JP5582503B2 - Measuring method and measuring apparatus for visual axis and visual field - Google Patents

Measuring method and measuring apparatus for visual axis and visual field Download PDF

Info

Publication number
JP5582503B2
JP5582503B2 JP2010213880A JP2010213880A JP5582503B2 JP 5582503 B2 JP5582503 B2 JP 5582503B2 JP 2010213880 A JP2010213880 A JP 2010213880A JP 2010213880 A JP2010213880 A JP 2010213880A JP 5582503 B2 JP5582503 B2 JP 5582503B2
Authority
JP
Japan
Prior art keywords
angle
body axis
midline
viewing angle
critical point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010213880A
Other languages
Japanese (ja)
Other versions
JP2012065888A (en
Inventor
信行 印牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SCHOOL CORPORATION,AZABU VETERINARY MEDICINE EDUCATIONAL INSTITUTION
Original Assignee
SCHOOL CORPORATION,AZABU VETERINARY MEDICINE EDUCATIONAL INSTITUTION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SCHOOL CORPORATION,AZABU VETERINARY MEDICINE EDUCATIONAL INSTITUTION filed Critical SCHOOL CORPORATION,AZABU VETERINARY MEDICINE EDUCATIONAL INSTITUTION
Priority to JP2010213880A priority Critical patent/JP5582503B2/en
Publication of JP2012065888A publication Critical patent/JP2012065888A/en
Application granted granted Critical
Publication of JP5582503B2 publication Critical patent/JP5582503B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Description

本発明は、ヒト以外の被検動物、特にイヌにおける、視軸・視野を測定する方法、ならびにその測定のための装置に関するものである。   The present invention relates to a method for measuring the visual axis and visual field in a test animal other than a human, particularly a dog, and an apparatus for the measurement.

緑内障は、視神経と視野に特徴的変化を有し、通常、眼圧を十分に下降させることにより視神経障害を改善もしくは抑制しうる眼の機能的構造的異常を特徴とする疾患である。緑内障の視神経障害および視野障害は、基本的には進行性であり、非可逆的であり、視神経が一度障害されてしまったら、障害された視神経を回復させる方法はなく、病気の進行をくい止めることが目標となってしまう。また、緑内障では、患者の自覚なしに障害が徐々に進行する。したがって、多くの場合に自覚症状がない緑内障に対して、最も重要なことは早期発見・早期治療による障害の進行の阻止あるいは抑制が特に重要な課題となっている。   Glaucoma is a disease characterized by functional structural abnormalities of the eye that has characteristic changes in the optic nerve and visual field, and can usually improve or suppress optic nerve damage by sufficiently lowering intraocular pressure. Glaucoma optic and visual field disorders are fundamentally progressive and irreversible, and once the optic nerve is damaged, there is no way to recover the damaged optic nerve and to stop disease progression Will be the goal. In glaucoma, the disorder gradually progresses without the patient's awareness. Therefore, in most cases, for glaucoma without subjective symptoms, the most important issue is to prevent or suppress the progression of the disorder by early detection and early treatment.

近年、ヒトにおいては、緑内障に対する治療の進歩は目覚しく、新たな治療手段が多数臨床導入され、その治療は多様化している。例えば、薬物療法により房水の産生量を減らしたり、房水の流れをよくする治療法、レーザーを虹彩にあてて穴を開けたり、線維柱帯にあてて房水の流出を促進することによるレーザー治療、水の流れを妨げている部分を切開し流路をつくって房水を流れやすくする方法や、毛様体での房水の産生を押さえる方法などの手術が一般的である。   In recent years, the progress of treatment for glaucoma has been remarkable in humans, and many new treatment methods have been clinically introduced, and the treatment is diversified. For example, by reducing the amount of aqueous humor produced by drug therapy, a treatment method that improves the flow of aqueous humor, making a hole by applying a laser to the iris, or by promoting the outflow of aqueous humor by applying it to the trabecular meshwork Surgery such as laser treatment, a method of making a flow path by incising a part that hinders the flow of water to make the aqueous humor easier to flow, and a method of suppressing production of aqueous humor in the ciliary body are common.

しかしながら、個々の症例に適した治療手段を選択し、早期治療を行い、さらにquality of life(QOL)あるいはquality of visionを考慮した疾患の管理を長期にわたって行うことは、必ずしも容易ではない。   However, it is not always easy to select treatment methods suitable for individual cases, perform early treatment, and manage diseases for a long period of time in consideration of quality of life (QOL) or quality of vision.

緑内障の診断は、ヒトの場合にはまず、詳細な問診を行って、眼の外傷、炎症、手術、感染症などの既往歴のほか、霧視、虹視症、眼痛、頭痛、充血などの自覚症状の問診を行うことが重要であると考えられている(非特許文献1)。その上で、これらの症状が存在する場合に、緑内障が疑われ、眼圧検査、眼底検査、視野検査等が行われる。   In the case of glaucoma, first, in the case of human beings, detailed interviews are conducted, and in addition to a history of eye trauma, inflammation, surgery, infection, etc., fog vision, rainbow vision, eye pain, headache, hyperemia, etc. It is thought that it is important to conduct an interrogation of subjective symptoms (Non-patent Document 1). In addition, when these symptoms exist, glaucoma is suspected, and intraocular pressure examination, fundus examination, visual field examination, and the like are performed.

眼圧検査は、直接目の表面に測定器具をあてて測定する方法または目の表面に空気をあてて測定する方法である。眼底検査は、視神経の状態をみるために、視神経乳頭部を観察する方法である。視神経が障害されている場合、陥凹(へこみ)の形が正常に比べて変形し大きくなる。また、視野検査は、視野の欠損の存在の有無や大きさから緑内障の進行の具合を判定する。   The intraocular pressure test is a method of measuring by directly applying a measuring instrument to the surface of the eye or a method of measuring by applying air to the surface of the eye. Fundus examination is a method of observing the optic papilla to see the state of the optic nerve. When the optic nerve is damaged, the shape of the dent is deformed and enlarged compared to normal. In the visual field inspection, the progress of glaucoma is determined from the presence or absence and size of visual field defects.

そして、これらの詳細な検査を経て、緑内障の治療方針を立てるために、眼圧上昇機序によって、大きくは、緑内障が原因で眼圧上昇を生じる原発緑内障、他の眼疾患などが原因となって眼圧上昇が生じる続発緑内障、胎生期の隅角発育異常により眼圧上昇をきたす発達緑内障の3病型に分類することが有用である。   Through these detailed examinations, in order to make a treatment plan for glaucoma, the cause of the increase in intraocular pressure is mainly due to primary glaucoma, which causes increased intraocular pressure due to glaucoma, and other eye diseases. It is useful to classify the disease into three types of secondary glaucoma, which causes increased intraocular pressure, and developmental glaucoma, which causes increased intraocular pressure due to abnormal growth of the angle in the embryonic period.

そして、さらに、視野欠損や視野狭窄、失明などの視野障害が存在する場合には、視野計を用いて動的視野検査(ゴールドマン視野計など)や静的視野検査(ハンフリー視野計)を行い、具体的に視野障害の位置や状況などを確定し、治療の方向性を定めている。   In addition, when visual field defects such as visual field loss, visual field constriction, and blindness exist, dynamic visual field inspection (Goldman perimeter, etc.) and static visual field inspection (Hunfree perimeter) are performed using a perimeter. Specifically, the position and situation of visual field defects are determined and the direction of treatment is determined.

