JP5595895B2 - Resonant coil and non-contact power transmission device having the same - Google Patents

Resonant coil and non-contact power transmission device having the same Download PDF

Info

Publication number
JP5595895B2
JP5595895B2 JP2010283666A JP2010283666A JP5595895B2 JP 5595895 B2 JP5595895 B2 JP 5595895B2 JP 2010283666 A JP2010283666 A JP 2010283666A JP 2010283666 A JP2010283666 A JP 2010283666A JP 5595895 B2 JP5595895 B2 JP 5595895B2
Authority
JP
Japan
Prior art keywords
coil
resonance
power
conductor
resonance coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010283666A
Other languages
Japanese (ja)
Other versions
JP2012134250A (en
Inventor
誠 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2010283666A priority Critical patent/JP5595895B2/en
Priority to PCT/JP2011/078843 priority patent/WO2012086473A1/en
Publication of JP2012134250A publication Critical patent/JP2012134250A/en
Application granted granted Critical
Publication of JP5595895B2 publication Critical patent/JP5595895B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、共鳴現象によって相手方コイルに電力を送信し又は相手方コイルから送信された電力を受信する共鳴コイル、及び、その共鳴コイルを有する非接触電力伝送装置に関するものである。   The present invention relates to a resonance coil that transmits power to a counterpart coil or receives power transmitted from the counterpart coil by a resonance phenomenon, and a non-contact power transmission apparatus having the resonance coil.

近年、例えば、電気自動車等が備える二次電池(以下、単に「バッテリ」という)の充電などにおいて、充電作業を容易にするために、プラグ接続等の物理的接続を必要としないワイヤレス(非接触)での電力伝送技術が用いられている。   In recent years, for example, charging of a secondary battery (hereinafter simply referred to as “battery”) included in an electric vehicle or the like is wireless (non-contact) that does not require physical connection such as plug connection in order to facilitate charging work. ) Is used.

このようなワイヤレス電力伝送技術として、電磁誘導現象を利用した電磁誘導方式、電磁波を利用した電磁波送信方式、共鳴現象を利用した共鳴方式などが知られている。中でも、共鳴方式は、送信共鳴コイルに交流電力を供給して、電磁場を介して送信共鳴コイルと当該送信共鳴コイルに対向配置された受信共鳴コイルとを共鳴させて、電力を伝送する技術であり、数kWの大電力を比較的離れた場所間で伝送することが可能である。   As such wireless power transmission technology, an electromagnetic induction method using an electromagnetic induction phenomenon, an electromagnetic wave transmission method using an electromagnetic wave, a resonance method using a resonance phenomenon, and the like are known. Among them, the resonance method is a technique for transmitting electric power by supplying AC power to the transmission resonance coil and causing the transmission resonance coil to resonate with the reception resonance coil disposed opposite to the transmission resonance coil via an electromagnetic field. It is possible to transmit large power of several kW between relatively distant places.

しかしながら、このような共鳴方式のワイヤレス電力伝送技術を、例えば、電気自動車のバッテリ充電システムなどの数kWから数十kWの大電力が伝送されるシステムに適用した場合、図6に示すように、共鳴状態になると共鳴コイルが有する管状に巻回されたコイル導線の端部あるいは端部近傍において高電圧が生じ、当該共鳴コイルを収容するアースされたケースなどとの間で絶縁破壊が起きて火花放電が発生してしまうなどの問題があった。そして、このような問題を解決する技術が、例えば、特許文献1に開示されている。   However, when such a resonance-type wireless power transmission technology is applied to a system in which large power of several kW to several tens of kW is transmitted, such as a battery charging system of an electric vehicle, for example, as shown in FIG. When the resonance state is reached, a high voltage is generated at or near the end of the coil wire wound in the tubular shape of the resonance coil, and a dielectric breakdown occurs with a grounded case that accommodates the resonance coil, resulting in a spark. There were problems such as the occurrence of discharge. And the technique which solves such a problem is disclosed by patent document 1, for example.

特許文献1に開示されている共鳴コイル901は、図7に示すように、コイル導線910と被覆部材としての絶縁性の樹脂920とを備えている。コイル導線910は、管状に複数回巻回されている。そして、この絶縁性の樹脂920が、コイル導線910の長手方向の端部910aに近いほど厚さが増すようにコイル導線910に被覆加工されているので、コイル導線910の端部910aにおける絶縁耐力を高めて火花放電を防止することができた。また、この共鳴コイル901のコイル導線910には、コイル導線910の巻回部間に一定の導線間ギャップが設けられており、コイル導線910の巻回部間での絶縁破壊による火花放電を防いでいた。   As shown in FIG. 7, the resonance coil 901 disclosed in Patent Literature 1 includes a coil conductor 910 and an insulating resin 920 as a covering member. The coil conducting wire 910 is wound in a tubular shape a plurality of times. And since this insulating resin 920 is coated on the coil conductor 910 so that the thickness increases as it approaches the end 910a in the longitudinal direction of the coil conductor 910, the dielectric strength at the end 910a of the coil conductor 910 is increased. To prevent spark discharge. The coil conductor 910 of the resonance coil 901 is provided with a certain inter-conductor gap between the winding portions of the coil conductor 910 to prevent spark discharge due to dielectric breakdown between the winding portions of the coil conductor 910. It was out.

また、このような共鳴コイル901は、例えば、電気自動車のバッテリの充電システムなどに用いられるので、燃費向上、車内スペース確保、及び、充電エリアの有効利用等のために小型化が求められているが、上述した共鳴コイル901は、樹脂920が、コイル導線910の長手方向の端部910aに近いほど厚さが増すように被覆加工され、且つ、長手方向の中央部には設けられないか、あるいは薄く被覆加工されており、そのため、コイル導線910の軸方向中央部における絶縁破壊耐性(絶縁耐力)が低く、巻回部間の導線間ギャップを小さくすることができず、これにより共鳴コイル901を小型化することができなかった。そして、このような問題を解決する技術として、コイル導線910全体を均一な厚さの被覆部材で覆うことにより、コイル導線910の巻回部間の絶縁耐力を向上させて、コイル導線910の導線間ギャップを小さくする構成が知られている。   Such a resonance coil 901 is used for, for example, a battery charging system of an electric vehicle, and therefore, downsizing is required for improving fuel efficiency, securing a vehicle interior space, and effectively using a charging area. However, the above-described resonance coil 901 is coated so that the thickness of the resin 920 increases as it approaches the end 910a in the longitudinal direction of the coil conductor 910, and is not provided in the center in the longitudinal direction. Alternatively, it is thinly coated, so that the dielectric breakdown resistance (dielectric strength) in the axial central portion of the coil conductor 910 is low, and the gap between the conductors between the winding portions cannot be reduced. Could not be miniaturized. As a technique for solving such a problem, by covering the entire coil conductor 910 with a covering member having a uniform thickness, the dielectric strength between the winding portions of the coil conductor 910 is improved, and the coil conductor 910 A configuration in which the gap is made small is known.

特開2010−73885号公報JP 2010-73885 A

しかしながら、上述した構成の共鳴コイルにおいて、図6から判るようにコイル導線の各巻回部間に生じる電位差がコイル導線の箇所によって異なるにもかかわらず、コイル導線を覆う被覆部材の厚さが、最も大きい電位差に合わせて均一に定められているので、これより電位差が低い箇所においては、被覆部材が必要以上の厚さとなって過剰な絶縁耐力を有することになり、そのため、小型化に際して無駄が生じて製造コストが増加してしまうという問題があった。   However, in the resonance coil having the above-described configuration, the thickness of the covering member that covers the coil conductor is the highest even though the potential difference generated between the winding portions of the coil conductor differs depending on the location of the coil conductor as can be seen from FIG. Since it is determined uniformly according to the large potential difference, the coating member becomes thicker than necessary at the portion where the potential difference is lower than this, and it has excessive dielectric strength. As a result, the manufacturing cost increases.

本発明は、上記課題に係る問題を解決することを目的としている。即ち、本発明は、コイル導線間での絶縁破壊のない小型で安価な共鳴コイル及びそれを備える非接触電力伝送装置を提供することを目的としている。   The present invention aims to solve the above problems. That is, an object of the present invention is to provide a small and inexpensive resonant coil that does not cause dielectric breakdown between coil conductors and a non-contact power transmission device including the same.

本発明者は、共鳴コイルの小型化と低コストとを両立すべく、共鳴コイルの構成について検討を重ねた結果、コイル導線の各巻回部間には異なる電位差が生じており、この各巻回部間における電位差に応じて適切な厚さの被覆部材を設けることで、小型形状でありながら低コストを実現できることを見出し、本発明の完成に至った。   As a result of repeated investigations on the configuration of the resonance coil in order to achieve both reduction in size and cost of the resonance coil, the present inventor has produced different potential differences between the winding portions of the coil conductor. By providing a covering member having an appropriate thickness according to the potential difference between them, the present inventors have found that it is possible to realize a low cost while having a small shape, and completed the present invention.

請求項1に記載された発明は、上記目的を達成するために、共鳴現象によって相手方コイルに電力を送信し又は前記相手方コイルから送信された電力を受信する共鳴コイルであって、複数回巻回されたコイル導線を有し、そして、前記コイル導線には、その一の巻回部と当該一の巻回部に隣接する他の巻回部との間に生じる電位差に応じた厚さの被覆部材が設けられていることを特徴とする共鳴コイルである。   In order to achieve the above object, the invention described in claim 1 is a resonance coil that transmits electric power to a counterpart coil by a resonance phenomenon or receives electric power transmitted from the counterpart coil. A coil conductor having a thickness corresponding to a potential difference generated between the one winding portion and another winding portion adjacent to the one winding portion. A resonance coil is provided with a member.

請求項2に記載された発明は、請求項1に記載された発明において、前記コイル導線が、管状に複数回巻回されており、前記被覆部材における前記コイル導線の軸方向中央部の厚さが、前記被覆部材における前記コイル導線の軸方向両端部の厚さより大きいことを特徴とするものである。   The invention described in claim 2 is the invention described in claim 1, wherein the coil conductor is wound in a tubular shape a plurality of times, and a thickness of an axially central portion of the coil conductor in the covering member. Is larger than the thickness of both end portions in the axial direction of the coil conductor in the covering member.

請求項3に記載された発明は、上記目的を達成するために、共鳴現象によって電力を送信する送信共鳴コイルと、前記送信共鳴コイルから送信された電力を受信する受信共鳴コイルと、を有する非接触電力伝送装置において、前記送信共鳴コイル及び前記受信共鳴コイルの少なくとも一方が、請求項1又は2に記載された共鳴コイルであることを特徴とする非接触電力伝送装置である。   In order to achieve the above object, a third aspect of the present invention includes a transmission resonance coil that transmits power by a resonance phenomenon, and a reception resonance coil that receives power transmitted from the transmission resonance coil. In the contact power transmission device, at least one of the transmission resonance coil and the reception resonance coil is the resonance coil according to claim 1 or 2, wherein the contact power transmission device is a contactless power transmission device.

請求項1に記載された発明によれば、複数回巻回されたコイル導線を有し、そして、前記コイル導線には、その一の巻回部と当該一の巻回部に隣接する他の巻回部との間に生じる電位差に応じた厚さの被覆部材が設けられているので、例えば、コイル導線に設ける被覆部材の厚さを均一にした場合、当該被覆部材の一部が過剰な絶縁耐力を有することになってしまうところ、本発明では、コイル導線の各巻回部間に生じる電位差に合わせた厚さの被覆部材を設けることで、被覆部材を適切な厚さとして過剰な絶縁耐力を有する部分をなくすことができ、コイル導線間の絶縁破壊のない小型で安価な共鳴コイルを提供できる。   According to the first aspect of the present invention, the coil conductor has a coil conductor wound a plurality of times, and the coil conductor has one winding part and another one adjacent to the one winding part. Since a covering member having a thickness corresponding to the potential difference generated between the winding portion and the winding portion is provided, for example, when the thickness of the covering member provided on the coil conductor is uniform, a part of the covering member is excessive. In the present invention, an excessive dielectric strength is obtained by providing a covering member with an appropriate thickness by providing a covering member having a thickness according to the potential difference generated between the winding portions of the coil conductor. Therefore, it is possible to provide a small and inexpensive resonance coil that does not cause dielectric breakdown between coil conductors.

請求項2に記載された発明によれば、コイル導線が、管状に複数回巻回されており、被覆部材におけるコイル導線の軸方向中央部の厚さが、軸方向両端部の厚さより大きいので、コイル導線の各巻回部間に生じる電位差が、管状のコイル導線の軸方向中央部で大きく、両端部で小さくなる特性を有する共鳴コイルにおいて、コイル導線間の絶縁破壊のない小型で安価な共鳴コイルを提供できる。   According to the second aspect of the present invention, the coil conductor is wound in a tubular shape a plurality of times, and the thickness of the central portion of the coil conductor in the covering member in the axial direction is larger than the thickness of both end portions in the axial direction. In a resonance coil having a characteristic that a potential difference generated between each winding portion of a coil conductor is large at the axial center portion of the tubular coil conductor and becomes small at both ends, a small and inexpensive resonance without insulation breakdown between the coil conductors. Coil can be provided.

請求項3に記載された発明によれば、送信共鳴コイル及び受信共鳴コイルの少なくとも一方が、請求項1又は2に記載された共鳴コイルであるので、小型で安価な共鳴コイルを用いることにより、小型で安価な非接触電力伝送装置を提供できる。   According to the invention described in claim 3, since at least one of the transmission resonance coil and the reception resonance coil is the resonance coil described in claim 1 or 2, by using a small and inexpensive resonance coil, A small and inexpensive contactless power transmission device can be provided.

本発明の共鳴コイルの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the resonance coil of this invention. (a)は、図1の共鳴コイルが有するコイル導線を真直に伸ばした状態での長手方向に沿う断面図であり、(b)は、(a)のX1−X1線に沿う断面図であり、(c)は、(a)のX2−X2線に沿う断面図である。(A) is sectional drawing which follows the longitudinal direction in the state which extended the coil conducting wire which the resonance coil of FIG. 1 has extended straight, (b) is sectional drawing which follows the X1-X1 line of (a). (C) is sectional drawing which follows the X2-X2 line | wire of (a). 本発明の非接触電力伝送装置の一実施形態に係るワイヤレス電力伝送装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the wireless power transmission apparatus which concerns on one Embodiment of the non-contact power transmission apparatus of this invention. 図3のワイヤレス電力伝送装置のブロック図である。FIG. 4 is a block diagram of the wireless power transmission device of FIG. 3. 共鳴型電力伝送方式の原理を示す説明図である。It is explanatory drawing which shows the principle of a resonance-type electric power transmission system. コイル導線における、共鳴状態での電圧分布を模式的に示す図である。It is a figure which shows typically the voltage distribution in the resonance state in a coil conducting wire. 従来の共鳴コイルの構成を示す部分拡大断面図である。It is a partial expanded sectional view which shows the structure of the conventional resonance coil.

(共鳴コイルの一実施形態)
以下、本発明の共鳴コイルの一実施形態について、図1、図2を参照して説明する。
(One Embodiment of Resonance Coil)
Hereinafter, an embodiment of a resonance coil of the present invention will be described with reference to FIGS.

共鳴コイルは、共鳴現象を利用して、対向配置された相手方コイルに電力を送信し又は前記相手方コイルから送信された電力を受信するのに用いられる。   The resonance coil is used to transmit power to or receive power transmitted from the counterpart coil by using a resonance phenomenon.

各図に示す本発明に係る共鳴コイル(図中、符号50で示す)は、コイル導線51と、被覆部材53と、を有している。   The resonance coil according to the present invention shown in each drawing (indicated by reference numeral 50 in the drawings) has a coil conductor 51 and a covering member 53.

コイル導線51は、各図に示すように、例えば、直径5mmの銅線を管状(ソレノイド)に複数回(n回)巻回した、直径Dが600mm、長さLが200mmの空心のらせんコイルである。このコイル導線51には、複数の円形部分(1ターン)である巻回部55[1]〜55[n]が設けられている。コイル導線の一の巻回部55[k]とそれに隣接する他の巻回部55[k+1](k:1〜n−1)の間(以下、単に巻回部55間という)には、一定の導線間ギャップG(即ち、間隔)が設けられている。なお、「一定の導線間ギャップG」とは、各導線間ギャップGが、それぞれ同一又は概ね同一であることを意味する。   As shown in each drawing, the coil conductor 51 is, for example, an air-core spiral coil having a diameter D of 600 mm and a length L of 200 mm, in which a copper wire having a diameter of 5 mm is wound around a tubular (solenoid) a plurality of times (n times). It is. The coil conductor 51 is provided with winding portions 55 [1] to 55 [n] which are a plurality of circular portions (one turn). Between one winding portion 55 [k] of the coil conductor and another winding portion 55 [k + 1] (k: 1 to n−1) adjacent thereto (hereinafter simply referred to as between the winding portions 55), A certain gap G (that is, a gap) between the conductors is provided. The “constant inter-conductor gap G” means that the inter-conductor gaps G are the same or substantially the same.

共振状態におけるコイル導線51の電圧分布を図6に示す。そして、この図6から明らかなように、コイル導線51における単位距離間の電位差(即ち、グラフの傾き)は、コイル導線51の長手方向中央部(即ち、グラフの原点)ほど大きく、長手方向両端部に近づくにしたがって小さくなる。つまり、管状に巻回されたコイル導線51は、箇所によって巻回部55間の電位差が異なり、具体的には、その軸方向(即ち、長さL方向)中央部における巻回部55間の電位差が、軸方向両端部における巻回部55間の電位差より大きくなる特性を有している。   FIG. 6 shows the voltage distribution of the coil conductor 51 in the resonance state. As is apparent from FIG. 6, the potential difference between the unit distances in the coil conductor 51 (ie, the slope of the graph) is larger at the central portion in the longitudinal direction of the coil conductor 51 (ie, the origin of the graph). It gets smaller as it gets closer to the part. That is, the coil conductor 51 wound in a tubular shape has a different potential difference between the winding portions 55 depending on the location, and specifically, between the winding portions 55 in the central portion in the axial direction (that is, the length L direction). The potential difference is larger than the potential difference between the winding portions 55 at both axial ends.

被覆部材53は、例えば、PI(ポリイミド)やPFA(テトラフルオロエチレン・パーフルオロアリキルビニルエーテル共重合体)などの高耐圧の絶縁性を有する合成樹脂で構成されており、コイル導線51の表面全体を覆うように設けられている。被覆部材53の絶縁破壊電圧(AC)は、PIで15〜20[kV/mm]程度であり、PFAで150[kV/mm]程度であり、その一方で、空気の絶縁破壊電圧(AC)は、3[kV/mm]程度であるので、このような被覆部材53を設けることにより、導線間ギャップGをより小さくすることができる。   The covering member 53 is made of, for example, a synthetic resin having a high withstand voltage such as PI (polyimide) or PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), and the entire surface of the coil conductor 51 is formed. It is provided so as to cover. The dielectric breakdown voltage (AC) of the covering member 53 is about 15 to 20 [kV / mm] in PI and about 150 [kV / mm] in PFA, while the dielectric breakdown voltage (AC) of air. Is about 3 [kV / mm], and by providing such a covering member 53, the gap G between the conductors can be further reduced.

被覆部材53の構造を、図2(a)〜(c)に示す。図2(a)は、コイル導線51を真直に伸ばした状態の長手方向に沿う断面図であり、図2(b)は、コイル導線51の長手方向中央部、即ち、管状に複数回巻回された状態ではコイル導線51の軸方向中央部となる部分の断面図であり、図2(c)は、コイル導線の長手方向一端部、即ち、管状に複数回巻回された状態ではコイル導線51の軸方向両端部となる部分の断面図である。   The structure of the covering member 53 is shown in FIGS. FIG. 2A is a cross-sectional view along the longitudinal direction of the coil conductor 51 that is straightened, and FIG. 2B is a central portion in the longitudinal direction of the coil conductor 51, that is, a tube that is wound a plurality of times. FIG. 2C is a cross-sectional view of a portion that is an axially central portion of the coil conductor 51 in a state where the coil conductor 51 is formed, and FIG. 2C is a coil conductor in a state where one end in the longitudinal direction of the coil conductor is wound. It is sectional drawing of the part used as the axial direction both ends of 51.

被覆部材53は、各巻回部55間の電位差に応じて、つまり、この電位差が生じた場合でもこれら巻回部55間で絶縁破壊が起きないようにするために必要な最小限の厚さとなるように形成されている。この被覆部材53の厚みは、共振状態におけるコイル導線51の電圧分布に応じて定められる。   The covering member 53 has a minimum thickness according to the potential difference between the winding portions 55, that is, even when this potential difference occurs, the covering member 53 has a minimum thickness necessary to prevent dielectric breakdown between the winding portions 55. It is formed as follows. The thickness of the covering member 53 is determined according to the voltage distribution of the coil conductor 51 in the resonance state.

つまり、被覆部材53は、コイル導線51の上記特性に合わせて、図2(a)〜(c)に示すように、その長手方向中央部(即ち、コイル導線51の軸方向中央部)の厚さが大きく、長手方向両端部(即ち、コイル導線51の軸方向両端部)に向かうにしたがって、厚さが徐々に小さくなるように形成されている。換言すると、被覆部材53は、コイル導線51の軸方向中央部における厚さが、軸方向両端部における厚さより大きくなるように設けられている。   That is, the covering member 53 has a thickness at the center in the longitudinal direction (that is, the center in the axial direction of the coil conductor 51) as shown in FIGS. 2A to 2C in accordance with the characteristics of the coil conductor 51. The thickness is formed so that the thickness gradually decreases toward both ends in the longitudinal direction (that is, both ends in the axial direction of the coil conductor 51). In other words, the covering member 53 is provided such that the thickness of the coil conducting wire 51 at the central portion in the axial direction is larger than the thickness at both axial end portions.

本実施形態においては、被覆部材53が、コイル導線51の軸方向中央部の厚さが、軸方向両端部の厚さより大きくなるように形成されている。その一方で、他の構成の場合、例えば、被覆部材53の厚さをコイル導線51の全長に亘って均一にした場合、その厚さは、コイル導線51の軸方向中央部における巻回部55間の電位差、即ち、最も大きい電位差に合わせて定められるので、コイル導線51の軸方向両端部においては、被覆部材53の厚さが過剰となって、無駄が生じてしまう。   In the present embodiment, the covering member 53 is formed so that the thickness of the central portion in the axial direction of the coil conducting wire 51 is larger than the thickness of both end portions in the axial direction. On the other hand, in the case of other configurations, for example, when the thickness of the covering member 53 is made uniform over the entire length of the coil conducting wire 51, the thickness is the winding portion 55 at the axially central portion of the coil conducting wire 51. Therefore, the thickness of the covering member 53 becomes excessive at both ends in the axial direction of the coil conducting wire 51, resulting in waste.

そして、本実施形態によれば、被覆部材53について、巻回部55間の電位差が比較的低いコイル導線51の軸方向両端部では、その厚さを小さくし、巻回部55間の電位差が比較的高いコイル導線51の軸方向中央部では、その厚さを大きくすることにより、巻回部55間の電位差に応じた厚さを有する被覆部材53を設けて、小型化と低コストとを両立している。   And according to this embodiment, about the coating | coated member 53, the thickness difference is made small in the axial direction both ends of the coil conducting wire 51 where the electrical potential difference between the winding parts 55 is comparatively low, and the electrical potential difference between the winding parts 55 is made. In the axially central portion of the relatively high coil conductor 51, by increasing the thickness, a covering member 53 having a thickness corresponding to the potential difference between the winding portions 55 is provided, thereby reducing the size and cost. Both are compatible.

以上より、本発明によれば、複数回巻回され且つ各巻回部55間に一定の導線間ギャップGが設けられたコイル導線51を有し、そして、コイル導線51には、その一の巻回部55[k]とそれに隣接する他の巻回部55[k+1]との間に生じる電位差に応じた厚さの被覆部材53が設けられているので、例えば、コイル導線51に設ける被覆部材53の厚さを均一にした場合、当該被覆部材53の一部が過剰な絶縁耐力を有することになってしまうところ、本発明では、コイル導線51の各巻回部55間に生じる電位差に合わせた厚さの被覆部材53を設けることで、被覆部材53を適切な厚さとして過剰な絶縁耐力を有する部分をなくすことができ、コイル導線51間の絶縁破壊のない小型で安価な共鳴コイルを実現できる。   As described above, according to the present invention, the coil conductor 51 has the coil conductor 51 that is wound a plurality of times and is provided with a constant gap G between the winding portions 55. Since the covering member 53 having a thickness corresponding to the potential difference generated between the turning portion 55 [k] and another winding portion 55 [k + 1] adjacent thereto is provided, for example, the covering member provided on the coil conductor 51 When the thickness of 53 is made uniform, a part of the covering member 53 will have an excessive dielectric strength. In the present invention, it is adjusted to the potential difference generated between the winding portions 55 of the coil conductor 51. By providing the covering member 53 with a thickness, it is possible to eliminate the portion having an excessive dielectric strength by setting the covering member 53 to an appropriate thickness, and realize a small and inexpensive resonance coil without insulation breakdown between the coil conductors 51. it can.

また、コイル導線51が、管状に複数回巻回されており、被覆部材53におけるコイル導線51の軸方向中央部の厚さが、軸方向両端部の厚さより大きいので、コイル導線51の各巻回部55間に生じる電位差が、管状のコイル導線51の軸方向中央部で大きく、両端部で小さくなる特性を有する共鳴コイルにおいて、コイル導線51間の絶縁破壊のない小型で安価な共鳴コイルを実現できる。   In addition, the coil conductor 51 is wound in a tubular shape a plurality of times, and the thickness of the central portion of the coil conductor 51 in the covering member 53 in the axial direction is larger than the thickness of both end portions in the axial direction. In a resonance coil having a characteristic that a potential difference generated between the portions 55 is large at the axial center portion of the tubular coil conductor 51 and becomes small at both ends, a small and inexpensive resonance coil without dielectric breakdown between the coil conductors 51 is realized. it can.

本実施形態では、被覆部材53におけるコイル導線51の軸方向中央部の厚さが、軸方向両端部の厚さより大きくなるように形成されたものであったが、これに限定されるものではなく、本発明の目的に反しない限り、コイル導線51の一の巻回部55[k]とそれに隣接する他の巻回部55[k+1]との間に生じる電位差に応じた厚さの被覆部材53が設けられているものであればよい。   In the present embodiment, the thickness of the central portion in the axial direction of the coil conductor 51 in the covering member 53 is formed to be larger than the thickness of both end portions in the axial direction. However, the present invention is not limited to this. Unless it is contrary to the object of the present invention, a covering member having a thickness corresponding to a potential difference generated between one winding portion 55 [k] of the coil conductor 51 and another winding portion 55 [k + 1] adjacent thereto. What is provided is that 53 is provided.

また、本実施形態では、コイル導線51の各巻回部55間に一定の導線間ギャップGが設けられているものであったが、これに限定されるものではない。例えば、巻回部55間の電位差に合わせて、被覆部材53の厚さとともに導線間ギャップGを調整するなど、各導線間ギャップGが互いに異なる構成などであってもよい。   Moreover, in this embodiment, although the fixed gap G between conductors was provided between each winding part 55 of the coil conductor 51, it is not limited to this. For example, the inter-conductor gaps G may be different from each other, such as adjusting the inter-conductor gap G together with the thickness of the covering member 53 in accordance with the potential difference between the winding portions 55.

また、本実施形態のコイル導線51は、管状に複数回巻回されたものであったが、これに限定されるものではなく、例えば、コイル導線51が平板状に複数回巻回されている平型らせんコイルなどであってもよく、本発明の目的に反しない限り、コイル導線51の形状は任意である。   Moreover, although the coil conducting wire 51 of the present embodiment has been wound a plurality of times in a tubular shape, the present invention is not limited thereto. For example, the coil conducting wire 51 is wound a plurality of times in a flat plate shape. A flat spiral coil or the like may be used, and the shape of the coil conducting wire 51 is arbitrary as long as the object of the present invention is not violated.

(非接触電力伝送装置の一実施形態)
次に、上述した共鳴コイルを備えた、本発明の非接触電力伝送装置の一実施形態に係るワイヤレス電力伝送装置ついて、図3〜図5を参照して説明する。
(One Embodiment of Non-contact Power Transmission Device)
Next, a wireless power transmission device according to an embodiment of the non-contact power transmission device of the present invention provided with the above-described resonance coil will be described with reference to FIGS.

図3は、本発明の実施形態に係るワイヤレス電力伝送装置の構成を示す説明図である。同図に示すように、本実施形態に係るワイヤレス電力伝送装置10は、電気自動車5に設けられる受電装置12と、該受電装置12に交流電力を供給する給電装置11と、を備えており、給電装置11より出力される交流電力を非接触(ワイヤレス)で受電装置12に送信する。給電装置11は、電力送信用の通信コイル24を備えており、該通信コイル24に交流電力が供給されると、この交流電力は、受電装置12に設けられている電力受信用の通信コイル31に伝達される。   FIG. 3 is an explanatory diagram showing the configuration of the wireless power transmission device according to the embodiment of the present invention. As shown in the figure, a wireless power transmission device 10 according to the present embodiment includes a power receiving device 12 provided in an electric vehicle 5 and a power feeding device 11 that supplies AC power to the power receiving device 12. The AC power output from the power feeding device 11 is transmitted to the power receiving device 12 in a non-contact (wireless) manner. The power feeding device 11 includes a communication coil 24 for power transmission. When AC power is supplied to the communication coil 24, the AC power is supplied to the power reception communication coil 31 provided in the power receiving device 12. Is transmitted to.

電気自動車5に設けられる受電装置12は、充電時に電気自動車5を給電装置11の所定位置に置いたときに、電力送信用の通信コイル24と接近する電力受信用の通信コイル31と、整流器33と、を備えている。更に、直流電力が充電されるバッテリ35と、該バッテリ35の電圧を降圧してサブバッテリ41に供給するDC/DCコンバータ42と、バッテリ35の出力電力を交流電力に変換するインバータ43と、該インバータ43より出力される交流電力により駆動するモータ44を備えている。   The power receiving device 12 provided in the electric vehicle 5 includes a power receiving communication coil 31 that approaches the power transmitting communication coil 24 and a rectifier 33 when the electric vehicle 5 is placed at a predetermined position of the power feeding device 11 during charging. And. Furthermore, a battery 35 charged with DC power, a DC / DC converter 42 that steps down the voltage of the battery 35 and supplies it to the sub-battery 41, an inverter 43 that converts output power of the battery 35 into AC power, A motor 44 driven by AC power output from the inverter 43 is provided.

図4は、本発明の実施形態に係るワイヤレス電力伝送装置10のブロック図であり、給電装置11、及び電気自動車5に搭載される受電装置12を備えている。   FIG. 4 is a block diagram of the wireless power transmission device 10 according to the embodiment of the present invention, which includes a power feeding device 11 and a power receiving device 12 mounted on the electric vehicle 5.

給電装置11は、電力伝送用のキャリア信号を出力するキャリア発振器21と、該キャリア発振器21より出力されるキャリア信号(即ち、交流電力)を増幅する電力増幅器23、及び電力増幅器23で増幅された交流電力を出力する通信コイル24を備えている。通信コイル24は、後述するように給電コイル(一次コイル)L1と送信共鳴コイルX1から構成されている。そして、この送信共鳴コイルX1として、上述した共鳴コイル50を用いている。   The power supply apparatus 11 is amplified by a carrier oscillator 21 that outputs a carrier signal for power transmission, a power amplifier 23 that amplifies the carrier signal (that is, AC power) output from the carrier oscillator 21, and the power amplifier 23. A communication coil 24 that outputs AC power is provided. As will be described later, the communication coil 24 includes a feeding coil (primary coil) L1 and a transmission resonance coil X1. And the resonance coil 50 mentioned above is used as this transmission resonance coil X1.

キャリア発振器21は、電力伝送用の交流信号として例えば周波数1〜100[MHz]の交流電力を出力する。   The carrier oscillator 21 outputs, for example, AC power having a frequency of 1 to 100 [MHz] as an AC signal for power transmission.

電力増幅器23は、キャリア発信器21より出力された交流電力を増幅する。そして、増幅した交流電力を通信コイル24に出力する。通信コイル24は、受電装置12に設けられる通信コイル31と連携し、共鳴型電力伝送方式によりワイヤレスで交流電力を通信コイル31に伝送する。共鳴型電力伝送方式(即ち、共鳴方式)については後述する。   The power amplifier 23 amplifies the AC power output from the carrier transmitter 21. Then, the amplified AC power is output to the communication coil 24. The communication coil 24 cooperates with the communication coil 31 provided in the power receiving device 12 and wirelessly transmits AC power to the communication coil 31 by a resonance type power transmission method. The resonance type power transmission method (that is, the resonance method) will be described later.

また、受電装置12は、電力送信用の通信コイル24より送信される交流電力を受信する電力受信用の通信コイル31と、この通信コイル31で受信された交流電力を整流して、直流電圧を生成する整流器33と、を備える。また、車両駆動用のモータ44(図3参照)に電力を供給するバッテリ35を備え、該バッテリ35は、整流器33より出力される直流電力により充電される。   The power receiving device 12 rectifies the AC power received by the communication coil 31 and receives the AC power transmitted from the power transmission communication coil 24, and rectifies the DC voltage. And a rectifier 33 to be generated. In addition, a battery 35 that supplies electric power to the vehicle driving motor 44 (see FIG. 3) is provided, and the battery 35 is charged by DC power output from the rectifier 33.

通信コイル31は、後述するように受電コイル(一次コイル)L2と受信共鳴コイルX2から構成されている。そして、この受信共鳴コイルX2として、上述した共鳴コイル50を用いている。   As will be described later, the communication coil 31 includes a power receiving coil (primary coil) L2 and a receiving resonance coil X2. The above-described resonance coil 50 is used as the reception resonance coil X2.

次に、共鳴型電力伝送方式について説明する。図5は、共鳴型電力伝送方式の原理を示す説明図である。図示のように、給電装置11には、給電コイルL1、及び該給電コイルL1と同心円状に且つ近接して配置された送信共鳴コイルX1(即ち、共鳴コイル50)が設けられている。なお、給電コイルL1と送信共鳴コイルX1により図3、図4に示す通信コイル24が構成される。また、受電装置12には、受電コイルL2、及び該受電コイルL2と同心円状に且つ近接して配置された受信共鳴コイルX2(即ち、共鳴コイル50)が設けられている。なお、受電コイルL2と受信共鳴コイルX2により図3、図4に示す通信コイル31が構成される。   Next, the resonance type power transmission method will be described. FIG. 5 is an explanatory diagram showing the principle of the resonant power transmission method. As shown in the figure, the power feeding device 11 is provided with a power feeding coil L1 and a transmission resonance coil X1 (that is, a resonance coil 50) that is disposed concentrically and in proximity to the power feeding coil L1. Note that the power supply coil L1 and the transmission resonance coil X1 constitute the communication coil 24 shown in FIGS. In addition, the power receiving device 12 is provided with a power receiving coil L2 and a receiving resonance coil X2 (that is, a resonance coil 50) disposed concentrically and in proximity to the power receiving coil L2. The receiving coil L2 and the receiving resonance coil X2 constitute the communication coil 31 shown in FIGS.

そして、給電コイルL1に1次電流を流すと、電磁誘導により送信共鳴コイルX1に誘導電流が流れ、更に、該送信共鳴コイルX1のインダクタンスLs、及び浮遊容量Csにより、該送信共鳴コイルX1が共鳴周波数ωs(=1/√Ls・Cs)で共鳴する。すると、この送信共鳴コイルX1に近接して設けられた、受電装置12側の受信共鳴コイルX2が共鳴周波数ωsで共鳴し、受信共鳴コイルX2に2次電流が流れる。更に、電磁誘導により受信共鳴コイルX2に近接した受電コイルL2に2次電流が流れる。   When a primary current is passed through the feeding coil L1, an induced current flows through the transmission resonance coil X1 by electromagnetic induction, and the transmission resonance coil X1 resonates due to the inductance Ls and the stray capacitance Cs of the transmission resonance coil X1. Resonates at a frequency ωs (= 1 / √Ls · Cs). Then, the reception resonance coil X2 on the power receiving device 12 side provided near the transmission resonance coil X1 resonates at the resonance frequency ωs, and a secondary current flows through the reception resonance coil X2. Further, a secondary current flows through the power receiving coil L2 close to the receiving resonance coil X2 due to electromagnetic induction.

上記の動作により、給電装置11から受電装置12に、ワイヤレスで電力を送信することができることとなる。   With the above operation, power can be transmitted from the power feeding device 11 to the power receiving device 12 wirelessly.

次に、図3、図4に示した本発明のワイヤレス電力伝送装置の動作について説明する。図3に示すように、電気自動車5が給電装置11の所定位置に置かれ、給電装置11に設けられる通信コイル24と、電気自動車5の受電装置12に設けられる通信コイル31が対向する位置となると、バッテリ35への充電を行うことができる。   Next, the operation of the wireless power transmission device of the present invention shown in FIGS. 3 and 4 will be described. As shown in FIG. 3, the electric vehicle 5 is placed at a predetermined position of the power feeding device 11, and the communication coil 24 provided in the power feeding device 11 and the communication coil 31 provided in the power receiving device 12 of the electric vehicle 5 are opposed to each other. Then, the battery 35 can be charged.

充電が開始されると、図4に示すキャリア発振器21より、周波数1〜100[MHz]程度の交流電力が出力される。   When charging is started, AC power having a frequency of about 1 to 100 [MHz] is output from the carrier oscillator 21 shown in FIG.

そして、キャリア発信器21より出力された交流電力は、電力増幅器23にて増幅される。増幅された交流電力は、通信コイル24,31を介して、前述した共鳴型電力伝送の原理により、受電装置12に伝送されることになる。   Then, the AC power output from the carrier transmitter 21 is amplified by the power amplifier 23. The amplified AC power is transmitted to the power receiving device 12 through the communication coils 24 and 31 based on the principle of the resonance power transmission described above.

受電装置12に伝送された交流電力は、通信コイル31から整流器33に出力される。   The AC power transmitted to the power receiving device 12 is output from the communication coil 31 to the rectifier 33.

そして、整流器33では、交流電力を整流して所定電圧の直流電力に変換し、この電力をバッテリ35に供給して、該バッテリ35を充電する。これにより、バッテリ35を充電することができる。   The rectifier 33 rectifies AC power and converts it into DC power of a predetermined voltage, supplies this power to the battery 35, and charges the battery 35. Thereby, the battery 35 can be charged.

以上より、本発明によれば、送信共鳴コイルX1及び受信共鳴コイルX2として、上述した共鳴コイル50を用いているので、この共鳴コイル50は、複数回巻回され且つ各巻回部55間に一定の導線間ギャップGが設けられたコイル導線51を有し、そして、コイル導線51には、その一の巻回部55[k]とそれに隣接する他の巻回部55[k+1]との間に生じる電位差に応じた厚さの被覆部材53が設けられているので、被覆部材53を適切な厚さとして過剰な絶縁耐力を有する部分をなくすことができ、送信共鳴コイルX1及び受信共鳴コイルX2を低コストで小型化でき、したがって、小型で安価な非接触電力伝送装置を提供できる。   As described above, according to the present invention, since the above-described resonance coil 50 is used as the transmission resonance coil X1 and the reception resonance coil X2, the resonance coil 50 is wound a plurality of times and is constant between the winding portions 55. The coil conductor 51 is provided with a gap G between the conductors, and the coil conductor 51 has a space between one winding portion 55 [k] and another winding portion 55 [k + 1] adjacent thereto. Since the covering member 53 having a thickness corresponding to the potential difference generated in the first and second portions is provided, the covering member 53 can be made to have an appropriate thickness so that a portion having excessive dielectric strength can be eliminated, and the transmission resonance coil X1 and the reception resonance coil X2 Can be miniaturized at low cost, and therefore a small and inexpensive non-contact power transmission device can be provided.

本実施形態においては、送信共鳴コイルX1及び受信共鳴コイルX2の両方とも上述した共鳴コイル50を用いていたが、これに限定されるものではなく、送信共鳴コイルX1及び受信共鳴コイルX2のうち少なくとも一方に共鳴コイル50を用いるものであればよい。   In the present embodiment, the resonance coil 50 described above is used for both the transmission resonance coil X1 and the reception resonance coil X2. However, the present invention is not limited to this, and at least one of the transmission resonance coil X1 and the reception resonance coil X2 is used. Any one using the resonance coil 50 may be used.

なお、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   In addition, embodiment mentioned above only showed the typical form of this invention, and this invention is not limited to embodiment. That is, various modifications can be made without departing from the scope of the present invention.

5 電気自動車
10 ワイヤレス電力伝送装置(非接触電力伝送装置)
50 共鳴コイル
51 コイル導線
53 被覆部材
55 巻回部
G 導線間ギャップG(巻回部間の間隔)
X1 送信共鳴コイル(共鳴コイル)
X2 受信共鳴コイル(共鳴コイル)
5 Electric vehicle 10 Wireless power transmission device (non-contact power transmission device)
50 Resonant Coil 51 Coil Conductor 53 Covering Member 55 Winding Part G Conductor Gap G (Spacing Between Winding Parts)
X1 Transmission resonance coil (resonance coil)
X2 receiving resonance coil (resonance coil)

Claims (3)

共鳴現象によって相手方コイルに電力を送信し又は前記相手方コイルから送信された電力を受信する共鳴コイルであって、
複数回巻回されたコイル導線を有し、そして、
前記コイル導線には、その一の巻回部と当該一の巻回部に隣接する他の巻回部との間に生じる電位差に応じた厚さの被覆部材が設けられている
ことを特徴とする共鳴コイル。
A resonance coil that transmits power to a counterpart coil by a resonance phenomenon or receives power transmitted from the counterpart coil,
Having a coil wire wound several times; and
The coil conductor is provided with a covering member having a thickness corresponding to a potential difference generated between the one winding portion and another winding portion adjacent to the one winding portion. Resonant coil.
前記コイル導線が、管状に複数回巻回されており、
前記被覆部材における前記コイル導線の軸方向中央部の厚さが、前記被覆部材における前記コイル導線の軸方向両端部の厚さより大きいことを特徴とする請求項1に記載の共鳴コイル。
The coil conductor is wound into a tube a plurality of times;
2. The resonance coil according to claim 1, wherein a thickness of an axially central portion of the coil conductor in the covering member is larger than thicknesses of both end portions in the axial direction of the coil conductor of the covering member.
共鳴現象によって電力を送信する送信共鳴コイルと、前記送信共鳴コイルから送信された電力を受信する受信共鳴コイルと、を有する非接触電力伝送装置において、
前記送信共鳴コイル及び前記受信共鳴コイルの少なくとも一方が、請求項1又は2に記載された共鳴コイルである
ことを特徴とする非接触電力伝送装置。
In a non-contact power transmission apparatus having a transmission resonance coil that transmits power by a resonance phenomenon, and a reception resonance coil that receives power transmitted from the transmission resonance coil,
The contactless power transmission device according to claim 1, wherein at least one of the transmission resonance coil and the reception resonance coil is the resonance coil according to claim 1.
JP2010283666A 2010-12-20 2010-12-20 Resonant coil and non-contact power transmission device having the same Expired - Fee Related JP5595895B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010283666A JP5595895B2 (en) 2010-12-20 2010-12-20 Resonant coil and non-contact power transmission device having the same
PCT/JP2011/078843 WO2012086473A1 (en) 2010-12-20 2011-12-07 Resonance coil and contactless power transmission system incorporating the same resonance coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010283666A JP5595895B2 (en) 2010-12-20 2010-12-20 Resonant coil and non-contact power transmission device having the same

Publications (2)

Publication Number Publication Date
JP2012134250A JP2012134250A (en) 2012-07-12
JP5595895B2 true JP5595895B2 (en) 2014-09-24

Family

ID=46649525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010283666A Expired - Fee Related JP5595895B2 (en) 2010-12-20 2010-12-20 Resonant coil and non-contact power transmission device having the same

Country Status (1)

Country Link
JP (1) JP5595895B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3703434B2 (en) * 2002-02-05 2005-10-05 株式会社アイキューフォー High voltage pulse transformer
JP4795427B2 (en) * 2006-03-13 2011-10-19 三菱電機株式会社 High voltage generation transformer for discharge lamp lighting device
JP2007281131A (en) * 2006-04-05 2007-10-25 Toshiba Corp Resin-molded coil
JP4947426B2 (en) * 2007-10-15 2012-06-06 独立行政法人理化学研究所 Pulse transformer
JP2010073885A (en) * 2008-09-18 2010-04-02 Toyota Motor Corp Resonance coil and non-contact feeding system
JP4759610B2 (en) * 2008-12-01 2011-08-31 株式会社豊田自動織機 Non-contact power transmission device

Also Published As

Publication number Publication date
JP2012134250A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
KR102167688B1 (en) Receiving coil for wireless chargement of electric vehicle and wireless power receiving apparatus using the same
JP6055530B2 (en) Non-contact power supply device
JP5781882B2 (en) Power transmission device, vehicle, and power transmission system
JP2013219210A (en) Non-contact power transmission device
US20150279556A1 (en) Coil unit and wireless power transmission device
WO2014069445A1 (en) Power transmission system
WO2013150785A1 (en) Coil unit, and power transmission device equipped with coil unit
WO2015040650A1 (en) Contactless power transmission device
WO2013051105A1 (en) Power reception device, power transmission device, and power transmission system
JP5888542B2 (en) Resonance coil holding member, resonance coil unit, and non-contact power transmission device
WO2013150784A1 (en) Coil unit, and power transmission device equipped with coil unit
JP5595893B2 (en) Resonant coil and non-contact power transmission device having the same
JP2011229202A (en) Wireless power transmission coil
JP2015099847A (en) Coil unit and non-contact power transmission device
WO2012086473A1 (en) Resonance coil and contactless power transmission system incorporating the same resonance coil
JP5595895B2 (en) Resonant coil and non-contact power transmission device having the same
JP5595894B2 (en) Resonant coil and non-contact power transmission device having the same
CN212392125U (en) Wireless charging coil, wireless charging transmitting device, wireless charging receiving device, wireless charging device and mobile terminal
JP6040510B2 (en) Power transmission system
KR101305790B1 (en) Apparatus for transmitting wireless power and apparatus for receiving wireless power
JP5888541B2 (en) Resonance coil holding member, resonance coil unit, and non-contact power transmission device
US9991749B2 (en) Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission device
CN110391696A (en) Method and apparatus for carrying out wireless charging to energy storage in fixation or mobile subscriber
JP7059759B2 (en) Coil unit, wireless power transmission device, wireless power receiving device and wireless power transmission system
JP2017195707A (en) Wireless power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140806

R150 Certificate of patent or registration of utility model

Ref document number: 5595895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees