JP5618264B2 - Mercury ion detection method and kit - Google Patents

Mercury ion detection method and kit Download PDF

Info

Publication number
JP5618264B2
JP5618264B2 JP2009053416A JP2009053416A JP5618264B2 JP 5618264 B2 JP5618264 B2 JP 5618264B2 JP 2009053416 A JP2009053416 A JP 2009053416A JP 2009053416 A JP2009053416 A JP 2009053416A JP 5618264 B2 JP5618264 B2 JP 5618264B2
Authority
JP
Japan
Prior art keywords
nucleic acid
stranded nucleic
thymine
base
excimer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009053416A
Other languages
Japanese (ja)
Other versions
JP2010210250A (en
Inventor
晶 小野
晶 小野
到 岡本
到 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa University
Original Assignee
Kanagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa University filed Critical Kanagawa University
Priority to JP2009053416A priority Critical patent/JP5618264B2/en
Publication of JP2010210250A publication Critical patent/JP2010210250A/en
Application granted granted Critical
Publication of JP5618264B2 publication Critical patent/JP5618264B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)

Description

本発明は、核酸を利用した水銀イオンの検出方法及びキットに関する。   The present invention relates to a method and kit for detecting mercury ions using nucleic acids.

近年、わが国や欧米などの先進国だけでなく、中国などの開発途上国において、水銀の排出が問題となっている。溶液中の水銀イオン(Hg(II)イオン)は、生物体に摂取されると、メチルコバラミンなどの酵素によってメチル化されメチル水銀に変換される。メチル水銀は、強い中枢毒性があり、水俣病に代表されるような神経系疾患を引き起こし得る。また、メチル水銀は、脂溶性が高く、生物濃縮により多種多様な生物種に影響を及ぼす可能性の高い拡散性の強毒性物質である。   In recent years, mercury emissions have become a problem not only in developed countries such as Japan and Europe, but also in developing countries such as China. When mercury ions (Hg (II) ions) in a solution are ingested by an organism, they are methylated and converted to methyl mercury by an enzyme such as methylcobalamin. Methylmercury has strong central toxicity and can cause nervous system diseases such as Minamata disease. In addition, methylmercury is a diffusible and highly toxic substance that has high fat solubility and is likely to affect a wide variety of biological species by bioconcentration.

溶液中のHg(II)イオン濃度の検出は、一般的に、気化された水銀蒸気の特有の紫外吸収スペクトルを測定する、原子吸光分析法により実施されている。また、近年では、多種類の微量元素を同時に測定することができる、誘導結合プラズマ(ICP)発光分光分析法も利用されている。これらの分析法は、それぞれ原子吸光分析装置及びICP発光分光分析装置を用いて実施される。   Detection of Hg (II) ion concentration in solution is generally performed by atomic absorption spectrometry, which measures the characteristic ultraviolet absorption spectrum of vaporized mercury vapor. In recent years, inductively coupled plasma (ICP) emission spectroscopic analysis, which can simultaneously measure many kinds of trace elements, has also been used. These analysis methods are implemented using an atomic absorption spectrometer and an ICP emission spectrometer, respectively.

原子吸光分析装置やICP発光分光分析装置を用いた分析法は、高感度のHg(II)イオンの定量を可能とする。しかし、原子吸光分析装置やICP発光分光分析装置の移動は困難であり、これらの装置の保守や利用に際しては、専門知識を有する熟練経験者を必要とする。したがって、これまでの原子吸光分析法やICP発光分光分析法は、利便性及び迅速性を欠く方法であった。   Analysis using an atomic absorption spectrometer or ICP emission spectrometer enables highly sensitive determination of Hg (II) ions. However, it is difficult to move the atomic absorption spectrometer and the ICP emission spectroscopic analyzer, and when these apparatuses are maintained and used, a skilled person having specialized knowledge is required. Therefore, conventional atomic absorption spectrometry and ICP emission spectroscopic analysis have been methods that lack convenience and rapidity.

一方、本発明者らは、これまでに、DNAの二本鎖中のチミン−チミン(T−T)塩基対にHg(II)イオンが選択的に結合することを見出し報告している(非特許文献1及び2を参照)。また、チミンはウラシルの5位がメチルである5−メチルウラシルであるが、この5位のメチルを水素、ハロゲン、シアノ基などで置換したウラシル類もまたHg(II)イオンを結合し得ることも見出し報告した(非特許文献3を参照)。   On the other hand, the present inventors have found and reported that Hg (II) ions selectively bind to thymine-thymine (TT) base pairs in DNA double strands (Non-Non-Patent Document). (See Patent Documents 1 and 2). In addition, thymine is 5-methyluracil in which the 5-position of uracil is methyl, but uracils in which methyl at the 5-position is substituted with hydrogen, halogen, cyano group, etc. can also bind Hg (II) ions. (See Non-Patent Document 3).

以上の知見を基にして、本発明者らは、被験試料中にHg(II)イオンが存在する場合に、分子内でT−Hg−T塩基対を形成する一本鎖DNAを合成し、さらにこの一本鎖DNAを用いて溶液中のHg(II)イオンを検出する方法を開発した(非特許文献4を参照)。上記一本鎖DNAは、第一の塩基配列及び第二の塩基配列がリンカーを介して連結されており、末端に蛍光性基(フルオレセイン)と消光性基(ダブシル基)を有する。上記一本鎖DNAは、被験試料中にHg(II)イオンが存在しない場合は、一本鎖の状態を維持して蛍光発光する。しかし、被験試料中にHg(II)イオンが存在すると分子内でT−Hg−T塩基対を形成し、蛍光は消光する。したがって、上記一本鎖DNAを用いたHg(II)イオン検出法は、被験試料中の蛍光消光の程度を検出することにより、被験試料中のHg(II)イオン濃度を簡便かつ迅速に検出することができる方法であった。   Based on the above findings, the present inventors synthesized single-stranded DNA that forms T-Hg-T base pairs in the molecule when Hg (II) ions are present in the test sample, Furthermore, a method for detecting Hg (II) ions in a solution using this single-stranded DNA was developed (see Non-Patent Document 4). The single-stranded DNA has a first base sequence and a second base sequence linked via a linker, and has a fluorescent group (fluorescein) and a quenching group (dabsyl group) at the ends. When the Hg (II) ion is not present in the test sample, the single-stranded DNA maintains a single-stranded state and emits fluorescence. However, if Hg (II) ions are present in the test sample, T-Hg-T base pairs are formed in the molecule, and the fluorescence is quenched. Therefore, the Hg (II) ion detection method using the single-stranded DNA detects the Hg (II) ion concentration in the test sample simply and quickly by detecting the degree of fluorescence quenching in the test sample. It was a way that could be.

Yoko Miyake et al., J. Am. Chem. Soc., 128, 2172-2173 (2006).Yoko Miyake et al., J. Am. Chem. Soc., 128, 2172-2173 (2006). Yoshiyuki Tanaka et al., J. Am. Chem. Soc., 129, 244-245 (2007).Yoshiyuki Tanaka et al., J. Am. Chem. Soc., 129, 244-245 (2007). Itaru Okamoto et al., Angew. Chem. Int. Ed., 48, 1648-1651 (2009).Itaru Okamoto et al., Angew. Chem. Int. Ed., 48, 1648-1651 (2009). Akira Ono & Humika Togashi, Angew. Chem. Int. Ed., 43, 4300-4302 (2004).Akira Ono & Humika Togashi, Angew. Chem. Int. Ed., 43, 4300-4302 (2004).

しかし、蛍光の消光は被験試料中の溶存物質が存在することによっても生じ得ることから、蛍光消光の検出は、蛍光発光の検出と比べて困難である。また、上記一本鎖DNAにおける蛍光性基は、ヘテロ原子を含む芳香環構造であり、Hg(II)イオンその他の重金属イオンと直接的に結合し得る。したがって、上記Hg(II)イオン検出法は、被験試料によっては、検出感度に多大な影響を受け得る方法である。   However, since fluorescence quenching can also occur due to the presence of dissolved substances in the test sample, detection of fluorescence quenching is more difficult than detection of fluorescence emission. The fluorescent group in the single-stranded DNA is an aromatic ring structure containing a heteroatom, and can directly bind to Hg (II) ions or other heavy metal ions. Therefore, the Hg (II) ion detection method can be greatly affected by detection sensitivity depending on the test sample.

そこで、本発明の目的は、被験試料においてHg(II)イオンが存在する場合に蛍光発光し、かつ上記一本鎖DNAよりも重金属イオンに対する影響の少ない物質を用いた、被験試料中のHg(II)イオンを検出する方法を提供することにある。さらに本発明の目的は、該方法を実施するためのキットを提供することにある。   Therefore, an object of the present invention is to use Hg (Hg (II)) in a test sample using a substance that emits fluorescence when Hg (II) ions are present in the test sample and has less influence on heavy metal ions than the single-stranded DNA. II) To provide a method for detecting ions. Furthermore, the objective of this invention is providing the kit for implementing this method.

本発明者らは、上記課題を解決するために、芳香環からなる蛍光性基を有し、かつHg(II)イオンの存在下において、Hg(II)イオンの非存在下には見られない蛍光発光を生じ得る物質について種々検討を重ねた。その結果、本発明者らは、エキシマー形成可能な蛍光性基を有する塩基を合成し、さらにこの塩基の対及びHg(II)イオンに結合可能なT−T塩基の対を形成し得る第一の一本鎖核酸及び第二の一本鎖核酸を合成することに成功した。これらの一本鎖核酸を使ってさらに検討を進めたところ、驚くべきことに、エキシマー形成可能な蛍光性基を有する塩基の対とT−T塩基の対との距離が所定の関係にある場合に、Hg(II)イオンの存在下で、エキシマー形成可能な蛍光性基によるエキシマー発光が生じることを見出した。本発明はこれらの知見に基づいて完成されたものである。   In order to solve the above-mentioned problems, the present inventors have a fluorescent group composed of an aromatic ring and are not observed in the absence of Hg (II) ion in the presence of Hg (II) ion. Various studies have been made on substances that can generate fluorescence. As a result, the present inventors synthesized a base having a fluorescent group capable of forming an excimer, and further formed a TT base pair capable of binding to this base pair and Hg (II) ion. Successfully synthesized a single-stranded nucleic acid and a second single-stranded nucleic acid. As a result of further investigation using these single-stranded nucleic acids, surprisingly, the distance between a base pair having a fluorescent group capable of forming an excimer and a TT base pair has a predetermined relationship. In addition, it was found that excimer emission occurs due to a fluorescent group capable of forming an excimer in the presence of Hg (II) ions. The present invention has been completed based on these findings.

したがって、本発明によれば、被験試料、下記一般式(1)
(式中、Exはエキシマー形成可能な蛍光性基を有する塩基を表し;T’は置換されていてもよいチミンを表し;Nはアデニン、チミン、シトシン又はグアニンを表し;a、b、g、h、nおよびmは、それぞれ独立して0〜10の整数を表し;c及びfはそれぞれ独立して1〜10の整数を表し;d及びeはそれぞれ独立して3〜10の整数を表し;並びに、5’及び3’はそれぞれ5’末端側及び3’末端側であることを表す。ただし、T’及びNは、それぞれ互いに同一でも異なってもよい)
で示される塩基配列を含む第一の一本鎖核酸、及び下記一般式(2)
(式中、Ex;T’;a;b;c;d;e;f;g;h;n;m;5’及び3’は上記と同義であり;及び、N'g、N'e、N'd及びN'bは、それぞれ上記Ng、Ne、Nd及びNbと相補的な塩基を表す)
で示される塩基配列を含む第二の一本鎖核酸を含む溶液を得ること;及び、
得られた溶液に励起光を照射し、該照射により発生するエキシマー発光を検出することを含む、水銀イオンを検出する方法が提供される。
Therefore, according to the present invention, the test sample, the following general formula (1)
(Wherein, E x represents a base having a excimer formation fluorescent group; T 'represents an thymine substituted; N represents adenine, thymine, cytosine or guanine; a, b, g , H, n and m each independently represents an integer of 0 to 10; c and f each independently represents an integer of 1 to 10; d and e each independently represents an integer of 3 to 10; And 5 ′ and 3 ′ represent the 5 ′ terminal side and the 3 ′ terminal side, respectively, provided that T ′ and N may be the same as or different from each other.
A first single-stranded nucleic acid comprising a base sequence represented by formula (2):
(Wherein E x ; T ′; a; b; c; d; e; f; g; h; n; m; 5 ′ and 3 ′ are as defined above; and N′g, N ′ e, N′d and N′b represent bases complementary to the above Ng, Ne, Nd and Nb, respectively)
Obtaining a solution containing a second single-stranded nucleic acid comprising the base sequence represented by:
There is provided a method for detecting mercury ions, which comprises irradiating the obtained solution with excitation light and detecting excimer luminescence generated by the irradiation.

本発明の水銀イオンの検出方法の好ましい態様は、前記第一の一本鎖核酸又は前記第二の一本鎖核酸における置換されていてもよいチミンの総数が、1個〜10個である。   In a preferred embodiment of the method for detecting mercury ions of the present invention, the total number of thymines that may be substituted in the first single-stranded nucleic acid or the second single-stranded nucleic acid is 1 to 10.