近年、ヒト以外の動物でも、緑内障に罹患する症例の実態が明らかになりつつある。例えば、イヌの場合、本発明者らの過去の診断によれば、眼圧上昇による眼疼痛、視覚障害および眼球拡張を示す緑内障の個体が、眼疾患症例中11%(2591症例中325症例)を占めることが明らかになり、特に柴犬では41.0%(244症例中100症例)を占めることが明らかになった。   In recent years, the actual condition of cases suffering from glaucoma is being clarified even in animals other than humans. For example, in the case of dogs, according to the past diagnosis by the present inventors, glaucoma individuals exhibiting eye pain due to increased intraocular pressure, visual impairment, and eye dilatation accounted for 11% (325 out of 2591 cases). In particular, Shiba Inu was found to account for 41.0% (100 out of 244 cases).

しかしながら、コンパニオン動物をはじめ、ヒト以外の動物では、当然ながら自覚症状の問診をすることができないため、初期診断の妨げになっている。結果的にヒト以外の動物の場合には、外観上の異常や行動上の問題などが生じてから、初めて緑内障であることが疑われることとなり、緑内障の初期診断を行うことは非常に難しいとされている。その結果、緑内障の診断が行われた時には、既に多くの治療方法の選択肢が失われてしまっているというのが現状である。   However, since animals other than humans, including companion animals, cannot naturally interrogate subjective symptoms, this hinders initial diagnosis. As a result, in the case of animals other than humans, glaucoma is suspected for the first time after appearance abnormalities or behavioral problems occur, and it is very difficult to make an initial diagnosis of glaucoma. Has been. As a result, many current treatment options have already been lost when glaucoma is diagnosed.

また、ヒト以外の動物では、仮に緑内障の初期診断ができた場合であっても、視野障害の位置や状況などを調べることが基本的に不可能であった。というのも、ヒトにおいて使用されている視野計を用いたとしても、光が見えたことを知らせる術を持たないため、視野計を使用した検査を行うことができないためである。   In addition, in animals other than humans, it was basically impossible to examine the position and status of visual field impairment even if an initial diagnosis of glaucoma could be made. This is because even if a perimeter used in humans is used, there is no way of notifying that the light has been seen, so an inspection using a perimeter cannot be performed.

そのため、ヒト以外の動物では、外部から緑内障の初期診断を行うことができる方法およびその方法を実現するための装置を開発することが求められている。   Therefore, in animals other than humans, it is required to develop a method capable of performing an initial diagnosis of glaucoma from the outside and a device for realizing the method.

日本眼科学会 緑内障診療ガイドライン(第2版)Japan Ophthalmological Society Glaucoma Guidelines (2nd edition)

本発明は、ヒト以外の被検動物において、視軸・視野を測定する方法、ならびにその測定のための装置を開発することを課題とする。また、そのような方法および装置を使用して、ヒト以外の被検動物における緑内障の初期診断を行うことを課題とする。   It is an object of the present invention to develop a method for measuring the visual axis and visual field in a test animal other than a human and an apparatus for the measurement. Another object of the present invention is to make an initial diagnosis of glaucoma in non-human test animals using such a method and apparatus.

本発明の発明者は、左右の視軸(眼球正中線)と体軸正中線との交点(体軸視野中心)を新たに定義し、体軸正中線と「体軸視野中心」-「外側臨界点」の線分または「体軸視野中心」-「内側臨界点」の線分とがなす角度(体軸角、∠B)、および視野正中線と「外側臨界点」-「眼球」の線分または「内側臨界点」-「眼球」の線分とがなす角度(仰角、∠C)とを測定することにより、簡便に「外側臨界点」-「眼球」-「内側臨界点」の3点により形成される「視野角」を測定することができることを明らかにした。また、本発明の発明者は、そのような角度を測定するための装置もまた、明らかにした。   The inventor of the present invention newly defines the intersection of the left and right visual axes (eyeball midline) and the body axis midline (body axis field center), and the body axis midline and “body axis field center” — “outside” The angle (body axis angle, ∠B) formed by the line segment of “critical point” or “body axis visual field center”-“inner critical point”, and the field midline and “outer critical point”-“eyeball” By measuring the angle (elevation angle, ∠C) between the line segment or the "inner critical point"-"eyeball" line segment, the "outer critical point"-"eyeball"-"inner critical point" It was clarified that the "viewing angle" formed by three points can be measured. The inventors of the present invention have also clarified an apparatus for measuring such an angle.

本発明は、具体的な態様として、以下の工程:
(i)左右の視軸(眼球正中線)と体軸正中線との交点(体軸視野中心)を求める工程;
(ii)視野角を求める眼に対して、体軸視野中心を中心とした所定半径の円周上の点のうち、体軸正中線から最も離れた視野の臨界点(外側臨界点)、および外側臨界点から見て反対側の円周上に存在する視野の臨界点(内側臨界点)を求める工程;
(iii)体軸視野中心-外側臨界点の線分と体軸正中線とがなす角(体軸角、∠BE)、および外側臨界点-体軸視野中心の線分と外側臨界点-眼球の線分とがなす角(仰角、∠CE)を求め、視野正中線と外側臨界点-眼球の線分とがなす外側臨界視野角(∠DE)を算出する工程;
(iv)体軸視野中心-内側臨界点の線分と体軸正中線とがなす角(体軸角、∠BI)、および内側臨界点-体軸視野中心の線分と内側臨界点-眼球の線分とがなす角(仰角、∠CI)を求め、視野正中線と内側臨界点-眼球の線分とがなす内側臨界視野角(∠DI)を算出する工程;
(v)外側臨界視野角(∠DE)と内側臨界視野角(∠DI)とから、視野角(∠D)を求める工程;
を含む、ヒト以外の被検動物における単眼視野角を決定する方法を提供する。
As a specific embodiment, the present invention includes the following steps:
(I) a step of obtaining an intersection (center of the body axis visual field) between the left and right visual axes (eyeball midline) and the body axis midline;
(Ii) the critical point of the visual field (outer critical point) farthest from the body axis midline among the points on the circumference of a predetermined radius centered on the body axis visual field center for the eye for which the viewing angle is to be determined, and Determining the critical point (inner critical point) of the field of view existing on the opposite circumference as seen from the outer critical point;
(Iii) Body axis field center-angle formed by the line segment of the outer critical point and the body axis midline (body axis angle, ∠B E ), and outer critical point-line segment of the body axis field center and outer critical point- Obtaining an angle (elevation angle, ∠C E ) formed by the line segment of the eyeball, and calculating an outer critical viewing angle (∠D E ) formed by the midline of the visual field and the outer critical point-the line segment of the eyeball;
(Iv) Body axis field center-the angle between the line segment of the inner critical point and the body axis midline (body axis angle, ∠B I ), and the inner critical point-the line segment of the body axis field center and the inner critical point- Obtaining an angle (elevation angle, ∠C I ) formed by the segment of the eyeball and calculating an inner critical viewing angle (∠D I ) formed by the midline of the field and the inner critical point-the segment of the eyeball;
(V) determining the viewing angle (∠D) from the outer critical viewing angle (∠D E ) and the inner critical viewing angle (∠D I );
A method for determining a monocular viewing angle in a non-human subject animal is provided.

本発明はまた、別の具体的な態様として、以下の部材:
(a)左右の視軸(眼球正中線)と体軸正中線との交点(体軸視野中心)にその基準点を配置する第一の角度測定手段;
(b)体軸視野中心から所定の距離に配置される第二の角度測定手段;
(c)眼球に対して光を当てるための、第二の角度測定手段と結合された光源;
を含む、ヒト以外の被検動物における単眼視野角を測定するための装置を提供する。
In another specific embodiment, the present invention provides the following members:
(A) first angle measuring means for arranging the reference point at the intersection (center of the body axis visual field) of the left and right visual axes (eyeball midline) and the body axis midline;
(B) second angle measuring means disposed at a predetermined distance from the center of the body axis visual field;
(C) a light source combined with a second angle measuring means for illuminating the eyeball;
A device for measuring a monocular viewing angle in a non-human subject animal is provided.

本発明の方法および本発明の装置を使用することにより、これまでは測定することができなかったヒト以外の被検動物における視野角を、簡便かつ効率的に測定することができることとなった。   By using the method of the present invention and the apparatus of the present invention, it has become possible to easily and efficiently measure the viewing angle in test animals other than humans that could not be measured so far.

図1は、左眼の場合の「体軸視野中心」と、体軸正中線、視軸(眼球正中線)、ならびに視野正中線との関係を示す図である。FIG. 1 is a diagram showing the relationship between the “body axis visual field center”, the body axis midline, the visual axis (eyeball midline), and the field midline in the case of the left eye. 図2は、左眼の場合の単眼視野角の算出方法の概略を示す図である。FIG. 2 is a diagram showing an outline of a method for calculating a monocular viewing angle in the case of the left eye. 図3は、左眼の場合の単眼視野角の測定方法が異なる4つのゾーン、Aゾーン、Bゾーン、Cゾーン、およびDゾーンの位置関係を示す図である。FIG. 3 is a diagram showing the positional relationship between four zones, A zone, B zone, C zone, and D zone, which differ in the method of measuring the monocular viewing angle in the case of the left eye. 図4は、図3において示された各ゾーンにおける視野角の測定方法を示す図であり、図4(A)は臨界点がAゾーンに存在する場合の視野角(∠D)の測定方法を、そして図4(B)は臨界点がBゾーンに存在する場合の視野角(∠D)の測定方法を、それぞれ示す。4 is a diagram showing a method of measuring the viewing angle in each zone shown in FIG. 3, and FIG. 4 (A) shows a method of measuring the viewing angle (∠D) when the critical point exists in the A zone. FIG. 4B shows a method of measuring the viewing angle (∠D) when the critical point exists in the B zone. 図4は、図3において示された各ゾーンにおける視野角(∠D)の測定方法を示す図であり、図4(C)は臨界点がCゾーンに存在する場合の視野角(∠D)の測定方法を、そして図4(D)は臨界点がDゾーンに存在する場合の視野角の測定方法を、それぞれ示す。4 is a diagram showing a method of measuring the viewing angle (∠D) in each zone shown in FIG. 3, and FIG. 4 (C) shows the viewing angle (∠D) when the critical point exists in the C zone. FIG. 4 (D) shows the method of measuring the viewing angle when the critical point is in the D zone. 図5は、本発明の装置の一実施態様を示す図である。この図において、上段は一例の装置の上面図を示す、下段はその装置の側面図を示す。そしてこの図中、1は第一の角度測定手段、2は第二の角度測定手段、そして3は光源をそれぞれ示す。FIG. 5 is a diagram showing an embodiment of the apparatus of the present invention. In this figure, the upper part shows a top view of an example apparatus, and the lower part shows a side view of the apparatus. In this figure, 1 is the first angle measuring means, 2 is the second angle measuring means, and 3 is the light source.

本発明は一態様において、ヒト以外の被検動物における単眼視野角を決定する方法を提供する。この方法は、以下の工程:
(i)左右の視軸(眼球正中線)と体軸正中線との交点(体軸視野中心)を求める工程;
(ii)視野角を求める眼に対して、体軸視野中心を中心とした所定半径の円周上の点のうち、体軸正中線から最も離れた視野の臨界点(外側臨界点)、および外側臨界点から見て反対側の円周上に存在する視野の臨界点(内側臨界点)を求める工程;
(iii)体軸視野中心-外側臨界点の線分と体軸正中線とがなす角(体軸角、∠BE)、および外側臨界点-体軸視野中心の線分と外側臨界点-眼球の線分とがなす角(仰角、∠CE)を求め、視野正中線と外側臨界点-眼球の線分とがなす外側臨界視野角(∠DE)を算出する工程;
(iv)体軸視野中心-内側臨界点の線分と体軸正中線とがなす角(体軸角、∠BI)、および内側臨界点-体軸視野中心の線分と内側臨界点-眼球の線分とがなす角(仰角、∠CI)を求め、視野正中線と内側臨界点-眼球の線分とがなす内側臨界視野角(∠DI)を算出する工程;
(v)外側臨界視野角(∠DE)と内側臨界視野角(∠DI)とから、視野角(∠D)を求める工程;
を含むことを特徴としている。
In one aspect, the present invention provides a method for determining a monocular viewing angle in a non-human subject animal. This method comprises the following steps:
(I) a step of obtaining an intersection (center of the body axis visual field) between the left and right visual axes (eyeball midline) and the body axis midline;
(Ii) the critical point of the visual field (outer critical point) farthest from the body axis midline among the points on the circumference of a predetermined radius centered on the body axis visual field center for the eye for which the viewing angle is to be determined, and Determining the critical point (inner critical point) of the field of view existing on the opposite circumference as seen from the outer critical point;
(Iii) Body axis field center-angle formed by the line segment of the outer critical point and the body axis midline (body axis angle, ∠B E ), and outer critical point-line segment of the body axis field center and outer critical point- Obtaining an angle (elevation angle, ∠C E ) formed by the line segment of the eyeball, and calculating an outer critical viewing angle (∠D E ) formed by the midline of the visual field and the outer critical point-the line segment of the eyeball;
(Iv) Body axis field center-the angle between the line segment of the inner critical point and the body axis midline (body axis angle, ∠B I ), and the inner critical point-the line segment of the body axis field center and the inner critical point- Obtaining an angle (elevation angle, ∠C I ) formed by the segment of the eyeball and calculating an inner critical viewing angle (∠D I ) formed by the midline of the field and the inner critical point-the segment of the eyeball;
(V) determining the viewing angle (∠D) from the outer critical viewing angle (∠D E ) and the inner critical viewing angle (∠D I );
It is characterized by including.

ヒトでは、左右の視軸(眼球正中線)が体軸正中線と平行に走行しており、したがって、視野正中線と、視軸(眼球正中線)、体軸正中線が全て平行になっているため、視野を視軸(眼球正中線)を基準にして測定することができる。しかしながら、ヒト以外の被検動物の場合、左右の視軸(眼球正中線)が体軸正中線と平行に走行していない(眼球正中線と体軸正中線とのなす角度のことを、視軸角、∠Aと記載する)。そのため、ヒト以外の被検動物の場合には、視軸(眼球正中線)を基準とした視野測定を行うことができないことから、新たな視野測定の基準を定めなければならない。   In humans, the left and right visual axes (eyeball midline) run parallel to the body axis midline, so the visual field midline, the visual axis (eyeball midline), and the body axis midline are all parallel. Therefore, the visual field can be measured with reference to the visual axis (eyeball midline). However, in the case of test animals other than humans, the left and right visual axes (eyeball midline) do not run parallel to the body axis midline (the angle between the eyeball midline and the body axis midline is Axial angle, written as ∠A). Therefore, in the case of test animals other than humans, visual field measurement based on the visual axis (eyeball midline) cannot be performed, so a new standard for visual field measurement must be established.

そこで、本発明においては、視軸(眼球正中線)と体軸正中線との交点を新たに「体軸視野中心」と定義し、この点を視野角測定の基準点として使用した。そして、本発明において決定される被検動物の視野は、この「体軸視野中心」を含む水平面上での、「体軸視野中心」を中心とした所定半径の円周上で示される(図1)。   Therefore, in the present invention, the intersection of the visual axis (eyeball midline) and the body axis midline is newly defined as “body axis visual field center”, and this point is used as a reference point for viewing angle measurement. The visual field of the subject animal determined in the present invention is shown on the circumference of a predetermined radius centered on the “body axis visual field center” on the horizontal plane including this “body axis visual field center” (FIG. 1).

本発明において所定半径の円周という場合、視野角を測定する動物種によって異なるが、例えば被検動物がイヌの場合には、体軸視野中心を中心として、半径が約45〜55 cm(約20インチ)の円周であることを意味する。   In the present invention, the circumference of a predetermined radius varies depending on the animal species for which the viewing angle is to be measured. 20 inches).

本発明において測定の対象となる視野角は、「体軸視野中心」を中心とした所定半径の円周上の点のうち、体軸正中線から最も離れた(外側の)視野の臨界点(以下、単に「外側臨界点」という)、および外側臨界点から見て反対側の所定半径の円周上に存在する視野の臨界点(以下、「内側臨界点」という)とを用いて算出する。すなわち、「外側臨界点」-「眼球」-「内側臨界点」の3点により形成される定義される角度が、「視野角」である(本明細書中では、視野角を∠Dと記載する)。   The viewing angle to be measured in the present invention is the critical point of the field farthest (outside) from the body axis midline among the points on the circumference of a predetermined radius centered on the “body axis field center”. (Hereinafter simply referred to as the “outer critical point”) and the critical point of the visual field existing on the circumference of the predetermined radius on the opposite side as viewed from the outer critical point (hereinafter referred to as “inner critical point”). . That is, an angle defined by three points of “outer critical point”-“eyeball”-“inner critical point” is “viewing angle” (in this specification, the viewing angle is described as ∠D. To do).

本発明において特定される視野の臨界点(すなわち、外側臨界点および内側臨界点)は、被検動物の眼に光学的シグナルを送達し、この光学的シグナルに対して被検動物が何らかの反応をするか否かにより特定することができる。例えば、被検動物がイヌの場合、眼に光学的シグナルを送達すると、その光学的シグナルを固視するか、または光学的シグナルに向けた眼球運動を生じることが知られており、その様な状況を観察することにより、眼が光学的シグナルを視覚的に認識していると判断することができる。このことから、光学的シグナルを眼球に当てた際、その光学的シグナルに対する固視が消失した点またはその光学的シグナルに向けた眼球運動が消失した点を、臨界点と定義する。被検動物がイヌの場合に使用することができる光学的シグナルとしては、明室下において高輝度のちらつき光源を眼球に当てること、を例として挙げることができる。   The critical points of the visual field specified in the present invention (that is, the outer critical point and the inner critical point) deliver an optical signal to the eye of the subject animal, and the subject animal reacts to this optical signal. It can be specified by whether or not. For example, if the subject animal is a dog, it is known that delivering an optical signal to the eye either fixes the optical signal or causes eye movements toward the optical signal, such as By observing the situation, it can be determined that the eye is visually recognizing the optical signal. From this, when an optical signal is applied to the eyeball, a point at which fixation to the optical signal disappears or a point at which the eye movement toward the optical signal disappears is defined as a critical point. An example of an optical signal that can be used when the subject animal is a dog is to apply a high-brightness flickering light source to the eyeball in a bright room.

本発明においては、視野角(∠D)は、視野正中線と「外側臨界点」-「眼球」の線分とからなる外側臨界視野角(∠DE)、および視野正中線と「内側臨界点」-「眼球」の線分とからなる内側臨界視野角(∠DI)を用いて、算出することができる。具体的には、図2のように概説される。 In the present invention, the viewing angle (∠D) is defined as the outer critical viewing angle (∠D E ) composed of the field midline and the “outer critical point”-“eyeball” line segment, and the field midline and “inner critical It can be calculated using the inner critical viewing angle (∠D I ) consisting of the “point”-“eyeball” line segment. Specifically, it is outlined as shown in FIG.

視野正中線と「外側臨界点」-「眼球」の線分とからなる外側臨界視野角(∠DE)は、「体軸視野中心」-「外側臨界点」の線分と体軸正中線とがなす角(体軸角、∠BE)、および「外側臨界点」-「体軸視野中心」の線分と「外側臨界点」-「眼球」の線分とがなす角(仰角、∠CE)から算出することができる。これらの角度(体軸角、∠BEおよび仰角、∠CE)は、いずれも絶対値の正の値で特定する。 The outer critical viewing angle (∠D E ), which consists of the midline of the visual field and the “outer critical point”-“eyeball” line segment, is the “body axis visual field center”-“outer critical point” line segment and the body axis midline DOO angle is (body axis angle, ∠B E), and "outside the critical point" - and the line segment of the "body axis field center,""outer critical point" - line and the angle of the "eyeball" (elevation, ∠C E ). All of these angles (body axis angle, ∠B E and elevation angle, ∠C E ) are specified as positive absolute values.

また、視野正中線と「内側臨界点」-「眼球」の線分とがなす内側臨界視野角(∠DI)は、「体軸視野中心」-「内側臨界点」の線分と体軸正中線とがなす角(体軸角、∠BI)、および「内側臨界点」-「体軸視野中心」の線分と「内側臨界点」-「眼球」の線分とがなす角(仰角、∠CI)から算出することができる。これらの角度(すなわち、体軸角、∠BIおよび仰角、∠CI)は、いずれも絶対値の正の値で特定する。 The median critical viewing angle (∠D I ) between the midline of the visual field and the “inner critical point”-“eyeball” line segment is the line segment of the “body axis visual field center”-“inner critical point” and the body axis. The angle between the midline (body axis angle, ∠B I ), and the angle between the “inner critical point”-“body axis field center” line segment and the “inner critical point”-“eyeball” line segment ( It can be calculated from the elevation angle, ∠C I ). These angles (that is, the body axis angle, ∠B I and elevation angle, ∠C I ) are all specified as absolute positive values.

外側臨界視野角(∠DE)または内側臨界視野角(∠DI)は、臨界点の位置が、図3に示されるAゾーン〜Dゾーンのいずれに存在するかによって、算出方法が異なる。その具体的な算出手順を、Aゾーン〜Dゾーンの各ゾーンごとに、それぞれ図4(A)〜図4(D)に示す。 The calculation method of the outer critical viewing angle (∠D E ) or the inner critical viewing angle (∠D I ) differs depending on whether the position of the critical point exists in the A zone to the D zone shown in FIG. The specific calculation procedure is shown in FIG. 4 (A) to FIG. 4 (D) for each of the zones A to D.

臨界点(すなわち、外側臨界点または内側臨界点)が図3のAゾーン(すなわち、体軸視野中心を中心とする所定半径の円周上のゾーンのうち、体軸正中線に対して、検査対象となる眼とは反対側にあるゾーン)にある場合、外側臨界視野角(∠DE)または内側臨界視野角(∠DI)は、体軸角(∠B)+仰角(∠C)で表すことができる(図4(A))。 The critical point (that is, the outer critical point or the inner critical point) is inspected against the midline of the body axis in the zone A in FIG. 3 (that is, the zone on the circumference of the predetermined radius centered on the body axis visual field center). The outer critical viewing angle (∠D E ) or inner critical viewing angle (∠D I ) is the body axis angle (∠B) + elevation angle (∠C) (Fig. 4 (A)).

臨界点が図3のBゾーン(すなわち、体軸視野中心を中心とする所定半径の円周上のゾーンのうち、体軸正中線に対して、検査対象となる眼と同一側にあり、かつその円周と体軸正中線との交点ならびにその円周と視野正中線との交点で挟まれるゾーン)にある場合には、必ず仰角(∠C)の方が体軸角(∠B)よりも大きな角度となる(すなわち、∠C≧∠Bとなる)ため、外側臨界視野角(∠DE)または内側臨界視野角(∠DI)は、仰角(∠C)−体軸角(∠B)で表すことができる(図4(B))。 The critical point is the B zone in FIG. 3 (that is, the zone on the circumference of a predetermined radius centered on the body axis visual field center, on the same side as the eye to be examined with respect to the body axis midline, and The elevation angle (∠C) must always be higher than the body axis angle (∠B) when it is at the intersection of the circumference and the midline of the body axis and the zone between the circumference and the midline of the visual field. Is also a large angle (ie, ∠C ≧ ∠B), the outer critical viewing angle (∠D E ) or inner critical viewing angle (∠D I ) is the elevation angle (∠C) -body axis angle (∠ B) (Fig. 4 (B)).

臨界点が図3のCゾーン(すなわち、体軸視野中心を中心とする所定半径の円周上のゾーンのうち、体軸正中線に対して、検査対象となる眼と同一側にあり、かつその円周と視野正中線との交点ならびにその円周と視軸(眼球正中線)との交点で挟まれるゾーン)にある場合には、必ず体軸角(∠B)の方が仰角(∠C)よりも大きな角度となる(すなわち、∠B≧∠Cとなる)ため、外側臨界視野角(∠DE)または内側臨界視野角(∠DI)は、体軸角(∠B)−仰角(∠C)で表すことができる(図4(C))。 The critical point is the C zone in FIG. 3 (that is, the zone on the circumference of a predetermined radius centered on the body axis visual field center, on the same side as the eye to be examined with respect to the body axis midline, and When it is at the intersection of the circumference and the midline of the visual field and the circle and the intersection of the visual axis (eyeball midline), the body axis angle (∠B) is always the elevation angle (∠ C) (ie, (B ≧ ∠C), so the outer critical viewing angle (∠D E ) or inner critical viewing angle (∠D I ) is the body axis angle (∠B) − It can be expressed in elevation angle (∠C) (Fig. 4 (C)).

臨界点が図3のDゾーン(すなわち、体軸視野中心を中心とする所定半径の円周上のゾーンのうち、体軸正中線に対して、検査対象となる眼と同一側にあり、かつその円周と視軸(眼球正中線)との交点よりも外側のゾーン)にある場合、外側臨界視野角(∠DE)または内側臨界視野角(∠DI)は、体軸角(∠B)+仰角(∠C)で表すことができる(図4(D))。 The critical point is the D zone in FIG. 3 (that is, the zone on the circumference of a predetermined radius centered on the body axis visual field center, on the same side as the eye to be examined with respect to the body axis midline, and The outer critical viewing angle (∠D E ) or inner critical viewing angle (∠D I ) is the body axis angle (∠D I ) when it is in the zone outside the intersection of the circumference and the visual axis (eye midline). B) + elevation angle (∠C) (Fig. 4 (D)).

外側臨界点および内側臨界点がともにAゾーンまたはBゾーンに存在する場合、視野角(∠D)は、内側臨界視野角(∠DI)−外側臨界視野角(∠DE)で表すことができる。また、内側臨界点がAゾーンまたはBゾーンに存在し、外側臨界点がCゾーンまたはDゾーンに存在する場合、視野角(∠D)は、内側臨界視野角(∠DI)+外側臨界視野角(∠DE)で表すことができる。さらに、外側臨界点および内側臨界点がともにCゾーンまたはDゾーンに存在する場合、視野角(∠D)は、外側臨界視野角(∠DE)−内側臨界視野角(∠DI)で表すことができる。 If both the outer critical point and the inner critical point are in the A zone or the B zone, the viewing angle (∠D) can be expressed as the inner critical viewing angle (∠D I ) minus the outer critical viewing angle (∠D E ). it can. When the inner critical point exists in the A zone or B zone and the outer critical point exists in the C zone or D zone, the viewing angle (∠D) is the inner critical viewing angle (∠D I ) + outer critical field. It can be expressed in angle (∠D E ). Furthermore, when both the outer critical point and the inner critical point exist in the C zone or the D zone, the viewing angle (∠D) is expressed by the outer critical viewing angle (∠D E ) −the inner critical viewing angle (∠D I ). be able to.

この方法にしたがって、右眼や左眼の差異に関わらず、同様に単眼視野角を算出することができる。そして、両方の眼に関して、上述の方法にしたがって単眼視野角をそれぞれ算出した後、両方の眼の視野角を合成することにより、全視野角を決定することができる。具体的には、それぞれの眼について得られた単眼視野角を、両方の眼の視野正中線を重ね合わせて、左右眼の単眼視野角の総和を取ることにより、全視野角を得ることができる。   According to this method, the monocular viewing angle can be calculated similarly regardless of the difference between the right eye and the left eye. Then, after calculating the monocular viewing angles for both eyes according to the above-described method, the total viewing angles can be determined by combining the viewing angles of both eyes. Specifically, the monocular viewing angle obtained for each eye can be obtained by superimposing the visual midline of both eyes and taking the sum of the monocular viewing angles of the left and right eyes. .

本発明は別の一態様において、ヒト以外の被検動物における単眼視野角を測定するための装置を提供する。この装置は、以下の部材:
(a)左右の視軸(眼球正中線)と体軸正中線との交点(体軸視野中心)にその基準点を配置する第一の角度測定手段;
(b)体軸視野中心から所定の距離に配置される第二の角度測定手段;
(c)眼球に対して光を当てるための、第二の角度測定手段と結合された光源;
を含む。
In another aspect, the present invention provides an apparatus for measuring a monocular viewing angle in a non-human subject animal. This device has the following components:
(A) first angle measuring means for arranging the reference point at the intersection (center of the body axis visual field) of the left and right visual axes (eyeball midline) and the body axis midline;
(B) second angle measuring means disposed at a predetermined distance from the center of the body axis visual field;
(C) a light source combined with a second angle measuring means for illuminating the eyeball;
including.

この装置を用いて、単眼視野角を測定するためには、まず、第一の角度測定手段の基準点を体軸視野中心上に配置する。角度測定の便宜のために、第一の角度測定手段の基準線を、体軸正中線と一致させるかまたは体軸正中線と直交させてもよい。   In order to measure the monocular viewing angle using this apparatus, first, the reference point of the first angle measuring means is placed on the center of the body axis viewing field. For the convenience of angle measurement, the reference line of the first angle measuring means may coincide with the body axis midline or be orthogonal to the body axis midline.

次に、第二の角度測定手段を、体軸視野中心から所定の距離に配置する。本発明において所定の距離という場合、視野角を測定する動物種によって変動させることができるが、例えばこの装置による視野角測定の被検動物がイヌの場合には、体軸視野中心と第二の測定手段との間の距離が約45〜55 cm(約20インチ)である場合をいう。このように第二の角度測定手段を体軸市や中心から所定の距離に配置することにより、結果的に第二の角度測定手段は、体軸視野中心を中心とした円周上を移動することができる。   Next, the second angle measuring means is arranged at a predetermined distance from the body axis visual field center. In the present invention, when it is referred to as a predetermined distance, the viewing angle can be varied depending on the animal species to be measured. For example, when the subject animal for viewing angle measurement by this device is a dog, The distance between the measuring means is about 45 to 55 cm (about 20 inches). By arranging the second angle measuring means at a predetermined distance from the body axis city and the center in this way, the second angle measuring means moves as a result on the circumference centered on the body axis visual field center. be able to.

この第二の角度測定手段の基準点には、眼球に対して光を当てるための光源が結合される。この光源から放出される光が拡散する光であると、眼球に光を当てられた際の動物の反応を特定することが難しくなる。したがって、光源から放射される光は、リニアな光であることが望ましい。   A light source for applying light to the eyeball is coupled to the reference point of the second angle measuring means. If the light emitted from the light source is diffuse light, it is difficult to specify the reaction of the animal when the light is applied to the eyeball. Therefore, the light emitted from the light source is preferably linear light.

この装置の具体的な態様の一つとして、第一の角度測定手段および/または第二の角度測定手段として分度器を使用することができる。第一の角度測定手段としての分度器の基準点と、第二の角度測定手段としての分度器の基準点との間に、長さ約45〜55 cmの糸を張力をかけて張り、さらに、第二の角度測定手段としての分度器の基準点に、光源を結合させる。この装置を使用することにより、第一の角度測定手段と両角度測定手段間に張られた糸とにより体軸角(∠B)が測定され、そして眼に対して向けられた光源の光の方向と両角度測定手段間に張られた糸とにより仰角(∠C)が測定される。   As one specific embodiment of this apparatus, a protractor can be used as the first angle measuring means and / or the second angle measuring means. Between the reference point of the protractor as the first angle measuring means and the reference point of the protractor as the second angle measuring means, a thread having a length of about 45 to 55 cm is stretched and tensioned. A light source is coupled to a reference point of a protractor as a second angle measuring means. By using this device, the body axis angle (∠B) is measured by the first angle measuring means and the thread stretched between both angle measuring means, and the light of the light source directed toward the eye is measured. The elevation angle (∠C) is measured by the direction and the thread stretched between the two angle measuring means.

実施例1:単眼視野角を測定するための装置の製作
本実施例においては、本発明の装置の具体的な態様の一つを説明する。
まず、第一の角度測定手段および第二の角度測定手段として、分度器を使用した。第一の角度測定手段としての分度器の基準点(原点)と、第二の角度測定手段としての分度器の基準点(原点)との間に、長さ約50 cm(20インチ)の糸を通した。さらに、第二の角度測定手段としての分度器の基準点(原点)に、光源として眼科用ペンライト(ハロゲンプロフェッショナルペンライト、ウェルチ・アレン社製、製品番号:76600))を結合して固定化させた。この際、光源から放射される光が、分度器の基準線と直交する(すなわち、光の方向が90度の線に一致する)ように、光源を配置した(図5を参照)。
Example 1: Production of a device for measuring the monocular viewing angle In this example, one of the specific embodiments of the device of the present invention will be described.
First, a protractor was used as the first angle measuring means and the second angle measuring means. A thread of about 50 cm (20 inches) in length is passed between the reference point (origin) of the protractor as the first angle measurement means and the reference point (origin point) of the protractor as the second angle measurement means. did. Furthermore, an ophthalmic penlight (halogen professional penlight, manufactured by Welch Allen Co., Ltd., product number: 76600) as a light source is connected and fixed to the reference point (origin) of the protractor as the second angle measuring means. It was. At this time, the light source was arranged so that the light emitted from the light source was perpendicular to the reference line of the protractor (that is, the direction of the light coincided with the 90-degree line) (see FIG. 5).

実施例2:イヌにおける視野角の測定
本実施例においては、実施例1において作製した装置を使用することにより、イヌの左眼の単眼視野角を測定した。
Example 2: Measurement of viewing angle in dogs In this example, the monocular viewing angle of the left eye of a dog was measured by using the apparatus prepared in Example 1.

まず、被検イヌの体軸視野中心を特定するため、検査対象の左眼の視軸(眼球正中線)を特定した。視軸(眼球正中線)の特定は、第二の角度測定手段に取り付けた眼科用ペンライトを使用して倒像レンズを通して眼内の観察のための光を眼内に導入し、眼底部に存在する視神経乳頭を倒像レンズの中心に一致させた。このように、視神経乳頭が、倒像レンズの中心に一致した時に眼内に導入された光の筋が、左眼の視軸(眼球正中線)と一致する。そして、視軸(眼球正中線)と体軸正中線との交点を体軸視野中心とした。   First, in order to identify the body axis visual field center of a test dog, the visual axis (eyeball midline) of the left eye to be examined was identified. The visual axis (ocular midline) is identified by introducing light for intraocular observation into the eye through an inverted lens using an ophthalmic penlight attached to the second angle measuring means, and The existing optic disc was aligned with the center of the inversion lens. In this way, the light streak introduced into the eye when the optic nerve head coincides with the center of the inverted lens coincides with the visual axis (eyeball midline) of the left eye. The intersection of the visual axis (eyeball midline) and the body axis midline was taken as the body axis visual field center.

体軸視野中心に第一の角度測定手段として分度器の基準点(原点)を当て、この分度器の基準線を体軸正中線に重ね合わせるように、第一の角度測定手段を配置した。
一方、眼科用ペンライトを取り付けた第二の角度測定手段を、第一の角度測定手段との間の糸を張力をかけて張りながら、眼科用ペンライトから左眼に対して光りを当て、その光のシグナルに対して左眼が固視するか、またはその光のシグナルに向けた左眼が眼球運動をするかを調べた。そして、眼科用ペンライトを動かしながら、その光のシグナルに対する固視、またはその光のシグナルに向けた眼球運動が消失する点を特定し、外側の点を外側臨界点、内側の点を内側臨界点として決定した。
A protractor reference point (origin) is applied as the first angle measuring means to the body axis visual field center, and the first angle measuring means is arranged so that the reference line of the protractor is superimposed on the body axis midline.
On the other hand, the second angle measuring means attached with the ophthalmic penlight, while applying tension to the thread between the first angle measuring means and applying tension to the left eye from the ophthalmic penlight, It was examined whether the left eye fixed to the light signal or whether the left eye toward the light signal moved. Then, while moving the ophthalmic penlight, identify the point at which fixation to the light signal or the eye movement toward the light signal disappears, the outer point is the outer critical point, and the inner point is the inner critical point Determined as a point.

それぞれの臨界点が見出された際、両分度器間に張られた糸と体軸正中線とがなす角を体軸角(∠B)、そしてそして左眼に対して向けられた光源の光の方向(すなわち、分度器の90度の方向)と両分度器間に張られた糸とがなす角を仰角(∠C)として、測定した。   When each critical point is found, the angle formed by the thread stretched between the two protractors and the midline of the body axis is the body axis angle (∠B), and the light of the light source directed at the left eye The angle between the direction of the protractor (that is, the direction of 90 degrees of the protractor) and the thread stretched between the two protractors was measured as the elevation angle (∠C).

それぞれの臨界点に関して、体軸角(∠B)および仰角(∠C)から、図4(A)〜(D)に示したとおり、単眼視野角を算出した。   For each critical point, the monocular viewing angle was calculated from the body axis angle (∠B) and elevation angle (∠C) as shown in FIGS. 4 (A) to (D).

本発明の方法および本発明の装置を使用することにより、これまでは測定することができなかったヒト以外の被検動物における視野角を、簡便かつ効率的に測定することができることとなった。   By using the method of the present invention and the apparatus of the present invention, it has become possible to easily and efficiently measure the viewing angle in test animals other than humans that could not be measured so far.

1:第一の角度測定手段
2:第二の角度測定手段
3:光源
1: First angle measurement means
2: Second angle measurement means
3: Light source

Claims (10)

(i)左右の視軸(眼球正中線)と体軸正中線との交点(体軸視野中心)を求める工程;
(ii)視野角を求める眼に対して、体軸視野中心を中心とした所定半径の円周上の点のうち、体軸正中線から最も離れた視野の臨界点(外側臨界点)、および外側臨界点から見て反対側の円周上に存在する視野の臨界点(内側臨界点)を求める工程;
(iii)体軸視野中心-外側臨界点の線分と体軸正中線とがなす角(体軸角、∠BE)、および外側臨界点-体軸視野中心の線分と外側臨界点-眼球の線分とがなす角(仰角、∠CE)を求め、視野正中線と外側臨界点-眼球の線分とがなす外側臨界視野角(∠DE)を算出する工程;
(iv)体軸視野中心-内側臨界点の線分と体軸正中線とがなす角(体軸角、∠BI)、および内側臨界点-体軸視野中心の線分と内側臨界点-眼球の線分とがなす角(仰角、∠CI)を求め、視野正中線と内側臨界点-眼球の線分とがなす内側臨界視野角(∠DI)を算出する工程;
(v)外側臨界視野角(∠DE)と内側臨界視野角(∠DI)とから、視野角(∠D)を求める工程;
を含む、ヒト以外の被検動物における単眼視野角を決定する方法。
(I) a step of obtaining an intersection (center of the body axis visual field) between the left and right visual axes (eyeball midline) and the body axis midline;
(Ii) the critical point of the visual field (outer critical point) farthest from the body axis midline among the points on the circumference of a predetermined radius centered on the body axis visual field center for the eye for which the viewing angle is to be determined, and Determining the critical point (inner critical point) of the field of view existing on the opposite circumference as seen from the outer critical point;
(Iii) Body axis field center-angle formed by the line segment of the outer critical point and the body axis midline (body axis angle, ∠B E ), and outer critical point-line segment of the body axis field center and outer critical point- Obtaining an angle (elevation angle, ∠C E ) formed by the line segment of the eyeball, and calculating an outer critical viewing angle (∠D E ) formed by the midline of the visual field and the outer critical point-the line segment of the eyeball;
(Iv) Body axis field center-the angle between the line segment of the inner critical point and the body axis midline (body axis angle, ∠B I ), and the inner critical point-the line segment of the body axis field center and the inner critical point- Obtaining an angle (elevation angle, ∠C I ) formed by the segment of the eyeball and calculating an inner critical viewing angle (∠D I ) formed by the midline of the field and the inner critical point-the segment of the eyeball;
(V) determining the viewing angle (∠D) from the outer critical viewing angle (∠D E ) and the inner critical viewing angle (∠D I );
A method for determining a monocular viewing angle in a non-human test animal.
光学的シグナルを眼球に当てた際、その光学的シグナルに対する固視が消失した点またはその光学的シグナルに向けた眼球運動が消失した点を、臨界点と定める、請求項1に記載の方法。   2. The method according to claim 1, wherein when an optical signal is applied to an eyeball, a point at which fixation on the optical signal disappears or a point at which eye movement toward the optical signal disappears is defined as a critical point. 臨界点が体軸視野中心を中心とする所定半径の円周上のゾーンのうち、体軸正中線に対して、検査対象となる眼とは反対側にあるゾーンにある場合、外側臨界視野角(∠DE)または内側臨界視野角(∠DI)を、体軸角(∠B)+仰角(∠C)で表し、
臨界点が体軸視野中心を中心とする所定半径の円周上のゾーンのうち、体軸正中線に対して、検査対象となる眼と同一側にあり、かつその円周と体軸正中線との交点ならびにその円周と視野正中線との交点で挟まれるゾーンにある場合、外側臨界視野角(∠DE)または内側臨界視野角(∠DI)を、仰角(∠C)−体軸角(∠B)で表し、
臨界点が体軸視野中心を中心とする所定半径の円周上のゾーンのうち、体軸正中線に対して、検査対象となる眼と同一側にあり、かつその円周と視野正中線との交点ならびにその円周と視軸(眼球正中線)との交点で挟まれるゾーンにある場合、外側臨界視野角(∠DE)または内側臨界視野角(∠DI)を、体軸角(∠B)−仰角(∠C)で表し、
臨界点が体軸視野中心を中心とする所定半径の円周上のゾーンのうち、体軸正中線に対して、検査対象となる眼と同一側にあり、かつその円周と視軸(眼球正中線)との交点よりも外側のゾーンにある場合、外側臨界視野角(∠DE)または内側臨界視野角(∠DI)を、体軸角(∠B)+仰角(∠C)で表す、
請求項1または2に記載の方法。
If the critical point is in a zone on the circumference with a predetermined radius centered on the center of the body axis field , the outer critical field angle is in the zone on the opposite side of the eye to be examined with respect to the body axis midline (∠D E ) or inner critical viewing angle (∠D I ), expressed as body axis angle (∠B) + elevation angle (∠C)
The critical point is on the same side as the eye to be inspected with respect to the body axis midline in the zone on the circumference with a predetermined radius centered on the body axis visual field center, and the circumference and body axis midline Outside critical viewing angle (∠D E ) or inner critical viewing angle (∠D I ), elevation angle (∠C) −body, in the zone sandwiched by the intersection of Expressed by the shaft angle (∠B)
The critical point is on the same side as the eye to be examined with respect to the body axis midline among the zones on the circumference with a predetermined radius centered on the body axis visual field center, and the circumference and the field midline And the outer critical viewing angle (∠D E ) or inner critical viewing angle (∠D I ), the body axis angle ((D E ) ∠B)-Elevation angle (∠C)
The critical point is on the same side as the eye to be examined with respect to the body axis midline among the zones on the circumference with a predetermined radius centered on the body axis visual field center, and the circumference and visual axis (eyeball) If it is in a zone outside the intersection with the midline) , the outer critical viewing angle (∠D E ) or inner critical viewing angle (∠D I ) is expressed as body axis angle (∠B) + elevation angle (∠C). Represent,
The method according to claim 1 or 2.
被検動物がイヌである、請求項1〜3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the test animal is a dog. 光学的シグナルとして、明室下において高輝度のちらつき光源を眼球に当てる、請求項2に記載の方法。   3. The method according to claim 2, wherein a high-luminance flickering light source is applied to the eyeball as an optical signal in a bright room. 一方の眼に対して請求項1〜4のいずれか1項に記載の単眼視野角を決定する方法を実施して視野を決定する工程、
次いでもう一方の眼に対して請求項1〜4のいずれか1項に記載の単眼視野角を決定する方法を実施して視野を決定する工程、そして
両方の眼の視野を合成して当該被検動物における全視野角を決定する工程、
を含む、ヒト以外の被検動物において全視野角を決定する方法。
The step of determining the visual field by carrying out the method of determining the monocular viewing angle according to any one of claims 1 to 4 for one eye,
Next, the step of determining the visual field by performing the method of determining the monocular viewing angle according to any one of claims 1 to 4 for the other eye, and synthesizing the visual fields of both eyes, Determining the total viewing angle in the animal test,
A method for determining a total viewing angle in a non-human test animal.
(a)左右の視軸(眼球正中線)と体軸正中線との交点(体軸視野中心)にその基準点を配置する第一の角度測定手段;
(b)体軸視野中心から所定の距離に配置される第二の角度測定手段;
(c)眼球に対して光を当てるための、第二の角度測定手段と結合された光源;
を含む、ヒト以外の被検動物における単眼視野角の測定装置。
(A) first angle measuring means for arranging the reference point at the intersection (center of the body axis visual field) of the left and right visual axes (eyeball midline) and the body axis midline;
(B) second angle measuring means disposed at a predetermined distance from the center of the body axis visual field;
(C) a light source combined with a second angle measuring means for illuminating the eyeball;
A device for measuring a monocular viewing angle in a test animal other than a human.
第一の角度測定手段および/または第二の角度測定手段が分度器である、請求項7に記載の装置。   The apparatus according to claim 7, wherein the first angle measuring means and / or the second angle measuring means is a protractor. 体軸視野中心と第二の測定手段との間の距離が、約45〜55 cmである、請求項7または8に記載の装置。   9. A device according to claim 7 or 8, wherein the distance between the body axis field center and the second measuring means is about 45-55 cm. 光源から放射される光が、リニアな光である、請求項7〜9のいずれか1項に記載の装置。   The apparatus according to claim 7, wherein the light emitted from the light source is linear light.
JP2010213880A 2010-09-24 2010-09-24 Measuring method and measuring apparatus for visual axis and visual field Expired - Fee Related JP5582503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010213880A JP5582503B2 (en) 2010-09-24 2010-09-24 Measuring method and measuring apparatus for visual axis and visual field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010213880A JP5582503B2 (en) 2010-09-24 2010-09-24 Measuring method and measuring apparatus for visual axis and visual field

Publications (2)

Publication Number Publication Date
JP2012065888A JP2012065888A (en) 2012-04-05
JP5582503B2 true JP5582503B2 (en) 2014-09-03

Family

ID=46163871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010213880A Expired - Fee Related JP5582503B2 (en) 2010-09-24 2010-09-24 Measuring method and measuring apparatus for visual axis and visual field

Country Status (1)

Country Link
JP (1) JP5582503B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6403058B2 (en) * 2014-10-29 2018-10-10 株式会社マイソフト Reaction range measuring apparatus and program

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285526A (en) * 1991-03-13 1992-10-09 Koonan:Kk Perimeter
ES2217348T3 (en) * 1996-06-24 2004-11-01 Oculus Optikgerate Gmbh APPARATUS TO CHECK THE VISUAL FIELD OF THE HUMAN EYE.
US5864384A (en) * 1996-07-31 1999-01-26 Mcclure; Richard J. Visual field testing method and apparatus using virtual reality
US6162428A (en) * 1997-02-12 2000-12-19 Layton Bioscience, Inc. hNT-neuron human neuronal cells to replace ganglion cells
JP2003000542A (en) * 2001-06-21 2003-01-07 Foundation For Nara Institute Of Science & Technology Visual field inspection system and method, and program therefor
JP2004216118A (en) * 2002-12-24 2004-08-05 Matsushita Electric Works Ltd Perimeter
US7478911B2 (en) * 2004-09-15 2009-01-20 Matsushita Electric Works, Ltd. Perimeter
JP4892742B2 (en) * 2005-03-31 2012-03-07 国立大学法人 東京大学 Perimeter and visual field measurement method
JP4764664B2 (en) * 2005-06-07 2011-09-07 神港精機株式会社 Ophthalmic examination equipment
JP5141522B2 (en) * 2008-12-04 2013-02-13 コニカミノルタホールディングス株式会社 Control method for visual field inspection device, visual field inspection device, and head-mounted image display device
CA2745486C (en) * 2008-12-05 2017-03-28 The Australian National University Pupillary assessment method and apparatus

Also Published As

Publication number Publication date
JP2012065888A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
US7258444B2 (en) Method and apparatus for screening for retinopathy
García-Martín et al. Progressive changes in the retinal nerve fiber layer in patients with multiple sclerosis
Jiang et al. Association between corneal biomechanical properties and myopia in Chinese subjects
Hardin et al. Factors affecting Cirrus-HD OCT optic disc scan quality: a review with case examples
El-Dairi et al. Optical coherence tomography as a tool for monitoring pediatric pseudotumor cerebri
Lim et al. A survey and comparative study on the instruments for glaucoma detection
Fortune Pulling and tugging on the retina: mechanical impact of glaucoma beyond the optic nerve head
BRPI0416349A (en) method, test device for testing an alignment measurement between a diagnostic device and a laser refractive system, method of manufacturing a test device, and kit for testing an alignment between a diagnostic device and a laser refractive system
JP5582503B2 (en) Measuring method and measuring apparatus for visual axis and visual field
Remky et al. Infrared imaging of cystoid macular edema
Ratnarajan et al. The effect of trabeculectomy surgery on the central visual field in patients with glaucoma using microperimetry and optical coherence tomography
RU2603300C1 (en) Method of prediction of progression of open-angle glaucoma in combination with diabetic retinopathy in patients with diabetes
US6382792B1 (en) Optical diagnostic tool
Siddiqui et al. Effect of cataract extraction on frequency doubling technology perimetry in patients with glaucoma
Jun et al. The effects of optic disc factors on retinal nerve fiber layer thickness measurement in children
Magacho et al. Comparing the measurement of diurnal fluctuations in intraocular pressure in the same day versus over different days in glaucoma
RU2314033C1 (en) Method for diagnosing preglaucoma and early stage primary open angle glaucoma
ES2441669A1 (en) Method for the detection of visual function losses
Ma et al. Effect of refractive correction error on retinal nerve fiber layer thickness: A spectralis optical coherence tomography study
RU2532497C1 (en) Method for prediction of regression of stage ii and iii retinopathy of prematurity following laser coagulation of retina
Lim et al. Glaucoma in the twenty-first century
RU2538630C1 (en) Diagnostic technique for prognostically dangerous forms of peripheral retinal dystrophy
Ara et al. Repeatability and reproducibility of retinal nerve fiber layer parameters measured by scanning laser polarimetry with enhanced corneal compensation in normal and glaucomatous eyes
Lum The impact of overnight orthokeratology on sub-basal nerve plexus morphology and corneal sensitivity
Sharma et al. Contrast-Controlled Retinal Response as a Biomarker for a Glaucomatous Eye

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140708

R150 Certificate of patent or registration of utility model

Ref document number: 5582503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees