JP5592579B2 - How to paint metal materials - Google Patents

How to paint metal materials Download PDF

Info

Publication number
JP5592579B2
JP5592579B2 JP2014045257A JP2014045257A JP5592579B2 JP 5592579 B2 JP5592579 B2 JP 5592579B2 JP 2014045257 A JP2014045257 A JP 2014045257A JP 2014045257 A JP2014045257 A JP 2014045257A JP 5592579 B2 JP5592579 B2 JP 5592579B2
Authority
JP
Japan
Prior art keywords
coating
metal
surface treatment
compound
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014045257A
Other languages
Japanese (ja)
Other versions
JP2014144456A (en
Inventor
康成 芦田
彰典 永井
真人 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2014045257A priority Critical patent/JP5592579B2/en
Publication of JP2014144456A publication Critical patent/JP2014144456A/en
Application granted granted Critical
Publication of JP5592579B2 publication Critical patent/JP5592579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

本発明は、金属材料の塗装方法に関する。   The present invention relates to a method for coating a metal material.

従来、金属表面の耐食性を向上させるためクロム酸塩処理及びリン酸塩処理が一般に行われている。しかしながら近年クロムの毒性が社会問題になっており、クロム酸塩を使用する表面処理方法は、処理工程でのクロム酸塩ヒュ−ムの飛散の問題、排水処理設備に多大な費用を要すること、さらには化成処理皮膜からクロム酸の溶出による問題などもある。   Conventionally, chromate treatment and phosphate treatment are generally performed to improve the corrosion resistance of metal surfaces. However, the toxicity of chromium has become a social problem in recent years, and the surface treatment method using chromate is a problem of scattering of chromate fume in the treatment process, and requires a large amount of cost for wastewater treatment equipment, Furthermore, there is a problem due to elution of chromic acid from the chemical conversion coating.

またリン酸塩処理では、リン酸亜鉛系、リン酸鉄系の表面処理が通常行われているが、耐食性を付与する目的でリン酸塩処理後、通常クロム酸によるリンス処理を行うためクロム処理の問題とともにリン酸塩処理剤中の反応促進剤や金属イオンなどの排水処理、被処理金属からの金属イオンの溶出によるスラッジ処理などの問題がある。   Also, in phosphate treatment, zinc phosphate and iron phosphate surface treatments are usually performed, but in order to provide corrosion resistance, chrome treatment is usually performed after phosphating for rinsing with chromic acid. In addition to these problems, there are problems such as waste water treatment of reaction accelerators and metal ions in the phosphate treatment agent, and sludge treatment by elution of metal ions from the metal to be treated.

これに対しクロム酸塩処理やリン酸亜鉛処理以外の処理方法としては、ジルコニウム系やチタン系の表面処理剤が知られている。例えば特許文献1には、実質的にリン酸イオンを含有せず、ジルコニウムイオン及び/又はチタニウムイオン、並びにフッ素イオンを含有してなる鉄及び/又は亜鉛系基材用化成処理剤が提案されている。特許文献2には、(I)Ti、Zr、Hf及びSiから選ばれる少なくとも1種の金属元素を含む化合物と、(II)フッ素イオンの供給源としてフッ素含有化合物を含有する金属の表面処理用組成物を用いることにより、鉄又は亜鉛の少なくとも1種を含む金属の表面に耐食性に優れる表面処理皮膜を析出させることができ、且つ表面調整(表調)工程を必要としないため処理工程の短縮、省スペース化を図ることが開示されている。   On the other hand, zirconium-based and titanium-based surface treatment agents are known as treatment methods other than chromate treatment and zinc phosphate treatment. For example, Patent Document 1 proposes a chemical conversion treatment agent for iron and / or zinc-based substrates that contains substantially no phosphate ions but contains zirconium ions and / or titanium ions and fluorine ions. Yes. Patent Document 2 discloses (I) a compound containing at least one metal element selected from Ti, Zr, Hf and Si, and (II) a surface treatment of a metal containing a fluorine-containing compound as a source of fluorine ions. By using the composition, a surface treatment film having excellent corrosion resistance can be deposited on the surface of a metal containing at least one of iron and zinc, and the surface adjustment (surface tone) step is not required, so that the treatment step is shortened. It is disclosed to save space.

また、特許文献3には、ジルコニウムイオン及び/又はチタニウムイオン、フッ素イオン、並びに、可溶性エポキシ樹脂を含有し、実質的にリン酸イオンを含有しないpHが2.5〜4.5である鉄系基材用金属表面処理用組成物が開示されている。   Patent Document 3 discloses an iron-based material containing zirconium ions and / or titanium ions, fluorine ions, and a soluble epoxy resin and having substantially no phosphate ions and a pH of 2.5 to 4.5. A metal surface treatment composition for a substrate is disclosed.

他に、特許文献4には、フッ素及びジルコニウム含有化合物からなる化成処理剤による化成処理反応によってアルミニウム系基材表面に化成皮膜を形成させる工程(1)と、親水処理剤を用いて親水皮膜を形成させる工程(2)とからなるアルミニウム系基材の表面処理方法であって、前記化成処理反応は、電解処理によって化成処理を行うことを特徴とするアルミニウム系基材の表面処理方法が開示されている。   In addition, Patent Document 4 discloses a step (1) of forming a chemical conversion film on the surface of an aluminum-based substrate by a chemical conversion treatment with a chemical conversion treatment agent comprising a fluorine- and zirconium-containing compound, and a hydrophilic film using a hydrophilic treatment agent. A surface treatment method for an aluminum-based substrate comprising the step (2) of forming, wherein the chemical conversion treatment is performed by electrolytic treatment. ing.

また特許文献5には、粉体塗装または固体潤滑塗装の下地処理としてジルコニウム及び/又はチタンの酸化物および/または水酸化物を含有する非晶質の表面処理処理層を金属材料表面に設けてなる塗装方法が開示されている。   In Patent Document 5, an amorphous surface treatment layer containing an oxide and / or hydroxide of zirconium and / or titanium is provided on the surface of a metal material as a ground treatment for powder coating or solid lubricant coating. A coating method is disclosed.

しかしながら、いずれに記載の表面処理用組成物を用いた場合でも、クロム酸塩処理やリン酸亜鉛処理に匹敵する耐食性が得られず、また処理後の塗装工程によって形成される塗膜との付着性も不十分な場合があった。   However, even when the surface treatment composition described in any of the above is used, corrosion resistance comparable to chromate treatment or zinc phosphate treatment is not obtained, and adhesion with the coating film formed by the coating process after treatment In some cases, the properties were insufficient.

特開2003−155578号公報JP 2003-155578 A 国際公開第02/103080号パンフレットInternational Publication No. 02/103080 Pamphlet 特開2003−253461号公報JP 2003-253461 A 特開2005−2370号公報JP 2005-2370 A 特開2006−255540号公報JP 2006-255540 A

本発明の目的は、クロム酸塩処理やリン酸亜鉛処理に匹敵する耐食性が得られる処理皮膜を形成し、さらに処理後の塗装工程によって形成される塗膜との付着性にも非常に優れた金属材料の塗装方法を提供することにある。   The object of the present invention is to form a treatment film that provides corrosion resistance comparable to chromate treatment and zinc phosphate treatment, and also has excellent adhesion to the coating film formed by the coating process after treatment. The object is to provide a method of painting a metal material.

本発明は、(A)チタン化合物及び/又はジルコニウム化合物、並びに(B)アミノシラン(b1)及び多シリル官能シラン(b2)の縮合反応物を含有する金属表面処理用組成物(I)を含む金属表面処理液を金属材料に接触させる処理液接触工程と、前記処理液接触工程を経た金属材料を水洗する水洗工程と、得られた表面処理皮膜層上に焼付け塗料(II)を塗装する塗装工程とを含む金属材料の塗装方法であって、
該縮合反応物(B)におけるアミノシラン(b1)が、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルメチルジエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン及びN−(2−アミノエチル)−3−アミノプロピルトリエトキシシランから選ばれる少なくとも1種であり、多シリル官能シラン(b2)が下記一般式(I)で示されるものであって
The present invention includes a metal surface treatment composition (I) containing (A) a titanium compound and / or a zirconium compound, and (B) a condensation reaction product of an aminosilane (b1) and a polysilyl functional silane (b2). A treatment liquid contact process in which a surface treatment liquid is brought into contact with a metal material, a water washing process in which the metal material that has undergone the treatment liquid contact process is washed with water, and a painting process in which a baking paint (II) is applied onto the obtained surface treatment film layer A method of painting a metal material including
The aminosilane (b1) in the condensation reaction product (B) is 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane. N- (2-aminoethyl) -3-aminopropyltrimethoxysilane and N- (2-aminoethyl) -3-aminopropyltriethoxysilane, and polysilyl functional silane (b2) Is represented by the following general formula (I):

Figure 0005592579
Figure 0005592579

(式(I)において、R1、R2、R3およびR4は、独立に、水素原子または炭素数1〜30の1価の有機基を示す。Yは、2価の有機基またはアミンを示す。X1およびX2は、独立に加水分解性基を示す。aおよびbは、独立に、0、1、または2であり、かつ、0≦a+b≦2である。cおよびdは、独立に、0、1、または2であり、かつ、0≦c+d≦2である。)、且つアミノシラン(b1)及び多シリル官能シラン(b2)の使用比がモル比で50/50〜99/1であり、
焼付け塗料(II)がカルボキシル基含有ポリエステル樹脂とヒドロキシアルキルアミド化合物とを含有する粉体塗料、または水酸基含有ポリエステル樹脂とブロック化ポリイソシアネート化合物とを含有する粉体塗料であることを特徴とする金属材料の塗装方法、に関する。
(In Formula (I), R 1, R 2, R 3 and R 4 independently represent a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms. Y represents a divalent organic group or amine. X 1 And X2 independently represent a hydrolyzable group, a and b are independently 0, 1, or 2 and 0 ≦ a + b ≦ 2, c and d are independently 0, 1 or 2 and 0 ≦ c + d ≦ 2), and the use ratio of aminosilane (b1) and polysilyl functional silane (b2) is 50/50 to 99/1 in molar ratio,
A metal characterized in that the baked paint (II) is a powder paint containing a carboxyl group-containing polyester resin and a hydroxyalkylamide compound, or a powder paint containing a hydroxyl group-containing polyester resin and a blocked polyisocyanate compound. The present invention relates to a method of painting a material.

本発明方法によれば、ジルコニウム系やチタン系の表面処理剤に特定のシラン縮合反応物を含有せしめることにより、得られる表面処理皮膜はクロム酸塩処理やリン酸亜鉛処理に匹敵する耐食性が得られ、さらに処理後の塗装工程によって形成される塗膜との付着性に非常に優れる。特に焼付け時に塗膜内に大きな収縮応力を生じる焼付け塗料を用いた場合においても塗膜の付着不良を起すことがない。   According to the method of the present invention, by adding a specific silane condensation reaction product to a zirconium-based or titanium-based surface treatment agent, the obtained surface-treated film has corrosion resistance comparable to chromate treatment or zinc phosphate treatment. Furthermore, it is very excellent in adhesion with a coating film formed by a coating process after treatment. In particular, even when a baking coating that generates a large shrinkage stress in the coating film during baking is used, the coating film does not cause poor adhesion.

従って本発明方法は、家電、鋼製家具等の工業塗装用途に非常に有用である。   Therefore, the method of the present invention is very useful for industrial coating applications such as home appliances and steel furniture.

本発明方法に用いる金属表面処理用組成物(I)は、チタン化合物及び/又はジルコニウム化合物(A)、並びにアミノシラン(b1)及び多シリル官能シラン(b2)の縮合反応物(B)を含有する。   The metal surface treatment composition (I) used in the method of the present invention contains a titanium compound and / or a zirconium compound (A), and a condensation reaction product (B) of an aminosilane (b1) and a polysilyl functional silane (b2). .

上記チタン化合物及び/又はジルコニウム化合物(A)は、金属材料表面にチタン及び/又はジルコニウムを含む化成皮膜を形成するために配合されるものであり、組成物(I)を含む金属表面処理液を金属材料に接触させると、金属材料表面にチタン及び/又はジルコニウムの酸化物及び/又は水酸化物を含む化成皮膜層を析出させることが可能である。   The titanium compound and / or zirconium compound (A) is blended to form a chemical conversion film containing titanium and / or zirconium on the surface of the metal material, and a metal surface treatment liquid containing the composition (I) is used. When contacted with a metal material, it is possible to deposit a chemical conversion coating layer containing an oxide and / or hydroxide of titanium and / or zirconium on the surface of the metal material.

このようなチタン化合物及び/又はジルコニウム化合物(A)としては、通常、チタンのハロゲン化物及びその塩、ジルコニウムのハロゲン化物及びその塩、炭酸ジルコニウム及びその塩並びに硝酸ジルコニルから選ばれる少なくとも1種の化合物を含むものであり、好適にはジルコニウムフッ化塩、チタンフッ化塩、炭酸ジルコニウム及びその塩並びに硝酸ジルコニルから選ばれる少なくとも1種の化合物を含むものである。   The titanium compound and / or zirconium compound (A) is usually at least one compound selected from titanium halides and salts thereof, zirconium halides and salts thereof, zirconium carbonate and salts thereof, and zirconyl nitrate. Preferably, it contains at least one compound selected from zirconium fluoride, titanium fluoride, zirconium carbonate and salts thereof, and zirconyl nitrate.

その具体例としては、例えば、ジルコニウムフッ化水素酸、フッ化ジルコニウムナトリウム、フッ化ジルコニウムカリウム、フッ化ジルコニウムリチウム、フッ化ジルコニウムアンモニウム、炭酸ジルコニウム、硝酸ジルコニル、チタンフッ化水素酸、フッ化チタンナトリウム、フッ化チタンカリウム、フッ化チタンリチウム、フッ化チタンアンモニウムなどが挙げられる。これらのうち、特に、硝酸ジルコニル、フッ化ジルコニウムアンモニウム、チタンフッ化アンモニウムが好適である。   Specific examples thereof include, for example, zirconium hydrofluoric acid, sodium zirconium fluoride, potassium zirconium fluoride, lithium zirconium fluoride, ammonium zirconium fluoride, zirconium carbonate, zirconyl nitrate, titanium hydrofluoric acid, sodium titanium fluoride, Examples include potassium titanium fluoride, lithium titanium fluoride, and ammonium ammonium fluoride. Of these, zirconyl nitrate, zirconium ammonium fluoride, and titanium ammonium fluoride are particularly suitable.

金属表面処理用組成物(I)における上記チタン及び/又はジルコニウム化合物(A)の含有量は、金属元素換算で、5〜10,000ppm、好ましくは20〜2,000ppm、さらに好ましくは50〜500ppmの範囲内であることが、金属材料表面に析出される皮膜量確保、経済性などの点から好適である。   The content of the titanium and / or zirconium compound (A) in the metal surface treatment composition (I) is 5 to 10,000 ppm, preferably 20 to 2,000 ppm, more preferably 50 to 500 ppm in terms of metal element. It is suitable from the point of ensuring the amount of the film deposited on the surface of the metal material and economical.

上記アミノシラン(b1)及び多シリル官能シラン(b2)の縮合反応物(B)は、皮膜の耐食性向上、処理後の塗装工程によって形成される塗膜との付着性向上ために配合されるものであり、通常、アミノシラン(b1)及び多シリル官能シラン(b2)を水やアルコール、酸性水溶液中等で加水分解させることによって得られる。加水分解に酸を用いる場合には、例えば、塩酸、酢酸、硫酸、リン酸、スルホン酸等が使用できる。   The condensation reaction product (B) of the aminosilane (b1) and the polysilyl functional silane (b2) is blended for improving the corrosion resistance of the film and improving the adhesion with the coating film formed by the coating process after the treatment. Yes, usually obtained by hydrolyzing aminosilane (b1) and polysilyl functional silane (b2) in water, alcohol, acidic aqueous solution or the like. When an acid is used for hydrolysis, for example, hydrochloric acid, acetic acid, sulfuric acid, phosphoric acid, sulfonic acid and the like can be used.

アミノシラン(b1)としては、例えば3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルメチルジエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリエトキシシラン等を挙げることができる。   As aminosilane (b1), for example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N- (2- Aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, and the like.

多シリル官能シラン(b2)は、下記一般式(I)で示されるものであることが好適である。   The polysilyl functional silane (b2) is preferably one represented by the following general formula (I).

Figure 0005592579
Figure 0005592579

(式(I)において、R、R、RおよびRは、独立に、水素原子または炭素数1〜30の1価の有機基を示す。Yは、2価の有機基またはアミンを示す。XおよびXは、独立に加水分解性基を示す。aおよびbは、独立に、0、1、または2であり、かつ、0≦a+b≦2である。cおよびdは、独立に、0、1、または2であり、かつ、0≦c+d≦2である。)
上記において、R、R、RおよびRは、独立に、水素原子、または炭素数1〜30の1価の有機基を示す。1価の有機基としては、アルキル基、アルケニル基、シクロアルキル基、アリール基等の炭化水素基;水酸基、エポキシ基、アミノ基等の官能基を有する炭化水素基などが挙げられ、特にメチル基、エチル基等の低級アルキル基が好ましい。
(In the formula (I), R 1 , R 2 , R 3 and R 4 independently represent a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms. Y represents a divalent organic group or an amine. X 1 and X 2 independently represent a hydrolyzable group, a and b are independently 0, 1, or 2 and 0 ≦ a + b ≦ 2, and c and d are , Independently, 0, 1, or 2 and 0 ≦ c + d ≦ 2.)
In the above, R 1 , R 2 , R 3 and R 4 independently represent a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms. Examples of monovalent organic groups include hydrocarbon groups such as alkyl groups, alkenyl groups, cycloalkyl groups, and aryl groups; hydrocarbon groups having functional groups such as hydroxyl groups, epoxy groups, and amino groups, and particularly methyl groups. And a lower alkyl group such as an ethyl group is preferred.

上記においてYは、2価の有機基またはアミンを示す。2価の有機基としては、アルキレン基、アルキレンオキシ基、およびアルキレンチオ基、またはこれらの基を部分構造として含む基が挙げられ、特にアルキレン基が好ましい。これらの炭素数は2〜30、特に2〜12が好ましい。   In the above, Y represents a divalent organic group or amine. Examples of the divalent organic group include an alkylene group, an alkyleneoxy group, and an alkylenethio group, or a group containing these groups as a partial structure, and an alkylene group is particularly preferable. These carbon numbers are preferably 2 to 30, particularly 2 to 12.

上記においてXおよびXは、加水分解性基を示す。加水分解性基としては、炭素数1〜4のアルコキシル基が挙げられ、特にメトキシル基、エトキシル基が好ましい。またa+bおよびc+dは、いずれも0または1が好ましい。 X 1 and X 2 in the above shows a hydrolyzable group. As a hydrolysable group, a C1-C4 alkoxyl group is mentioned, A methoxyl group and an ethoxyl group are especially preferable. Moreover, both a + b and c + d are preferably 0 or 1.

上記多シリル官能シラン(b2)の具体例としては、例えばビス(トリメトキシシリル)メタン、ビス(トリメトキシシリル)エタン、1,2―ビス(トリエトキシシリル)エタン、1,2―ビス(トリメトキシシリル)エタン、ビス(トリエトキシシリル)ヘキサン、ビス(トリメトキシシリル)ヘキサン、1,9―ビス(トリエトキシシリル)ノナン、1,9―ビス(トリメトキシシリル)ノナン、1,8―ビス(トリエトキシシリル)オクタン、ビス(トリメトキシシリル)アミン、ビス(トリエトキシシリル)アミン、ビス(トリエトキシシリルメチル)アミン、ビス(トリエトキシシリルプロピル)アミンなどが挙げられ、これらのうち特に1,2―ビス(トリエトキシシリル)エタンが取扱上の安全性、皮膜の耐食性向上、塗膜との付着性向上の点から好適である。   Specific examples of the polysilyl functional silane (b2) include, for example, bis (trimethoxysilyl) methane, bis (trimethoxysilyl) ethane, 1,2-bis (triethoxysilyl) ethane, 1,2-bis (tri Methoxysilyl) ethane, bis (triethoxysilyl) hexane, bis (trimethoxysilyl) hexane, 1,9-bis (triethoxysilyl) nonane, 1,9-bis (trimethoxysilyl) nonane, 1,8-bis (Triethoxysilyl) octane, bis (trimethoxysilyl) amine, bis (triethoxysilyl) amine, bis (triethoxysilylmethyl) amine, bis (triethoxysilylpropyl) amine, etc. , 2-Bis (triethoxysilyl) ethane is safe for handling, improved corrosion resistance of the coating, and coating It is preferred in view of adhesion improvement.

上記アミノシラン(b1)及び多シリル官能シラン(b2)の使用比は、モル比で50/50〜99/1、好ましくは70/30〜99/1、さらに好ましくは80/20〜95/5の範囲であることが製造時のゲル化防止、皮膜の耐食性向上、経済性の点から好適である。   The aminosilane (b1) and polysilyl functional silane (b2) are used in a molar ratio of 50/50 to 99/1, preferably 70/30 to 99/1, and more preferably 80/20 to 95/5. The range is preferable from the viewpoints of preventing gelation during production, improving the corrosion resistance of the film, and economical.

本発明では縮合反応物(B)の製造時に、上記アミノシラン(b1)及び多シリル官能シラン(b2)に加えて、必要に応じてこれら以外のオルガノシラン(b3)を適宜添加しても良い。   In the present invention, when the condensation reaction product (B) is produced, in addition to the aminosilane (b1) and the polysilyl functional silane (b2), an organosilane (b3) other than these may be added as necessary.

このようなオルガノシラン(b3)としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、2−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン等が挙げられる。該オルガノシラン(b3)は、溶媒への溶解性を妨げない範囲で析出制御の点から使用され、通常、アミノシラン(b1)及び多シリル官能シラン(b2)の合計モル量に対して100モル%以下、好ましくは50モル%以下で使用することが望ましい。   Examples of such organosilane (b3) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, and vinyltrimethoxy. Silane, vinyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane 3-acryloxypropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, etc. It is. The organosilane (b3) is used from the viewpoint of precipitation control as long as the solubility in a solvent is not hindered, and is usually 100 mol% with respect to the total molar amount of the aminosilane (b1) and the polysilyl functional silane (b2). Hereinafter, it is desirable to use it at 50 mol% or less.

金属表面処理用組成物(I)における(B)成分の含有量は、固形分濃度で1〜5,000ppm、好ましくは20〜500ppmの範囲内であることが、皮膜量確保、経済性の点から好ましい。   The content of the component (B) in the metal surface treatment composition (I) is in the range of 1 to 5,000 ppm, preferably 20 to 500 ppm in terms of solid content concentration, ensuring the coating amount and economical points. To preferred.

金属表面処理用組成物(I)には、さらにマグネシウム、亜鉛、カルシウム、アルミニウム、ガリウム、インジウム、銅、鉄、マンガン、ニッケル、コバルト、セリウム、ストロンチウム、希土類元素、スズ、ビスマス、イットリウム、バナジウム、バリウム、クロム、モリブデン、タングステン及び銀よりなる群から選ばれる少なくとも1種の金属元素をさらに含有することが皮膜の耐食性向上、塗膜との付着性向上等の点から好ましい。これら金属元素の供給源としては特に限定されず、例えば、硝酸化物、硫酸化物、又は、フッ化物等として化成処理剤に配合することができる。またこれら金属元素は、例えば、鉄系基材、アルミニウム系基材、亜鉛系基材等の被処理物を処理した際に溶出した金属イオンであってもよい。   The metal surface treatment composition (I) further includes magnesium, zinc, calcium, aluminum, gallium, indium, copper, iron, manganese, nickel, cobalt, cerium, strontium, rare earth elements, tin, bismuth, yttrium, vanadium, It is preferable to further contain at least one metal element selected from the group consisting of barium, chromium, molybdenum, tungsten, and silver from the viewpoints of improving the corrosion resistance of the coating and improving the adhesion to the coating. The supply source of these metal elements is not particularly limited, and can be blended in the chemical conversion treatment agent as, for example, nitrate, sulfate, or fluoride. In addition, these metal elements may be metal ions eluted when an object to be processed such as an iron-based substrate, an aluminum-based substrate, or a zinc-based substrate is processed.

金属表面処理用組成物(I)において上記金属元素を含有させる場合に、その含有量は、金属元素換算で0.1〜5,000ppmの範囲内であることが適当である。   When the metal element is contained in the metal surface treatment composition (I), the content is suitably in the range of 0.1 to 5,000 ppm in terms of metal element.

上記金属元素のうち、特に塗膜との付着性向上等の点から、マグネシウム、アルミニウムなどが好適であり、その含有量は1〜5,000ppm、好ましくは20〜2,000ppmの範囲内であることが適当である。また皮膜の耐食性向上等の点からは、銅、バナジウムなどが好適であり、その含有量は0.5〜100ppm、好ましくは2〜50ppmの範囲内であることが適当である。   Among the above metal elements, magnesium, aluminum, and the like are suitable particularly from the viewpoint of improving adhesion to the coating film, and the content thereof is in the range of 1 to 5,000 ppm, preferably 20 to 2,000 ppm. Is appropriate. Also, from the viewpoint of improving the corrosion resistance of the film, copper, vanadium, and the like are suitable, and the content is suitably in the range of 0.5 to 100 ppm, preferably 2 to 50 ppm.

金属表面処理用組成物(I)は、さらに皮膜形成促進、皮膜の耐食性向上等の点から、硝酸、硫酸、リン酸、ホスホン酸、次亜リン酸及びこれらの塩類よりなる群から選ばれる少なくとも1種をさらに含有することができる。その含有量は、固形分で1〜50,000ppm、好ましくは5〜30,000ppmの範囲内であることが適当である。   The metal surface treatment composition (I) is at least selected from the group consisting of nitric acid, sulfuric acid, phosphoric acid, phosphonic acid, hypophosphorous acid and salts thereof from the viewpoints of promoting film formation and improving the corrosion resistance of the film. One kind can be further contained. The content thereof is suitably in the range of 1 to 50,000 ppm, preferably 5 to 30,000 ppm in terms of solid content.

金属表面処理用組成物(I)は、皮膜の耐食性向上、塗膜との付着性向上等の点から、さらに水溶性又は水分散性有機樹脂を含有することができる。水溶性又は水分散性有機樹脂としては、例えばエポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ポリアリルアミン樹脂、ポリビニルアミン樹脂、ポリブタジエン樹脂、ポリウレタン樹脂、ポリビニルアルコール、エチレン−酢酸ビニル樹脂等が挙げられる。また必要に応じて、適宜に、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、(ブロック)ポリイソシアネート、フェノール樹脂等を配合することができる。   The metal surface treatment composition (I) can further contain a water-soluble or water-dispersible organic resin from the viewpoints of improving the corrosion resistance of the film and improving the adhesion to the coating film. Examples of the water-soluble or water-dispersible organic resin include epoxy resin, acrylic resin, polyester resin, polyallylamine resin, polyvinylamine resin, polybutadiene resin, polyurethane resin, polyvinyl alcohol, and ethylene-vinyl acetate resin. Moreover, a melamine resin, a benzoguanamine resin, a urea resin, (block) polyisocyanate, a phenol resin, etc. can be mix | blended suitably as needed.

金属表面処理用組成物(I)で上記水溶性又は水分散性有機樹脂を使用する場合には、その含有量は、固形分濃度で0.1〜300,000ppm、好ましくは5〜5,000ppmの範囲内であることが皮膜の形成性、皮膜の耐食性向上、塗膜との付着性向上の点から望ましい。   When the water-soluble or water-dispersible organic resin is used in the metal surface treatment composition (I), the content thereof is 0.1 to 300,000 ppm, preferably 5 to 5,000 ppm in terms of solid content. It is desirable that it is within the range from the viewpoints of film formability, improved corrosion resistance of the film, and improved adhesion to the film.

金属表面処理用組成物(I)は、さらに組成物の安定性及び析出性の向上を目的として界面活性剤を含有することができる。界面活性剤としては、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤が挙げられ、これらのうちアニオン系界面活性剤、ノニオン系界面活性剤、及びこれらの併用したものが好ましい。   The metal surface treatment composition (I) can further contain a surfactant for the purpose of improving the stability and precipitation of the composition. Examples of the surfactant include anionic surfactants, cationic surfactants, nonionic surfactants, and amphoteric surfactants. Among these, anionic surfactants, nonionic surfactants, and these Those used in combination are preferred.

アニオン系界面活性剤としては、例えば、脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルフォン酸塩、アルキルリン酸塩などが挙げられる。カチオン系界面活性剤としては、例えば、アルキルアミン塩、第4級アンモニウム塩などが挙げられる。   Examples of the anionic surfactant include fatty acid salts, alkyl sulfate esters, alkylbenzene sulfonates, and alkyl phosphates. Examples of the cationic surfactant include alkylamine salts and quaternary ammonium salts.

ノニオン系界面活性剤を使用する場合には、HLBが8以上、好ましくは約10〜約20の範囲内がよい。なお、上記HLBは、分子中の親水基と親油基との釣り合いを示す、Hydrophile−Lipophile Balanceの略である。このようなノニオン系界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレン誘導体、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルアミン、アルキルアルカノールアミドなどが挙げられる。   When a nonionic surfactant is used, the HLB is 8 or more, preferably about 10 to about 20. The HLB is an abbreviation for Hydrophile-Lipophile Balance showing the balance between the hydrophilic group and the lipophilic group in the molecule. Examples of such nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene derivatives, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, glycerin fatty acid ester, and polyoxyethylene fatty acid. Examples thereof include esters, polyoxyethylene alkylamines, and alkyl alkanolamides.

アニオン系界面活性剤とノニオン系界面活性剤の併用する場合は、両成分の固形分合計を基準にして、アニオン系界面活性剤/ノニオン系界面活性剤=99.9/0.1(質量%)〜10/90(質量%)、好ましくは80/20(質量%)〜50/50(質量%)の範囲が好ましい。   When an anionic surfactant and a nonionic surfactant are used in combination, the anionic surfactant / nonionic surfactant = 99.9 / 0.1 (mass%) based on the total solid content of both components ) To 10/90 (mass%), preferably in the range of 80/20 (mass%) to 50/50 (mass%).

金属表面処理用組成物(I)で上記界面活性剤を使用する場合には、その含有量は、固形分濃度で5〜300,000ppm、好ましくは25〜100,000ppmの範囲内であることが十分な脱脂処理、経済性等の点から好ましい。   When the surfactant is used in the metal surface treatment composition (I), the content thereof is in the range of 5 to 300,000 ppm, preferably 25 to 100,000 ppm in terms of solid content. It is preferable from the viewpoints of sufficient degreasing treatment, economy and the like.

金属表面処理用組成物(I)のpHは、1.5〜6.5、特に3.0〜4.5の範囲であることが好ましい。pHの調整には、前述の硝酸、硫酸等の酸性化合物、及び水酸化ナトリウム、水酸化カリウム、アンモニア等の塩基性化合物を使用することができる。   The pH of the metal surface treatment composition (I) is preferably in the range of 1.5 to 6.5, particularly 3.0 to 4.5. For adjusting the pH, the above-mentioned acidic compounds such as nitric acid and sulfuric acid and basic compounds such as sodium hydroxide, potassium hydroxide and ammonia can be used.

金属表面処理用組成物(I)には、上記成分の他に、必要に応じて、任意の成分を配合することができ、例えば水分散性シリカ等のシリカ等を挙げることができる。   In addition to the above components, the metal surface treatment composition (I) can contain any component as necessary, and examples thereof include silica such as water-dispersible silica.

本発明の金属表面処理方法は、上記の通り得られる金属表面処理用組成物(I)を含む金属表面処理液を金属材料に接触させる処理液接触工程と、前記処理液接触工程を経た金属材料を水洗する水洗工程と、得られた表面処理皮膜層上に焼付け塗料(II)を塗装する塗装工程とを含む。   The metal surface treatment method of the present invention includes a treatment liquid contact step in which a metal surface treatment liquid containing the metal surface treatment composition (I) obtained as described above is brought into contact with a metal material, and a metal material that has undergone the treatment liquid contact step. A water-washing step of washing the water and a coating step of painting the baked paint (II) on the surface treatment film layer obtained.

処理液接触工程では特に限定されず、例えば、浸漬法、スプレー法、ロールコート法等の方法を採用することができる。処理液の温度を20〜70℃、特に30〜55℃の範囲内に調整することによって行うことが好ましい。   The treatment liquid contact step is not particularly limited, and for example, a method such as a dipping method, a spray method, or a roll coating method can be employed. It is preferable to perform the treatment by adjusting the temperature of the treatment liquid within a range of 20 to 70 ° C, particularly 30 to 55 ° C.

金属材料としては、通常、鉄系基材、アルミニウム系基材、及び、亜鉛系基材等を挙げることができる。鉄、アルミニウム、及び、亜鉛系基材とは、基材が鉄及び/又はその合金からなる鉄系基材、基材がアルミニウム及び/又はその合金からなるアルミニウム基材、基材が亜鉛及び/又はその合金からなる亜鉛系基材を意味する。金属表面処理用組成物(I)は、鉄系基材、アルミニウム系基材、及び、亜鉛系基材のうちの複数の金属基材からなる被塗物の化成処理に対しても使用することができる。本発明方法は、特に鉄系基材に好適である。   Examples of the metal material usually include iron-based substrates, aluminum-based substrates, and zinc-based substrates. Iron, aluminum, and zinc-based substrate are iron-based substrates in which the substrate is made of iron and / or an alloy thereof, aluminum substrates in which the substrate is made of aluminum and / or an alloy thereof, and the substrate is made of zinc and / or Or the zinc-type base material consisting of the alloy is meant. The metal surface treatment composition (I) should also be used for chemical conversion treatment of an object to be coated consisting of a plurality of metal substrates among an iron-based substrate, an aluminum-based substrate, and a zinc-based substrate. Can do. The method of the present invention is particularly suitable for an iron-based substrate.

これら金属材料は、上記処理液接触工程前に脱脂処理、脱脂後水洗処理を行い、処理液接触工程後に水洗工程を行うことが好ましい。   These metal materials are preferably subjected to a degreasing process and a degreasing water washing process before the treatment liquid contact process, and a water washing process after the treatment liquid contact process.

上記脱脂処理は、基材表面に付着している油分や汚れを除去するために行われるものであり、無リン・無窒素脱脂洗浄液等の脱脂剤により、通常、30〜70℃において数秒間〜数分間程度の浸漬処理がなされる。所望により、脱脂処理の前に、予備脱脂処理を行うことも可能である。   The degreasing treatment is performed to remove oil and dirt adhering to the surface of the base material, and usually with a degreasing agent such as a phosphorus-free and nitrogen-free degreasing cleaning solution at 30 to 70 ° C. for several seconds to Immersion treatment is performed for several minutes. If desired, a preliminary degreasing process can be performed before the degreasing process.

上記処理液接触後の水洗工程は、その後の各種塗装後の密着性、耐食性等に悪影響を及ぼさないようにするために、1回又はそれ以上により行われるものである。この場合、最終の水洗は、純水で行われることが適当である。この水洗処理は、スプレー水洗又は浸漬水洗のどちらでもよく、これらの方法を組み合わせて水洗することもできる。   The water washing step after contact with the treatment liquid is performed once or more so as not to adversely affect the adhesion, corrosion resistance and the like after the various coatings. In this case, it is appropriate that the final water washing is performed with pure water. This water washing treatment may be either spray water washing or immersion water washing, and these methods may be combined for water washing.

上記水洗工程の後に、必要に応じて乾燥工程を採用することができる。乾燥工程を行う場合は、冷風乾燥、熱風乾燥等を行うことができる。   A drying process can be employ | adopted as needed after the said water washing process. When performing a drying process, cold air drying, hot air drying, etc. can be performed.

本発明方法で金属表面処理用組成物(I)により得られる皮膜は、金属材料への付着量が処理剤に含まれる金属元素換算で0.1〜2,000mg/m、特に5〜200mg/mであることが皮膜の耐食性向上、塗膜との付着性向上等の点から好ましい。 The film obtained from the metal surface treatment composition (I) by the method of the present invention has an adhesion amount to the metal material of 0.1 to 2,000 mg / m 2 , especially 5 to 200 mg in terms of the metal element contained in the treatment agent. / M 2 is preferable from the standpoints of improving the corrosion resistance of the coating and improving the adhesion to the coating.

本発明方法で塗装工程では、上記の通り得られた皮膜上に、焼付け塗料(II)を塗装する。   In the coating step according to the method of the present invention, the baking paint (II) is applied onto the film obtained as described above.

焼付け塗料(II)としては、従来公知の焼付け型の塗料が特に制限なく使用でき、例えば有機溶剤希釈型塗料、水性塗料、粉体塗料等が挙げられる。   As the baked paint (II), a conventionally known baked paint can be used without particular limitation, and examples thereof include organic solvent diluted paint, water-based paint, and powder paint.

上記有機溶剤希釈型塗料としては、例えばポリエステル樹脂、アルキド樹脂、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、フッ素樹脂、塩化ビニル樹脂、及びこれらの変性樹脂などを基体樹脂成分とし、必要に応じてこれら基体樹脂成分中の水酸基やエポキシ基等の官能基と反応し得るアミノ樹脂(例えば、メラミン樹脂等)、(ブロック化)ポリイソシアネート化合物、多価カルボン酸などの硬化剤を含有するものが挙げられ、これらのうち、ポリエステル/メラミン樹脂系塗料、アルキド/メラミン樹脂系塗料及びアクリル樹脂系塗料等が好適に使用できる。   Examples of the organic solvent dilution type paint include polyester resin, alkyd resin, epoxy resin, acrylic resin, urethane resin, fluororesin, vinyl chloride resin, and modified resins thereof as base resin components. Examples include amino resins that can react with functional groups such as hydroxyl groups and epoxy groups in the resin component (for example, melamine resins), (blocked) polyisocyanate compounds, and polycarboxylic acid containing curing agents, Of these, polyester / melamine resin-based paints, alkyd / melamine resin-based paints, acrylic resin-based paints, and the like can be suitably used.

上記有機溶剤希釈型塗料には、さらに有機溶剤が配合され、必要に応じて、硬化触媒、顔料類、消泡剤、塗面調整剤、沈降防止剤、顔料分散剤、ホルマリン補足剤などの塗料用添加剤が適宜配合される。   The organic solvent dilution type paint further contains an organic solvent, and if necessary, paints such as curing catalysts, pigments, antifoaming agents, coating surface conditioners, antisettling agents, pigment dispersants, formalin supplements, etc. Additives are appropriately blended.

上記有機溶剤希釈型塗料は、金属表面処理用組成物(I)により得られる皮膜上に、ロールコート法、スプレー塗装法、刷毛塗り法、静電塗装法、浸漬法、カーテン塗装法、ローラー塗装法などの公知の方法により塗装され、乾燥させることにより塗膜を形成することができる。該塗膜の膜厚は、特に限定されるものではないが、通常3〜100μm、好ましくは15〜50μmの範囲で選択される。塗膜の乾燥は、使用する樹脂の種類などに応じて適宜設定すればよいが、コイルコーティング法などによって塗装したものを連続的に焼付ける場合には、通常、素材到達最高温度が160〜250℃、好ましくは180〜230℃となる条件で15〜60秒間焼付けられる。バッチ式で焼付ける場合には、例えば、雰囲気温度80〜180℃で5〜60分間焼付けることによっても行うことができる。   The organic solvent-diluted paint is a roll coating method, spray coating method, brush coating method, electrostatic coating method, dipping method, curtain coating method, roller coating on a film obtained from the metal surface treatment composition (I). A coating film can be formed by coating and drying by a known method such as a method. Although the film thickness of this coating film is not specifically limited, Usually, 3-100 micrometers, Preferably it is selected in 15-50 micrometers. What is necessary is just to set drying of a coating film suitably according to the kind of resin to be used, etc. However, when the thing painted by the coil coating method etc. is baked continuously, normally a material reach | attainment maximum temperature is 160-250. It is baked for 15 to 60 seconds under the condition of ° C, preferably 180 to 230 ° C. When baking by a batch type, it can carry out by baking for 5 to 60 minutes, for example at atmospheric temperature 80-180 degreeC.

上記粉体塗料は、塗膜形成樹脂と、必要に応じて加えられる着色顔料や体質顔料及びその他の添加剤を含有する塗料用組成物を溶融混練後、粉砕し粉末化したものであって、公知方法により製造することができる。塗膜形成樹脂としては、従来から粉体塗料の塗膜形成樹脂として用いられている熱硬化性樹脂や熱可塑性樹脂等を使用できるが、熱硬化性樹脂が一般的である。このような熱硬化性樹脂としては、例えば、(i)水酸基含有固形樹脂と、当該水酸基と熱により硬化反応する官能基を有する硬化剤との組合せ、(ii)カルボキシル基含有固形樹脂と、当該カルボキシル基と熱により硬化反応する官能基を有する硬化剤との組合せ、(iii)エポキシ基含有固形樹脂と、当該エポキシ基と熱により硬化反応する官能基を有する硬化剤との組合せを挙げることができる。ここでいう樹脂の「固形」とは、常温で固形状のものであり、好ましくは軟化点が80〜200℃のものをいう。また、硬化剤は固形状のものであっても液状であっても構わないが、好ましくは固形状のものを使用する。   The above-mentioned powder coating is obtained by melt-kneading a coating composition containing a coating film-forming resin and a color pigment or extender pigment and other additives that are added as necessary, and pulverized into powder. It can be produced by a known method. As the film-forming resin, a thermosetting resin or a thermoplastic resin that has been conventionally used as a film-forming resin for powder coatings can be used, and a thermosetting resin is generally used. As such a thermosetting resin, for example, (i) a combination of a hydroxyl group-containing solid resin and a curing agent having a functional group that undergoes a curing reaction with the hydroxyl group by heat, (ii) a carboxyl group-containing solid resin, A combination of a carboxyl group and a curing agent having a functional group that undergoes a curing reaction by heat, and (iii) a combination of an epoxy group-containing solid resin and a curing agent having a functional group that undergoes a curing reaction by the epoxy group and heat. it can. The “solid” of the resin here means a solid at room temperature, and preferably has a softening point of 80 to 200 ° C. Further, the curing agent may be solid or liquid, but a solid one is preferably used.

水酸基含有固形樹脂としては、例えば、水酸基含有アクリル樹脂、水酸基含有ポリエステル樹脂など公知の粉体塗料で用いられている樹脂を使用できる。この水酸基含有固形樹脂と組み合わせて使用できる「水酸基と熱により硬化反応する官能基を有する硬化剤」としては、例えば、ブロック化ポリイソシアネート化合物、アミノプラスト樹脂など公知の粉体塗料で用いられている硬化剤を使用できる。カルボキシル基含有固形樹脂としては、例えば、カルボキシル基含有アクリル樹脂、カルボキシル基含有ポリエステル樹脂など公知の粉体塗料で用いられている樹脂を使用できる。このカルボキシル基含有固形樹脂と組み合わせて使用できる「カルボキシル基と熱により硬化反応する官能基を有する硬化剤」としては、例えば、ビスフェノールA〜エピクロルヒドリン型エポキシ樹脂、脂環式エポキシ樹脂、ノボラック型エポキシ樹脂、エポキシ基含有アクリル樹脂などのエポキシ樹脂や、ヒドロキシアルキルアミド化合物など公知の粉体塗料で用いられている硬化剤を使用できる。またエポキシ基含有固形樹脂としては、例えば、ビスフェノールA〜エピクロルヒドリン型エポキシ樹脂、脂環式エポキシ樹脂、ノボラック型エポキシ樹脂、エポキシ基含有アクリル樹脂など公知の粉体塗料で用いられている樹脂を使用できる。このエポキシ基含有固形樹脂と組み合わせて使用できる「エポキシ基と熱により硬化反応する官能基を有する硬化剤」としては、例えば、カルボキシル基含有ポリエステル樹脂、有機酸ポリヒドラジド化合物、イミダゾール化合物、ジシアンジアミド化合物、ポリカルボン酸化合物、酸無水物など公知の粉体塗料で用いられている硬化剤を使用できる。   As the hydroxyl group-containing solid resin, for example, a resin used in a known powder coating material such as a hydroxyl group-containing acrylic resin or a hydroxyl group-containing polyester resin can be used. Examples of the “curing agent having a functional group that undergoes a curing reaction with a hydroxyl group and heat” that can be used in combination with the hydroxyl group-containing solid resin are used in known powder coatings such as blocked polyisocyanate compounds and aminoplast resins. A curing agent can be used. As the carboxyl group-containing solid resin, for example, a resin used in a known powder coating such as a carboxyl group-containing acrylic resin and a carboxyl group-containing polyester resin can be used. Examples of the “curing agent having a functional group that undergoes a curing reaction with a carboxyl group by heat” that can be used in combination with this carboxyl group-containing solid resin include, for example, bisphenol A to epichlorohydrin type epoxy resin, alicyclic epoxy resin, and novolac type epoxy resin. Curing agents used in known powder coating materials such as epoxy resins such as epoxy group-containing acrylic resins and hydroxyalkylamide compounds can be used. As the epoxy group-containing solid resin, for example, bisphenol A to epichlorohydrin type epoxy resin, alicyclic epoxy resin, novolac type epoxy resin, epoxy group-containing acrylic resin, and other resins used in known powder coatings can be used. . Examples of the “curing agent having a functional group that undergoes a curing reaction with an epoxy group and heat” that can be used in combination with the epoxy group-containing solid resin include, for example, a carboxyl group-containing polyester resin, an organic acid polyhydrazide compound, an imidazole compound, a dicyandiamide compound, Curing agents used in known powder coating materials such as polycarboxylic acid compounds and acid anhydrides can be used.

これらのうち特にカルボキシル基含有ポリエステル樹脂とヒドロキシアルキルアミド化合物との組合せが、焼付け温度が低めでも形成塗膜の耐食性が良好な点から好適である。   Of these, a combination of a carboxyl group-containing polyester resin and a hydroxyalkylamide compound is particularly preferred from the viewpoint of good corrosion resistance of the formed coating film even at a low baking temperature.

上記粉体塗料は、金属表面処理用組成物(I)により得られる皮膜上に、静電塗装法、流動浸漬法、吹き付け法、インモールド法などの公知の方法により塗装され、熱風炉、赤外炉、誘導加熱炉等で焼き付けることにより、硬化塗膜を形成することができる。形成塗膜の膜厚は、焼付け後の膜厚で、通常、30〜250μmであり、好ましくは40〜150μmの範囲が適当である。粉体塗料の焼付条件は、金属材料の表面温度が130〜350℃、好ましくは140〜250℃の温度で、30秒〜60分間、好ましくは1〜50分間が適当である。   The powder coating is applied on the film obtained from the metal surface treatment composition (I) by a known method such as electrostatic coating, fluid dipping, spraying, or in-mold method. A cured coating film can be formed by baking in an outer furnace, an induction heating furnace, or the like. The film thickness of the formed coating film is the film thickness after baking, and is usually 30 to 250 μm, and preferably in the range of 40 to 150 μm. Appropriate baking conditions for the powder coating are a surface temperature of the metal material of 130 to 350 ° C., preferably 140 to 250 ° C., and 30 seconds to 60 minutes, preferably 1 to 50 minutes.

本発明では、上記塗料(II)のうち、硬化塗膜の収縮応力が高い塗料を用いた場合であっても塗膜の付着性に優れるものである。   In this invention, even if it is a case where the coating material with high shrinkage stress of a cured coating film is used among the said coating materials (II), it is excellent in the adhesiveness of a coating film.

また上記の通り得られる塗装金属板は、上記塗料による塗膜のみが形成されてなるものでも、さらに上塗塗膜が適宜形成された複層構造を有していてもよい。   Moreover, the coated metal plate obtained as described above may have only a coating film formed of the coating material, or may have a multilayer structure in which a top coating film is appropriately formed.

以下、実施例を挙げて本発明をさらに詳細に説明する。尚、以下「部」及び「%」はそれぞれ「質量部」及び「質量%」を示す。   Hereinafter, the present invention will be described in more detail with reference to examples. Hereinafter, “parts” and “%” represent “parts by mass” and “% by mass”, respectively.

シラン縮合反応物(B)の製造
製造例1
還流冷却器、温度計、窒素導入管、攪拌機を取り付けた1Lの丸底フラスコに、イソプロパノール200g、脱イオン水200gを仕込み、攪拌を開始した。気相に窒素を吹き込み、攪拌しながら3−アミノプロピルトリメトキシシラン90g、ビス(トリエトキシシリル)エタン10gを一度に投入した。常温で1時間攪拌した後、60℃で6時間反応させた後、留分を除去し、プロピレングリコールモノメチルエーテルに交換しながら沸点が120℃になるまで昇温した。60℃まで冷却した後、減圧蒸留にて濃縮し、生成物(P1)の不揮発分40%溶液120gを得た。得られた生成物(P1)の不揮発分40%溶液は、無色透明の粘調な液体であった。
Production Example 1 of Silane Condensation Reaction Product (B)
200 g of isopropanol and 200 g of deionized water were charged into a 1 L round bottom flask equipped with a reflux condenser, a thermometer, a nitrogen inlet tube, and a stirrer, and stirring was started. Nitrogen was blown into the gas phase, and 90 g of 3-aminopropyltrimethoxysilane and 10 g of bis (triethoxysilyl) ethane were added all at once with stirring. After stirring at room temperature for 1 hour and reacting at 60 ° C. for 6 hours, the fraction was removed, and the temperature was raised until the boiling point reached 120 ° C. while exchanging with propylene glycol monomethyl ether. After cooling to 60 ° C., the solution was concentrated by distillation under reduced pressure to obtain 120 g of a 40% nonvolatile solution of the product (P1). The obtained 40% non-volatile solution of the product (P1) was a colorless transparent viscous liquid.

製造例2〜12
製造例1において、原料組成を表1に示す通りとする以外は製造例1と同様に行って各生成物(P1)〜(P8)及び(R1)〜(R4)を得た。
Production Examples 2-12
In Production Example 1, each product (P1) to (P8) and (R1) to (R4) was obtained in the same manner as in Production Example 1 except that the raw material composition was as shown in Table 1.

Figure 0005592579
Figure 0005592579

実施例1〜26及び比較例1〜4
金属表面処理用組成物の作成
上記で作成した(P1)〜(P8)及び(R1)〜(R4)に、ジルコンフッ化水素酸及びチタンフッ化水素酸、各金属の硝酸塩等を用いて、表2に示す組成を有する金属表面処理用組成物を調整した。表2において、各金属成分の濃度は金属元素換算で示し、それ以外の成分の濃度は固形分濃度を示す。尚、表2中の(注1)〜(注3)は下記を示す。
Examples 1-26 and Comparative Examples 1-4
Preparation of composition for metal surface treatment Table (2) using (P1) to (P8) and (R1) to (R4) prepared above with zircon hydrofluoric acid and titanium hydrofluoric acid, nitrates of each metal, and the like. A metal surface treatment composition having the composition shown in FIG. In Table 2, the concentration of each metal component is shown in terms of metal element, and the concentration of the other components indicates the solid content concentration. In Table 2, (Note 1) to (Note 3) indicate the following.

(注1)有機樹脂:「PAA25」、商品名、日東紡株式会社製、ポリアリルアミン樹脂水溶液
(注2)界面活性剤:「ニューコール1100」、商品名、日本乳化剤株式会社製、ノニオン系界面活性剤
(注3)シリカ:「スノーテックスO」、商品名、日産化学工業株式会社製、水分散性(コロイダル)シリカ
(Note 1) Organic resin: “PAA25”, trade name, manufactured by Nittobo Co., Ltd., polyallylamine resin aqueous solution (Note 2) Surfactant: “New Coal 1100”, trade name, manufactured by Nippon Emulsifier Co., Ltd., nonionic interface Activator (Note 3) Silica: “Snowtex O”, trade name, manufactured by Nissan Chemical Industries, Ltd., water dispersible (colloidal) silica

化成処理
市販の冷間圧延鋼板(SPCC−SD、日本テストパネル社製、70mm×150mm×0.8mm)、亜鉛系めっき鋼板(GA鋼板、日本テストパネル社製、70mm×150mm×0.8mm)、5000系アルミニウム(日本テストパネル社製、70mm×150mm×0.8mm)又は6000系アルミニウム(日本テストパネル社製、70mm×150mm×0.8mm)を基材として、下記に示す工程及び表2の条件で化成処理を行なった。
Chemically treated cold-rolled steel sheet (SPCC-SD, manufactured by Nippon Test Panel, 70 mm x 150 mm x 0.8 mm), galvanized steel sheet (GA steel sheet, manufactured by Nippon Test Panel, 70 mm x 150 mm x 0.8 mm) The following processes and Table 2 using 5000 series aluminum (Nihon Test Panel, 70 mm x 150 mm x 0.8 mm) or 6000 series aluminum (Nihon Test Panel, 70 mm x 150 mm x 0.8 mm) as a base material The chemical conversion treatment was performed under the following conditions.

(1)上記基材を40℃に調整した市販の脱脂液に2分間浸漬して脱脂処理を行なった後、水道水で30秒間水洗処理を行なった。   (1) The substrate was immersed in a commercially available degreasing solution adjusted to 40 ° C. for 2 minutes for degreasing treatment, and then washed with tap water for 30 seconds.

(2)次いで、水洗後の金属基材を、表3に示すとおり、pH及び温度に調整した各実施例及び比較例の金属表面処理用組成物に10〜300秒間浸漬処理した。pHを硝酸又は水酸化ナトリウムを用いて3.2〜4.2に調整した。また温度は35〜50℃に調整した。   (2) Next, as shown in Table 3, the metal substrate after washing with water was immersed in the metal surface treatment compositions of Examples and Comparative Examples adjusted to pH and temperature for 10 to 300 seconds. The pH was adjusted to 3.2-4.2 using nitric acid or sodium hydroxide. The temperature was adjusted to 35-50 ° C.

(3)上記処理後の各基材を水道水で30秒間水洗後、さらにイオン交換水で30秒間水洗処理を行なった。次いで熱風乾燥炉を用いて80℃で5分間乾燥させて各化成処理板とした。   (3) Each substrate after the above treatment was washed with tap water for 30 seconds, and further washed with ion-exchanged water for 30 seconds. Subsequently, it was made to dry at 80 degreeC for 5 minute (s) using the hot air drying furnace, and it was set as each chemical conversion treatment board.

各化成処理板の処理皮膜量は、「XRF1700」(島津製作所社製、蛍光X線分析装置)を用いて付着金属の合計量として分析した。結果を表3に示す。   The amount of the coating film on each chemical conversion treatment plate was analyzed as the total amount of the deposited metal using “XRF1700” (manufactured by Shimadzu Corporation, fluorescent X-ray analyzer). The results are shown in Table 3.

試験塗板(1)の作成
上記で得た各化成処理板上に、「マジクロン#1000」(関西ペイント社製、アクリル/メラミン樹脂系有機溶剤希釈型塗料)を乾燥膜厚で30μmとなるようにエアスプレー塗装を行い、160℃で30分間加熱して焼き付けて、各試験塗板を作成した。得られた各試験塗板を下記評価試験に供した。結果を表3に示す。
Preparation of test coating plate (1) On each chemical conversion treatment plate obtained above, “Magiclon # 1000” (manufactured by Kansai Paint Co., Ltd., acrylic / melamine resin-based organic solvent dilution type paint) was adjusted to a dry film thickness of 30 μm. Each test coating plate was prepared by performing air spray coating and heating and baking at 160 ° C. for 30 minutes. Each obtained test coating board was used for the following evaluation test. The results are shown in Table 3.

試験塗板(2)の作成
上記で得た各化成処理板上に、「アミラック#1000」(関西ペイント社製、アルキド/メラミン樹脂系有機溶剤希釈型塗料)を乾燥膜厚で30μmとなるようにエアスプレー塗装を行い、130℃で30分間加熱して焼き付けて、各試験塗板を作成した。得られた各試験塗板を下記評価試験に供した。結果を表3に併せて示す。
Preparation of test coating plate (2) On each of the chemical conversion treatment plates obtained above, “Amilak # 1000” (manufactured by Kansai Paint Co., Ltd., alkyd / melamine resin organic solvent dilution type paint) was dried to a thickness of 30 μm. Each test coating plate was prepared by performing air spray coating and heating and baking at 130 ° C. for 30 minutes. Each obtained test coating board was used for the following evaluation test. The results are also shown in Table 3.

試験塗板(3)の作成
上記で得た各化成処理板上に、「ASIME」(関西ペイント社製、ポリエステル/メラミン樹脂系有機溶剤希釈型塗料)を乾燥膜厚で30μmとなるようにエアスプレー塗装を行い、140℃で30分間加熱して焼き付けて、各試験塗板を作成した。得られた各試験塗板を下記評価試験に供した。結果を表3に併せて示す。
Preparation of test coating plate (3) On each chemical conversion treatment plate obtained above, “ASIME” (manufactured by Kansai Paint Co., Ltd., polyester / melamine resin organic solvent dilution paint) is air sprayed so that the dry film thickness becomes 30 μm. Coating was performed, and heating was performed at 140 ° C. for 30 minutes, followed by baking to prepare each test coating plate. Each obtained test coating board was used for the following evaluation test. The results are also shown in Table 3.

試験塗板(4)の作成
上記で得た各化成処理板上に、「エバクラッド8900」(関西ペイント社製、カルボキシル基含有ポリエステル樹脂/ヒドロキシアルキルアミド化合物含有粉体塗料)を乾燥膜厚で60μmとなるように静電粉体塗装を行い、150℃で30分間加熱して焼き付けて、各試験塗板を作成した。得られた各試験塗板を下記評価試験に供した。結果を表3に併せて示す。
Preparation of test coating plate (4) On each chemical conversion treatment plate obtained above, “Evaclad 8900” (manufactured by Kansai Paint Co., Ltd., carboxyl group-containing polyester resin / hydroxyalkylamide compound-containing powder coating material) is 60 μm in dry film thickness. Electrostatic powder coating was performed so that the test coating plates were prepared by heating at 150 ° C. for 30 minutes and baking. Each obtained test coating board was used for the following evaluation test. The results are also shown in Table 3.

試験塗板(5)の作成
上記で得た各化成処理板上に、「エバクラッド4900」(関西ペイント社製、水酸基含有ポリエステル樹脂/ブロック化ポリイソシアネート化合物含有粉体塗料)を乾燥膜厚で70μmとなるように静電粉体塗装を行い、180℃で30分間加熱して焼き付けて、各試験塗板を作成した。得られた各試験塗板を下記評価試験に供した。結果を表3に併せて示す。
Preparation of test coating plate (5) On each chemical conversion treatment plate obtained above, “Evaclad 4900” (manufactured by Kansai Paint Co., Ltd., hydroxyl group-containing polyester resin / blocked polyisocyanate compound-containing powder coating material) was 70 μm in dry film thickness. Electrostatic powder coating was performed as described above, and each test coating plate was prepared by baking at 180 ° C. for 30 minutes. Each obtained test coating board was used for the following evaluation test. The results are also shown in Table 3.

比較例5
市販のリン酸亜鉛系化成処理鋼板(基材:SPCC−SD、日本テストパネル社製)を用いる以外は、実施例1〜26及び比較例1〜4と同様に各塗装を行なって各試験塗板を作成した。得られた各試験塗板を下記評価試験に供した。結果を表3に併せて示す。
Comparative Example 5
Except for using a commercially available zinc phosphate-based chemical conversion treated steel plate (base material: SPCC-SD, manufactured by Nippon Test Panel Co., Ltd.), each coating was carried out in the same manner as in Examples 1-26 and Comparative Examples 1-4. It was created. Each obtained test coating board was used for the following evaluation test. The results are also shown in Table 3.

比較例6
市販のリン酸亜鉛系化成処理鋼板(基材:GA鋼板、日本テストパネル社製)を用いる以外は、実施例1〜26及び比較例1〜4と同様に各塗装を行なって各試験塗板を作成した。得られた各試験塗板を下記評価試験に供した。結果を表3に併せて示す。
Comparative Example 6
Except for using a commercially available zinc phosphate-based chemical conversion treated steel plate (base material: GA steel plate, manufactured by Nippon Test Panel Co., Ltd.), each coating is carried out in the same manner as in Examples 1-26 and Comparative Examples 1-4. Created. Each obtained test coating board was used for the following evaluation test. The results are also shown in Table 3.

比較例7
市販のクロメート系化成処理板(基材:5000系アルミニウム、日本テストパネル社製)を用いる以外は、実施例1〜26及び比較例1〜4と同様に各塗装を行なって各試験塗板を作成した。得られた各試験塗板を下記評価試験に供した。結果を表3に併せて示す。
Comparative Example 7
Except for using a commercially available chromate-based chemical conversion treatment plate (base material: 5000 series aluminum, manufactured by Nippon Test Panel Co., Ltd.), each coating is made in the same manner as in Examples 1-26 and Comparative Examples 1-4. did. Each obtained test coating board was used for the following evaluation test. The results are also shown in Table 3.

評価試験
(*1)耐食性:各実施例及び比較例の試験塗板(1)〜(3)に、素地に達するよう塗膜にナイフでクロスカット傷を入れ、これを塩水噴霧腐食試験(SST:JIS Z−2371に準ずる。塩水温度35℃)に240時間供し、その後ナイフ傷部に接着テープによる貼着・剥離を行い、塗膜の剥離幅を測定した。また各実施例及び比較例の試験塗板(4)〜(5)については、素地に達するよう塗膜にナイフでクロスカット傷を入れ、これを塩水噴霧腐食試験(SST:JIS Z−2371に準ずる。塩水温度35℃)に480時間供し、その後ナイフ傷部に接着テープによる貼着・剥離を行い、塗膜の剥離幅を測定した。評価基準は以下のとおりである。
Evaluation test (* 1) Corrosion resistance: The test coating plates (1) to (3) of each example and comparative example were cross-cut with a knife so as to reach the substrate, and this was subjected to a salt spray corrosion test (SST: According to JIS Z-2371, salt water temperature of 35 ° C. was used for 240 hours, and then the knife wound part was attached and peeled with an adhesive tape, and the peel width of the coating film was measured. Moreover, about the test coating board (4)-(5) of each Example and a comparative example, a cross-cut damage | wound is put into a coating film with a knife so that it may reach a base, and this is applied to a salt spray corrosion test (SST: JISZ-2371). (Salt water temperature 35 ° C.) for 480 hours, and then the adhesive film was attached to and peeled from the knife scratches, and the peel width of the coating film was measured. The evaluation criteria are as follows.

◎:剥離なし
○:剥離幅3mm以内
△:剥離幅3mmを超えて5mm以内
×:剥離幅5mmを超える
◎: No peeling ○: Peeling width within 3 mm △: Peeling width exceeding 3 mm and within 5 mm ×: Peeling width exceeding 5 mm

(*2)(耐水後)付着性:各実施例及び比較例の試験塗板(1)〜(5)を温水(40℃)中に240時間浸漬し、引き上げ後に直ちに碁盤目(10×10個、1mm間隔)のカットを入れて接着テープによる貼着・剥離を行い、塗膜の剥れマスの数を調べた。評価基準は以下のとおりである。   (* 2) (After water resistance) Adhesiveness: The test coating plates (1) to (5) of each Example and Comparative Example were immersed in warm water (40 ° C.) for 240 hours, and immediately after pulling up (10 × 10 pieces) (1 mm interval) cuts were made, and sticking / peeling with an adhesive tape was performed, and the number of peeling masses of the coating film was examined. The evaluation criteria are as follows.

◎:剥れマスなし
○:剥れマス5個以内
△:剥れマス6〜10個
×:剥れマス11個以上
◎: No peeling mass ○: Within 5 peeling cells △: 6-10 peeling cells ×: 11 or more peeling cells

Figure 0005592579
Figure 0005592579

Figure 0005592579
Figure 0005592579

Claims (8)

(A)チタン化合物及び/又はジルコニウム化合物、並びに(B)アミノシラン(b1)及び多シリル官能シラン(b2)の縮合反応物を含有する金属表面処理用組成物(I)を含む金属表面処理液を金属材料に接触させる処理液接触工程と、前記処理液接触工程を経た金属材料を水洗する水洗工程と、得られた表面処理皮膜層上に焼付け塗料(II)を塗装する塗装工程とを含む金属材料の塗装方法であって、
該縮合反応物(B)におけるアミノシラン(b1)が、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルメチルジエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン及びN−(2−アミノエチル)−3−アミノプロピルトリエトキシシランから選ばれる少なくとも1種であり、多シリル官能シラン(b2)が下記一般式(I)で示されるものであって
Figure 0005592579
(式(I)において、R1、R2、R3およびR4は、独立に、水素原子または炭素数1〜30の1価の有機基を示す。Yは、2価の有機基またはアミンを示す。X1およびX2は、独立に加水分解性基を示す。aおよびbは、独立に、0、1、または2であり、かつ、0≦a+b≦2である。cおよびdは、独立に、0、1、または2であり、かつ、0≦c+d≦2である。)、且つアミノシラン(b1)及び多シリル官能シラン(b2)の使用比がモル比で70/30〜99/1であり、
焼付け塗料(II)がカルボキシル基含有ポリエステル樹脂とヒドロキシアルキルアミド化合物とを含有する粉体塗料、または水酸基含有ポリエステル樹脂とブロック化ポリイソシアネート化合物とを含有する粉体塗料であることを特徴とする金属材料の塗装方法。

(A) A metal surface treatment liquid comprising a metal surface treatment composition (I) containing a titanium compound and / or a zirconium compound, and (B) a condensation reaction product of an aminosilane (b1) and a polysilyl functional silane (b2). A metal comprising: a treatment liquid contact step for contacting a metal material; a water washing step for washing the metal material that has undergone the treatment liquid contact step; and a painting step for painting a baking paint (II) on the surface treatment film layer obtained. A method of painting a material,
The aminosilane (b1) in the condensation reaction product (B) is 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane. N- (2-aminoethyl) -3-aminopropyltrimethoxysilane and N- (2-aminoethyl) -3-aminopropyltriethoxysilane, and polysilyl functional silane (b2) Is represented by the following general formula (I):
Figure 0005592579
(In Formula (I), R 1, R 2, R 3 and R 4 independently represent a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms. Y represents a divalent organic group or amine. X 1 And X2 independently represent a hydrolyzable group, a and b are independently 0, 1, or 2 and 0 ≦ a + b ≦ 2, c and d are independently 0, 1 or 2 and 0 ≦ c + d ≦ 2), and the use ratio of aminosilane (b1) and polysilyl functional silane (b2) is 70/30 to 99/1 in molar ratio,
A metal characterized in that the baked paint (II) is a powder paint containing a carboxyl group-containing polyester resin and a hydroxyalkylamide compound, or a powder paint containing a hydroxyl group-containing polyester resin and a blocked polyisocyanate compound. How to paint the material.

金属表面処理用組成物(I)におけるチタン化合物及び/又はジルコニウム化合物(A)の含有量が金属元素換算で5〜10,000ppmであり、アミノシラン(b1)及び多シリル官能シラン(b2)の縮合反応物(B)の含有量が固形分濃度で1〜5,000ppmである請求項1に記載の金属材料の塗装方法。 Content of titanium compound and / or zirconium compound (A) in metal surface treatment composition (I) is 5 to 10,000 ppm in terms of metal element, and condensation of aminosilane (b1) and polysilyl functional silane (b2) The method for coating a metal material according to claim 1, wherein the content of the reactant (B) is 1 to 5,000 ppm in terms of solid content. チタン化合物及び/又はジルコニウム化合物(A)が、チタンのハロゲン化物及びその塩、ジルコニウムのハロゲン化物及びその塩、炭酸ジルコニウム及びその塩並びに硝酸ジルコニルから選ばれる少なくとも1種の化合物を含むものである請求項1又は2に記載の金属材料の塗装方法。 2. The titanium compound and / or zirconium compound (A) contains at least one compound selected from titanium halides and salts thereof, zirconium halides and salts thereof, zirconium carbonate and salts thereof, and zirconyl nitrate. Or the coating method of the metal material of 2. チタン化合物及び/又はジルコニウム化合物(A)が、ジルコニウムフッ化塩、チタンフッ化塩、炭酸ジルコニウム及びその塩並びに硝酸ジルコニルから選ばれる少なくとも1種の化合物を含むものである請求項1ないし3のいずれか1項に記載の金属材料の塗装方法。 The titanium compound and / or zirconium compound (A) contains at least one compound selected from zirconium fluoride, titanium fluoride, zirconium carbonate and salts thereof, and zirconyl nitrate. The coating method of the metal material as described in 2. 金属表面処理用組成物(I)が、マグネシウム、亜鉛、カルシウム、アルミニウム、ガリウム、インジウム、銅、鉄、マンガン、ニッケル、コバルト、セリウム、ストロンチウム、希土類元素、スズ、ビスマス、イットリウム、バナジウム、バリウム、クロム、モリブデン、タングステン及び銀よりなる群から選ばれる少なくとも1種の金属元素をさらに含有する請求項1ないし4のいずれか1項に記載の金属材料の塗装方法。 Metal surface treatment composition (I) is magnesium, zinc, calcium, aluminum, gallium, indium, copper, iron, manganese, nickel, cobalt, cerium, strontium, rare earth element, tin, bismuth, yttrium, vanadium, barium, The method for coating a metal material according to any one of claims 1 to 4, further comprising at least one metal element selected from the group consisting of chromium, molybdenum, tungsten, and silver. 金属表面処理用組成物(I)が、硝酸、硫酸、リン酸、ホスホン酸、次亜リン酸及びこれらの塩類よりなる群から選ばれる少なくとも1種をさらに含有する請求項1ないし5のいずれか1項に記載の金属材料の塗装方法。 The metal surface treatment composition (I) further contains at least one selected from the group consisting of nitric acid, sulfuric acid, phosphoric acid, phosphonic acid, hypophosphorous acid, and salts thereof. 2. A method for coating a metal material according to item 1. 金属表面処理用組成物(I)が、水溶性又は水分散性有機樹脂をさらに含有する請求項1ないし6のいずれか1項に記載の金属材料の塗装方法。 The method for coating a metal material according to any one of claims 1 to 6, wherein the metal surface treatment composition (I) further contains a water-soluble or water-dispersible organic resin. 金属表面処理用組成物(I)が、界面活性剤をさらに含有する請求項1ないし7のいずれか1項に記載の金属材料の塗装方法。 The method for coating a metal material according to any one of claims 1 to 7, wherein the metal surface treatment composition (I) further contains a surfactant.
JP2014045257A 2014-03-07 2014-03-07 How to paint metal materials Active JP5592579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014045257A JP5592579B2 (en) 2014-03-07 2014-03-07 How to paint metal materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014045257A JP5592579B2 (en) 2014-03-07 2014-03-07 How to paint metal materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009219655A Division JP5554531B2 (en) 2009-09-24 2009-09-24 How to paint metal materials

Publications (2)

Publication Number Publication Date
JP2014144456A JP2014144456A (en) 2014-08-14
JP5592579B2 true JP5592579B2 (en) 2014-09-17

Family

ID=51425163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014045257A Active JP5592579B2 (en) 2014-03-07 2014-03-07 How to paint metal materials

Country Status (1)

Country Link
JP (1) JP5592579B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105219142B (en) * 2015-11-03 2017-09-29 攀钢集团攀枝花钢铁研究院有限公司 Can directly electrostatic powder coating anticorrosive paint and its application and hot-dip metal plated material and preparation method thereof
CN110588240A (en) * 2019-08-27 2019-12-20 黄山五环科技有限公司 Automobile hub coating film

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04281881A (en) * 1991-03-11 1992-10-07 Sumitomo Metal Ind Ltd Production for coated steel plate
US6132808A (en) * 1999-02-05 2000-10-17 Brent International Plc Method of treating metals using amino silanes and multi-silyl-functional silanes in admixture
JP4989842B2 (en) * 2002-12-24 2012-08-01 日本ペイント株式会社 Pre-painting method
JP2004250628A (en) * 2003-02-21 2004-09-09 Nippon Yushi Basf Coatings Kk Powdery coating composition and coated metal article
AU2004215240C1 (en) * 2003-02-25 2010-10-07 Chemetall Gmbh Method for coating metallic surfaces with a silane-rich composition
JP2006152267A (en) * 2004-10-27 2006-06-15 Nippon Paint Co Ltd Pretreatment method for adhesive coating and aluminum alloy member
EP1815044B1 (en) * 2004-11-10 2019-06-19 Chemetall GmbH Method for coating metallic surfaces with an aqueous composition comprising silanes silanols siloxanes and polysiloxanes and said composition
JP5313432B2 (en) * 2005-12-28 2013-10-09 日本ペイント株式会社 Metal surface treatment composition, metal surface treatment method and surface-treated galvanized steel sheet
JP2007262577A (en) * 2006-03-01 2007-10-11 Nippon Paint Co Ltd Composition for metal surface treatment, metal surface treatment method, and metallic material
JP2007239018A (en) * 2006-03-08 2007-09-20 Nippon Paint Co Ltd Surface treating agent for metal
JP2008088553A (en) * 2006-09-08 2008-04-17 Nippon Paint Co Ltd Method of treating surface of metal base, metallic material treated by the surface treatment method, and method of coating the metallic material
JP5201916B2 (en) * 2006-09-08 2013-06-05 日本ペイント株式会社 Metal surface treatment method carried out as pretreatment for cationic electrodeposition coating, metal surface treatment composition used therefor, metal material excellent in throwing power of electrodeposition coating, and method for coating metal substrate
JP5669293B2 (en) * 2009-09-24 2015-02-12 関西ペイント株式会社 Metal surface treatment composition and metal surface treatment method

Also Published As

Publication number Publication date
JP2014144456A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
JP5554531B2 (en) How to paint metal materials
JP5669293B2 (en) Metal surface treatment composition and metal surface treatment method
TWI500814B (en) Composition for metal surface treatment, metal surface treatment method and coating method of metal material
TWI447264B (en) Surface-treating agent for metallic material
ES2781823T3 (en) Procedure for coating metal surfaces with an aqueous composition containing silane / silanol / siloxane / polysiloxane, and that composition
JP4683582B2 (en) Water-based metal material surface treatment agent, surface treatment method and surface treatment metal material
JP6161243B2 (en) Electrodeposition coating composition
JP6315750B2 (en) Aqueous metal surface treatment agent
JP6976347B2 (en) Pretreatment agent and chemical conversion treatment agent
JP5112783B2 (en) Solution composition and surface treatment method of metal surface treatment agent based on zirconium
EP1902157A1 (en) Chrome-free composition of low temperature curing for treating a metal surface and a metal sheet using the same
JP2004238638A (en) Surface treatment composition and surface-treated metal strip
WO2015152187A1 (en) Metal surface treatment agent for zinc-plated steel material, coating method, and coated steel material
JP6455855B2 (en) Aqueous metal surface treatment agent
JP2006241579A (en) Chemical conversion treatment agent and surface-treated metal
JP2016020522A (en) Aqueous metal surface treatment composition
JP5314547B2 (en) Surface treatment agent for metal material, surface treatment method, and surface treatment metal material
JP5592579B2 (en) How to paint metal materials
JP5479684B2 (en) Aqueous surface treatment composition
JP2004052056A (en) Surface treatment method of zinc or zinc alloy plated material
JP5489961B2 (en) Metal surface treatment composition and metal substrate having surface treatment film
JP2017066446A (en) Surface-treatment galvanized steel plate excellent in corrosion resistance
JP5496069B2 (en) Metal surface treatment composition and metal substrate having surface treatment film
JP7060178B1 (en) Surface-treated steel sheet for organic resin coating and its manufacturing method, and organic resin coated steel sheet and its manufacturing method
JP5438536B2 (en) Metal surface treatment agent, surface treatment metal material, and metal surface treatment method

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140731

R150 Certificate of patent or registration of utility model

Ref document number: 5592579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250