本発明の水銀イオンの検出方法の好ましい態様は、前記置換されていてもよいチミンが、無置換のチミン、又はチミンの5−メチル基が水素、ハロゲン若しくはシアノ基で置換されたチミンである。   In a preferred embodiment of the method for detecting mercury ions of the present invention, the optionally substituted thymine is unsubstituted thymine, or thymine in which the 5-methyl group of thymine is substituted with hydrogen, halogen or cyano group.

本発明の水銀イオンの検出方法の好ましい態様は、前記第一の一本鎖核酸が下記一般式(3)
(式中、Ex;T’;5’及び3’は請求項1と同義である)
で示される塩基配列を含み、かつ前記第二の一本鎖核酸が下記一般式(4)
(式中、Ex;T’;5’及び3’は請求項1と同義である)
で示される塩基配列を含む。
In a preferred embodiment of the method for detecting mercury ions of the present invention, the first single-stranded nucleic acid is represented by the following general formula (3):
(In the formula, E x ; T ′; 5 ′ and 3 ′ are as defined in claim 1)
And the second single-stranded nucleic acid is represented by the following general formula (4):
(In the formula, E x ; T ′; 5 ′ and 3 ′ are as defined in claim 1)
Is included.

前記エキシマー形成可能な蛍光性基を有する塩基が、下記一般式(5)
(式中、Rはエキシマー形成可能な蛍光性基を表し、Xは塩基を表し、及びkは1〜5の整数を表す)
で示される。
The base having a fluorescent group capable of forming an excimer is represented by the following general formula (5).
(Wherein R represents a fluorescent group capable of excimer formation, X represents a base, and k represents an integer of 1 to 5)
Indicated by

本発明の水銀イオンの検出方法の好ましい態様は、前記エキシマー形成可能な蛍光性基が、ピレン又はピレン誘導体である。   In a preferred embodiment of the mercury ion detection method of the present invention, the excimer-forming fluorescent group is pyrene or a pyrene derivative.

本発明の水銀イオンの検出方法の好ましい態様は、前記第一の一本鎖核酸及び前記第二の一本鎖核酸が、前記第一の一本鎖核酸の3’末端と前記第二の一本鎖核酸の5’末端とがリンカーを介して連結された一本鎖核酸である。   In a preferred embodiment of the mercury ion detection method of the present invention, the first single-stranded nucleic acid and the second single-stranded nucleic acid are the 3 ′ end of the first single-stranded nucleic acid and the second single-stranded nucleic acid. It is a single-stranded nucleic acid in which the 5 ′ end of a double-stranded nucleic acid is linked via a linker.

本発明の水銀イオンの検出方法の好ましい態様は、前記水銀イオンが、2価の水銀イオンである。   In a preferred embodiment of the method for detecting mercury ions of the present invention, the mercury ions are divalent mercury ions.

本発明の別の側面によれば、下記一般式(1)
(式中、Exはエキシマー形成可能な蛍光性基を有する塩基を表し;T’は置換されていてもよいチミンを表し;Nはアデニン、チミン、シトシン又はグアニンを表し;a、b、g、h、nおよびmは、それぞれ独立して0〜10の整数を表し;c及びfはそれぞれ独立して1〜10の整数を表し;d及びeはそれぞれ独立して3〜10の整数を表し;並びに、5’及び3’はそれぞれ5’末端側及び3’末端側であることを表す。ただし、T’及びNは、それぞれ互いに同一でも異なってもよい)
で示される塩基配列を含む第一の一本鎖核酸及び下記一般式(2)
(式中、Ex;T’;a;b;c;d;e;f;g;h;n;m;5’及び3’は上記と同義であり;及び、N'g、N'e、N'd及びN'bは、それぞれ上記Ng、Ne、Nd及びNbと相補的な塩基を表す)
で示される塩基配列を含む第二の一本鎖核酸を含む、水銀イオンを検出するためのキットが提供される。
According to another aspect of the present invention, the following general formula (1)
(Wherein, E x represents a base having a excimer formation fluorescent group; T 'represents an thymine substituted; N represents adenine, thymine, cytosine or guanine; a, b, g , H, n and m each independently represents an integer of 0 to 10; c and f each independently represents an integer of 1 to 10; d and e each independently represents an integer of 3 to 10; And 5 ′ and 3 ′ represent the 5 ′ terminal side and the 3 ′ terminal side, respectively, provided that T ′ and N may be the same as or different from each other.
A first single-stranded nucleic acid comprising a base sequence represented by the following general formula (2):
(Wherein E x ; T ′; a; b; c; d; e; f; g; h; n; m; 5 ′ and 3 ′ are as defined above; and N′g, N ′ e, N′d and N′b represent bases complementary to the above Ng, Ne, Nd and Nb, respectively)
A kit for detecting mercury ions is provided, comprising a second single-stranded nucleic acid comprising the base sequence represented by

本発明のキットの好ましい態様は、水銀イオンの検出が、エキシマー発光を検出することにより実施される。   In a preferred embodiment of the kit of the present invention, mercury ion is detected by detecting excimer luminescence.

本発明のキットの好ましい態様は、前記第一の一本鎖核酸又は前記第二の一本鎖核酸における置換されていてもよいチミンの総数が1〜10個である。   In a preferred embodiment of the kit of the present invention, the total number of thymines that may be substituted in the first single-stranded nucleic acid or the second single-stranded nucleic acid is 1 to 10.

本発明のキットの好ましい態様は、前記置換されていてもよいチミンが、無置換のチミン、又はチミンの5−メチル基が水素、ハロゲン若しくはシアノ基で置換されたチミンである。   In a preferred embodiment of the kit of the present invention, the optionally substituted thymine is unsubstituted thymine, or thymine in which the 5-methyl group of thymine is substituted with hydrogen, halogen or cyano group.

本発明のキットの好ましい態様は、前記第一の一本鎖核酸が下記一般式(3)
(式中、Ex;T’;5’及び3’は請求項9と同義である)
の塩基配列を含み、かつ前記第二の一本鎖核酸が下記一般式(4)
(式中、Ex;T’;5’及び3’は請求項9と同義である)
の塩基配列を含む。
In a preferred embodiment of the kit of the present invention, the first single-stranded nucleic acid is represented by the following general formula (3):
(Wherein E x ; T ′; 5 ′ and 3 ′ have the same meaning as in claim 9)
And the second single-stranded nucleic acid is represented by the following general formula (4):
(Wherein E x ; T ′; 5 ′ and 3 ′ have the same meaning as in claim 9)
The base sequence is included.

本発明のキットの好ましい態様は、前記エキシマー形成可能な蛍光性基を有する塩基が、下記一般式(5)
(式中、Rはエキシマー形成可能な蛍光性基を表し、Xは塩基を表し、及びkは1〜5の整数を表す)
で示される。
In a preferred embodiment of the kit of the present invention, the base having a fluorescent group capable of forming an excimer is represented by the following general formula (5).
(Wherein R represents a fluorescent group capable of excimer formation, X represents a base, and k represents an integer of 1 to 5)
Indicated by

本発明のキットの好ましい態様は、前記エキシマー形成可能な蛍光性基が、ピレン又はピレン誘導体である。   In a preferred embodiment of the kit of the present invention, the excimer-forming fluorescent group is pyrene or a pyrene derivative.

本発明のキットの好ましい態様は、前記第一の一本鎖核酸及び前記第二の一本鎖核酸が、前記第一の一本鎖核酸の3’末端と前記第二の一本鎖核酸の5’末端とがリンカーを介して連結された一本鎖核酸である。   In a preferred embodiment of the kit of the present invention, the first single-stranded nucleic acid and the second single-stranded nucleic acid are the 3 ′ end of the first single-stranded nucleic acid and the second single-stranded nucleic acid. It is a single-stranded nucleic acid linked to the 5 ′ end via a linker.

本発明の水銀イオンの検出方法によれば、モノマー発光と異なる波長のエキシマー発光を検出することにより、被験試料中の水銀イオンを検出することができる。本発明の方法によれば、モノマー発光(バックグラウンド)の影響を抑制した、高感度の水銀イオンの検出が可能となる。さらに、本発明の方法に用いる一本鎖核酸におけるエキシマー形成可能な蛍光性基がピレンやアントラセンである場合には、これらはヘテロ原子を有するものでないことから、蛍光性基に水銀イオンその他の重金属イオンが直接的に結合するとの問題が回避できる。これにより、本発明の方法によれば、被験試料の含有物質の影響を低減させた水銀イオンの検出が可能となる。   According to the mercury ion detection method of the present invention, mercury ions in a test sample can be detected by detecting excimer emission having a wavelength different from that of monomer emission. According to the method of the present invention, it is possible to detect mercury ions with high sensitivity while suppressing the influence of monomer emission (background). Further, when the excimer-forming fluorescent group in the single-stranded nucleic acid used in the method of the present invention is pyrene or anthracene, these do not have a heteroatom, so that the fluorescent group has mercury ions or other heavy metals. The problem of direct ion binding can be avoided. Thereby, according to the method of the present invention, it is possible to detect mercury ions with reduced influence of the substance contained in the test sample.

ピレン結合2’−デオキシシチジン保護体の合成経路の概略図である。It is the schematic of the synthetic pathway of a pyrene bond 2'-deoxycytidine protector. 2価の水銀イオンを介してチミンが対を形成することを示した模式図である。It is the schematic diagram which showed that thymine forms a pair through a bivalent mercury ion. ピレンが結合した第一及び第二の一本鎖核酸を用いた、本発明の水銀イオンの検出方法の具体例を示した概略図である。It is the schematic which showed the specific example of the detection method of the mercury ion of this invention using the 1st and 2nd single stranded nucleic acid which the pyrene couple | bonded. 本発明の水銀イオンの検出方法の実施例による、水銀イオンの検出結果を示した図である。It is the figure which showed the detection result of the mercury ion by the Example of the detection method of the mercury ion of this invention. 本発明の水銀イオンの検出方法の比較例による、水銀イオンの検出結果を示した図である。It is the figure which showed the detection result of the mercury ion by the comparative example of the detection method of the mercury ion of this invention. 本発明の水銀イオンの検出方法の比較例による、水銀イオンの検出結果を示した図である。It is the figure which showed the detection result of the mercury ion by the comparative example of the detection method of the mercury ion of this invention. 本発明の水銀イオンの検出方法の比較例による、水銀イオンの検出結果を示した図である。It is the figure which showed the detection result of the mercury ion by the comparative example of the detection method of the mercury ion of this invention.

以下、本発明の詳細について説明する。
本発明の水銀イオンの検出方法は、被験試料、下記一般式(1)
(式中、Exはエキシマー形成可能な蛍光性基を有する塩基を表し;T’は置換されていてもよいチミンを表し;Nはアデニン、チミン、シトシン又はグアニンを表し;a、b、g、h、nおよびmは、それぞれ独立して0〜10の整数を表し;c及びfはそれぞれ独立して1〜10の整数を表し;d及びeはそれぞれ独立して3〜10の整数を表し;並びに、5’及び3’はそれぞれ5’末端側及び3’末端側であることを表す。ただし、T’及びNは、それぞれ互いに同一でも異なってもよい)
で示される塩基配列を含む第一の一本鎖核酸、及び下記一般式(2)
(式中、Ex;T’;a;b;c;d;e;f;g;h;n;m;5’及び3’は上記と同義であり;及び、N'g、N'e、N'd及びN'bは、それぞれ上記Ng、Ne、Nd及びNbと相補的な塩基を表す)
で示される塩基配列を含む第二の一本鎖核酸を含む溶液を得ること、及び、得られた溶液に励起光を照射し、該照射により発生するエキシマー発光を検出することを少なくとも含む。
Details of the present invention will be described below.
The method for detecting mercury ions of the present invention comprises a test sample, the following general formula (1):
(Wherein, E x represents a base having a excimer formation fluorescent group; T 'represents an thymine substituted; N represents adenine, thymine, cytosine or guanine; a, b, g , H, n and m each independently represents an integer of 0 to 10; c and f each independently represents an integer of 1 to 10; d and e each independently represents an integer of 3 to 10; And 5 ′ and 3 ′ represent the 5 ′ terminal side and the 3 ′ terminal side, respectively, provided that T ′ and N may be the same as or different from each other.
A first single-stranded nucleic acid comprising a base sequence represented by formula (2):
(Wherein E x ; T ′; a; b; c; d; e; f; g; h; n; m; 5 ′ and 3 ′ are as defined above; and N′g, N ′ e, N′d and N′b represent bases complementary to the above Ng, Ne, Nd and Nb, respectively)
And a solution containing the second single-stranded nucleic acid containing the base sequence represented by the above, and irradiating the obtained solution with excitation light and detecting excimer emission generated by the irradiation.

本発明の方法は、図2に示すように水銀イオン、特に2価の水銀イオン(Hg(II))が1対のチミン又はチミンの一部の基が他の基によって置換されているチミン誘導体(以下、これらを合わせて「置換されていてもよいチミン」ともいう)の間に選択的に結合すること、及びダイマーに形成すると、モノマー時と異なる波長で発光(エキシマー発光)する蛍光性基(以下、「エキシマー形成可能な蛍光性基」ともいう)を利用して、被験試料中の水銀イオンを検出するものである。   As shown in FIG. 2, the method of the present invention is a thymine derivative in which mercury ion, particularly divalent mercury ion (Hg (II)) is substituted with a pair of thymine or a part of thymine by another group. (Hereinafter also referred to as “optionally substituted thymine”) and a fluorescent group that, when formed into a dimer, emits light at a wavelength different from that of the monomer (excimer emission) (Hereinafter also referred to as “fluorescent group capable of excimer formation”) is used to detect mercury ions in a test sample.

より詳しくは、本発明の方法は、水銀イオンの存在下で、互いに相補的な塩基対(以下、「ワトソン・クリック型塩基対」ともいう)、水銀イオンを介した置換されていてもよいチミンの対、及びエキシマー形成可能な蛍光性基の対を含む二本鎖核酸を形成し得る、2種の一本鎖核酸を用いて、エキシマー発光を検出することにより水銀イオンを検出する。   More specifically, in the method of the present invention, in the presence of mercury ions, base pairs complementary to each other (hereinafter also referred to as “Watson-Crick type base pairs”), thymine which may be substituted via mercury ions. Mercury ions are detected by detecting excimer luminescence using two types of single-stranded nucleic acids that can form a double-stranded nucleic acid containing a pair of and a pair of fluorescent groups capable of excimer formation.

本明細書にいう「水銀を検出する」とは、水銀イオンの存在の有無の検出や水銀イオンが存在する量の検出(すなわち、定量)などを含む、最も広い概念として解釈できる。以下、本発明の方法について、順を追って説明する。   “Detecting mercury” in the present specification can be interpreted as the broadest concept including detection of the presence or absence of mercury ions, detection of the amount of mercury ions (ie, quantification), and the like. Hereinafter, the method of the present invention will be described step by step.

1.第一の一本鎖核酸
第一の一本鎖核酸は、上記一般式(1)に示す塩基配列にある通り、置換されていてもよいチミン(T’)、エキシマー形成可能な蛍光性基を有する塩基(Ex)、及びワトソン・クリック型塩基対を形成し得る塩基(N)を含む。
1. First single-stranded nucleic acid The first single-stranded nucleic acid has an optionally substituted thymine (T ′) and excimer-forming fluorescent group as shown in the base sequence shown in the general formula (1). base (E x) with, and a base (N) capable of forming Watson-Crick base pairs.

(1)置換されていてもよいチミン
置換されていてもよいチミンとは、無置換又は基の一部若しくは全部が置換されており、かつ水銀イオンを挟んで対を形成することができるものをいう。基の一部若しくは全部が置換されているチミンとしては、例えば、チミンの5−メチル基が水素、ハロゲン、シアノ基などに置換されたチミンを挙げることができる。
(1) An optionally substituted thymine An optionally substituted thymine is an unsubstituted or partially substituted or partially substituted group and can form a pair with a mercury ion in between. Say. Examples of the thymine in which part or all of the groups are substituted include thymine in which the 5-methyl group of thymine is substituted with hydrogen, halogen, cyano group or the like.

5−メチル基が水素及びハロゲンに置換されたチミンは、2'-デオキシウリジン及び5-ハロゲノ-2'-デオキシウリジンとして、それぞれ市販されている。5−メチル基がシアノ基に置換されたチミンは、例えば、イノウエらの文献(Inoue, H., Ueda, T., Chem. Pharm. Bull., 1987, 26, 2657)に記載の方法に従って、市販の5-ブロモ-2'-デオキシウリジンから5-シアノ-2'-デオキシウリジンへ変換することによって製造することができる。   Thymine in which the 5-methyl group is substituted with hydrogen and halogen are commercially available as 2'-deoxyuridine and 5-halogeno-2'-deoxyuridine, respectively. A thymine in which a 5-methyl group is substituted with a cyano group is, for example, according to the method described in Inoue et al. (Inoue, H., Ueda, T., Chem. Pharm. Bull., 1987, 26, 2657). It can be produced by converting commercially available 5-bromo-2′-deoxyuridine to 5-cyano-2′-deoxyuridine.

置換されていてもよいチミンの好ましい例は、非特許文献3に記載のある通り、水銀イオンに対して選択性が高い、無置換のチミンである。   A preferred example of the optionally substituted thymine is an unsubstituted thymine having high selectivity for mercury ions as described in Non-Patent Document 3.

(2)エキシマー形成可能な蛍光性基を有する塩基
第一の一本鎖核酸におけるエキシマー形成可能な蛍光性基を有する塩基は特に制限されないが、例えば、エキシマー形成可能な蛍光性基を有する、アデニン、シトシン、グアニン、チミン、又はウラシルを挙げることができ、好ましくはエキシマー形成可能な蛍光性基を有するシトシンである。
(2) Base having excimer-forming fluorescent group The base having the excimer-forming fluorescent group in the first single-stranded nucleic acid is not particularly limited. For example, adenine having a excimer-forming fluorescent group , Cytosine, guanine, thymine, or uracil, preferably a cytosine having a fluorescent group capable of forming an excimer.

エキシマー形成可能な蛍光性基は、ダイマー化した際に、モノマー時の発光と異なる波長のエキシマー発光を生じ得る蛍光性基であれば特に制限されない。エキシマー形成可能な蛍光性基としては、例えば、ピレン及びピレン誘導体、アントラセン及びアントラセン誘導体、並びにナフタレン系、フルオレン系及びシアニン系色素などを挙げることができるが、好ましくはピレン及びピレン誘導体であり、より好ましくはピレンである。ピレンは、励起波長340nmで照射されると、モノマー時は約380nmに極大を有する蛍光を発するが、ダイマー時には約480nmに極大を有する蛍光を発する。   The fluorescent group capable of forming an excimer is not particularly limited as long as it is a fluorescent group capable of producing excimer emission having a wavelength different from that of monomer emission when dimerized. Examples of the fluorescent group capable of forming an excimer include pyrene and pyrene derivatives, anthracene and anthracene derivatives, and naphthalene-based, fluorene-based, and cyanine-based dyes, and are preferably pyrene and pyrene derivatives. Pyrene is preferred. When pyrene is irradiated at an excitation wavelength of 340 nm, it emits fluorescence having a maximum at about 380 nm when monomer, but emits fluorescence having a maximum at about 480 nm when dimer.

エキシマー形成可能な蛍光性基を有する塩基は、エキシマー形成可能な蛍光性基と塩基とが直接結合していてもよいし、適当な長さのリンカーを介して結合していてもよく、種々の態様をとり得る。エキシマー形成可能な蛍光性基を有する塩基は、例えば、下記一般式(5)
(式中、Rはエキシマー形成可能な蛍光性基を表し、Xは塩基を表し、及びkは1〜5の整数を表す)
で示される化合物を挙げることができる。上記一般式(5)の化合物は、エキシマー形成可能な蛍光性基が、−C(CO)NH(CH2k−で表されるリンカーを介して塩基と結合する。リンカーは特に制限されなく、例えば、炭素数が1〜20個程度のアルキル基やエーテル基などのリンカーも用いることができるが、これらに制限されるものではない。
A base having a fluorescent group capable of forming an excimer may be directly bonded to a fluorescent group capable of forming an excimer and a base, or may be bonded via a linker having an appropriate length. Embodiments can be taken. Examples of the base having a fluorescent group capable of excimer formation include the following general formula (5):
(Wherein R represents a fluorescent group capable of excimer formation, X represents a base, and k represents an integer of 1 to 5)
The compound shown by can be mentioned. The compounds of the general formula (5) is, excimer formation fluorescent group is, -C (CO) NH (CH 2) k - coupled to a base via a linker represented by. The linker is not particularly limited, and for example, a linker such as an alkyl group or an ether group having about 1 to 20 carbon atoms can be used, but is not limited thereto.

エキシマー形成可能な蛍光性基を有する塩基のより具体的な例は、下記式(6)
のものを挙げることができる。以下、エキシマー形成可能な蛍光性基を有する塩基の製造方法について、後述する実施例に記載の上記式(6)の塩基の製造方法に則して説明する。
A more specific example of a base having a fluorescent group capable of excimer formation is represented by the following formula (6):
Can be mentioned. Hereinafter, a method for producing a base having a fluorescent group capable of forming an excimer will be described in accordance with a method for producing a base of the above formula (6) described in Examples described later.

図1は、上記式(6)の塩基を塩基部とする化合物8の合成経路を示す。   FIG. 1 shows a synthetic route of compound 8 having the base of formula (6) as a base moiety.

まず、通常知られる方法を用いて、2'−デオキシヌクレオシド、例えば2'-deoxyuridine (図1の化合物1)のそれぞれのOH基を互いに異なる保護基で保護したOH保護2'−デオキシヌクレオシドを得る。このようにして得られたOH保護2'−デオキシヌクレオシドの具体例は、図1に示される化合物3である。次いでOH保護2'−デオキシヌクレオシドに、末端がアミノ基などの塩基性基で修飾されたアルキル基を結合し、さらにエキシマー形成可能な蛍光性基の酸、例えば1-Pyreneacetic acidと反応させると、上記式(6)の塩基を有するOH保護2'−デオキシヌクレオシドを得る。上記式(6)の塩基を有するOH保護2'−デオキシヌクレオシドの具体例が、図1の化合物6である。次いで通常知られる方法により、上記式(6)の塩基を有するOH保護2'−デオキシヌクレオシドの4位のOH基を脱保護し、さらにN,N-Diisopropylethylamineや2-Cyanoethyl N,N-diisopropylchlorophosphoramiditeなどと反応させることにより、上記式(6)の塩基を有するアミダイトを得る。この上記式(6)の塩基を有するアミダイトの具体例が、図1の化合物8である。   First, 2′-deoxynucleoside, for example, 2′-deoxyuridine (compound 1 in FIG. 1) is protected with a different protecting group using a generally known method to obtain OH-protected 2′-deoxynucleoside. . A specific example of the OH-protected 2′-deoxynucleoside thus obtained is compound 3 shown in FIG. Subsequently, an OH-protected 2′-deoxynucleoside is bonded with an alkyl group whose end is modified with a basic group such as an amino group, and further reacted with an acid of a fluorescent group capable of forming an excimer, for example, 1-Pyreneacetic acid. An OH protected 2′-deoxynucleoside having a base of the above formula (6) is obtained. A specific example of an OH-protected 2′-deoxynucleoside having a base of the above formula (6) is compound 6 in FIG. Subsequently, the OH group at the 4-position of the OH-protected 2′-deoxynucleoside having the base of the above formula (6) is deprotected by a generally known method, and further, N, N-Diisopropylethylamine, 2-Cyanoethyl N, N-diisopropylchlorophosphoramidite, etc. To obtain an amidite having a base of the above formula (6). A specific example of the amidite having the base of the above formula (6) is the compound 8 in FIG.

2'−デオキシヌクレオシドから上記式(6)の塩基を有するアミダイトを合成する過程において、各中間体はシリカゲルカラムなどの通常知られる有機化合物の分離精製方法によって分離及び/又は精製され、さらにTLCや1H−NMRなどの通常知られる有機化合物の分析法により、所望の化合物が得られたことや合成した化合物の構造を解析することができる。 In the process of synthesizing the amidite having the base of the above formula (6) from 2′-deoxynucleoside, each intermediate is separated and / or purified by a generally known separation and purification method of an organic compound such as a silica gel column. It is possible to analyze the structure of the synthesized compound by obtaining a desired compound by a generally known organic compound analysis method such as 1 H-NMR.

合成に用いる原料となる化合物は市販のものや通常知られる方法によって合成したもののいずれを用いてもよい。合成に用いる溶媒や合成条件なども特に制限はなく、例えば、有機合成に詳しいCurrent Protocols In Nucleic Acid Chemistry (john Wiley & Sons, Inc., ISBN 0-471-24662-X)などの文献に記載の方法を参照して適宜設定することができる。   As a raw material used for the synthesis, either a commercially available product or a compound synthesized by a generally known method may be used. There are no particular limitations on the solvent and synthesis conditions used in the synthesis, and examples thereof include those described in literature such as Current Protocols In Nucleic Acid Chemistry (john Wiley & Sons, Inc., ISBN 0-471-24662-X), which is familiar with organic synthesis. It can set suitably with reference to a method.

OH基の保護基は特に制限されないが、例えば、ジメチルトリチル基、t−ブチルジメチルシリル基、ベンジル基、p−メトキシベンジル基、tert-ブチル基、メトキシメチル基、テトラヒドロピラニル基、エトキシエチル基、アセチル基、ピバロイル基、ベンゾイル基、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、t-ブチルジフェニルシリル基、トリアルキルシリル基、トリアリールシリル基、テトラヒドロピランエーテル基などを挙げることができ、好ましくはジメチルトリチル基及びt−ブチルジメチルシリル基である。   The protecting group for the OH group is not particularly limited, and examples thereof include dimethyltrityl group, t-butyldimethylsilyl group, benzyl group, p-methoxybenzyl group, tert-butyl group, methoxymethyl group, tetrahydropyranyl group, and ethoxyethyl group. Acetyl group, pivaloyl group, benzoyl group, trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, t-butyldiphenylsilyl group, trialkylsilyl group, triarylsilyl group, tetrahydropyran ether group, etc. A dimethyltrityl group and a t-butyldimethylsilyl group are preferred.

(3)ワトソン・クリック型塩基対を形成し得る塩基
ワトソン・クリック型塩基対は、通常知られている意味のものであり、例えば、互いに相補的なアデニン(A)とチミン(T)、シトシン(C)とグアニン(G)などの組み合わせが挙げられる。したがって、ワトソン・クリック型塩基対を形成し得る塩基とは、第一の一本鎖核酸と第二の一本鎖核酸が二本鎖を形成した場合に、向かい合う塩基に対してA、T、C又はGをとり得るものである。第一の一本鎖核酸に含まれるワトソン・クリック型塩基対を形成し得る塩基は、互いに同一でも異なってもよい。例えば、上記一般式(1)のNdのdが3である場合、AAAでもATGでもAATでもいずれの態様もとり得る。
(3) Base capable of forming Watson-Crick base pair The Watson-Crick base pair has a generally known meaning, for example, adenine (A), thymine (T), cytosine complementary to each other. Combinations of (C) and guanine (G) can be mentioned. Therefore, a base capable of forming a Watson-Crick base pair means that when the first single-stranded nucleic acid and the second single-stranded nucleic acid form a double strand, A, T, C or G can be taken. The bases that can form the Watson-Crick base pair contained in the first single-stranded nucleic acid may be the same as or different from each other. For example, when d of Nd in the above general formula (1) is 3, any of AAA, ATG, and AAT can be used.

(4)第一の一本鎖核酸の配列
第一の一本鎖核酸は、上記一般式(1)で示される塩基配列を1又は2以上含み得る。上記一般式(1)で示されるa、b、g、h、nおよびmは、それぞれ独立して、0〜10、好ましくは1〜5、より好ましくは1〜3の整数を表し;c及びfは、それぞれ独立して、1〜10、好ましくは1〜5、より好ましくは1〜3の整数を表し;d及びeは、それぞれ独立して、3〜10、好ましくは3〜5、より好ましくは3又は4の整数を表す。上記一般式(1)やその他の一般式や式の5’及び3’は、単に方向を表しているにすぎず、末端部であることを表すものではない。
(4) Sequence of the first single-stranded nucleic acid The first single-stranded nucleic acid may contain one or more base sequences represented by the general formula (1). A, b, g, h, n and m represented by the general formula (1) each independently represent an integer of 0 to 10, preferably 1 to 5, more preferably 1 to 3; f independently represents an integer of 1 to 10, preferably 1 to 5, more preferably 1 to 3; d and e each independently represent 3 to 10, preferably 3 to 5; Preferably it represents an integer of 3 or 4. The above-mentioned general formula (1) and other general formulas and formulas 5 ′ and 3 ′ merely represent directions, and do not represent terminal portions.

第一の一本鎖核酸において、置換されていてもよいチミンの総数は、特に制限されないが、水銀イオンの検出能を高めるためには多数であることが好ましく、例えば、1〜100個、より好ましくは1〜50個、さらに好ましくは1〜20個、なおさらに好ましくは1〜10個、特に好ましくは2〜8個である。ただし、置換されていてもよいチミンの総数が多過ぎると感度が下る傾向にある。これは水銀イオン結合サイトのチミンは二本鎖構造を不安定化する可能性が高いからである。したがって、水銀イオン検出の感度を上げるためには、置換されていてもよいチミンの総数を減らすことが好ましい。   In the first single-stranded nucleic acid, the total number of thymines that may be substituted is not particularly limited, but is preferably a large number in order to improve the ability to detect mercury ions, for example, 1 to 100 or more The number is preferably 1 to 50, more preferably 1 to 20, still more preferably 1 to 10, and particularly preferably 2 to 8. However, if the total number of thymines that may be substituted is too large, the sensitivity tends to decrease. This is because thymine at the mercury ion binding site is likely to destabilize the double-stranded structure. Therefore, in order to increase the sensitivity of mercury ion detection, it is preferable to reduce the total number of thymines that may be substituted.

これらの複数の置換されていてもよいチミンは、互いに同一でも異なってもよい。例えば、上記一般式(1)のT’cのcが4である場合、T’cは無置換のチミンが4個あっても、無置換のチミン、5−メチル基が水素で置換されたチミン、5−メチル基がハロゲンで置換されたチミン及び5−メチル基がシアノ基で置換されたチミンの計4個であってもよい。   The plurality of optionally substituted thymines may be the same as or different from each other. For example, when c of T′c in the general formula (1) is 4, T′c is substituted with an unsubstituted thymine and 5-methyl group with hydrogen even if there are four unsubstituted thymines. There may be a total of four thymines, thymines in which the 5-methyl group is substituted with halogen, and thymines in which the 5-methyl group is substituted with a cyano group.

第一の一本鎖核酸は、エキシマー形成可能な蛍光性基を有する塩基を1〜複数個、好ましくは1個含み得る。第一の一本鎖核酸において、複数個、例えば、2〜10個のエキシマー形成可能な蛍光性基を有する塩基が含まれる場合は、これらのエキシマー形成可能な蛍光性基を有する塩基の間に十分な数の塩基、例えば、少なくとも5〜20個程度の塩基があることが好ましい。エキシマー形成可能な蛍光性基を有する塩基の数が増えると蛍光強度が増加するので、水銀イオンの検出に用いる第一及び第二の一本鎖核酸の濃度を下げることができる。   The first single-stranded nucleic acid may contain one to a plurality of bases having a fluorescent group capable of forming an excimer, preferably one. When the first single-stranded nucleic acid contains a plurality of, for example, 2 to 10 bases having a fluorescent group capable of forming an excimer, between these bases having a fluorescent group capable of forming an excimer. It is preferred that there be a sufficient number of bases, for example at least about 5-20 bases. Since the fluorescence intensity increases as the number of bases having a fluorescent group capable of excimer formation increases, the concentration of the first and second single-stranded nucleic acids used for detection of mercury ions can be lowered.

第一の一本鎖核酸における、エキシマー形成可能な蛍光性基を有する塩基が配置される部位は、エキシマー形成可能な蛍光性基を有する塩基と置換されていてもよいチミンとの間に上記一般式(1)のd及びeが示す個数のワトソン・クリック型塩基対を形成し得る塩基があれば、特に制限されない。   In the first single-stranded nucleic acid, the site where a base having a fluorescent group capable of forming an excimer is arranged between the base having a fluorescent group capable of forming an excimer and a thymine which may be substituted as described above. There is no particular limitation as long as there is a base capable of forming the number of Watson-Crick base pairs indicated by d and e in formula (1).

第一の一本鎖核酸は、置換されていてもよいチミンのアミダイト体とエキシマー形成可能な蛍光性基を有する塩基のアミダイト体を用いて、通常知られるDNAの合成法であるホスホアミダイト化学(ホスホアミダイト法、H-ホスホネート法、その他既知のDNA合成法)による固相合成法によって合成することができる。ホスホアミダイト化学による固相合成法によるDNA合成で使用されるその他の材料、方法、装置等は、ホスホアミダイト化学による固相合成法に通常用いられるものであれば特に制限されないが、例えば、後述する実施例に記載のものを挙げることができる。ホスホアミダイト化学による固相合成法としては、実施例に記載した方法以外にも、例えば、丹羽峰雄著 “DNAの化学合成法”(廣川 化学と生物 実験ライン 22)ISBN 4-567-18220-0(平成4年)、廣川書店の記載を参照できる。   The first single-stranded nucleic acid is a phosphoramidite chemistry, which is a commonly known DNA synthesis method, using an amidite form of thymine which may be substituted and an amidite form of a base having a fluorescent group capable of excimer formation ( It can be synthesized by a solid phase synthesis method using a phosphoramidite method, an H-phosphonate method, and other known DNA synthesis methods. Other materials, methods, apparatuses and the like used in DNA synthesis by the solid phase synthesis method by phosphoamidite chemistry are not particularly limited as long as they are usually used in the solid phase synthesis method by phosphoamidite chemistry. The thing as described in an Example can be mentioned. In addition to the methods described in the examples, the solid phase synthesis method using phosphoamidite chemistry is, for example, “National Chemistry Method for DNA” written by Mineo Niwa (Sasakawa Chemical and Biological Experiment Line 22) ISBN 4-567-18220-0 (Heisei 4) You can refer to the description of Yodogawa Shoten.

例えば、ホスホアミダイト化学による固相合成法によるDNA合成は、Applied Biosystems社の394 DNA/RNA SynthesizerなどのDNA自動合成機を用いて実施され得る。より具体的には、DNA自動合成機を用いて、CPG(controlled pore glass)などのガラス性の固相担体に結合した適当な濃度のヌクレオシド保護体から出発し、DNA自動合成機の製造業者が推奨するプロトコールをそのまま、又は修正を加えてDNAを合成することができる。置換されていてもよいチミンのアミダイト体やエキシマー形成可能な蛍光性基を有する塩基のアミダイト体の縮合時間は、例えば、10〜20分程度の時間で実施し、通常使用される塩基のアミダイトの縮合時間よりも長く設定することが好ましい。縮合収率の測定は特に制限されないが、DNA自動合成機に内臓の測定器により測定できる。   For example, DNA synthesis by solid phase synthesis by phosphoramidite chemistry can be performed using an automatic DNA synthesizer such as 394 DNA / RNA Synthesizer from Applied Biosystems. More specifically, using an automatic DNA synthesizer, starting from an appropriate concentration of a nucleoside protector bound to a glassy solid phase carrier such as CPG (controlled pore glass), the manufacturer of the automatic DNA synthesizer DNA can be synthesized with the recommended protocol as it is or with modifications. The condensation time of the amidite form of thymine which may be substituted or the base amidite form having a fluorescent group capable of excimer formation is, for example, about 10 to 20 minutes, It is preferable to set it longer than the condensation time. The measurement of the condensation yield is not particularly limited, but it can be measured by a built-in measuring device in an automatic DNA synthesizer.

上記した方法などによって得られた第一の一本鎖核酸は、DNAを精製する通常知られる方法、例えば、濃アンモニア水などのDNA溶解液に溶解し保護基を除去するとともに固相担体を取り除いた後にろ過法し、濾液を濃縮し、次いで濃縮物を再度DNA溶解液を含む脱イオン水に溶解させた後に、逆相シリカゲルカラムを用いたHPLCなどによって精製することができる。得られた第一の一本鎖核酸は、例えば、ゲル電気泳動で電気泳動した後に、第一の一本鎖核酸のバンドに励起光を照射し蛍光を目視で検出するなどの方法により確認することができる。   The first single-stranded nucleic acid obtained by the above-described method or the like is a generally known method for purifying DNA, for example, dissolved in a DNA solution such as concentrated aqueous ammonia to remove the protective group and remove the solid support. Thereafter, filtration is performed, the filtrate is concentrated, and the concentrate is dissolved again in deionized water containing a DNA solution, and then purified by HPLC using a reverse phase silica gel column. The obtained first single-stranded nucleic acid is confirmed by, for example, a method of irradiating excitation light to the band of the first single-stranded nucleic acid and visually detecting fluorescence after electrophoresis by gel electrophoresis. be able to.

第一の一本鎖核酸の長さは特に制限されないが、例えば、7〜数百塩基、好ましくは7〜200塩基、より好ましくは10〜100塩基、さらに好ましくは10〜50塩基、なおさらに好ましくは10〜20塩基程度の長さである。   The length of the first single-stranded nucleic acid is not particularly limited, but is, for example, 7 to several hundred bases, preferably 7 to 200 bases, more preferably 10 to 100 bases, still more preferably 10 to 50 bases, and still more preferably. Is about 10 to 20 bases in length.

2.第二の一本鎖核酸
第二の一本鎖核酸は、上記一般式(2)に示す通り、第一の一本鎖核酸と同様に、置換されていてもよいチミン(T’)、エキシマー形成可能な蛍光性基を有する塩基(Ex)、及びワトソン・クリック型塩基対を形成し得る塩基(N’)を含む。
2. Second single-stranded nucleic acid The second single-stranded nucleic acid, as shown in the general formula (2), may be substituted thymine (T ′), excimer as in the case of the first single-stranded nucleic acid. A base (E x ) having a fluorescent group that can be formed, and a base (N ′) capable of forming a Watson-Crick base pair.

第二の一本鎖核酸において、ワトソン・クリック型塩基対を形成し得る塩基(N’)は第一の一本鎖核酸のワトソン・クリック型塩基対を形成し得る塩基(N)と相補的な塩基を示し、NとN’との関係は、N:N’=A:T、C:G、T:A又はG:Cである。したがって、例えば、Neのeが4であり、具体的にはATCGである場合は、N’eはCGATである。   In the second single-stranded nucleic acid, the base (N ′) capable of forming a Watson-Crick base pair is complementary to the base (N) capable of forming the Watson-Crick base pair of the first single-stranded nucleic acid. The relationship between N and N ′ is N: N ′ = A: T, C: G, T: A or G: C. Thus, for example, if Ne's e is 4, specifically ATCG, N'e is CGAT.

第二の一本鎖核酸は、上記配列を含めば、第一の一本鎖核酸よりも短くても、長くても、又は同じ長さでもよい。   The second single-stranded nucleic acid may be shorter, longer or the same length as the first single-stranded nucleic acid as long as the sequence is included.

第一の一本鎖核酸と第二の一本鎖核酸の例は、例えば、第一の一本鎖核酸(5’→3’):第二の一本鎖核酸(5’→3’)=T'NNT'NNNExNNNT'T'NN:NNT'T'NNNExNNNT'NNT’;T'T'T'NNT'T'NNNExNNNT'T'T'NT'T'T':T'T'T'N'T'T'T'N'N'N' ExN'N'N'T'T'N'N'T'T'T';T'NNNT'NNNNExNNNNNT'T'NNNN:N'N'N'N'T'T'N'N'N'N'N' ExN'N'N'N'T'N'N'N'T’などを挙げることができ、より具体的な例は、T'CCT'CCAExTGCT'T'GC:GCT'T'GCAExTGGT'GGT'である。 Examples of the first single-stranded nucleic acid and the second single-stranded nucleic acid are, for example, a first single-stranded nucleic acid (5 ′ → 3 ′): a second single-stranded nucleic acid (5 ′ → 3 ′). = T'NNT'NNNE x NNNT'T'NN: NNT'T'NNNE x NNNT'NNT ';T'T'T'NNT'T'NNNE x NNNT'T'T'NT'T'T': T 'T'T'N'T'T'T'N'N'N' E x N'N'N'T'T'N'N'T'T'T ';T'NNNT'NNNNE x NNNNNT'T'NNNN : N'N'N'N'T'T'N'N'N'N'N 'E x N'N'N'N'T'N'N'N'T' A more specific example is T′CCT′CCAE × TGCT′T′GC: GCT′T′GCAE × TGGT′GGT ′.

第一の一本鎖核酸と第二の一本鎖核酸は、2個の一本鎖核酸であってもよいが、例えば、第一の一本鎖核酸の3’末端と第二の一本鎖核酸の5’末端とがリンカーを介して連結された1個の一本鎖核酸であってもよい。第一の一本鎖核酸及び第二の一本鎖核酸がリンカーを介して連結されている場合は、水銀イオンが存在するとき、第一の一本鎖核酸及び第二の一本鎖核酸は分子内で二本鎖を形成し得る。   The first single-stranded nucleic acid and the second single-stranded nucleic acid may be two single-stranded nucleic acids. For example, the 3 ′ end of the first single-stranded nucleic acid and the second single-stranded nucleic acid It may be one single-stranded nucleic acid in which the 5 ′ end of the strand nucleic acid is linked via a linker. When the first single-stranded nucleic acid and the second single-stranded nucleic acid are linked via a linker, when mercury ions are present, the first single-stranded nucleic acid and the second single-stranded nucleic acid are It can form a double strand within the molecule.

第一の一本鎖核酸及び第二の一本鎖核酸の連結物を製造する方法は特に制限されず、例えば、これまでに知られている繰り返し反復配列の製造方法や非特許文献4に記載の方法に従って製造することができる。また、第一の一本鎖核酸及び第二の一本鎖核酸の連結部であるリンカーも特に制限されず、種々のものを用いることができるが、例えば、4塩基以上あるものが好ましい。第一の一本鎖核酸及び第二の一本鎖核酸の連結物の具体例は、5’−TCCTCCAExTGCTTGC−CCCC−GCTTGCAExTGGTGGT−3’である。 The method for producing a ligated product of the first single-stranded nucleic acid and the second single-stranded nucleic acid is not particularly limited. For example, a known repetitive sequence production method or a non-patent document 4 described above. It can be manufactured according to the method. In addition, the linker that is the linking portion between the first single-stranded nucleic acid and the second single-stranded nucleic acid is not particularly limited, and various types can be used. For example, those having 4 or more bases are preferable. A specific example of the ligated product of the first single-stranded nucleic acid and the second single-stranded nucleic acid is 5′-TCCTCCAE x TGCTTGC-CCCC-GCTTGCAE x TGGTGGT-3 ′.

3.被験試料、第一の一本鎖核酸、及び第二の一本鎖核酸を含む溶液
本発明の水銀イオンの検出方法は、被験試料、第一の一本鎖核酸、及び第二の一本鎖核酸を含む溶液を得ることを含む。
3. Solution containing test sample, first single-stranded nucleic acid, and second single-stranded nucleic acid The method for detecting mercury ions of the present invention comprises a test sample, a first single-stranded nucleic acid, and a second single-stranded nucleic acid. Obtaining a solution containing the nucleic acid.

被験試料は特に制限されず、通常は、水銀イオンを含む又は水銀イオンが含まれる可能性のある溶液を用いる。被験試料に含まれる水銀イオンは、2価の水銀イオン(Hg(II))であることが好ましい。したがって、被験試料に1価の水銀イオンやその他の水銀化合物が含まれている場合は、これらを酸化剤により2価の水銀イオンに酸化した後に、本発明の方法に供することが好ましい。被験試料中にエキシマー発光の測定を阻害する物質等が存在する場合は、被験試料を希釈すること、マスキング剤などを添加すること、固形物を除去することなどの前処理をしてもよい。   The test sample is not particularly limited, and usually a solution containing mercury ions or a solution containing mercury ions may be used. The mercury ion contained in the test sample is preferably divalent mercury ion (Hg (II)). Therefore, when monovalent mercury ions or other mercury compounds are contained in the test sample, it is preferable to oxidize these to divalent mercury ions with an oxidizing agent and then subject them to the method of the present invention. When a substance or the like that inhibits the measurement of excimer luminescence is present in the test sample, pretreatment such as dilution of the test sample, addition of a masking agent, or the like, or removal of solids may be performed.

被験試料における水銀イオン濃度と第一の一本鎖核酸及び第二の一本鎖核酸の濃度との関係は、被験試料のその他の含有物によっても影響を受けるが、例えば、水銀イオンと第一の一本鎖核酸又は第二の一本鎖核酸の濃度の比(水銀イオン濃度/第一の一本鎖核酸又は第二の一本鎖核酸の濃度)は、0.1〜100が好ましく、0.2〜10がより好ましく、0.1〜2がさらに好ましい。具体的には、水銀イオンが1〜100μMに対して、第一の一本鎖核酸及び第二の一本鎖核酸のそれぞれの濃度は、1〜10μMが好ましい。   The relationship between the mercury ion concentration in the test sample and the concentrations of the first single-stranded nucleic acid and the second single-stranded nucleic acid is also affected by other contents of the test sample. The concentration ratio of the single-stranded nucleic acid or the second single-stranded nucleic acid (mercury ion concentration / the concentration of the first single-stranded nucleic acid or the second single-stranded nucleic acid) is preferably 0.1 to 100, 0.2-10 are more preferable and 0.1-2 are still more preferable. Specifically, the concentration of the first single-stranded nucleic acid and the second single-stranded nucleic acid is preferably 1 to 10 μM with respect to 1 to 100 μM of mercury ions.

被験試料、第一の一本鎖核酸、及び第二の一本鎖核酸を含む溶液を得る方法は、特に制限はなく、例えば、これらを混合した溶液として得ることができる。例えば、混合方法としては、被験試料、第一の一本鎖核酸及び第二の一本鎖核酸を接触させた後に、10℃〜45℃、数秒間〜数時間の条件下で、静置して、又は撹拌子やヴォルテックスなどの撹拌機器や手動によって撹拌して、若しくはこれらを組み合わせることによって実施することができる。   A method for obtaining a solution containing the test sample, the first single-stranded nucleic acid, and the second single-stranded nucleic acid is not particularly limited, and can be obtained, for example, as a mixed solution thereof. For example, as a mixing method, after bringing the test sample, the first single-stranded nucleic acid and the second single-stranded nucleic acid into contact with each other, the mixture is allowed to stand at 10 ° C. to 45 ° C. for several seconds to several hours. Or by stirring with a stirring device such as a stirring bar or vortex, manually, or a combination thereof.

被験試料、第一の一本鎖核酸、及び第二の一本鎖核酸を含む溶液は、第一の一本鎖核酸と第二の一本鎖核酸が水銀イオンと結合するために、pHは弱酸性〜中性付近であることが好ましく、pHは6〜8であることがより好ましい。   The solution containing the test sample, the first single-stranded nucleic acid, and the second single-stranded nucleic acid has a pH of It is preferably weakly acidic to near neutral, and more preferably 6 to 8.

4.エキシマー発光の検出
本発明の水銀イオンの検出方法は、得られた溶液に励起光を照射し、該照射により発生するエキシマー発光を検出することを含む。
4). Detection of Excimer Luminescence The method for detecting mercury ions of the present invention includes irradiating the obtained solution with excitation light and detecting excimer luminescence generated by the irradiation.

溶液に励起光を照射する方法や該照射により発生するエキシマー発光を検出する方法は特に制限されないが、例えば、市販の蛍光を測定する機器、より具体的には島津社製RF-5399PCなどの蛍光光度計を用いて実施することができる。   The method of irradiating the solution with excitation light and the method of detecting excimer luminescence generated by the irradiation are not particularly limited. For example, a commercially available instrument for measuring fluorescence, more specifically, fluorescence such as RF-5399PC manufactured by Shimadzu Corporation. It can be carried out using a photometer.

励起光及びエキシマー発光の波長は、エキシマー形成可能な蛍光性基によって適宜設定され、例えば、エキシマー形成可能な蛍光性基がピレンの場合は、励起光は340nmであり、かつエキシマー発光は480nm付近の波長の光として検出することができる。エキシマー発光の検出に供する混合溶液は、上記3の混合工程で調製した溶液の一部であってもよいし、全部であってもよい。また、定期的に被験試料の貯槽の一部を混合槽に送り、次いで混合槽にて被験試料、第一の一本鎖核酸及び第二の一本鎖核酸を含む溶液を得て、次いでこの溶液の一部を蛍光検出部に送液する系を確立すれば、定期的に自動で被験試料中の水銀イオンを検出することができる。   The wavelengths of the excitation light and excimer emission are appropriately set depending on the excimer-forming fluorescent group. For example, when the excimer-forming fluorescent group is pyrene, the excitation light is 340 nm, and the excimer emission is around 480 nm. It can be detected as light of a wavelength. The mixed solution used for detection of excimer luminescence may be a part or all of the solution prepared in the above-described mixing step 3. In addition, a part of the test sample storage tank is periodically sent to the mixing tank, and then a solution containing the test sample, the first single-stranded nucleic acid and the second single-stranded nucleic acid is obtained in the mixing tank. If a system for sending a part of the solution to the fluorescence detector is established, mercury ions in the test sample can be automatically detected periodically.

5.キット
本発明の別の側面によれば、第一の一本鎖核酸及び第二の一本鎖核酸を含む、水銀イオンの検出方法に使用するためのキットが提供される。本発明のキットの使用例は、本発明のキットに含まれる第一の一本鎖核酸及び第二の一本鎖核酸と被験試料とを含む溶液を得て、次いで得られた溶液に励起光を照射し、次いでエキシマー発光を検出すれば、水銀イオンを検出することができる。本発明のキットは、第一の一本鎖核酸及び第二の一本鎖核酸を含めば特に制限されないが、例えば、緩衝液、pH調製液、希釈液、マスキング剤などの被験試料を処理するための溶液や薬剤を含み得る。
5. Kit According to another aspect of the present invention, there is provided a kit for use in a method for detecting mercury ions, comprising a first single-stranded nucleic acid and a second single-stranded nucleic acid. An example of using the kit of the present invention is to obtain a solution containing the first single-stranded nucleic acid and the second single-stranded nucleic acid contained in the kit of the present invention and the test sample, and then add excitation light to the obtained solution. Then, when excimer luminescence is detected, mercury ions can be detected. The kit of the present invention is not particularly limited as long as it includes the first single-stranded nucleic acid and the second single-stranded nucleic acid. For example, a test sample such as a buffer solution, a pH adjusting solution, a diluent, a masking agent is processed. Solution or drug for the purpose.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれら実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited to these Examples.

例1.ピレン結合2’−デオキシシチジン保護体の合成方法
図1に、ピレン結合2’−デオキシシチジン保護体(図1の化合物8)の合成経路を示す。以下、図1の化合物2〜8の合成方法及び合成結果を示す。なお、ピレン酢酸はaldrich 社から購入し、その他の化合物は和光純薬から購入した。
Example 1. Method for synthesizing pyrene-bound 2′-deoxycytidine protector FIG. 1 shows a synthetic route for pyrene-bound 2′-deoxycytidine protector (compound 8 in FIG. 1). Hereinafter, synthesis methods and synthesis results of the compounds 2 to 8 in FIG. 1 will be shown. Pyreneacetic acid was purchased from aldrich and other compounds were purchased from Wako Pure Chemical.

(1)化合物2の合成
化合物1である2'-deoxyuridine(5.03 g, 22.1 mmol)を脱水pyridineで2回共沸し、脱水pyridine(40 ml)に溶解した後、DMTrCl(8.97 g, 26.5 mmol, 1.2 eq)を加え室温で100分間攪拌した。TLCで反応が進行したことを確認し、EtOH(2 ml)を加え20分間静置後、減圧下濃縮した。残渣にCHCl3と飽和NaHCO3水を加えて分液し、水層をCHCl3で2回抽出後、集めた有機層をNa2SO4で乾燥させ、濃縮した。残渣をシリカゲルカラム(C60シリカゲル 100 g, 展開溶媒 CHCl3, MeOH)で精製し、濃縮して淡黄色泡状の化合物2(10.0 g, 18.9 mmol;収率 86%)を得た。
1H-NMR 500M Hz (DMSO-d6) : δ ppm = 11.31 (s, 1H, N-H), 7.63 (d, 1H, J = 8.0 Hz, H-5), 7.37-6.88 (m, 13H, DMTr), 6.13 (dd, 1H, J = 6.5 Hz, 6.5 Hz, H-1'), 5.36 (d, 1H, J = 8.0 Hz, H-6), 5.32 (d, 1H, J = 4.5 Hz, 3'-OH), 4.27 (m, 1H, H-3'), 3.86 (m, 1H, H-4'), 3.73 (s, 6H, DMTr),3.24-3,16 (m, 2H, H-5'), 2.17 (m, 2H, H-2')
(1) Synthesis of Compound 2 Compound 1 2'-deoxyuridine (5.03 g, 22.1 mmol) was azeotroped twice with dehydrated pyridine, dissolved in dehydrated pyridine (40 ml), and then DMTrCl (8.97 g, 26.5 mmol). , 1.2 eq) and stirred at room temperature for 100 minutes. After confirming that the reaction had progressed by TLC, EtOH (2 ml) was added and the mixture was allowed to stand for 20 minutes, and then concentrated under reduced pressure. CHCl 3 and saturated aqueous NaHCO 3 were added to the residue for liquid separation, the aqueous layer was extracted twice with CHCl 3 , and the collected organic layer was dried over Na 2 SO 4 and concentrated. The residue was purified by a silica gel column (C60 silica gel 100 g, developing solvent CHCl 3 , MeOH) and concentrated to obtain pale yellow foamy compound 2 (10.0 g, 18.9 mmol; yield 86%).
1 H-NMR 500M Hz (DMSO-d 6 ): δ ppm = 11.31 (s, 1H, NH), 7.63 (d, 1H, J = 8.0 Hz, H-5), 7.37-6.88 (m, 13H, DMTr ), 6.13 (dd, 1H, J = 6.5 Hz, 6.5 Hz, H-1 '), 5.36 (d, 1H, J = 8.0 Hz, H-6), 5.32 (d, 1H, J = 4.5 Hz, 3 '-OH), 4.27 (m, 1H, H-3'), 3.86 (m, 1H, H-4 '), 3.73 (s, 6H, DMTr), 3.24-3,16 (m, 2H, H- 5 '), 2.17 (m, 2H, H-2')

(2)化合物3の合成
得られた化合物2(1.89 g, 3.57 mmol)とImidazole(0.36 g, 5.35 mmol, 1.5 eq)を脱水DMFで共沸し、脱水DMF(30 ml)に溶解した後、TBDMSCl(0.65 g, 4.28 mmol, 1.2 eq)を加え室温で一晩攪拌した。TLCで反応が進行したことを確認し、EtOH(2 ml)を加えて20分間静置後、減圧下濃縮した。残渣にCHCl3と飽和NaHCO3水を加えて分液し、水層をCHCl3で抽出後、集めた有機層をNa2SO4で乾燥させ、濃縮した。残渣をシリカゲルカラム(C60シリカゲル 45 g, 展開溶媒 CHCl3, MeOH)で精製し、濃縮して淡黄色泡状の化合物3(2.23 g, 3.46 mmol;収率 97%)を得た。
1H-NMR 500M Hz (DMSO-d6) : δ ppm = 11.41 (s, 1H, N-H), 8.01 (d, 1H, J = 8.0 Hz, H-5), 7.42-6.95 (m, 13H, DMTr), 6.18 (dd, 1H, J = 6.5 Hz, 6.5 Hz, H-1'), 5.48 (d, 1H, J = 8.0 Hz, H-6), 4.47 (m, 1H, H-4'), 3.80-3.79 (m, 7H, H-3', DMTr), 3.42-3.24 (m, 2H, H-5'), 2.33-2.22 (m, 2H, H-2'), 0.84 (s, 9H, TBDMS), 0.06-0.00 (each s, 6H, TBDMS)
(2) Synthesis of Compound 3 The obtained compound 2 (1.89 g, 3.57 mmol) and Imidazole (0.36 g, 5.35 mmol, 1.5 eq) were azeotroped with dehydrated DMF and dissolved in dehydrated DMF (30 ml). TBDMSCl (0.65 g, 4.28 mmol, 1.2 eq) was added and stirred overnight at room temperature. After confirming that the reaction had progressed by TLC, EtOH (2 ml) was added, and the mixture was allowed to stand for 20 minutes, and then concentrated under reduced pressure. CHCl 3 and saturated aqueous NaHCO 3 were added to the residue for liquid separation, the aqueous layer was extracted with CHCl 3 , and the collected organic layer was dried over Na 2 SO 4 and concentrated. The residue was purified by a silica gel column (C60 silica gel 45 g, developing solvent CHCl 3 , MeOH) and concentrated to obtain pale yellow foamy compound 3 (2.23 g, 3.46 mmol; yield 97%).
1 H-NMR 500M Hz (DMSO-d 6 ): δ ppm = 11.41 (s, 1H, NH), 8.01 (d, 1H, J = 8.0 Hz, H-5), 7.42-6.95 (m, 13H, DMTr ), 6.18 (dd, 1H, J = 6.5 Hz, 6.5 Hz, H-1 '), 5.48 (d, 1H, J = 8.0 Hz, H-6), 4.47 (m, 1H, H-4'), 3.80-3.79 (m, 7H, H-3 ', DMTr), 3.42-3.24 (m, 2H, H-5'), 2.33-2.22 (m, 2H, H-2 '), 0.84 (s, 9H, TBDMS), 0.06-0.00 (each s, 6H, TBDMS)

(3)化合物4の合成
Arで置換した二口フラスコ中の化合物3(1.97 g, 3.06 mmol)をCH3CN (20 ml) に溶解し、MS4Aを加えた。次いでEt3N(9.81 ml, 70.3 mmol, 23 eq)、1,2,4-Triazole(4.76 g, 68.9 mmol, 22.5 eq) を加え、溶液を氷冷した。POCl3(0.85 ml, 9.18 mmol, 3 eq)を加え、発熱が終了した時点で溶液を室温に戻し、7時間攪拌した。TLCで反応が進行したことを確認し、析出した白色個体をろ過して取り除いた後、飽和NaCl水で4回洗浄した。有機層をNa2SO4で乾燥させ、濃縮した。残渣をシリカゲルカラム(C60シリカゲル 45 g, 展開溶媒 AcOEt, Hexane)で精製し、濃縮して白色泡状の化合物4(1.86 g, 2.68 mmol;収率 88%) を得た。
1H-NMR 500M Hz (DMSO-d6) : δ ppm = 9.46 (s, 1H, H-Triazole), 8.62 (d, 1H, J = 6.5 Hz, H-5), 8.41 (s, 1H, H-Triazole), 7.37-6.90 (m, 13H, DMTr), 6.67 (d, 1H, J = 6.5 Hz, H-6), 6,11 (dd, 1H, J = 6.3 Hz, 6.3 Hz, H-1'), 4.43 (m, 1H, H-4'), 3.95 (m, 1H, H-3'), 3.74 (s, 6H, DMTr), 3.36 (m, 2H, H-5'), 2.36 (m, 2H, H-2'), 0.77 (s, 9H, TBDMS), 0.00-(-0.06) (each s, 6H, TBDMS)
(3) Synthesis of compound 4
Compound 3 (1.97 g, 3.06 mmol) in a two-necked flask substituted with Ar was dissolved in CH 3 CN (20 ml), and MS4A was added. Subsequently, Et3N (9.81 ml, 70.3 mmol, 23 eq) and 1,2,4-Triazole (4.76 g, 68.9 mmol, 22.5 eq) were added, and the solution was ice-cooled. POCl 3 (0.85 ml, 9.18 mmol, 3 eq) was added, and when the exotherm ended, the solution was allowed to warm to room temperature and stirred for 7 hours. After confirming that the reaction had progressed by TLC, the precipitated white solid was removed by filtration, and then washed four times with saturated NaCl water. The organic layer was dried over Na 2 SO 4 and concentrated. The residue was purified by a silica gel column (C60 silica gel 45 g, developing solvent AcOEt, Hexane) and concentrated to obtain white foamy compound 4 (1.86 g, 2.68 mmol; yield 88%).
1 H-NMR 500M Hz (DMSO-d 6 ): δ ppm = 9.46 (s, 1H, H-Triazole), 8.62 (d, 1H, J = 6.5 Hz, H-5), 8.41 (s, 1H, H -Triazole), 7.37-6.90 (m, 13H, DMTr), 6.67 (d, 1H, J = 6.5 Hz, H-6), 6,11 (dd, 1H, J = 6.3 Hz, 6.3 Hz, H-1 '), 4.43 (m, 1H, H-4'), 3.95 (m, 1H, H-3 '), 3.74 (s, 6H, DMTr), 3.36 (m, 2H, H-5'), 2.36 ( m, 2H, H-2 '), 0.77 (s, 9H, TBDMS), 0.00-(-0.06) (each s, 6H, TBDMS)

(4)化合物5の合成
化合物4(1.86 g, 2.68 mmol)をCH3CN(20 ml)に溶解し、Ethylenediamine(0.89 ml, 13.4 mmol, 5 eq)を加え室温で1時間攪拌した。TLCで反応が進行したことを確認し、EtOHで2回共沸した後、減圧下濃縮した。残渣にCHCl3と飽和NaHCO3水を加えて分液し、水層をCHCl3で2回抽出後、集めた有機層をNa2SO4で乾燥させ、濃縮した。残渣をシリカゲルカラム(C60シリカゲル 25 g, 展開溶媒 CHCl3, MeOH)で精製し、濃縮して白色泡状の化合物5(1.61 g, 2.35 mmol;収率 88%)を得た。
1H-NMR 500M Hz (DMSO-d6) : δ ppm = 7.70 (m, 2H, NH2), 7.40-6.90 (m, 14H, DMTr, H-5), 6.16 (dd, 1H, J = 6.0 Hz, 6.0 Hz, H-1'), 5.64 (d, 1H, J = 7.4 Hz, H-6), 4.40 (m, 1H, H-4'), 3.80 (m, 1H., H-3'), 3.75 (s, 6H, DMTr), 3.35-3.14 (m, 4H, linker, H-5'), 2.66 (t, 2H, J = 6.5 Hz, linker), 2.14 (m, 2H, H-2'), 0.79 (s, 9H, TBDMS), 0.00-(-0.06) (each s, 6H, TBDMS)
(4) Synthesis of Compound 5 Compound 4 (1.86 g, 2.68 mmol) was dissolved in CH 3 CN (20 ml), Ethylenediamine (0.89 ml, 13.4 mmol, 5 eq) was added, and the mixture was stirred at room temperature for 1 hour. After confirming the progress of the reaction by TLC, the reaction mixture was azeotroped twice with EtOH and then concentrated under reduced pressure. CHCl 3 and saturated aqueous NaHCO 3 were added to the residue for liquid separation, the aqueous layer was extracted twice with CHCl 3 , and the collected organic layer was dried over Na 2 SO 4 and concentrated. The residue was purified by silica gel column (C60 silica gel 25 g, developing solvent CHCl 3 , MeOH) and concentrated to obtain white foamy compound 5 (1.61 g, 2.35 mmol; yield 88%).
1 H-NMR 500M Hz (DMSO-d 6 ): δ ppm = 7.70 (m, 2H, NH 2 ), 7.40-6.90 (m, 14H, DMTr, H-5), 6.16 (dd, 1H, J = 6.0 Hz, 6.0 Hz, H-1 '), 5.64 (d, 1H, J = 7.4 Hz, H-6), 4.40 (m, 1H, H-4'), 3.80 (m, 1H., H-3 ' ), 3.75 (s, 6H, DMTr), 3.35-3.14 (m, 4H, linker, H-5 '), 2.66 (t, 2H, J = 6.5 Hz, linker), 2.14 (m, 2H, H-2 '), 0.79 (s, 9H, TBDMS), 0.00-(-0.06) (each s, 6H, TBDMS)

(5)化合物6の合成
化合物5(343 mg, 0.50 mmol)を脱水DMF(30 ml)に溶解し、WSC(192 mg, 1.0 mmol, 2 eq)、1-Pyreneacetic acid(195 mg, 0.75 mmol, 1.5 eq)を加え室温で2時間攪拌した。TLCで反応が進行したことを確認し、減圧下濃縮した。残渣にCHCl3と飽和NaHCO3水を加えて分液し、水層をCHCl3で2回抽出後、集めた有機層をNa2SO4で乾燥させ、濃縮した。残渣をシリカゲルカラム(C60シリカゲル 25 g, 展開溶媒 CHCl3, MeOH)で精製し、濃縮して白色泡状の化合物6(325 mg, 0.35 mmol;収率 70%)を得た。
1H-NMR 500M Hz (DMSO-d6) : δ ppm = 8.52-7.82 (m, 11H, pyrene, N-H), 7.48-6.95 (m, 14H, DMTr, H-5), 6.28 (dd, 1H, J = 5.0 Hz, 5.0 Hz, H-1'), 5.71 (d, 1H, J = 5.0 Hz, H-6), 4.48 (m, 1H, H-4'), 4.28 (s, 2H, pyrene-CH 2 ), 3.90 (m, 1H, H-3'), 3.79 (s, 6H, DMTr), 3.40-3.26 (m, 6H, linker, H-5'), 2.23 (m, 2H, H-2'), 0.84 (s, 9H, TBDMS), 0.05-0.00 (each s, 6H, TBDMS)
(5) Synthesis of Compound 6 Compound 5 (343 mg, 0.50 mmol) was dissolved in dehydrated DMF (30 ml), WSC (192 mg, 1.0 mmol, 2 eq), 1-Pyreneacetic acid (195 mg, 0.75 mmol, 1.5 eq) was added and stirred at room temperature for 2 hours. After confirming that the reaction had progressed by TLC, the reaction was concentrated under reduced pressure. CHCl 3 and saturated aqueous NaHCO 3 were added to the residue for liquid separation, the aqueous layer was extracted twice with CHCl 3 , and the collected organic layer was dried over Na 2 SO 4 and concentrated. The residue was purified by a silica gel column (C60 silica gel 25 g, developing solvent CHCl 3 , MeOH) and concentrated to obtain white foamy compound 6 (325 mg, 0.35 mmol; yield 70%).
1 H-NMR 500M Hz (DMSO-d 6 ): δ ppm = 8.52-7.82 (m, 11H, pyrene, NH), 7.48-6.95 (m, 14H, DMTr, H-5), 6.28 (dd, 1H, J = 5.0 Hz, 5.0 Hz, H-1 '), 5.71 (d, 1H, J = 5.0 Hz, H-6), 4.48 (m, 1H, H-4'), 4.28 (s, 2H, pyrene- C H 2 ), 3.90 (m, 1H, H-3 '), 3.79 (s, 6H, DMTr), 3.40-3.26 (m, 6H, linker, H-5'), 2.23 (m, 2H, H- 2 '), 0.84 (s, 9H, TBDMS), 0.05-0.00 (each s, 6H, TBDMS)

(6)化合物7の合成
化合物6(300 mg, 0.32 mmol)を脱水THF(20 ml)に溶解し、TBAF 1.0 M solution / THF(0.39 ml)を加え室温で3時間攪拌した。TLCで反応が進行したことを確認し、減圧下濃縮した。残渣をシリカゲルカラム(C60シリカゲル 15 g, 展開溶媒 CHCl3, MeOH)で精製し、濃縮して黄色泡状の化合物7(239 mg, 0.29 mmol;収率 92%)を得た。
1H-NMR 500M Hz (DMSO-d6) : δ ppm = 8.39-7.61 (m, 11H, pyrene, N-H), 7.38-6.87 (m, 14H, DMTr, H-5), 6.19 (dd, 1H, J = 6.3 Hz, 6.3 Hz, H-1'), 5.55 (d, 1H, J = 7.5 Hz, H-6), 5.29 (d, 1H, J = 4.5Hz, 3'-OH), 4.25 (m, 1H, H-3'), 4.18 (s, 2H, pyrene- CH 2 ), 3.87 (m, 1H, H-4'), 3.71 (s, 6H, DMTr), 3.38-3.15 (m, 6H, linker, H-5'), 2.00-2.20 (m, 2H, H-2')
(6) Synthesis of Compound 7 Compound 6 (300 mg, 0.32 mmol) was dissolved in dehydrated THF (20 ml), TBAF 1.0 M solution / THF (0.39 ml) was added, and the mixture was stirred at room temperature for 3 hours. After confirming that the reaction had progressed by TLC, the reaction was concentrated under reduced pressure. The residue was purified by silica gel column (C60 silica gel 15 g, developing solvent CHCl 3 , MeOH) and concentrated to obtain yellow foamy compound 7 (239 mg, 0.29 mmol; yield 92%).
1 H-NMR 500M Hz (DMSO-d 6 ): δ ppm = 8.39-7.61 (m, 11H, pyrene, NH), 7.38-6.87 (m, 14H, DMTr, H-5), 6.19 (dd, 1H, J = 6.3 Hz, 6.3 Hz, H-1 '), 5.55 (d, 1H, J = 7.5 Hz, H-6), 5.29 (d, 1H, J = 4.5Hz, 3'-OH), 4.25 (m , 1H, H-3 '), 4.18 (s, 2H, pyrene- C H 2 ), 3.87 (m, 1H, H-4'), 3.71 (s, 6H, DMTr), 3.38-3.15 (m, 6H , linker, H-5 '), 2.00-2.20 (m, 2H, H-2')

(7)化合物8の合成
化合物7(233 mg, 0.29 mmol)を脱水pyridineで4回、脱水Tolueneで2回共沸した後、CH2Cl2(7 ml)、N,N-Diisopropylethylamine(85.9μl, 0.49 mmol, 1.7 eq)、2-Cyanoethyl N,N-diisopropylchlorophosphoramidite(95.3μl, 0.44 mmol, 1.5 eq)を加え室温、Ar雰囲気下で1時間攪拌した。TLCで反応が進行したことを確認し、少量のEtOHを加え10分間静置後、減圧下濃縮した。残渣にCHCl3と飽和NaHCO3水を加えて分液し、水層をCHCl3で2回抽出後、集めた有機層をNa2SO4で乾燥させ、濃縮した。残渣をシリカゲルカラム(N-Hシリカゲル 15 g, 展開溶媒 CHCl3)で精製し、濃縮して黄色泡状の化合物8(234 g, 0.23 mmol;収率 79%)を得た。
1H-NMR 500M Hz (DMSO-d6) : δ ppm = 8.21-7.69 (m, 11H, pyrene, N-H), 7.48-6.85 (m, 14H, DMTr, H-5), 6.36 (dd, 1H, J = 6.5 Hz, 10 Hz, H-1'), 5.51 (d, 1H, J = 7.5 Hz, H-6), 4.67 (m, 1H, H-3'), 4.24 (s, 2H, pyrene-CH 2 ), 4.17 (m, 1H, H-4'), 3.72 (s, 6H, DMTr), 3.84-3.31 (m, 10H, linker, H-5', DMTr, O-CH2), 2.73-2.62 (each t, 2H, J = 6.0 Hz, CN-CH2), 2.57-2.26 (m, 2H, H-2'), 1.23-0.01 (m, 14H, CH(CH3)2)
(7) Synthesis of Compound 8 Compound 7 (233 mg, 0.29 mmol) was azeotroped four times with dehydrated pyridine and twice with dehydrated Toluene, and then CH 2 Cl 2 (7 ml), N, N-Diisopropylethylamine (85.9 μl). , 0.49 mmol, 1.7 eq) and 2-Cyanoethyl N, N-diisopropylchlorophosphoramidite (95.3 μl, 0.44 mmol, 1.5 eq) were added, and the mixture was stirred at room temperature under Ar atmosphere for 1 hour. After confirming that the reaction had progressed by TLC, a small amount of EtOH was added, and the mixture was allowed to stand for 10 minutes, and then concentrated under reduced pressure. CHCl 3 and saturated aqueous NaHCO 3 were added to the residue for liquid separation, the aqueous layer was extracted twice with CHCl 3 , and the collected organic layer was dried over Na 2 SO 4 and concentrated. The residue was purified by a silica gel column (NH silica gel 15 g, developing solvent CHCl 3 ) and concentrated to obtain yellow foamy compound 8 (234 g, 0.23 mmol; yield 79%).
1 H-NMR 500M Hz (DMSO-d 6 ): δ ppm = 8.21-7.69 (m, 11H, pyrene, NH), 7.48-6.85 (m, 14H, DMTr, H-5), 6.36 (dd, 1H, J = 6.5 Hz, 10 Hz, H-1 '), 5.51 (d, 1H, J = 7.5 Hz, H-6), 4.67 (m, 1H, H-3'), 4.24 (s, 2H, pyrene- C H 2 ), 4.17 (m, 1H, H-4 '), 3.72 (s, 6H, DMTr), 3.84-3.31 (m, 10H, linker, H-5', DMTr, O-CH 2 ), 2.73 -2.62 (each t, 2H, J = 6.0 Hz, CN-CH 2 ), 2.57-2.26 (m, 2H, H-2 '), 1.23-0.01 (m, 14H, CH (CH 3 ) 2 )

例2.ピレン標識DNAの合成方法
(1)DNA自動合成機によるODNの合成
DNAはDNA自動合成機(Applied Biosystems 394 DNA/RNA Synthesizer)上、ホスホアミダイト化学による固相合成法により合成した。固相担体(CPG, controlled pore glass)に結合したヌクレオシド保護体(1μmol)から出発し、Applied Biosystems社の推奨するものに若干の修正を加えたプロトコールを用いた。即ち、図1の化合物8のアミダイトユニットの縮合時間は13分であり、天然型アミダイトのそれよりも長時間の縮合時間を用いた。縮合収率は自動合成機内臓の測定器の数値を用いた。
Example 2. Pyrene-labeled DNA synthesis method (1) ODN synthesis using an automatic DNA synthesizer
DNA was synthesized by a solid phase synthesis method using phosphoramidite chemistry on an automatic DNA synthesizer (Applied Biosystems 394 DNA / RNA Synthesizer). A protocol was used, starting from a nucleoside protector (1 μmol) bound to a solid support (CPG, controlled pore glass), with some modifications to those recommended by Applied Biosystems. That is, the condensation time of the amidite unit of Compound 8 in FIG. 1 was 13 minutes, and a condensation time longer than that of the natural amidite was used. For the condensation yield, the value of the measuring instrument built in the automatic synthesizer was used.

(2)化合物8を導入したODNの精製
5'末端のDMTr基が結合した状態で合成を終了した。固相担体に結合したDNAをバイアルに移し、濃アンモニア水(1 ml)を加えて密栓し、55℃で5時間処理した。固相担体を綿線ろ過で取り除き、ろ液を濃縮した。残渣を脱イオン水(900μl)に濃アンモニア水(20μl)を加えた溶媒に溶解し、逆相シリカゲル担体(ODS-3 カラム)を用いるHPLCにより精製した。目的のフラクションは減圧下濃縮し脱イオン水で共沸した。残渣に80%酢酸水(5 ml)を加え室温で20分間静置した。反応液を濃縮し、残渣を脱イオン水で共沸した後、残渣を脱イオン水に溶解しジエチルエーテルで洗浄した。水層を減圧下濃縮し、残渣を脱イオン水(1 ml)に溶解した。
(2) Purification of ODN introduced with compound 8
The synthesis was completed with the DMTr group at the 5 ′ end attached. The DNA bound to the solid phase carrier was transferred to a vial, concentrated aqueous ammonia (1 ml) was added and sealed, and treated at 55 ° C. for 5 hours. The solid support was removed by cotton wire filtration, and the filtrate was concentrated. The residue was dissolved in a solvent obtained by adding concentrated aqueous ammonia (20 μl) to deionized water (900 μl), and purified by HPLC using a reverse phase silica gel carrier (ODS-3 column). The desired fraction was concentrated under reduced pressure and azeotroped with deionized water. To the residue was added 80% aqueous acetic acid (5 ml) and left at room temperature for 20 minutes. The reaction mixture was concentrated and the residue was azeotroped with deionized water, and then the residue was dissolved in deionized water and washed with diethyl ether. The aqueous layer was concentrated under reduced pressure, and the residue was dissolved in deionized water (1 ml).

例3.ピレン残基によるエキシマー発光の測定
上記1及び2の方法に従って、下記式の通りに、ピレン結合残基含有ODN1〜4を作製した。
(式中、5はピレン残基を示す。)
Example 3 Measurement of Excimer Luminescence by Pyrene Residues According to the methods 1 and 2 above, ODN1 to 4 containing pyrene-binding residues were prepared according to the following formula.
(In the formula, 5 represents a pyrene residue.)

Hg検出用緩衝液(10mM MOPS(pH = 7.0), 100mM NaNO3)に2μMのピレン結合残基含有ODN1〜4のいずれか1種と9.5μMのHg(II)を加えて、18℃で、0.1分間、手動で混合した。混合後、溶液の蛍光を島津RF-5399PCを用いて、励起波長340nmで測定した。測定結果を図4〜7に示す。ピレン結合残基の隣にT-Hg(II)-Tペアがあるピレン残基含有ODN2では、Hg(II)イオンの存在下であってもエキシマー発光は生じなかった(図5を参照)。また、ピレン結合残基とT-Hg(II)-Tペアの間にワトソン・クリック型塩基対を挿入したピレン結合残基含有ODN1、3及び4において、T-Hg(II)-Tペアの左右に3個のワトソン・クリック塩基対があるピレン結合残基含有ODN1ににおいてエキシマー発光が見られた(図4、6及び7を参照)。 One of ODN1 to 4 containing 2 μM of pyrene-binding residue and 9.5 μM of Hg (II) was added to Hg detection buffer (10 mM MOPS (pH = 7.0), 100 mM NaNO 3 ) at 18 ° C. , Mixed manually for 0.1 min. After mixing, the fluorescence of the solution was measured at an excitation wavelength of 340 nm using Shimadzu RF-5399PC. The measurement results are shown in FIGS. In pyrene residue-containing ODN2 having a T-Hg (II) -T pair next to a pyrene-binding residue, excimer emission did not occur even in the presence of Hg (II) ions (see FIG. 5). In addition, in the pyrene-binding residue-containing ODNs 1, 3, and 4 in which Watson-Crick base pairs are inserted between the pyrene-binding residue and the T-Hg (II) -T pair, the T-Hg (II) -T pair Excimer luminescence was observed in the pyrene-binding residue-containing ODN1 with three Watson-Crick base pairs on the left and right (see FIGS. 4, 6 and 7).

Claims (12)

被験試料、下記一般式(1)
(式中、Exはエキシマー形成可能な蛍光性基を有する塩基を表し;T’は置換されていてもよいチミンを表し;Nはアデニン、チミン、シトシン又はグアニンを表し;a、b、g、h、nおよびmは、それぞれ独立して0〜10の整数を表し;c及びfはそれぞれ独立して1〜10の整数を表し;d及びeは3を表し;並びに、5’及び3’はそれぞれ5’末端側及び3’末端側であることを表す。ただし、T’及びNは、それぞれ互いに同一でも異なってもよい)
で示される塩基配列を含む第一の一本鎖核酸、及び下記一般式(2)
(式中、Ex;T’;a;b;c;d;e;f;g;h;n;m;5’及び3’は上記と同義であり;及び、N'g、N'e、N'd及びN'bは、それぞれ上記Ng、Ne、Nd及びNbと相補的な塩基を表す)
で示される塩基配列を含む第二の一本鎖核酸を含む溶液を得ること;及び、
得られた溶液に励起光を照射し、該照射により発生するエキシマー発光を検出することを含む、水銀イオンを検出する方法であって、
前記エキシマー形成可能な蛍光性基を有する塩基が、下記一般式(5)
(式中、Rはピレンを表し、Xは塩基を表し、及びkは2を表す)
で示される、方法
Test sample, the following general formula (1)
(Wherein, E x represents a base having a excimer formation fluorescent group; T 'represents an thymine substituted; N represents adenine, thymine, cytosine or guanine; a, b, g , H, n and m each independently represents an integer of 0 to 10; c and f each independently represents an integer of 1 to 10; d and e represent 3 ; and 5 ′ and 3 'Represents 5 ′ terminal side and 3 ′ terminal side, respectively, provided that T ′ and N may be the same or different from each other)
A first single-stranded nucleic acid comprising a base sequence represented by formula (2):
(Wherein E x ; T ′; a; b; c; d; e; f; g; h; n; m; 5 ′ and 3 ′ are as defined above; and N′g, N ′ e, N′d and N′b represent bases complementary to the above Ng, Ne, Nd and Nb, respectively)
Obtaining a solution containing a second single-stranded nucleic acid comprising the base sequence represented by:
A method for detecting mercury ions, comprising irradiating excitation light to the obtained solution and detecting excimer luminescence generated by the irradiation ,
The base having a fluorescent group capable of forming an excimer is represented by the following general formula (5).
(Wherein R represents pyrene, X represents a base, and k represents 2)
Indicated by the method .
前記第一の一本鎖核酸又は前記第二の一本鎖核酸における置換されていてもよいチミンの総数が、1個〜10個である、請求項1に記載の方法。 The method according to claim 1, wherein the total number of optionally substituted thymines in the first single-stranded nucleic acid or the second single-stranded nucleic acid is 1 to 10. 前記置換されていてもよいチミンが、無置換のチミン、又はチミンの5−メチル基が水素、ハロゲン若しくはシアノ基で置換されたチミンである、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the optionally substituted thymine is unsubstituted thymine, or thymine in which a 5-methyl group of thymine is substituted with hydrogen, a halogen, or a cyano group. 前記第一の一本鎖核酸が下記一般式(3)
(式中、Ex;T’;5’及び3’は請求項1と同義である)
で示される塩基配列を含み、かつ前記第二の一本鎖核酸が下記一般式(4)
(式中、Ex;T’;5’及び3’は請求項1と同義である)
で示される塩基配列を含む、請求項1〜3のいずれか1項に記載の方法。
The first single-stranded nucleic acid is represented by the following general formula (3)
(In the formula, E x ; T ′; 5 ′ and 3 ′ are as defined in claim 1)
And the second single-stranded nucleic acid is represented by the following general formula (4):
(In the formula, E x ; T ′; 5 ′ and 3 ′ are as defined in claim 1)
The method of any one of Claims 1-3 containing the base sequence shown by these.
前記第一の一本鎖核酸及び前記第二の一本鎖核酸が、前記第一の一本鎖核酸の3’末端と前記第二の一本鎖核酸の5’末端とがリンカーを介して連結された一本鎖核酸である、請求項1〜のいずれか1項に記載の方法。 The first single-stranded nucleic acid and the second single-stranded nucleic acid have a 3 ′ end of the first single-stranded nucleic acid and a 5 ′ end of the second single-stranded nucleic acid via a linker. it is a single-stranded nucleic acid to which it has been linked, the method according to any one of claims 1-4. 前記水銀イオンが、2価の水銀イオンである、請求項1〜のいずれか1項に記載の方法。 The mercury ions, a divalent mercury ion, a method according to any one of claims 1-5. 下記一般式(1)
(式中、Exはエキシマー形成可能な蛍光性基を有する塩基を表し;T’は置換されていてもよいチミンを表し;Nはアデニン、チミン、シトシン又はグアニンを表し;a、b、g、h、nおよびmは、それぞれ独立して0〜10の整数を表し;c及びfはそれぞれ独立して1〜10の整数を表し;d及びeは3を表し;並びに、5’及び3’はそれぞれ5’末端側及び3’末端側であることを表す。ただし、T’及びNは、それぞれ互いに同一でも異なってもよい)
で示される塩基配列を含む第一の一本鎖核酸及び下記一般式(2)
(式中、Ex;T’;a;b;c;d;e;f;g;h;n;m;5’及び3’は上記と同義であり;及び、N'g、N'e、N'd及びN'bは、それぞれ上記Ng、Ne、Nd及びNbと相補的な塩基を表す)
で示される塩基配列を含む第二の一本鎖核酸を含む、水銀イオンを検出するためのキットであって、前記エキシマー形成可能な蛍光性基を有する塩基が、下記一般式(5)
(式中、Rはピレンを表し、Xは塩基を表し、及びkは2を表す)
で示される、キット
The following general formula (1)
(Wherein, E x represents a base having a excimer formation fluorescent group; T 'represents an thymine substituted; N represents adenine, thymine, cytosine or guanine; a, b, g , H, n and m each independently represents an integer of 0 to 10; c and f each independently represents an integer of 1 to 10; d and e represent 3 ; and 5 ′ and 3 'Represents 5 ′ terminal side and 3 ′ terminal side, respectively, provided that T ′ and N may be the same or different from each other)
A first single-stranded nucleic acid comprising a base sequence represented by the following general formula (2):
(Wherein E x ; T ′; a; b; c; d; e; f; g; h; n; m; 5 ′ and 3 ′ are as defined above; and N′g, N ′ e, N′d and N′b represent bases complementary to the above Ng, Ne, Nd and Nb, respectively)
A kit for detecting mercury ions, comprising a second single-stranded nucleic acid comprising a base sequence represented by formula (5), wherein the excimer-forming base having a fluorescent group is represented by the following general formula (5):
(Wherein R represents pyrene, X represents a base, and k represents 2)
The kit shown in
水銀イオンの検出が、エキシマー発光を検出することにより実施される、請求項に記載のキット。 The kit according to claim 7 , wherein detection of mercury ions is performed by detecting excimer luminescence. 前記第一の一本鎖核酸又は前記第二の一本鎖核酸における置換されていてもよいチミンの総数が、1〜10個である、請求項又はに記載のキット。 The kit according to claim 7 or 8 , wherein the total number of thymines that may be substituted in the first single-stranded nucleic acid or the second single-stranded nucleic acid is 1 to 10. 前記置換されていてもよいチミンが、無置換のチミン、又はチミンの5−メチル基が水素、ハロゲン若しくはシアノ基で置換されたチミンである、請求項のいずれか1項に記載のキット。 The optionally substituted thymine is unsubstituted thymine, or thymine in which a 5-methyl group of thymine is substituted with hydrogen, a halogen, or a cyano group, according to any one of claims 7 to 9 . kit. 前記第一の一本鎖核酸が下記一般式(3)
(式中、Ex;T’;5’及び3’は請求項9と同義である)
の塩基配列を含み、かつ前記第二の一本鎖核酸が下記一般式(4)
(式中、Ex;T’;5’及び3’は請求項9と同義である)
の塩基配列を含む、請求項10のいずれか1項に記載のキット。
The first single-stranded nucleic acid is represented by the following general formula (3)
(Wherein E x ; T ′; 5 ′ and 3 ′ have the same meaning as in claim 9)
And the second single-stranded nucleic acid is represented by the following general formula (4):
(Wherein E x ; T ′; 5 ′ and 3 ′ have the same meaning as in claim 9)
The kit according to any one of claims 7 to 10 , comprising the base sequence of
前記第一の一本鎖核酸及び前記第二の一本鎖核酸が、前記第一の一本鎖核酸の3’末端と前記第二の一本鎖核酸の5’末端とがリンカーを介して連結された一本鎖核酸である、請求項11のいずれか1項に記載のキット。 The first single-stranded nucleic acid and the second single-stranded nucleic acid have a 3 ′ end of the first single-stranded nucleic acid and a 5 ′ end of the second single-stranded nucleic acid via a linker. The kit according to any one of claims 7 to 11 , which is a linked single-stranded nucleic acid.
JP2009053416A 2009-03-06 2009-03-06 Mercury ion detection method and kit Expired - Fee Related JP5618264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009053416A JP5618264B2 (en) 2009-03-06 2009-03-06 Mercury ion detection method and kit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009053416A JP5618264B2 (en) 2009-03-06 2009-03-06 Mercury ion detection method and kit

Publications (2)

Publication Number Publication Date
JP2010210250A JP2010210250A (en) 2010-09-24
JP5618264B2 true JP5618264B2 (en) 2014-11-05

Family

ID=42970599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009053416A Expired - Fee Related JP5618264B2 (en) 2009-03-06 2009-03-06 Mercury ion detection method and kit

Country Status (1)

Country Link
JP (1) JP5618264B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102207502B (en) * 2011-03-25 2014-01-29 宁波大学 Mercury ion test paper and preparation method thereof
CN102590170B (en) * 2012-02-28 2013-11-20 江南大学 Method for simultaneously detecting mercury ion and/or silver ion in water solution based on fluorescence resonance energy transfer
KR101482624B1 (en) * 2013-05-16 2015-01-19 한국과학기술연구원 Continuous monitoring system and method for target water pollutants
CN107677651B (en) * 2017-08-03 2019-10-08 商丘师范学院 A kind of Hg of Single wavelength excitation dual signal enhancing2+Ratio fluorescent method
CN113702342B (en) * 2021-04-21 2022-12-06 苏州科技大学 Method for detecting mercury ions in solution by fluorescence conversion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098698A (en) * 2000-09-27 2002-04-05 Canon Inc Method for assaying dna binding protein
JP2005058213A (en) * 2003-07-25 2005-03-10 Akira Ono Conjugate of non-watson-crick-type base pair and metal
JP4397659B2 (en) * 2003-09-11 2010-01-13 独立行政法人科学技術振興機構 DNA detection method using molecular beacon using switching between monomer emission and excimer emission of fluorescent molecules
JP5403652B2 (en) * 2008-10-02 2014-01-29 独立行政法人理化学研究所 Method for detecting heavy metal ions and reagent therefor

Also Published As

Publication number Publication date
JP2010210250A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
US6143877A (en) Oligonucleotides including pyrazolo[3,4-D]pyrimidine bases, bound in double stranded nucleic acids
KR101764462B1 (en) Morpholino nucleic acid derivative
JP5618264B2 (en) Mercury ion detection method and kit
US20030099972A1 (en) Nucleotide compositions comprising photocleavable markers and methods of preparation thereof
US7960543B2 (en) Nucleoside or nucleotide derivative and use thereof
WO2005085272A1 (en) Boranophosphate monomer and process for producing oligonucleotide derivative therefrom
JP2005015395A (en) New pyrimidopyrimidine nucleoside and its structural analog
EP3660021A1 (en) Photoresponsive nucleotide analog capable of photocrosslinking in visible light region
KR20210104125A (en) Asymmetric rhodamine dyes and their use in biological assays
JP5137118B2 (en) Universal base
DE60123056T2 (en) BASE ANALOG
Bartosik et al. Post-synthetic conversion of 5-pivaloyloxymethyluridine present in a support-bound RNA oligomer into biologically relevant derivatives of 5-methyluridine
JP5467275B2 (en) Electron transfer inhibitors and their use
JP5201639B2 (en) RNA selective hybridization reagent and use thereof
CN107207480B (en) Coumarin-based compounds and related methods
JP6308867B2 (en) Uracil nucleoside derivatives, uracil nucleotide derivatives and polynucleotide derivatives and probes containing them
JP6429264B2 (en) Boranophosphate compounds and nucleic acid oligomers
Obika et al. Recognition of T· A interruption by 2′, 4′-BNAs bearing heteroaromatic nucleobases through parallel motif triplex formation
JP5329876B2 (en) Fluorescent probe with stem-loop structure
JP2013158290A (en) Nucleic acid detection probe bonded with silylated fluorescent, and method for detecting nucleic acid by the same
JP6491486B2 (en) 8-aza-3,7-dideazaadenine nucleoside derivatives, 8-aza-3,7-dideazaadenine nucleotide derivatives and polynucleotide derivatives and probes
JP6709999B2 (en) Method for detecting compound, probe, condensate and cytosine
WO2006093157A1 (en) Oligonucleotide derivative, probe for detection of gene, and dna chip
JP2008195648A (en) 4'-selenonucleoside and 4'-selenonucleotide
CN115038790A (en) Synthesis of 3' -RNA oligonucleotides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R150 Certificate of patent or registration of utility model

Ref document number: 5618264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees