger than the thickness of the hard carbon film on the other tooth surfaces.

また請求項2に記載された発明によれば、請求項1に記載の動力装置用歯車の製造方法であって、歯車形状に加工したワークを自転させながらPVD法により硬質炭素皮膜を成膜するものであり、前記自転の方向は前記動力装置の加速時に前記歯車が回転する方向と同一とすることを特徴とする動力装置用歯車の製造方法が提案される。   According to a second aspect of the present invention, there is provided the method for manufacturing a gear for a power unit according to the first aspect, wherein the hard carbon film is formed by the PVD method while rotating the work machined into a gear shape. Therefore, a method of manufacturing a gear for a power unit is proposed in which the direction of rotation is the same as the direction in which the gear rotates when the power unit is accelerated.

尚、実施の形態の加速歯面11は本発明の動力装置の加速時に負荷の加わる歯面に対応し、実施の形態の減速歯面12は本発明の他の歯面に対応する。   The acceleration tooth surface 11 of the embodiment corresponds to a tooth surface to which a load is applied during acceleration of the power unit of the present invention, and the speed reduction tooth surface 12 of the embodiment corresponds to another tooth surface of the present invention.

請求項1の構成によれば、表面を硬質炭素皮膜で被覆した状態で使用される動力装置用歯車の前記硬質炭素皮膜のうち、動力装置の加速時に負荷の加わる歯面の硬質炭素皮膜の厚さを他の歯面の硬質炭素皮膜の厚さよりも大きくしたので、比較的に大きい負荷を受ける加速歯面の硬質炭素皮膜の厚さを充分に確保して耐久性を高めながら、比較的に小さい負荷を受ける減速歯面の硬質炭素皮膜の厚さが過剰になるのを防止してコストダウンに寄与することができる。 According to the first aspect, of the hard carbon film of the power unit gear that is used in a state where the surface is coated with a hard carbon film, the thickness of the hard carbon film of the tooth surface applied load during acceleration of the power unit The thickness of the hard carbon film on the other tooth surface is larger than the thickness of the hard carbon film on the other tooth surface. It is possible to prevent the thickness of the hard carbon film on the deceleration tooth surface subjected to a small load from becoming excessive, thereby contributing to cost reduction.

また請求項2の構成によれば、歯車形状に加工したワークを自転させながらPVD法により硬質炭素皮膜を成膜する際に、前記自転の方向を動力装置の加速時に歯車が回転する方向と同一としたので、硬質炭素皮膜を構成する粒子をワークの自転方向進み側の加速歯面により多く付着させ、ワークの自転方向遅れ側の減速歯面により少なく付着させることで、加速歯面の硬質炭素皮膜の厚さを減速歯面の硬質炭素皮膜の厚さよりも大きくすることができる。   According to the second aspect of the present invention, when the hard carbon film is formed by the PVD method while rotating the work machined into a gear shape, the direction of rotation is the same as the direction of rotation of the gear during acceleration of the power unit. Therefore, the hard carbon film of the accelerating tooth surface is adhered by attaching more particles on the acceleration tooth surface on the advance side in the rotation direction of the workpiece and less on the deceleration tooth surface on the delay side in the rotation direction of the workpiece. The thickness of the coating can be made larger than the thickness of the hard carbon coating on the speed reduction tooth surface.

歯車の加速歯面および減速歯面の硬質炭素皮膜の厚さ分布を示す図。The figure which shows thickness distribution of the hard carbon film of the acceleration tooth surface of a gearwheel, and a deceleration tooth surface. PVD法による硬質炭素皮膜の成膜装置の構造を示す図。The figure which shows the structure of the film-forming apparatus of the hard carbon film by PVD method. 硬質炭素皮膜の成膜装置の原理を示す模式図。The schematic diagram which shows the principle of the film-forming apparatus of a hard carbon film.

以下、図1〜図3に基づいて本発明の実施の形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

本実施の形態の歯車Gは、自動車のエンジンの駆動力を駆動輪に伝達する動力伝達経路に配置される傘歯車であり、図1に示すように、歯車Gは、車両の加速時に駆動力を伝達する加速歯面11と、車両の減速時(エンジンブレーキ時)に駆動力(制動力)を伝達する減速歯面12とを備える。歯車Gの表面はDLC(ダイヤモンド・ライク・カーボン)を含む硬質炭素皮膜13で被覆される。DLCはアモルファス状の炭素あるいは水素化炭素より成るもので、高い硬度と低い摩擦係数を有している。   The gear G of the present embodiment is a bevel gear disposed in a power transmission path that transmits the driving force of an automobile engine to driving wheels. As shown in FIG. , And a deceleration tooth surface 12 that transmits a driving force (braking force) when the vehicle is decelerated (during engine braking). The surface of the gear G is coated with a hard carbon film 13 containing DLC (Diamond Like Carbon). DLC is made of amorphous carbon or hydrogenated carbon and has high hardness and low coefficient of friction.

DLC皮膜の形成にあたっては、通常、モリブデン鋼等で構成される歯車との密着性向上を図るため、Ti、Crなどの下地層や、金属元素をドープしたDLC中間層を介在させたりしている。   In forming the DLC film, an underlayer such as Ti or Cr or a DLC intermediate layer doped with a metal element is usually interposed in order to improve adhesion to a gear made of molybdenum steel or the like. .

硬質炭素皮膜13の厚さは加速歯面11と減速歯面12とで異なっており、加速歯面11の硬質炭素皮膜13の厚さが減速歯面12の硬質炭素皮膜13の厚さよりも大きくなっている。   The thickness of the hard carbon film 13 is different between the acceleration tooth surface 11 and the deceleration tooth surface 12, and the thickness of the hard carbon film 13 on the acceleration tooth surface 11 is larger than the thickness of the hard carbon film 13 on the deceleration tooth surface 12. It has become.

Figure 0005623709
Figure 0005623709

表1は、加速歯面11の硬質炭素皮膜13の厚さが減速歯面の硬質炭素皮膜13の厚さよりも大きい実施の形態の歯車G(A、B、Cの3例)と、逆に加速歯面11の硬質炭素皮膜13の厚さが減速歯面の硬質炭素皮膜13の厚さよりも小さい比較例の歯車G(D、E、Fの3例)とについて行った耐久テストの結果を示すものである。   Table 1 shows that the thickness of the hard carbon film 13 on the accelerating tooth surface 11 is larger than the thickness of the hard carbon film 13 on the decelerating tooth surface, and the gear G (three examples of A, B, and C) of the embodiment is reversed. The result of the endurance test performed on the gear G (3 examples of D, E, and F) of the comparative example in which the thickness of the hard carbon film 13 on the accelerating tooth surface 11 is smaller than the thickness of the hard carbon film 13 on the decelerating tooth surface. It is shown.

硬質炭素皮膜13の膜厚は、歯車Gの歯面の歯先、歯央および歯元の膜厚の平均値である。また耐久テストの方法は、自動車の変速機に歯車Gを組み込み、一定の条件で加速、減速および変速を行うモードで走行させた後に目視で硬質炭素皮膜13の状態を観察し、摩耗の認められないものをOKとし、摩耗の認められるものをNGとした。実施の形態のA、B、Cの3例の歯車Gのテスト結果は全てOKであり、比較例のD、E、Fの3例の歯車Gのテスト結果は全てNGであった。   The film thickness of the hard carbon film 13 is an average value of the film thicknesses of the tooth tip, tooth center and tooth root of the tooth surface of the gear G. In addition, the endurance test method is that the gear G is incorporated in the transmission of an automobile, and after running in a mode in which acceleration, deceleration and shifting are performed under certain conditions, the state of the hard carbon film 13 is visually observed, and wear is recognized. Those that did not show OK and those that showed wear were determined as NG. The test results of the three examples of the gears G of the embodiments A, B, and C were all OK, and the test results of the three examples of the gear G of the examples D, E, and F of the comparative example were all NG.

このように、歯車Gの加速歯面11は減速歯面12に比べて大きな負荷を高い頻度で受ける可能性があるが、その加速歯面11の硬質炭素皮膜13を厚くすることで耐久性を高めることができる。一方、加速歯面11に比べて耐久性上有利な減速歯面12の硬質炭素皮膜13を薄くすることで、減速歯面12の硬質炭素皮膜13が必要以上に厚くなるのを防止してコストダウンに寄与することができ、歯車Gの耐久性およびコストダウンを両立させることができる。   As described above, the acceleration tooth surface 11 of the gear G may be subjected to a large load more frequently than the speed reduction tooth surface 12, but the durability can be increased by increasing the thickness of the hard carbon film 13 on the acceleration tooth surface 11. Can be increased. On the other hand, by reducing the thickness of the hard carbon film 13 of the deceleration tooth surface 12 which is advantageous in terms of durability compared to the acceleration tooth surface 11, it is possible to prevent the hard carbon film 13 of the deceleration tooth surface 12 from becoming unnecessarily thick. It is possible to contribute to down, and it is possible to achieve both the durability of the gear G and the cost reduction.

次に、図2および図3に基づいて硬質炭素皮膜13を有する歯車Gの製造方法を説明する。   Next, a method for manufacturing the gear G having the hard carbon film 13 will be described with reference to FIGS.

図2に示すように、歯車Gの母材に物理気相合成法(PVD)により硬質炭素皮膜13を成膜するためのUBMS(アンバランスド・マグネトロン・スパッタリング・システム)21は真空チャンバ22を備えており、その中央には公転軸23まわりに時計方向に公転可能なワークテーブル24が配置される。ワークテーブル24には、硬質炭素皮膜13を成膜する前の歯車Gである6個のワークW…が公転軸23の周囲を囲むように円周方向に等間隔に配置されており、各ワークWは自転軸25…まわりに公転方向と同じ時計方向に回転する。真空チャンバ22の周壁に等間隔で配置された4個のUBM源26…には、硬質炭素皮膜13の材料となる平板状のターゲット27が取り付けられる。また真空チャンバ22の周壁にはヒータ29が配置される。   As shown in FIG. 2, a UBMS (unbalanced magnetron sputtering system) 21 for forming a hard carbon film 13 on a base material of a gear G by a physical vapor synthesis method (PVD) includes a vacuum chamber 22. A work table 24 that can revolve clockwise around the revolving shaft 23 is arranged at the center. On the work table 24, six works W, which are the gears G before forming the hard carbon film 13, are arranged at equal intervals in the circumferential direction so as to surround the revolution shaft 23. W rotates about the rotation axis 25... In the same clockwise direction as the revolution direction. A flat target 27 serving as a material for the hard carbon film 13 is attached to four UBM sources 26 arranged at equal intervals on the peripheral wall of the vacuum chamber 22. A heater 29 is disposed on the peripheral wall of the vacuum chamber 22.

ワークテーブル24にセットしたワークW…の表面に硬質炭素皮膜13を成膜するには、先ず真空チャンバ22の内部を高真空に減圧したした後に、ワークW…や真空チャンバ22の内部を脱ガスするためにヒータ29で予備加熱する。ワークW…に負のバイアス電圧を印可し、発生したArイオンをワークW…に衝突させる。これにより、硬質炭素皮膜13の密着性を高めるべく、ワークW…の表面をエッチングしてクリーニングするとともにワークW…の温度を上昇させる。   In order to form the hard carbon film 13 on the surface of the work W ... set on the work table 24, first, the inside of the vacuum chamber 22 is depressurized to a high vacuum, and then the work W ... or the inside of the vacuum chamber 22 is degassed. For this purpose, preheating is performed by the heater 29. A negative bias voltage is applied to the workpiece W, and the generated Ar ions collide with the workpiece W. Thereby, in order to improve the adhesion of the hard carbon film 13, the surface of the workpiece W is etched and cleaned, and the temperature of the workpiece W is increased.

続いて、UBM源26…に電力を供給してグロー放電を開始すると発生したArイオンがターゲット27に衝突し、スパッタ蒸発現象により吹き飛ばされたターゲット27の原子/分子が対向する位置に存在するワークW…の表面に堆積して硬質炭素皮膜13が成膜する。その際に、ターゲット27の表面に収束していたArプラズマの一部をワークW…へと拡散させることで、ワークW…に照射されるスパッタ粒子の量を増加させることができる。   Subsequently, when the glow discharge is started by supplying power to the UBM sources 26..., The generated Ar ions collide with the target 27, and the work exists in the position where the atoms / molecules of the target 27 blown off by the sputter evaporation phenomenon face each other. A hard carbon film 13 is deposited on the surface of W. At that time, by diffusing a part of Ar plasma that has converged on the surface of the target 27 to the workpieces W, the amount of sputtered particles irradiated on the workpieces W can be increased.

上述のようにしてワークWの表面に硬質炭素皮膜13を成膜する過程で、図3に示すように、ワークW…は時計方向に自転するため、ワークW…の自転方向進み側に位置する加速歯面11にスパッタ粒子が衝突する確率が、自転方向遅れ側に位置する減速歯面12にスパッタ粒子が衝突する確率よりも高くなる。その結果、加速歯面11の硬質炭素皮膜13の厚さを減速歯面12の硬質炭素皮膜13の厚さよりも大きくすることができる。   In the process of forming the hard carbon film 13 on the surface of the workpiece W as described above, as shown in FIG. 3, the workpiece W rotates in the clockwise direction, so that the workpiece W is positioned on the advance side in the rotation direction. The probability that the sputtered particles collide with the accelerating tooth surface 11 is higher than the probability that the sputtered particles collide with the decelerating tooth surface 12 positioned on the delay side in the rotation direction. As a result, the thickness of the hard carbon film 13 on the acceleration tooth surface 11 can be made larger than the thickness of the hard carbon film 13 on the deceleration tooth surface 12.

以上のように、本実施の形態によれば、歯車GのワークWを回転させながらスパッタ粒子を堆積させて硬質炭素皮膜13を成膜するという簡単な方法で、歯車Gの加速歯面11の硬質炭素皮膜13の厚さを減速歯面12の厚さよりも大きくすることができる。   As described above, according to the present embodiment, the acceleration tooth surface 11 of the gear G can be formed by a simple method of depositing sputter particles while forming the hard carbon film 13 while rotating the workpiece W of the gear G. The thickness of the hard carbon film 13 can be made larger than the thickness of the speed reduction tooth surface 12.

以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、実施の形態では動力装置として自動車を示したが、本発明は他の任意の動力装置に適用することができる。   For example, although an automobile is shown as a power unit in the embodiment, the present invention can be applied to any other power unit.

また実施の形態の歯車Gは傘歯車であるが、それ以外の任意の種類の歯車であっても良い。   The gear G of the embodiment is a bevel gear, but may be any other type of gear.

また実施の形態では。物理気相合成法(PVD)としてスパッタリング法を採用しているが、アークイオンプレーティング法を採用することも可能である。   In the embodiment. A sputtering method is employed as the physical vapor synthesis method (PVD), but an arc ion plating method can also be employed.

11 加速歯面(動力装置の加速時に負荷の加わる歯面)
12 減速歯面(他の歯面)
13 硬質炭素皮膜
G 歯車
W ワーク
11 Accelerated tooth surface (tooth surface to which load is applied when the power unit is accelerated)
12 Deceleration tooth surface (other tooth surfaces)
13 Hard carbon coating G Gear W Work

Claims (2)

動力装置に組み込まれて駆動力を伝達する歯車(G)の表面を硬質炭素皮膜(13)で被覆した状態で使用する動力装置用歯車であって、
前記動力装置の加速時に負荷の加わる歯面(11)の硬質炭素皮膜(13)の厚さを他の歯面(12)の硬質炭素皮膜(13)の厚さよりも大きくしたことを特徴とする動力装置用歯車。
A gear for a power unit that is used in a state where a surface of a gear (G) that is incorporated in a power unit and transmits a driving force is coated with a hard carbon film (13),
The thickness of the hard carbon film (13) on the tooth surface (11) to which a load is applied during acceleration of the power unit is greater than the thickness of the hard carbon film (13) on the other tooth surface (12). Gear for power equipment.
請求項1に記載の動力装置用歯車の製造方法であって、
歯車形状に加工したワーク(W)を自転させながらPVD法により硬質炭素皮膜(13)を成膜するものであり、前記自転の方向は前記動力装置の加速時に前記歯車(G)が回転する方向と同一とすることを特徴とする動力装置用歯車の製造方法。
It is a manufacturing method of the gear for power units according to claim 1,
The hard carbon film (13) is formed by the PVD method while rotating the workpiece (W) processed into a gear shape, and the direction of the rotation is the direction in which the gear (G) rotates during acceleration of the power unit. The manufacturing method of the gear for power devices characterized by making it the same.
JP2009119950A 2009-05-18 2009-05-18 Gear for power device and method for manufacturing gear for power device Expired - Fee Related JP5623709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009119950A JP5623709B2 (en) 2009-05-18 2009-05-18 Gear for power device and method for manufacturing gear for power device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009119950A JP5623709B2 (en) 2009-05-18 2009-05-18 Gear for power device and method for manufacturing gear for power device

Publications (2)

Publication Number Publication Date
JP2010266042A JP2010266042A (en) 2010-11-25
JP5623709B2 true JP5623709B2 (en) 2014-11-12

Family

ID=43363180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009119950A Expired - Fee Related JP5623709B2 (en) 2009-05-18 2009-05-18 Gear for power device and method for manufacturing gear for power device

Country Status (1)

Country Link
JP (1) JP5623709B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154557A (en) * 1981-03-17 1982-09-24 Mitsubishi Heavy Ind Ltd Gears
JP2000002315A (en) * 1998-06-15 2000-01-07 Nissan Motor Co Ltd High surface pressure gear, and manufacture thereof
JP2005221040A (en) * 2004-02-09 2005-08-18 Nissan Motor Co Ltd Gear and its manufacturing method
JP2006022894A (en) * 2004-07-08 2006-01-26 Nissan Motor Co Ltd Highly strong gear and method of manufacturing the same
JP4655650B2 (en) * 2005-01-31 2011-03-23 いすゞ自動車株式会社 Assembling method of gear
JP4968715B2 (en) * 2006-07-31 2012-07-04 日産自動車株式会社 High-strength gear, transmission mechanism, and high-strength gear manufacturing method

Also Published As

Publication number Publication date
JP2010266042A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
US8092922B2 (en) Layered coating and method for forming the same
US11261519B2 (en) Coating film, manufacturing method therefor, and PVD apparatus
US20230220894A1 (en) Wear Resistant Braking Systems
US8349474B2 (en) Hob cutter with a coating and method for coating hob cutter
WO2015011982A1 (en) Piston ring and manufacturing method therefor
JP2010214522A (en) Cutting tool
CN102586744B (en) Target blank and forming method thereof
JP2004339564A (en) Sliding member and film deposition method
JP5623709B2 (en) Gear for power device and method for manufacturing gear for power device
JPH0931628A (en) Sliding member and its production
RU2699700C1 (en) Method of depositing amorphous-crystalline coating on metal cutting tool
JP6298019B2 (en) Manufacturing method of sliding member
JP2002331408A (en) Abrasion resistant coating film-covered tool
JP3543755B2 (en) Surface coated high-speed tool steel gear cutting tool with excellent chip lubrication property with a hard coating layer
JP4720987B2 (en) Surface-coated high-speed tool steel gear cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials
KR101727420B1 (en) Laminated coating film having excellent abrasion resistance
JP4716006B2 (en) Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel
JP4716095B2 (en) Surface-coated high-speed tool steel gear cutting tool that exhibits excellent chipping resistance due to high-speed gear cutting of alloy steel
JP7372002B1 (en) hard coating
JP5510773B2 (en) Multilayer coating coated cold working tools
JP4706909B2 (en) Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel
JP2006315148A (en) Gear cutting tool made of surface coated high speed steel with hard coating layer exhibiting excellent lubricity in high speed dry gear cutting of alloy steel
JP2004283930A (en) Hob for cutting and gear processing method
FR2802610A1 (en) PROCESS FOR FORMING OIL TANKS ON COATED IRON
JP4706916B2 (en) Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140925

R150 Certificate of patent or registration of utility model

Ref document number: 5623709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees