JP5582460B2 - Surface emitting laser array, optical scanning device, and image forming apparatus - Google Patents

Surface emitting laser array, optical scanning device, and image forming apparatus Download PDF

Info

Publication number
JP5582460B2
JP5582460B2 JP2013002461A JP2013002461A JP5582460B2 JP 5582460 B2 JP5582460 B2 JP 5582460B2 JP 2013002461 A JP2013002461 A JP 2013002461A JP 2013002461 A JP2013002461 A JP 2013002461A JP 5582460 B2 JP5582460 B2 JP 5582460B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting unit
light
laser array
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013002461A
Other languages
Japanese (ja)
Other versions
JP2013122600A (en
Inventor
俊一 佐藤
善紀 林
大輔 市井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2013002461A priority Critical patent/JP5582460B2/en
Publication of JP2013122600A publication Critical patent/JP2013122600A/en
Application granted granted Critical
Publication of JP5582460B2 publication Critical patent/JP5582460B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • B41J2/471Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror
    • B41J2/473Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror using multiple light beams, wavelengths or colours
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/04036Details of illuminating systems, e.g. lamps, reflectors
    • G03G15/04045Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers
    • G03G15/04072Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers by laser
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/32Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head
    • G03G15/326Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head by application of light, e.g. using a LED array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/03Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a substantially linear array
    • H04N1/031Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a substantially linear array the photodetectors having a one-to-one and optically positive correspondence with the scanned picture elements, e.g. linear contact sensors
    • H04N1/0311Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a substantially linear array the photodetectors having a one-to-one and optically positive correspondence with the scanned picture elements, e.g. linear contact sensors using an array of elements to project the scanned image elements onto the photodetectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/113Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/043Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure
    • G03G15/0435Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure by introducing an optical element in the optical path, e.g. a filter
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/04Arrangements for exposing and producing an image
    • G03G2215/0402Exposure devices
    • G03G2215/0404Laser
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/12Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using the sheet-feed movement or the medium-advance or the drum-rotation movement as the slow scanning component, e.g. arrangements for the main-scanning
    • H04N1/121Feeding arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/024Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof deleted
    • H04N2201/028Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof deleted for picture information pick-up
    • H04N2201/03Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof deleted for picture information pick-up deleted
    • H04N2201/031Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof deleted for picture information pick-up deleted deleted
    • H04N2201/03104Integral pick-up heads, i.e. self-contained heads whose basic elements are a light source, a lens and a photodetector supported by a single-piece frame

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、面発光レーザアレイ、光走査装置及び画像形成装置に係り、さらに詳しくは、複数の面発光レーザが2次元配列されている面発光レーザアレイ、該面発光レーザアレイを有する光走査装置及び画像形成装置に関する。   The present invention relates to a surface emitting laser array, an optical scanning device, and an image forming apparatus. More specifically, the present invention relates to a surface emitting laser array in which a plurality of surface emitting lasers are two-dimensionally arranged, and an optical scanning device having the surface emitting laser array. And an image forming apparatus.

電子写真の画像記録において、高精細な画像品質を得るための画像形成手段として、レーザ光を用いた画像形成方法が広く用いられている。電子写真の場合、感光性を有するドラムの軸方向に、ポリゴンミラーを用いてレーザ光を走査(主走査)しつつ、ドラムを回転(副走査)させて、潜像を形成する方法が一般的である。   In electrophotographic image recording, an image forming method using laser light is widely used as an image forming means for obtaining high-definition image quality. In the case of electrophotography, a method of forming a latent image by rotating a drum (sub-scanning) while scanning laser light (main scanning) using a polygon mirror in the axial direction of a photosensitive drum is used. It is.

このような電子写真分野では画像の高精細化及び出力の高速化が求められている。画像の高精細化については、画像の解像度が2倍になった場合、主走査・副走査ともに2倍の時間が必要となるため、画像出力時においては4倍の時間が必要となる。従って画像の高精細化を実現するには、画像出力の高速化も同時に達成する必要がある。   In such an electrophotographic field, higher definition of images and higher speed of output are required. In order to increase the definition of an image, when the resolution of the image is doubled, twice the time is required for both main scanning and sub-scanning. Therefore, four times the time is required for image output. Therefore, in order to achieve high definition of images, it is necessary to simultaneously achieve high speed image output.

画像出力の高速化を実現するための方法として、レーザの高出力化、マルチビーム化、感光体の高感度化などが考えられる。なかでも、高速出力機においてはマルチビーム化された書込み光源(マルチビーム光源)を用いるのが一般的となっている。1本のレーザ光を用いた場合と比較して、n本のレーザ光を同時に用いた場合、一度の走査での潜像形成領域はn倍となり、画像形成に必要な時間は1/nとなる。   As a method for realizing high-speed image output, it is conceivable to increase the output of the laser, increase the number of beams, increase the sensitivity of the photosensitive member, and the like. In particular, in a high-speed output machine, it is common to use a multi-beam writing light source (multi-beam light source). Compared with the case of using one laser beam, when n laser beams are used at the same time, the latent image forming area in one scanning is n times, and the time required for image formation is 1 / n. Become.

例えば、特許文献1には、同一基板に複数の光電変換部を備えた光電変換素子が開示されている。また、特許文献2には、同一基板に複数の発光部を備えた半導体発光素子が開示されている。特許文献1及び特許文献2に開示されている各素子は、複数の端面発光型半導体レーザが1次元配置された構成である。これらの場合には、ビーム数が多くなると消費電力が大きくなり、冷却システムが新規に必要となるため、コスト上、4ビーム若しくは8ビーム程度が限界である。   For example, Patent Document 1 discloses a photoelectric conversion element including a plurality of photoelectric conversion units on the same substrate. Patent Document 2 discloses a semiconductor light emitting element including a plurality of light emitting portions on the same substrate. Each element disclosed in Patent Document 1 and Patent Document 2 has a configuration in which a plurality of edge-emitting semiconductor lasers are arranged one-dimensionally. In these cases, the power consumption increases as the number of beams increases, and a new cooling system is required. Therefore, the cost is limited to about 4 beams or 8 beams.

これに対し、近年盛んに研究が行われている面発光レーザは、複数の面発光レーザを2次元的に集積することが容易である。また、面発光レーザは、消費電力が端面型レーザに比べて一桁程度小さく、多くの面発光レーザを2次元的に集積するのに有利である。   On the other hand, a surface emitting laser that has been actively studied in recent years can easily integrate a plurality of surface emitting lasers two-dimensionally. In addition, the surface-emitting laser consumes about one digit less power than the edge-type laser, and is advantageous for integrating many surface-emitting lasers two-dimensionally.

例えば、特許文献3には、電子写真感光体と、電子写真感光体を帯電させる帯電装置と、帯電した電子写真感光体を露光して静電潜像を形成させる露光装置と、静電潜像をトナーにより現像してトナー像を形成させる現像装置と、トナー像を電子写真感光体から被転写媒体に転写する転写装置と、を備える画像形成装置であって、露光装置が面発光レーザアレイを有し、3本以上の光ビームを電子写真感光体上に走査させて静電潜像を形成させるマルチビーム方式の露光装置であり、電子写真感光体が導電性基体及び該基体上に設けられた感光層を有し、感光層はアモルファス状の珪素含有化合物を含有する光導電層を含んで構成されている画像形成装置が開示されている。   For example, Patent Document 3 discloses an electrophotographic photosensitive member, a charging device that charges the electrophotographic photosensitive member, an exposure device that exposes the charged electrophotographic photosensitive member to form an electrostatic latent image, and an electrostatic latent image. An image forming apparatus comprising: a developing device that develops toner with toner to form a toner image; and a transfer device that transfers the toner image from the electrophotographic photosensitive member to a transfer medium. A multi-beam type exposure apparatus that forms an electrostatic latent image by scanning three or more light beams on the electrophotographic photosensitive member, and the electrophotographic photosensitive member is provided on the conductive substrate and the substrate. An image forming apparatus is disclosed in which the photosensitive layer includes a photoconductive layer containing an amorphous silicon-containing compound.

また、特許文献4には、被走査面の走査のための光ビームを発生する複数の光源と、それらを駆動する光源駆動手段とを有し、光源駆動手段は、被走査面上の隣接した2本の走査線に対応する2個の光源を1組とし、1組の光源のうちの一方を主光源、もう一方を副光源とし、1組の光源の総光量を変えることなく、かつ、副光源の光量を主光源の光量を越えさせることなく、主光源と副光源の間の光量比率を変化させることにより、1組の光源より発生する光ビームの被走査面上における副走査方向の光量分布を制御する光走査装置が開示されている。   Patent Document 4 has a plurality of light sources that generate light beams for scanning the surface to be scanned and light source driving means for driving them, and the light source driving means is adjacent to the surface to be scanned. Two sets of light sources corresponding to two scanning lines are set as one set, and one of the sets of light sources is set as a main light source and the other is set as a sub-light source, without changing the total light amount of the set of light sources, and By changing the light amount ratio between the main light source and the sub light source without causing the light amount of the sub light source to exceed the light amount of the main light source, the light beam generated from one set of light sources in the sub scanning direction on the surface to be scanned An optical scanning device for controlling the light amount distribution is disclosed.

また、特許文献5には、3個以上の発光点を持つ光源から出射された複数の光ビームを光偏向器によって被走査面を偏向走査することで主走査し、この主走査方向に直交する方向へ被走査面を相対移動させることで副走査する光走査装置であって、光源の複数の発光点のそれぞれを順次着目発光点とした場合に、当該着目発光点と隣接する周囲の発光点間の距離が全て等間隔となるように、発光点を二次元的に配設すると共に、複数の光ビームによる各走査線が等間隔で被走査面上を主走査するように、光源の各発光点を同一平面内で、主走査方向又は副走査方向に対して、所定角度回転させて配置した光走査装置が開示されている。   In Patent Document 5, a plurality of light beams emitted from a light source having three or more light emitting points are subjected to main scanning by deflecting and scanning the surface to be scanned by an optical deflector, and orthogonal to the main scanning direction. An optical scanning device that performs sub-scanning by relatively moving a surface to be scanned in a direction, and when each of a plurality of light emitting points of a light source is sequentially set as a target light emitting point, surrounding light emitting points adjacent to the target light emitting point The light emitting points are arranged two-dimensionally so that all the distances between them are equally spaced, and each of the light sources is scanned so that each scanning line by a plurality of light beams scans the surface to be scanned at regular intervals. An optical scanning device is disclosed in which the light emitting points are arranged by being rotated by a predetermined angle with respect to the main scanning direction or the sub scanning direction in the same plane.

ところで、面発光レーザアレイでは、隣接する発光部との間隔が狭くなると、他の発光部で発生する熱により、出力が低下したり、信頼性が低下するおそれがある。   By the way, in the surface emitting laser array, when the interval between the adjacent light emitting units becomes narrow, there is a possibility that the output may be lowered or the reliability may be lowered due to the heat generated in the other light emitting units.

本発明は、かかる事情の下になされたもので、その第1の目的は、大型化を招くことなく、熱干渉の影響が小さい面発光レーザアレイを提供することにある。   The present invention has been made under such circumstances, and a first object of the present invention is to provide a surface emitting laser array that is less affected by thermal interference without causing an increase in size.

また、本発明の第2の目的は、被走査面を高密度及び高速で走査することができる光走査装置を提供することにある。   A second object of the present invention is to provide an optical scanning device capable of scanning a surface to be scanned at high density and high speed.

また、本発明の第3の目的は、高精細な画像を高速で形成することができる画像形成装置を提供することにある。   A third object of the present invention is to provide an image forming apparatus capable of forming a high-definition image at high speed.

本発明は、第1の観点からすると、複数の発光部が2次元配列されている面発光レーザアレイにおいて、前記複数の発光部は、一の方向に延びる仮想線上に正射影したとき、前記仮想線上における間隔が所定の値の自然数倍であり、前記複数の発光部は、第1の発光部と、前記正射影したときに前記第1の発光部に隣接する第2の発光部と、前記正射影したときに前記第2の発光部に隣接する第3の発光部とを含み、前記一の方向に関して、前記第1の発光部と前記第2の発光部の間隔は、前記第2の発光部と前記第3の発光部の間隔と異なり、前記複数の発光部の数は、偶数であることを特徴とする面発光レーザアレイである。 According to a first aspect of the present invention, in the surface emitting laser array in which a plurality of light emitting units are two-dimensionally arranged, the plurality of light emitting units are orthogonally projected onto a virtual line extending in one direction. The interval on the line is a natural number multiple of a predetermined value, and the plurality of light emitting units includes a first light emitting unit, a second light emitting unit adjacent to the first light emitting unit when orthogonally projected, A third light-emitting part adjacent to the second light-emitting part when orthogonally projected, and the distance between the first light-emitting part and the second light-emitting part in the one direction is the second light-emitting part Unlike the interval between the light emitting unit and the third light emitting unit, the number of the plurality of light emitting units is an even number.

なお、本明細書では、「発光部間隔」とは2つの発光部の中心間距離をいうものとする。   In the present specification, the “light emitting portion interval” refers to the distance between the centers of two light emitting portions.

これによれば、複数の発光部は、一の方向に延びる仮想線上に正射影したとき、仮想線上における間隔が所定の値の自然数倍である。そして、複数の発光部は、第1の発光部と、正射影したときに第1の発光部に隣接する第2の発光部と、正射影したときに第2の発光部に隣接する第3の発光部とを含み、一の方向に関して、第1の発光部と第2の発光部の間隔は、第2の発光部と第3の発光部の間隔と異なっている。この場合に、大きさをそれほど大きくしなくても、他の発光部からの影響をより多く受ける領域にある発光部間隔を広くすることができる。従って、大型化を招くことなく、熱干渉の影響を従来よりも小さくすることが可能となる。 According to this, when the plurality of light emitting units are orthogonally projected onto the virtual line extending in one direction, the interval on the virtual line is a natural number multiple of the predetermined value. The plurality of light emitting units include a first light emitting unit, a second light emitting unit adjacent to the first light emitting unit when orthographically projected, and a third light emitting unit adjacent to the second light emitting unit when orthographically projected. With respect to one direction, the interval between the first light emitting unit and the second light emitting unit is different from the interval between the second light emitting unit and the third light emitting unit. In this case, even if the size is not increased so much, it is possible to widen the interval between the light emitting portions in the region that is more influenced by other light emitting portions. Therefore, the influence of thermal interference can be made smaller than before without increasing the size.

本発明は、第2の観点からすると、光によって被走査面を走査する光走査装置であって、本発明の面発光レーザアレイを有し、該面発光レーザアレイの一の方向が副走査方向に対応する方向と一致している光源ユニットと;前記光源ユニットからの光を偏向する偏向器と;前記偏向器で偏向された光を前記被走査面上に集光する走査光学系と;を備える光走査装置である。   According to a second aspect of the present invention, there is provided an optical scanning device that scans a surface to be scanned with light, including the surface emitting laser array of the present invention, wherein one direction of the surface emitting laser array is a sub-scanning direction. A light source unit that coincides with a direction corresponding to the light source unit; a deflector that deflects light from the light source unit; and a scanning optical system that condenses the light deflected by the deflector onto the surface to be scanned. An optical scanning device provided.

これによれば、本発明の面発光レーザアレイを有しているため、結果として、被走査面を高密度及び高速で走査することが可能となる。   According to this, since the surface emitting laser array of the present invention is provided, as a result, it becomes possible to scan the surface to be scanned at high density and at high speed.

本発明は、第3の観点からすると、少なくとも1つの感光体と;前記少なくとも1つの感光体に対して画像情報が含まれる光を走査する少なくとも1つの本発明の光走査装置と;を備える画像形成装置である。   According to a third aspect of the present invention, there is provided an image comprising: at least one photosensitive member; and at least one optical scanning device according to the present invention that scans the at least one photosensitive member with light including image information. Forming device.

これによれば、少なくとも1つの本発明の光走査装置を備えているため、結果として、高精細な画像を高速で形成することが可能となる。   According to this, since at least one optical scanning device of the present invention is provided, as a result, a high-definition image can be formed at high speed.

本発明は、第4の観点からすると、感光体に画像情報を書き込む際の書き込み光源として本発明の面発光レーザアレイを備える画像形成装置である。   From a fourth viewpoint, the present invention is an image forming apparatus including the surface emitting laser array of the present invention as a writing light source when writing image information on a photosensitive member.

これによれば、本発明の面発光レーザアレイを有しているため、結果として、高精細な画像を高速で形成することが可能となる。   According to this, since the surface emitting laser array of the present invention is provided, as a result, a high-definition image can be formed at high speed.

本発明の一実施形態に係るレーザプリンタの概略構成を説明するための図である。It is a figure for demonstrating schematic structure of the laser printer which concerns on one Embodiment of this invention. 図1における光走査装置を示す概略図である。It is the schematic which shows the optical scanning device in FIG. 図2における光源が有する面発光レーザアレイを説明するための図(その1)である。FIG. 3 is a diagram (No. 1) for explaining a surface emitting laser array included in a light source in FIG. 2; 図2における光源が有する面発光レーザアレイを説明するための図(その2)である。FIG. 3 is a diagram (part 2) for explaining a surface emitting laser array included in the light source in FIG. 2; 面発光レーザアレイの比較例を説明するための図(その1)である。It is FIG. (1) for demonstrating the comparative example of a surface emitting laser array. 面発光レーザアレイの比較例を説明するための図(その2)である。It is FIG. (2) for demonstrating the comparative example of a surface emitting laser array. 図3の面発光レーザアレイを用いたときの不均等な飛び越し走査を説明するための図である。It is a figure for demonstrating non-uniform interlaced scanning when the surface emitting laser array of FIG. 3 is used. 面発光レーザアレイの変形例1を説明するための図である。It is a figure for demonstrating the modification 1 of a surface emitting laser array. 図7の面発光レーザアレイを用いたときの不均等な飛び越し走査を説明するための図である。FIG. 8 is a diagram for explaining unequal interlaced scanning when the surface emitting laser array of FIG. 7 is used. 不均等な飛び越し走査配置の均等な飛び越し走査配置に対するメリットを説明するための図(その1)である。FIG. 5 is a diagram (part 1) for explaining the merit of an uneven interlaced scanning arrangement over an even interlaced scanning arrangement; 不均等な飛び越し走査配置の均等な飛び越し走査配置に対するメリットを説明するための図(その2)である。FIG. 6 is a diagram (part 2) for explaining the merits of an unequal interlaced scanning arrangement over an even interlaced scanning arrangement; 不均等な飛び越し走査配置の均等な飛び越し走査配置に対するメリットを説明するための図(その3)である。FIG. 10 is a diagram (No. 3) for explaining an advantage of an unequal interlaced scanning arrangement over an even interlaced scanning arrangement; 不均等な飛び越し走査配置の均等な飛び越し走査配置に対するメリットを説明するための図(その4)である。FIG. 14 is a diagram (No. 4) for explaining a merit of the uniform interlaced scanning arrangement over the uniform interlaced scanning arrangement; 面発光レーザアレイの変形例2を説明するための図である。It is a figure for demonstrating the modification 2 of a surface emitting laser array. 図13の面発光レーザアレイを用いたときの不均等な飛び越し走査を説明するための図である。FIG. 14 is a diagram for explaining unequal interlaced scanning when the surface emitting laser array of FIG. 13 is used. 面発光レーザアレイの変形例3を説明するための図である。It is a figure for demonstrating the modification 3 of a surface emitting laser array. 図15の面発光レーザアレイを用いたときの不均等な飛び越し走査を説明するための図である。FIG. 16 is a diagram for explaining unequal interlaced scanning when the surface emitting laser array of FIG. 15 is used. 面発光レーザアレイの変形例4を説明するための図である。It is a figure for demonstrating the modification 4 of a surface emitting laser array. 面発光レーザアレイの変形例5を説明するための図である。It is a figure for demonstrating the modification 5 of a surface emitting laser array. タンデムカラー機の概略構成を示す図である。It is a figure which shows schematic structure of a tandem color machine.

以下、本発明の一実施形態を図1〜図6に基づいて説明する。図1には、本発明の一実施形態に係る画像形成装置としてのレーザプリンタ1000の概略構成が示されている。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a schematic configuration of a laser printer 1000 as an image forming apparatus according to an embodiment of the present invention.

このレーザプリンタ1000は、光走査装置1010、感光体ドラム1030、帯電チャージャ1031、現像ローラ1032、転写チャージャ1033、除電ユニット1034、クリーニングブレード1035、トナーカートリッジ1036、給紙コロ1037、給紙トレイ1038、レジストローラ対1039、定着ローラ1041、排紙ローラ1042、及び排紙トレイ1043などを備えている。   The laser printer 1000 includes an optical scanning device 1010, a photosensitive drum 1030, a charging charger 1031, a developing roller 1032, a transfer charger 1033, a static elimination unit 1034, a cleaning blade 1035, a toner cartridge 1036, a paper supply roller 1037, a paper supply tray 1038, A registration roller pair 1039, a fixing roller 1041, a paper discharge roller 1042, a paper discharge tray 1043, and the like are provided.

感光体ドラム1030の表面には、感光層が形成されている。すなわち、感光体ドラム1030の表面が被走査面である。ここでは、感光体ドラム1030は、図1における矢印方向に回転するようになっている。   A photosensitive layer is formed on the surface of the photosensitive drum 1030. That is, the surface of the photoconductor drum 1030 is a scanned surface. Here, the photosensitive drum 1030 rotates in the direction of the arrow in FIG.

帯電チャージャ1031、現像ローラ1032、転写チャージャ1033、除電ユニット1034及びクリーニングブレード1035は、それぞれ感光体ドラム1030の表面近傍に配置されている。そして、感光体ドラム1030の回転方向に沿って、帯電チャージャ1031→現像ローラ1032→転写チャージャ1033→除電ユニット1034→クリーニングブレード1035の順に配置されている。   The charging charger 1031, the developing roller 1032, the transfer charger 1033, the charge removal unit 1034, and the cleaning blade 1035 are each arranged in the vicinity of the surface of the photosensitive drum 1030. Then, along the rotation direction of the photosensitive drum 1030, the charging charger 1031 → the developing roller 1032 → the transfer charger 1033 → the discharging unit 1034 → the cleaning blade 1035 are arranged in this order.

帯電チャージャ1031は、感光体ドラム1030の表面を均一に帯電させる。   The charging charger 1031 uniformly charges the surface of the photosensitive drum 1030.

光走査装置1010は、帯電チャージャ1031で帯電された感光体ドラム1030の表面に、上位装置(例えばパソコン)からの画像情報に基づいて変調された光を照射する。これにより、感光体ドラム1030の表面に画像情報に対応した潜像が形成される。ここで形成された潜像は、感光体ドラム1030の回転に伴って現像ローラ1032の方向に移動する。なお、この光走査装置1010の構成については後述する。   The optical scanning device 1010 irradiates the surface of the photosensitive drum 1030 charged by the charging charger 1031 with light modulated based on image information from a host device (for example, a personal computer). As a result, a latent image corresponding to the image information is formed on the surface of the photosensitive drum 1030. The latent image formed here moves in the direction of the developing roller 1032 as the photosensitive drum 1030 rotates. The configuration of the optical scanning device 1010 will be described later.

トナーカートリッジ1036にはトナーが格納されており、該トナーは現像ローラ1032に供給される。   The toner cartridge 1036 stores toner, and the toner is supplied to the developing roller 1032.

現像ローラ1032は、感光体ドラム1030の表面に形成された潜像にトナーカートリッジ1036から供給されたトナーを付着させて画像情報を顕像化させる。ここでトナーが付着した潜像(以下では、便宜上「トナー像」ともいう)は、感光体ドラム1030の回転に伴って転写チャージャ1033の方向に移動する。   The developing roller 1032 causes the toner supplied from the toner cartridge 1036 to adhere to the latent image formed on the surface of the photosensitive drum 1030 to visualize the image information. Here, the latent image to which the toner is attached (hereinafter also referred to as “toner image” for the sake of convenience) moves in the direction of the transfer charger 1033 as the photosensitive drum 1030 rotates.

給紙トレイ1038には記録紙1040が格納されている。この給紙トレイ1038の近傍には給紙コロ1037が配置されており、該給紙コロ1037は、記録紙1040を給紙トレイ1038から1枚ずつ取り出し、レジストローラ対1039に搬送する。該レジストローラ対1039は、給紙コロ1037によって取り出された記録紙1040を一旦保持するとともに、該記録紙1040を感光体ドラム1030の回転に合わせて感光体ドラム1030と転写チャージャ1033との間隙に向けて送り出す。   Recording paper 1040 is stored in the paper feed tray 1038. A paper feed roller 1037 is disposed in the vicinity of the paper feed tray 1038, and the paper feed roller 1037 takes out the recording paper 1040 one by one from the paper feed tray 1038 and conveys it to the registration roller pair 1039. The registration roller pair 1039 temporarily holds the recording paper 1040 taken out by the paper supply roller 1037, and in the gap between the photosensitive drum 1030 and the transfer charger 1033 according to the rotation of the photosensitive drum 1030. Send it out.

転写チャージャ1033には、感光体ドラム1030の表面上のトナーを電気的に記録紙1040に引きつけるために、トナーとは逆極性の電圧が印加されている。この電圧により、感光体ドラム1030の表面のトナー像が記録紙1040に転写される。ここで転写された記録紙1040は、定着ローラ1041に送られる。   A voltage having a polarity opposite to that of the toner is applied to the transfer charger 1033 in order to electrically attract the toner on the surface of the photosensitive drum 1030 to the recording paper 1040. With this voltage, the toner image on the surface of the photosensitive drum 1030 is transferred to the recording paper 1040. The recording sheet 1040 transferred here is sent to the fixing roller 1041.

この定着ローラ1041では、熱と圧力とが記録紙1040に加えられ、これによってトナーが記録紙1040上に定着される。ここで定着された記録紙1040は、排紙ローラ1042を介して排紙トレイ1043に送られ、排紙トレイ1043上に順次スタックされる。   In the fixing roller 1041, heat and pressure are applied to the recording paper 1040, whereby the toner is fixed on the recording paper 1040. The recording paper 1040 fixed here is sent to the paper discharge tray 1043 via the paper discharge roller 1042 and is sequentially stacked on the paper discharge tray 1043.

除電ユニット1034は、感光体ドラム1030の表面を除電する。   The neutralization unit 1034 neutralizes the surface of the photosensitive drum 1030.

クリーニングブレード1035は、感光体ドラム1030の表面に残ったトナー(残留トナー)を除去する。残留トナーが除去された感光体ドラム1030の表面は、再度帯電チャージャ1031に対向する位置に戻る。   The cleaning blade 1035 removes toner (residual toner) remaining on the surface of the photosensitive drum 1030. The surface of the photosensitive drum 1030 from which the residual toner has been removed returns to the position facing the charging charger 1031 again.

次に、前記光走査装置1010の構成について説明する。   Next, the configuration of the optical scanning device 1010 will be described.

この光走査装置1010は、一例として図2に示されるように、光源14、カップリングレンズ15、開口板16、シリンドリカルレンズ17、ポリゴンミラー13、偏向器側走査レンズ11a、像面側走査レンズ11b、及び不図示の走査制御装置などを備えている。なお、本明細書では、XYZ3次元直交座標系において、感光体ドラム1030の長手方向に沿った方向をY軸方向、各走査レンズ(11a、11b)の光軸に沿った方向をX軸方向として説明する。また、以下では、便宜上、主走査方向に対応する方向を「主走査対応方向」と略述し、副走査方向に対応する方向を「副走査対応方向」と略述する。   As shown in FIG. 2 as an example, the optical scanning device 1010 includes a light source 14, a coupling lens 15, an aperture plate 16, a cylindrical lens 17, a polygon mirror 13, a deflector side scanning lens 11a, and an image plane side scanning lens 11b. , And a scanning control device (not shown). In this specification, in the XYZ three-dimensional orthogonal coordinate system, the direction along the longitudinal direction of the photosensitive drum 1030 is defined as the Y-axis direction, and the direction along the optical axis of each scanning lens (11a, 11b) is defined as the X-axis direction. explain. In the following, for convenience, the direction corresponding to the main scanning direction is abbreviated as “main scanning corresponding direction”, and the direction corresponding to the sub scanning direction is abbreviated as “sub scanning corresponding direction”.

光源14は、一例として図3に示されるように、40個の発光部(ch1〜ch40)が1つの基板上に形成された2次元アレイ100を有し、副走査対応方向(以下では、便宜上「S方向」という)に沿って一列に配列された5個の発光部からなる発光部列が、主走査対応方向(以下では、便宜上「M方向」という)に8列配置されている。すなわち、発光部列の数は、1つの発光部列を構成する発光部の数よりも多い。   As shown in FIG. 3 as an example, the light source 14 includes a two-dimensional array 100 in which 40 light emitting units (ch1 to ch40) are formed on one substrate, and is in a sub-scanning direction (hereinafter, for convenience). Eight light emitting section rows each including five light emitting sections arranged in a line along the “S direction” are arranged in the main scanning corresponding direction (hereinafter referred to as “M direction” for convenience). That is, the number of light emitting unit rows is larger than the number of light emitting units constituting one light emitting unit row.

なお、ここでは、各発光部列を区別するため、便宜上、図3の紙面左から右に向かって、第1発光部列L1、第2発光部列L2、第3発光部列L3、第4発光部列L4、第5発光部列L5、第6発光部列L6、第7発光部列L7、及び第8発光部列L8とする。   Here, in order to distinguish each light emitting part row, for the sake of convenience, the first light emitting part row L1, the second light emitting part row L2, the third light emitting part row L3, the fourth light emitting element row L2, from the left to the right in FIG. The light emitting part row L4, the fifth light emitting part row L5, the sixth light emitting part row L6, the seventh light emitting part row L7, and the eighth light emitting part row L8.

そして、40個の発光部をS方向に延びる仮想線上に正射影したとき、最も−S側になる発光部を発光部ch1とし、+S側に向かって順に発光部ch2、発光部ch3、・・・・・、発光部ch40とする。   Then, when 40 light emitting units are orthogonally projected onto a virtual line extending in the S direction, the light emitting unit that is closest to the −S side is set as the light emitting unit ch1, and the light emitting unit ch2, light emitting unit ch3,. ..., the light emitting unit ch40.

ここでは、第1発光部列L1の5個の発光部は、発光部ch5、発光部ch13、発光部ch21、発光部ch29、発光部ch37である。   Here, the five light emitting units of the first light emitting unit row L1 are the light emitting unit ch5, the light emitting unit ch13, the light emitting unit ch21, the light emitting unit ch29, and the light emitting unit ch37.

第2発光部列L2の5個の発光部は、発光部ch6、発光部ch14、発光部ch22、発光部ch30、発光部ch38である。   The five light emitting units of the second light emitting unit row L2 are a light emitting unit ch6, a light emitting unit ch14, a light emitting unit ch22, a light emitting unit ch30, and a light emitting unit ch38.

第3発光部列L3の5個の発光部は、発光部ch7、発光部ch15、発光部ch23、発光部ch31、発光部ch39である。   The five light emitting units in the third light emitting unit row L3 are a light emitting unit ch7, a light emitting unit ch15, a light emitting unit ch23, a light emitting unit ch31, and a light emitting unit ch39.

第4発光部列L4の5個の発光部は、発光部ch8、発光部ch16、発光部ch24、発光部ch32、発光部ch40である。   The five light emitting units in the fourth light emitting unit row L4 are a light emitting unit ch8, a light emitting unit ch16, a light emitting unit ch24, a light emitting unit ch32, and a light emitting unit ch40.

第5発光部列L5の5個の発光部は、発光部ch1、発光部ch9、発光部ch17、発光部ch25、発光部ch33である。   The five light emitting units in the fifth light emitting unit row L5 are a light emitting unit ch1, a light emitting unit ch9, a light emitting unit ch17, a light emitting unit ch25, and a light emitting unit ch33.

第6発光部列L6の5個の発光部は、発光部ch2、発光部ch10、発光部ch18、発光部ch26、発光部ch34である。   The five light emitting units in the sixth light emitting unit row L6 are a light emitting unit ch2, a light emitting unit ch10, a light emitting unit ch18, a light emitting unit ch26, and a light emitting unit ch34.

第7発光部列L7の5個の発光部は、発光部ch3、発光部ch11、発光部ch19、発光部ch27、発光部ch35である。   The five light emitting units in the seventh light emitting unit row L7 are a light emitting unit ch3, a light emitting unit ch11, a light emitting unit ch19, a light emitting unit ch27, and a light emitting unit ch35.

第8発光部列L8の5個の発光部は、発光部ch4、発光部ch12、発光部ch20、発光部ch28、発光部ch36である。   The five light emitting units in the eighth light emitting unit row L8 are a light emitting unit ch4, a light emitting unit ch12, a light emitting unit ch20, a light emitting unit ch28, and a light emitting unit ch36.

また、M方向に関して、第1発光部列L1と第2発光部列L2との間隔はX4、第2発光部列L2と第3発光部列L3との間隔はX3、第3発光部列L3と第4発光部列L4との間隔はX2、第4発光部列L4と第5発光部列L5との間隔はX1、第5発光部列L5と第6発光部列L6との間隔はX2、第6発光部列L6と第7発光部列L7との間隔はX3、第7発光部列L7と第8発光部列L8との間隔はX4であり、X1>X2>X3>X4である。すなわち、2次元アレイ100は、いわゆる不均等配置の2次元アレイであり、複数列の中央部に位置し互いに隣接する2つの発光部列の間隔は、複数列の端側に位置し互いに隣接する2つの発光部列の間隔よりも広い。   Regarding the M direction, the distance between the first light emitting part row L1 and the second light emitting part row L2 is X4, the distance between the second light emitting part row L2 and the third light emitting part row L3 is X3, and the third light emitting part row L3. And the fourth light emitting unit row L4 are X2, the fourth light emitting unit row L4 and the fifth light emitting unit row L5 are X1, and the fifth light emitting unit row L5 and the sixth light emitting unit row L6 are X2. The distance between the sixth light emitting part row L6 and the seventh light emitting part row L7 is X3, the distance between the seventh light emitting part row L7 and the eighth light emitting part row L8 is X4, and X1> X2> X3> X4. . That is, the two-dimensional array 100 is a so-called non-uniformly arranged two-dimensional array, and the interval between two light emitting unit rows that are located in the center of a plurality of rows and are adjacent to each other is located on the end side of the plurality of rows and is adjacent to each other. It is wider than the interval between the two light emitting unit rows.

そして、40個の発光部をS方向に延びる仮想線上に正射影したとき、所定の値をcとすると、図4に示されるように、発光部ch1〜発光部ch20については等間隔2cであり、発光部ch20と発光部ch21の間隔は3cであり、発光部ch21〜発光部ch40については等間隔2cである。   Then, when 40 light emitting units are orthogonally projected onto a virtual line extending in the S direction, if the predetermined value is c, as shown in FIG. 4, the light emitting units ch1 to ch20 are equally spaced 2c. The interval between the light emitting part ch20 and the light emitting part ch21 is 3c, and the light emitting part ch21 to the light emitting part ch40 are equally spaced 2c.

具体的には、c=4.4μm、X1=48μm、X2=46.5μm、X3=38.5μm、X4=26μmである。そして、発光部ch5と発光部ch13のS方向に関する間隔d1は70.4(=2×c×8)μmであり、発光部ch13と発光部ch21のS方向に関する間隔d2は74.8(=2×c×7+3×c)μmである(図3参照)。   Specifically, c = 4.4 μm, X1 = 48 μm, X2 = 46.5 μm, X3 = 38.5 μm, and X4 = 26 μm. The distance d1 between the light emitting part ch5 and the light emitting part ch13 in the S direction is 70.4 (= 2 × c × 8) μm, and the distance d2 between the light emitting part ch13 and the light emitting part ch21 in the S direction is 74.8 (= 2 × c × 7 + 3 × c) μm (see FIG. 3).

ところで、図5(A)には、比較例として、40個の発光部がM方向及びS方向に関していずれも等間隔に配置されている従来の2次元アレイが示されている。この2次元アレイでは、主走査時に、いわゆる「隣接走査」が行われる(図5(B)参照)。すなわち、図5(A)に示される2次元アレイは、いわゆる「隣接走査配置」の2次元アレイである。   Incidentally, FIG. 5A shows a conventional two-dimensional array in which 40 light emitting units are arranged at equal intervals in both the M direction and the S direction as a comparative example. In this two-dimensional array, so-called “adjacent scanning” is performed during main scanning (see FIG. 5B). That is, the two-dimensional array shown in FIG. 5A is a so-called “adjacent scanning arrangement” two-dimensional array.

図2に戻り、カップリングレンズ15は、光源14から射出された光を略平行光とする。   Returning to FIG. 2, the coupling lens 15 converts the light emitted from the light source 14 into substantially parallel light.

開口板16は、開口部を有し、カップリングレンズ15を介した光のビーム径を規定する。   The aperture plate 16 has an aperture and defines the beam diameter of the light that has passed through the coupling lens 15.

シリンドリカルレンズ17は、開口板16の開口部を通過した光をポリゴンミラー13の偏向反射面近傍にZ軸方向に関して結像する。   The cylindrical lens 17 forms an image of the light that has passed through the opening of the aperture plate 16 in the vicinity of the deflection reflection surface of the polygon mirror 13 in the Z-axis direction.

光源14とポリゴンミラー13との間の光路上に配置される光学系は、偏向器前光学系とも呼ばれている。本実施形態では、偏向器前光学系は、カップリングレンズ15と開口板16とシリンドリカルレンズ17とから構成されている。   The optical system arranged on the optical path between the light source 14 and the polygon mirror 13 is also called a pre-deflector optical system. In the present embodiment, the pre-deflector optical system includes a coupling lens 15, an aperture plate 16, and a cylindrical lens 17.

ポリゴンミラー13は、4面鏡を有し、各鏡がそれぞれ偏向反射面となる。このポリゴンミラー13は、Z軸方向に平行な軸の周りに等速回転し、シリンドリカルレンズ17からの光を偏向する。   The polygon mirror 13 has a four-sided mirror, and each mirror serves as a deflection reflection surface. The polygon mirror 13 rotates at a constant speed around an axis parallel to the Z-axis direction, and deflects light from the cylindrical lens 17.

偏向器側走査レンズ11aは、ポリゴンミラー13で偏向された光の光路上に配置されている。   The deflector-side scanning lens 11 a is disposed on the optical path of the light deflected by the polygon mirror 13.

像面側走査レンズ11bは、偏向器側走査レンズ11aを介した光の光路上に配置されている。そして、この像面側走査レンズ11bを介した光が感光体ドラム1030の表面に照射され、光スポットが形成される。この光スポットは、ポリゴンミラー13の回転に伴って感光体ドラム1030の長手方向に移動する。すなわち、感光体ドラム1030上を走査する。このときの光スポットの移動方向が「主走査方向」である。また、感光体ドラム1030の回転方向が「副走査方向」である。   The image plane side scanning lens 11b is disposed on the optical path of light via the deflector side scanning lens 11a. Then, the light passing through the image surface side scanning lens 11b is irradiated on the surface of the photosensitive drum 1030, and a light spot is formed. This light spot moves in the longitudinal direction of the photosensitive drum 1030 as the polygon mirror 13 rotates. That is, the photoconductor drum 1030 is scanned. The moving direction of the light spot at this time is the “main scanning direction”. The rotation direction of the photosensitive drum 1030 is the “sub-scanning direction”.

走査制御装置は、図6に示されるように、n−1番目の主走査が終了すると、感光体ドラム1030の表面における発光部ch21からの光の照射位置に対して副走査方向に−cに対応する値だけずれた位置に発光部ch1からの光が照射されるように、感光体ドラム1030を回転させ、n番目の主走査を行う。そして、n番目の主走査が終了すると、感光体ドラム1030の表面における発光部ch21からの光の照射位置に対して副走査方向に−cに対応する値だけずれた位置に発光部ch1からの光が照射されるように、感光体ドラム1030を回転させ、n+1番目の主走査を行う。すなわち、いわゆる「不均等な飛び越し走査」を行う。これにより、感光体ドラム1030の表面では副走査方向に対して所定の値cに対応した一定間隔で走査できる。この場合に、光走査装置1010の光学系の倍率が約1.2倍であれば、感光体ドラム1030の表面における副走査方向に関するピッチは約5.3μmとなり、副走査方向に関して4800dpiの高密度で書込みができる。   As shown in FIG. 6, when the (n−1) -th main scan is completed, the scanning control device sets −c in the sub-scanning direction with respect to the irradiation position of the light from the light emitting unit ch21 on the surface of the photosensitive drum 1030. The photosensitive drum 1030 is rotated so that the light from the light emitting unit ch1 is irradiated at a position shifted by a corresponding value, and the n-th main scan is performed. When the n-th main scanning is completed, the light emitting unit ch1 shifts to a position shifted by a value corresponding to −c in the sub-scanning direction with respect to the light irradiation position from the light emitting unit ch21 on the surface of the photosensitive drum 1030. The photosensitive drum 1030 is rotated so that light is irradiated, and the (n + 1) th main scan is performed. That is, so-called “uneven interlaced scanning” is performed. Thereby, the surface of the photosensitive drum 1030 can be scanned at a constant interval corresponding to the predetermined value c in the sub-scanning direction. In this case, if the magnification of the optical system of the optical scanning device 1010 is about 1.2 times, the pitch in the sub-scanning direction on the surface of the photosensitive drum 1030 is about 5.3 μm, and the high density of 4800 dpi in the sub-scanning direction. Can be written with.

ところで、いわゆる「均等な飛び越し走査」及びそれに適した2次元アレイ(均等な飛び越し走査配置の2次元アレイ)については、特公平1−45065号公報あるいは特公平6−48846号公報に開示されている。   By the way, so-called “uniform interlaced scanning” and a two-dimensional array suitable for it (two-dimensional array of uniform interlaced scanning arrangement) are disclosed in Japanese Patent Publication No. 1-445065 or Japanese Patent Publication No. 6-48846. .

なお、本実施形態では、発光部ch1が発光部列L5にあり、発光部ch40が発光部列L4にある。すなわち、40個の発光部をS方向に延びる仮想線上に正射影したとき、S方向に関して両端に位置する2つの発光部(ch1とch40)は、いずれもM方向に関しては、両端を除く位置に配置されている。これにより、S方向に関して両端にある発光部ch1と発光部ch40がM方向に関して近接することとなり、ポリゴンミラー13の誤差(A寸ばらつき、面倒れ、軸倒れなど)に起因する副走査方向に関するビームピッチ誤差を低減することができる。   In the present embodiment, the light emitting portion ch1 is in the light emitting portion row L5, and the light emitting portion ch40 is in the light emitting portion row L4. That is, when 40 light emitting units are orthogonally projected on a virtual line extending in the S direction, the two light emitting units (ch1 and ch40) located at both ends with respect to the S direction are in positions other than both ends with respect to the M direction. Has been placed. As a result, the light emitting section ch1 and the light emitting section ch40 at both ends with respect to the S direction are close to each other with respect to the M direction, and the beam in the sub-scanning direction due to errors of the polygon mirror 13 (A dimension variation, surface tilt, axis tilt, etc.). Pitch error can be reduced.

以上説明したように、本実施形態に係る面発光レーザアレイ100によると、40個の発光部を副走査方向に対応するS方向(一の方向)に延びる仮想線上に正射影したとき、所定の値をcとすると、発光部ch1〜発光部ch20については等間隔2cであり、発光部ch20と発光部ch21の間隔は3cであり、発光部ch21〜発光部ch40については等間隔2cである。この場合には、隣接走査配置の2次元アレイと比べると、大きさが若干大きくなるが、隣接走査配置の2次元アレイよりも放熱性が著しく向上する。つまり、同じ書込み密度で比較すると、副走査方向の素子間隔を広げられるので、熱干渉低減により出力均一化の制御がしやすくなり、濃度むらを抑えられ高品質の画像形成ができる。また、均等な飛び越し走査配置の2次元アレイと比べると、同じ大きさであっても、放熱性が向上する。すなわち、大きさをそれほど大きくしなくても、他の発光部からの影響をより多く受ける領域にある発光部間隔を広くすることができる。従って、大型化を招くことなく、熱干渉の影響を従来よりも小さくすることが可能である。   As described above, according to the surface-emitting laser array 100 according to the present embodiment, when 40 light emitting units are orthogonally projected onto a virtual line extending in the S direction (one direction) corresponding to the sub-scanning direction, When the value is c, the light emitting part ch1 to the light emitting part ch20 is equally spaced 2c, the distance between the light emitting part ch20 and the light emitting part ch21 is 3c, and the light emitting part ch21 to the light emitting part ch40 is equally spaced 2c. In this case, the size is slightly larger than that of the two-dimensional array with the adjacent scanning arrangement, but the heat dissipation is remarkably improved as compared with the two-dimensional array with the adjacent scanning arrangement. In other words, when compared at the same writing density, the element spacing in the sub-scanning direction can be widened, so that the output uniformity can be easily controlled by reducing the thermal interference, and density unevenness can be suppressed and high-quality image formation can be performed. Also, compared to a two-dimensional array with a uniform interlaced scanning arrangement, heat dissipation is improved even if the size is the same. That is, even if the size is not increased so much, the interval between the light emitting portions in the region that receives more influence from other light emitting portions can be increased. Therefore, it is possible to make the influence of thermal interference smaller than before without increasing the size.

また、S方向に沿って一列に配列された5個の発光部からなる発光部列が、主走査方向に対応するM方向に8列配置されている。そして、M方向に関して、第1発光部列L1と第2発光部列L2との間隔はX4、第2発光部列L2と第3発光部列L3との間隔はX3、第3発光部列L3と第4発光部列L4との間隔はX2、第4発光部列L4と第5発光部列L5との間隔はX1、第5発光部列L5と第6発光部列L6との間隔はX2、第6発光部列L6と第7発光部列L7との間隔はX3、第7発光部列L7と第8発光部列L8との間隔はX4であり、X1>X2>X3>X4である。   In addition, eight light emitting section rows each including five light emitting sections arranged in a line along the S direction are arranged in the M direction corresponding to the main scanning direction. With respect to the M direction, the distance between the first light emitting part row L1 and the second light emitting part row L2 is X4, the distance between the second light emitting part row L2 and the third light emitting part row L3 is X3, and the third light emitting part row L3. And the fourth light emitting unit row L4 are X2, the fourth light emitting unit row L4 and the fifth light emitting unit row L5 are X1, and the fifth light emitting unit row L5 and the sixth light emitting unit row L6 are X2. The distance between the sixth light emitting part row L6 and the seventh light emitting part row L7 is X3, the distance between the seventh light emitting part row L7 and the eighth light emitting part row L8 is X4, and X1> X2> X3> X4. .

これにより、複数の発光部が同時に動作した場合、面発光レーザアレイの周辺部に配置された発光部から発せられた熱が中心部に配置された発光部に与える影響が低減され、中心部に配置された発光部の温度上昇は、複数の発光部がS方向およびM方向に等間隔で配置された場合よりも低減される。従って、各発光部の出力特性を均一化することができ、その結果、高品質な画像形成ができる。また、最も高温となる発光部の温度が低下するため、面発光レーザアレイの寿命を長くすることができる。   As a result, when a plurality of light emitting units operate simultaneously, the influence of heat generated from the light emitting units arranged in the peripheral part of the surface emitting laser array on the light emitting part arranged in the central part is reduced, and the central part is reduced. The temperature rise of the arranged light emitting units is reduced as compared with the case where a plurality of light emitting units are arranged at equal intervals in the S direction and the M direction. Therefore, the output characteristics of each light emitting section can be made uniform, and as a result, high quality image formation can be performed. In addition, since the temperature of the light emitting part that is the highest temperature is lowered, the lifetime of the surface emitting laser array can be extended.

また、発光部列の数は、1つの発光部列を構成する発光部の数よりも多い。これにより、各発光部間の熱干渉の影響低減や、各発光部の配線を通すために必要なスペースを確保しつつ、書込み密度を高くすることができる。   Further, the number of light emitting unit rows is larger than the number of light emitting units constituting one light emitting unit row. As a result, it is possible to increase the writing density while reducing the influence of thermal interference between the light emitting units and securing a space necessary for passing the wiring of each light emitting unit.

また、本実施形態に係る光走査装置1010によると、光源14が、面発光レーザアレイ100を有しているため、結果として、感光体ドラム1030の表面を高密度及び高速で走査することが可能となる。さらに、熱干渉の低減により出力を均一化する制御が容易となる。その結果、出力画像における濃度むらが抑えられ、高品質の画像形成ができる。   Further, according to the optical scanning device 1010 according to the present embodiment, since the light source 14 has the surface emitting laser array 100, as a result, the surface of the photosensitive drum 1030 can be scanned at high density and high speed. It becomes. Furthermore, control for equalizing the output is facilitated by reducing thermal interference. As a result, uneven density in the output image is suppressed, and high-quality image formation can be performed.

ところで、上記隣接走査(図5参照)では、主走査方向における両端が濃く書き込まれる、いわゆる感光体の相反則不軌を生じることがある。しかしながら、本実施形態では、飛び越し走査を行うことができるため、これを低減することができる。   By the way, in the adjacent scanning (see FIG. 5), there is a case where a so-called reciprocity law failure of the photoconductor in which both ends in the main scanning direction are written darkly may occur. However, in this embodiment, since interlaced scanning can be performed, this can be reduced.

また、面発光レーザアレイの寿命が長いので、光源14を含む光源ユニットの再利用が可能である。   Further, since the lifetime of the surface emitting laser array is long, the light source unit including the light source 14 can be reused.

また、本実施形態に係るレーザプリンタ1000によると、光走査装置1010を備えているため、結果として、高精細な画像を高速で形成することが可能となる。   In addition, the laser printer 1000 according to the present embodiment includes the optical scanning device 1010. As a result, a high-definition image can be formed at high speed.

なお、画像の形成速度が従来と同程度で良い場合には、面発光レーザアレイにおける発光部の数を低減することが可能となり、面発光レーザアレイの製造歩留まりが大きく向上するとともに、低コスト化を図ることができる。   If the image formation speed is about the same as the conventional one, it is possible to reduce the number of light emitting portions in the surface emitting laser array, greatly increasing the manufacturing yield of the surface emitting laser array and reducing the cost. Can be achieved.

また、書き込みドット密度が上昇しても印刷速度を落とすことなく印刷することが可能である。   Further, even if the writing dot density increases, printing can be performed without reducing the printing speed.

ところで、例えば、いわゆる書込み光学ユニットに面発光レーザアレイを用いる場合に、発光部の寿命が短いときには、書込み光学ユニットは使い捨てになる。しかしながら、上記面発光レーザアレイ100と同等の面発光レーザアレイは長寿命であるため、面発光レーザアレイ100と同等の面発光レーザアレイを用いた書込み光学ユニットは、再利用が可能となる。従って、資源保護の促進及び環境負荷の低減を図ることができる。なお、このことは、面発光レーザアレイを用いている他の装置にも同様である。   By the way, for example, when a surface emitting laser array is used for a so-called writing optical unit, the writing optical unit is disposable when the life of the light emitting unit is short. However, since the surface emitting laser array equivalent to the surface emitting laser array 100 has a long life, the writing optical unit using the surface emitting laser array equivalent to the surface emitting laser array 100 can be reused. Therefore, promotion of resource protection and reduction of environmental load can be achieved. This also applies to other devices using a surface emitting laser array.

なお、上記実施形態において、前記面発光レーザアレイ100に代えて、図7に示される面発光レーザアレイ100Aを用いても良い。この面発光レーザアレイ100Aは、40個の発光部をS方向に延びる仮想線上に正射影したとき、所定の値をcとすると、発光部ch1〜発光部ch20については等間隔2cであり、発光部ch20と発光部ch21の間隔はcであり、発光部ch21〜発光部ch40については等間隔2cである。この場合には、S方向に関して、発光部ch20と発光部ch21の間隔は他の発光部間隔よりも狭くなるが、S方向に関して、他の発光部間隔が図5(A)の場合の2倍であるため、隣接走査配置の2次元アレイと比べると、大きさが若干大きくなるが、隣接走査配置の2次元アレイよりも放熱性を著しく向上させることができる。そして、この場合における不均等な飛び越し走査が図8に示されている。この場合にも、感光体ドラム1030の表面では副走査方向に対して所定の値cに対応した一定間隔で走査できる。なお、X1=48μm、X2=46.5μm、X3=38.5μm、X4=26μmである。また、この場合には、図6と図8を比較すると明らかなように、上記実施形態と異なり、副走査方向に関して最も離れている発光部ch1と発光部ch40を離して(隣接させずに)書込みを行っているため、ポリゴンミラー13の誤差に起因する副走査方向に関するビームピッチ誤差によるバンディングの影響を低減でき、画質の悪化を低減できる。更に、飛び越し走査をしながらも、副走査方向のトータル距離を短くできるので、副走査方向に関するビームピッチ誤差の低減、光スポットの安定化が実現できる。副走査方向のトータル距離は、40chアレイでは少ししか短くならないが、10chアレイ程度では違いは大きい。   In the above embodiment, a surface emitting laser array 100A shown in FIG. 7 may be used instead of the surface emitting laser array 100. In the surface emitting laser array 100A, when 40 light emitting units are orthogonally projected onto a virtual line extending in the S direction, assuming that a predetermined value is c, the light emitting units ch1 to ch20 are equally spaced 2c. The interval between the part ch20 and the light emitting part ch21 is c, and the light emitting part ch21 to the light emitting part ch40 are equally spaced 2c. In this case, with respect to the S direction, the interval between the light emitting unit ch20 and the light emitting unit ch21 is narrower than other light emitting unit intervals, but with respect to the S direction, the other light emitting unit intervals are twice as large as in the case of FIG. Therefore, the size is slightly larger than that of the two-dimensional array with the adjacent scanning arrangement, but the heat dissipation can be remarkably improved as compared with the two-dimensional array with the adjacent scanning arrangement. FIG. 8 shows unequal interlaced scanning in this case. Also in this case, the surface of the photosensitive drum 1030 can be scanned at a constant interval corresponding to the predetermined value c in the sub-scanning direction. Note that X1 = 48 μm, X2 = 46.5 μm, X3 = 38.5 μm, and X4 = 26 μm. Further, in this case, as is apparent from a comparison between FIG. 6 and FIG. 8, unlike the above embodiment, the light emitting portion ch1 and the light emitting portion ch40 that are farthest apart in the sub-scanning direction are separated (not adjacent). Since writing is performed, the influence of banding due to the beam pitch error in the sub-scanning direction caused by the error of the polygon mirror 13 can be reduced, and deterioration in image quality can be reduced. Further, since the total distance in the sub-scanning direction can be shortened while performing interlaced scanning, it is possible to reduce the beam pitch error in the sub-scanning direction and stabilize the light spot. The total distance in the sub-scanning direction is only a little shorter with the 40ch array, but the difference is large with about 10ch array.

ここで、不均等な飛び越し走査配置の均等な飛び越し走査配置に対するメリットを図9〜図13を用いて説明する。なお、ここでは、わかりやすくするため、2回の主走査で副走査方向を埋める方式(「2回走査方式」と略述する)について説明するが、3回以上の複数回の主走査で副走査方向を埋めても良い。但し、3回以上の主走査で埋める方式では、発光部間隔がそれだけ広がってしまうため、大きな光学素子が必要となるとともに光学特性が低下する。そこで、特に発光部数(ch数)が多い場合は、2回走査方式が好ましい。また、例えば特開2003−255247号公報に開示されているように、各発光部を制御する上で、アレイ内の発光部数は、8の倍数等、偶数であることが好ましい。   Here, advantages of the unequal interlaced scanning arrangement over the uniform interlaced scanning arrangement will be described with reference to FIGS. Here, for the sake of clarity, a method of filling the sub-scanning direction with two main scans (abbreviated as “two-time scan method”) will be described here, but the sub-scan is performed with three or more main scans. The scanning direction may be filled. However, in the method of filling with three or more main scans, the interval between the light emitting portions is increased accordingly, so that a large optical element is required and the optical characteristics are deteriorated. Therefore, when the number of light emitting portions (number of channels) is large, the twice scanning method is preferable. Further, for example, as disclosed in Japanese Patent Application Laid-Open No. 2003-255247, in controlling each light emitting unit, the number of light emitting units in the array is preferably an even number such as a multiple of 8.

図9には、偶数個(8ch)の発光部が均等な飛び越し走査配置されている面発光レーザアレイを用いて、均等な飛び越し走査を行う場合が示されている。図10には、奇数個(7ch)の発光部が均等な飛び越し走査配置されている面発光レーザアレイを用いて、均等な飛び越し走査を行う場合が示されている。図11には、偶数個(8ch)の発光部が不均等な飛び越し走査配置されている面発光レーザアレイを用いて、不均等な飛び越し走査を行う場合が示されている。図12には、奇数個(7ch)の発光部が不均等な飛び越し走査配置されている面発光レーザアレイを用いて、不均等な飛び越し走査を行う場合が示されている。   FIG. 9 shows a case where uniform interlaced scanning is performed using a surface emitting laser array in which an even number (8 ch) of light emitting units are arranged in an even interlaced scanning manner. FIG. 10 shows a case where uniform interlaced scanning is performed using a surface emitting laser array in which an odd number (7 ch) of light emitting units are arranged in an even interlaced scanning manner. FIG. 11 shows a case where uneven scanning is performed using a surface emitting laser array in which an even number (8 ch) of light emitting units are arranged in uneven scanning. FIG. 12 shows a case where uneven scanning is performed using a surface emitting laser array in which an odd number (7 ch) of light emitting units are arranged in uneven scanning.

図9に示されるように、均等な飛び越し走査でアレイ内の発光部数が偶数の場合、走査線は埋められているが主走査毎に副走査方向のずらし量が異なっていることがわかる。副走査方向のずらし量を変則的に変えるには、ポリゴンミラーの回転数、形状、及び感光体ドラムの回転数を変える必要があるが、回転速度や位相を切り替えようとすると、回転ムラが生じてポリゴンミラーでは主走査方向に関する位置ずれ(縦線揺らぎ)、感光体ドラム表面では副走査方向に関する位置ずれ(バンディング等)になってしまい、これらを高精度に制御するのは極めて困難である。そこで、ポリゴンミラーの回転数(主走査速度)や、感光体ドラムの回転数(副走査速度)は書き込み中は一定であることが好ましい。従って、均等な飛び越し走査では、2回走査方式を採用する場合にはアレイ内の発光部数は奇数である必要がある。なお、3回の主走査で埋める方式では、可能であるが上述したように発光部間隔が広がってしまうため好ましくない。   As shown in FIG. 9, when the number of light emitting portions in the array is an even number in the interlace scanning, the scanning lines are filled, but the shift amount in the sub scanning direction is different for each main scanning. In order to change the amount of shift in the sub-scanning direction irregularly, it is necessary to change the rotation speed and shape of the polygon mirror and the rotation speed of the photosensitive drum. However, when switching the rotation speed and phase, uneven rotation occurs. In the polygon mirror, a positional deviation (vertical line fluctuation) in the main scanning direction and a positional deviation (banding or the like) in the sub-scanning direction are caused on the surface of the photosensitive drum, and it is extremely difficult to control these with high accuracy. Therefore, it is preferable that the rotation speed of the polygon mirror (main scanning speed) and the rotation speed of the photosensitive drum (sub-scanning speed) are constant during writing. Therefore, in the case of uniform interlaced scanning, when the two-time scanning method is adopted, the number of light emitting portions in the array needs to be an odd number. Note that the method of filling with three main scans is possible, but it is not preferable because the interval between the light emitting portions increases as described above.

不均等な飛び越し走査では、逆にアレイ内の発光部数は偶数である必要がある。奇数の場合には図12に示されるように、走査線抜けが生じる。   In the case of non-uniform interlaced scanning, the number of light emitting parts in the array needs to be an even number. In the case of an odd number, as shown in FIG.

そこで、偶数個の発光部で飛び越し走査を行うためには、不均等な飛び越し走査配置とすることが好ましい。更には、発光部間隔を広げないで、偶数個の発光部数で飛び越し走査を行うためには、2回走査方式で不均等な飛び越し走査配置とすることが好ましい。   Therefore, in order to perform interlaced scanning with an even number of light emitting units, it is preferable to have an uneven interlaced scanning arrangement. Furthermore, in order to perform interlaced scanning with an even number of light emitting units without increasing the interval between the light emitting units, it is preferable that an unequal interlaced scanning arrangement is performed by the two-time scanning method.

また、上記実施形態において、前記面発光レーザアレイ100に代えて、図13に示される面発光レーザアレイ100Bを用いても良い。   Moreover, in the said embodiment, it may replace with the said surface emitting laser array 100, and may use the surface emitting laser array 100B shown by FIG.

この面発光レーザアレイ100Bは、40個の発光部をS方向に延びる仮想線上に正射影したとき、所定の値をcとすると、発光部ch1〜発光部ch3、発光部ch4〜発光部ch6、発光部ch7〜発光部ch9、発光部ch10〜発光部ch11、発光部ch12〜発光部ch15、発光部ch26〜発光部ch29、発光部ch30〜発光部ch31、発光部ch32〜発光部ch34、発光部ch35〜発光部ch37、発光部ch38〜発光部ch40、については等間隔cである。   In the surface emitting laser array 100B, when 40 light emitting units are orthogonally projected onto an imaginary line extending in the S direction, assuming that a predetermined value is c, the light emitting units ch1 to ch3, the light emitting units ch4 to ch6, Light emitting unit ch7 to light emitting unit ch9, light emitting unit ch10 to light emitting unit ch11, light emitting unit ch12 to light emitting unit ch15, light emitting unit ch26 to light emitting unit ch29, light emitting unit ch30 to light emitting unit ch31, light emitting unit ch32 to light emitting unit ch34, light emitting unit Ch35 to light emitting part ch37 and light emitting part ch38 to light emitting part ch40 are equally spaced c.

また、発光部ch3〜発光部ch4、発光部ch6〜発光部ch7、発光部ch9〜発光部ch10、発光部ch15〜発光部ch16、発光部ch29〜発光部ch30、発光部ch31〜発光部ch32、発光部ch34〜発光部ch35、発光部ch37〜発光部ch38、については等間隔2cである。   In addition, light emitting unit ch3 to light emitting unit ch4, light emitting unit ch6 to light emitting unit ch7, light emitting unit ch9 to light emitting unit ch10, light emitting unit ch15 to light emitting unit ch16, light emitting unit ch29 to light emitting unit ch30, light emitting unit ch31 to light emitting unit ch32, The light emitting part ch34 to the light emitting part ch35 and the light emitting part ch37 to the light emitting part ch38 are equally spaced 2c.

そして、発光部ch17〜発光部ch18、発光部ch23〜発光部ch24については等間隔3cであり、発光部ch18〜発光部ch20、発光部ch21〜発光部ch23、については等間隔4cである。   The light emitting portions ch17 to ch18, the light emitting portions ch23 to light emitting portion ch24 are equally spaced 3c, and the light emitting portions ch18 to light emitting portion ch20 and the light emitting portions ch21 to light emitting portion ch23 are equally spaced 4c.

さらに、発光部ch16〜発光部ch17、発光部ch24〜発光部ch25、については等間隔5cであり、発光部ch20〜発光部ch21については間隔7cである。   Further, the light emitting portions ch16 to ch17, the light emitting portions ch24 to the light emitting portions ch25 are equally spaced 5c, and the light emitting portions ch20 to the light emitting portions ch21 are spaced 7c.

この面発光レーザアレイ100Bを用いたときの不均等な飛び越し走査が図14に示されている。この場合にも、感光体ドラム1030の表面では副走査方向に対して所定の値cに対応した一定間隔で走査できる。なお、X1=48μm、X2=46.5μm、X3=38.5μm、X4=26μmである。   FIG. 14 shows non-uniform interlace scanning when this surface emitting laser array 100B is used. Also in this case, the surface of the photosensitive drum 1030 can be scanned at a constant interval corresponding to the predetermined value c in the sub-scanning direction. Note that X1 = 48 μm, X2 = 46.5 μm, X3 = 38.5 μm, and X4 = 26 μm.

また、上記実施形態において、前記面発光レーザアレイ100に代えて、図15に示される面発光レーザアレイ100Cを用いても良い。   In the above embodiment, a surface emitting laser array 100C shown in FIG. 15 may be used instead of the surface emitting laser array 100.

この面発光レーザアレイ100Cは、40個の発光部をS方向に延びる仮想線上に正射影したとき、所定の値をcとすると、発光部ch2〜発光部ch3、発光部ch5〜発光部ch7、発光部ch8〜発光部ch9、発光部ch12〜発光部ch14、発光部ch18〜発光部ch19、発光部ch22〜発光部ch23、発光部ch27〜発光部ch29、発光部ch32〜発光部ch33、発光部ch34〜発光部ch36、発光部ch38〜発光部ch39、については等間隔cである。   In the surface emitting laser array 100C, when 40 light emitting units are orthogonally projected onto an imaginary line extending in the S direction, if a predetermined value is c, the light emitting unit ch2 to the light emitting unit ch3, the light emitting unit ch5 to the light emitting unit ch7, Light emitting unit ch8 to light emitting unit ch9, light emitting unit ch12 to light emitting unit ch14, light emitting unit ch18 to light emitting unit ch19, light emitting unit ch22 to light emitting unit ch23, light emitting unit ch27 to light emitting unit ch29, light emitting unit ch32 to light emitting unit ch33, light emitting unit About ch34-light emission part ch36, and light emission part ch38-light emission part ch39, it is equal interval c.

また、発光部ch1〜発光部ch2、発光部ch4〜発光部ch5、発光部ch7〜発光部ch8、発光部ch9〜発光部ch10、発光部ch11〜発光部ch12、発光部ch14〜発光部ch15、発光部ch17〜発光部ch18、発光部ch23〜発光部ch24、発光部ch26〜発光部ch27、発光部ch29〜発光部ch30、発光部ch31〜発光部ch32、発光部ch33〜発光部ch34、発光部ch36〜発光部ch37、発光部ch39〜発光部ch40、については等間隔2cである。   In addition, light emitting unit ch1 to light emitting unit ch2, light emitting unit ch4 to light emitting unit ch5, light emitting unit ch7 to light emitting unit ch8, light emitting unit ch9 to light emitting unit ch10, light emitting unit ch11 to light emitting unit ch12, light emitting unit ch14 to light emitting unit ch15, Light emitting part ch17 to light emitting part ch18, Light emitting part ch23 to light emitting part ch24, Light emitting part ch26 to Light emitting part ch27, Light emitting part ch29 to Light emitting part ch30, Light emitting part ch31 to Light emitting part ch32, Light emitting part ch33 to Light emitting part ch34, Light emitting part Ch36 to light emitting unit ch37 and light emitting unit ch39 to light emitting unit ch40 are equally spaced 2c.

そして、発光部ch3〜発光部ch4、発光部ch15〜発光部ch16、発光部ch19〜発光部ch22、発光部ch25〜発光部ch26、発光部ch37〜発光部ch38、については等間隔3cであり、発光部ch10〜発光部ch11、発光部ch16〜発光部ch16、発光部ch24〜発光部ch25、発光部ch30〜発光部ch31、については等間隔4cである。   The light emitting unit ch3 to the light emitting unit ch4, the light emitting unit ch15 to the light emitting unit ch16, the light emitting unit ch19 to the light emitting unit ch22, the light emitting unit ch25 to the light emitting unit ch26, and the light emitting unit ch37 to the light emitting unit ch38 are equally spaced 3c. The light emitting unit ch10 to the light emitting unit ch11, the light emitting unit ch16 to the light emitting unit ch16, the light emitting unit ch24 to the light emitting unit ch25, and the light emitting unit ch30 to the light emitting unit ch31 are equally spaced 4c.

この面発光レーザアレイ100Cを用いたときの不均等な飛び越し走査が図16に示されている。この場合にも、感光体ドラム1030の表面では副走査方向に対して所定の値cに対応した一定間隔で走査できる。なお、X1=26μm、X2=70μm、X3=26μm、X4=26μmである。   FIG. 16 shows non-uniform interlace scanning when this surface emitting laser array 100C is used. Also in this case, the surface of the photosensitive drum 1030 can be scanned at a constant interval corresponding to the predetermined value c in the sub-scanning direction. Note that X1 = 26 μm, X2 = 70 μm, X3 = 26 μm, and X4 = 26 μm.

また、上記実施形態において、前記面発光レーザアレイ100に代えて、図17に示される面発光レーザアレイ100Dを用いても良い。   Moreover, in the said embodiment, it may replace with the said surface emitting laser array 100, and may use the surface emitting laser array 100D shown by FIG.

この面発光レーザアレイ100Dは、発光部ch1を最も−S側でかつ最も−M側の位置に配置し、発光部ch40を最も+S側でかつ最も+M側の位置に配置している。そして、40個の発光部をS方向に延びる仮想線上に正射影したとき、所定の値をcとすると、発光部ch1〜発光部ch16については等間隔2cであり、発光部ch16と発光部ch17の間隔は3cであり、発光部ch17〜発光部ch40については等間隔2cである。また、M方向に関して、各発光部列の間隔は等間隔である。   In the surface emitting laser array 100D, the light emitting part ch1 is arranged at the most −S side and the most −M side position, and the light emitting part ch40 is arranged at the most + S side and the most + M side position. When 40 light emitting units are orthogonally projected onto a virtual line extending in the S direction, assuming that a predetermined value is c, the light emitting units ch1 to ch16 are equally spaced 2c, and the light emitting units ch16 and ch17. Is 3c, and the light emitting part ch17 to light emitting part ch40 are equally spaced 2c. Further, with respect to the M direction, the intervals between the light emitting unit rows are equal.

また、上記実施形態において、前記面発光レーザアレイ100に代えて、図18に示される面発光レーザアレイ100Eを用いても良い。   Moreover, in the said embodiment, it may replace with the said surface emitting laser array 100, and may use the surface emitting laser array 100E shown by FIG.

この面発光レーザアレイ100Eは、発光部ch1を最も−S側でかつ最も−M側の位置に配置し、発光部ch40を最も+S側でかつ最も+M側の位置に配置している。そして、40個の発光部をS方向に延びる仮想線上に正射影したとき、所定の値をcとすると、発光部ch1〜発光部ch16については等間隔2cであり、発光部ch16と発光部ch17の間隔はcであり、発光部ch17〜発光部ch40については等間隔2cである。また、M方向に関して、各発光部列の間隔は等間隔である。   In the surface emitting laser array 100E, the light emitting part ch1 is arranged at the most −S side and the most −M side position, and the light emitting part ch40 is arranged at the most + S side and the most + M side position. When 40 light emitting units are orthogonally projected onto a virtual line extending in the S direction, assuming that a predetermined value is c, the light emitting units ch1 to ch16 are equally spaced 2c, and the light emitting units ch16 and ch17. Is c, and the light emitting portion ch17 to light emitting portion ch40 are equally spaced 2c. Further, with respect to the M direction, the intervals between the light emitting unit rows are equal.

また、上記実施形態では、画像形成装置としてレーザプリンタ1000の場合について説明したが、これに限定されるものではない。要するに、光走査装置1010を備えた画像形成装置であれば、高精細な画像を高速で形成することが可能となる。   In the above embodiment, the laser printer 1000 is described as the image forming apparatus. However, the present invention is not limited to this. In short, an image forming apparatus including the optical scanning device 1010 can form a high-definition image at high speed.

例えば、前記光走査装置1010を備え、レーザ光によって発色する媒体(例えば、用紙)に直接、レーザ光を照射する画像形成装置であっても良い。   For example, an image forming apparatus that includes the optical scanning device 1010 and that directly irradiates laser light onto a medium (for example, paper) that develops color with laser light may be used.

また、像担持体として銀塩フィルムを用いた画像形成装置であっても良い。この場合には、光走査により銀塩フィルム上に潜像が形成され、この潜像は通常の銀塩写真プロセスにおける現像処理と同等の処理で可視化することができる。そして、通常の銀塩写真プロセスにおける焼付け処理と同等の処理で印画紙に転写することができる。このような画像形成装置は光製版装置や、CTスキャン画像等を描画する光描画装置として実施できる。   Further, an image forming apparatus using a silver salt film as the image carrier may be used. In this case, a latent image is formed on the silver salt film by optical scanning, and this latent image can be visualized by a process equivalent to a developing process in a normal silver salt photographic process. Then, it can be transferred to photographic paper by a process equivalent to a printing process in a normal silver salt photographic process. Such an image forming apparatus can be implemented as an optical plate making apparatus or an optical drawing apparatus that draws a CT scan image or the like.

また、多色のカラー画像を形成する画像形成装置であっても、カラー画像に対応した光走査装置を用いることにより、高精細な画像を高速で形成することが可能となる。   In addition, even an image forming apparatus that forms a multicolor image can form a high-definition image at high speed by using an optical scanning device that supports color images.

例えば、図19に示されるように、カラー画像に対応し、複数の感光体ドラムを備えるタンデムカラー機1500であっても良い。このタンデムカラー機1500は、ブラック(K)用の感光体ドラムK1、帯電器K2、現像器K4、クリーニング手段K5、及び転写用帯電手段K6と、シアン(C)用の感光体ドラムC1、帯電器C2、現像器C4、クリーニング手段C5、及び転写用帯電手段C6と、マゼンタ(M)用の感光体ドラムM1、帯電器M2、現像器M4、クリーニング手段M5、及び転写用帯電手段M6と、イエロー(Y)用の感光体ドラムY1、帯電器Y2、現像器Y4、クリーニング手段Y5、及び転写用帯電手段Y6と、光走査装置1010Aと、転写ベルト80と、定着手段30などを備えている。   For example, as shown in FIG. 19, a tandem color machine 1500 corresponding to a color image and including a plurality of photosensitive drums may be used. The tandem color machine 1500 includes a black (K) photosensitive drum K1, a charger K2, a developing unit K4, a cleaning unit K5, a transfer charging unit K6, a cyan (C) photosensitive drum C1, a charging unit. A developing unit C2, a developing unit C4, a cleaning unit C5, a transfer charging unit C6, a magenta (M) photosensitive drum M1, a charging unit M2, a developing unit M4, a cleaning unit M5, and a transfer charging unit M6; A yellow (Y) photosensitive drum Y1, a charger Y2, a developing unit Y4, a cleaning unit Y5, a transfer charging unit Y6, an optical scanning device 1010A, a transfer belt 80, a fixing unit 30 and the like are provided. .

光走査装置1010Aは、ブラック用の面発光レーザアレイ、シアン用の面発光レーザアレイ、マゼンタ用の面発光レーザアレイ、イエロー用の面発光レーザアレイを有している。各面発光レーザアレイの複数の面発光レーザは、前記面発光レーザアレイ100〜100Eのいずれかと同様な2次元配列されている。そして、ブラック用の面発光レーザアレイからの光はブラック用の走査光学系を介して感光体ドラムK1に照射され、シアン用の面発光レーザアレイからの光はシアン用の走査光学系を介して感光体ドラムC1に照射され、マゼンタ用の面発光レーザアレイからの光はマゼンタ用の走査光学系を介して感光体ドラムM1に照射され、イエロー用の面発光レーザアレイからの光はイエロー用の走査光学系を介して感光体ドラムY1に照射されるようになっている。   The optical scanning device 1010A includes a surface emitting laser array for black, a surface emitting laser array for cyan, a surface emitting laser array for magenta, and a surface emitting laser array for yellow. A plurality of surface emitting lasers of each surface emitting laser array are two-dimensionally arranged in the same manner as any of the surface emitting laser arrays 100 to 100E. The light from the surface emitting laser array for black is irradiated to the photosensitive drum K1 through the scanning optical system for black, and the light from the surface emitting laser array for cyan passes through the scanning optical system for cyan. The light from the surface emitting laser array for magenta is irradiated to the photosensitive drum C1, and the light from the surface emitting laser array for yellow is irradiated to the photosensitive drum M1 through the magenta scanning optical system. The photosensitive drum Y1 is irradiated through the scanning optical system.

各感光体ドラムは、図19中の矢印の方向に回転し、回転方向に沿ってそれぞれ帯電器、現像器、転写用帯電手段、クリーニング手段が配置されている。各帯電器は、対応する感光体ドラムの表面を均一に帯電する。この帯電器によって帯電された感光体ドラム表面に光走査装置1010Aにより光が照射され、感光体ドラムに静電潜像が形成されるようになっている。そして、対応する現像器により感光体ドラム表面にトナー像が形成される。さらに、対応する転写用帯電手段により、転写ベルト80上の記録紙に各色のトナー像が転写され、最終的に定着手段30により記録紙に画像が定着される。   Each photosensitive drum rotates in the direction of the arrow in FIG. 19, and a charger, a developing device, a transfer charging unit, and a cleaning unit are arranged along the rotation direction. Each charger uniformly charges the surface of the corresponding photosensitive drum. The surface of the photosensitive drum charged by the charger is irradiated with light by the optical scanning device 1010A, and an electrostatic latent image is formed on the photosensitive drum. Then, a toner image is formed on the surface of the photosensitive drum by the corresponding developing device. Further, the toner image of each color is transferred onto the recording paper on the transfer belt 80 by the corresponding transfer charging means, and finally the image is fixed on the recording paper by the fixing means 30.

タンデムカラー機では、各部品の製造誤差や位置誤差等によって色ずれが発生する場合があるが、光走査装置1010Aは、2次元配列された複数の発光部を有しているため、点灯させる発光部を選択することで色ずれの補正精度を高めることができる。   In a tandem color machine, color misregistration may occur due to manufacturing error or position error of each part. However, since the optical scanning device 1010A has a plurality of light emitting units arranged two-dimensionally, the light emission to be turned on. By selecting the part, it is possible to improve the color misregistration correction accuracy.

なお、このタンデムカラー機1500において、光走査装置1010Aに代えて、ブラック用の光走査装置とシアン用の光走査装置とマゼンタ用の光走査装置とイエロー用の光走査装置を用いても良い。要するに、各面発光レーザアレイの複数の面発光レーザが、前記面発光レーザアレイ100〜100Eのいずれかと同様な2次元配列されていれば良い。   In this tandem color machine 1500, instead of the optical scanning device 1010A, a black optical scanning device, a cyan optical scanning device, a magenta optical scanning device, and a yellow optical scanning device may be used. In short, the plurality of surface emitting lasers of each surface emitting laser array need only be two-dimensionally arranged in the same manner as any of the surface emitting laser arrays 100 to 100E.

また、複数の面発光レーザが、前記面発光レーザアレイ100〜100Eのいずれかと同様な2次元配列されている面発光レーザアレイを備えた画像形成装置であれば、光走査装置を備えていない画像形成装置であっても良い。   Further, if the plurality of surface emitting lasers is an image forming apparatus including a two-dimensionally arranged surface emitting laser array similar to any of the surface emitting laser arrays 100 to 100E, the image does not include an optical scanning device. It may be a forming device.

以上説明したように、本発明の面発光レーザアレイによれば、大型化を招くことなく、熱干渉の影響を小さくするのに適している。また、本発明の光走査装置によれば、被走査面を高密度及び高速で走査するのに適している。また、本発明の画像形成装置によれば、高精細な画像を高速で形成するのに適している。   As described above, the surface emitting laser array of the present invention is suitable for reducing the influence of thermal interference without increasing the size. Moreover, the optical scanning device of the present invention is suitable for scanning the surface to be scanned at high density and high speed. The image forming apparatus of the present invention is suitable for forming a high-definition image at high speed.

11a…走査レンズ(走査光学系の一部)、11b…走査レンズ(走査光学系の一部)、13…ポリゴンミラー(偏向器)、14…光源(光源ユニットの一部)、100…面発光レーザアレイ、100A…面発光レーザアレイ、100B…面発光レーザアレイ、100C…面発光レーザアレイ、100D…面発光レーザアレイ、100E…面発光レーザアレイ、1000…レーザプリンタ(画像形成装置)、1010…光走査装置、1010A…光走査装置、1030…感光体ドラム(感光体)、1500…タンデムカラー機(画像形成装置)、K1,C1,M1,Y1…感光体ドラム(感光体)、ch1〜ch40…発光部。   11a: scanning lens (part of scanning optical system), 11b: scanning lens (part of scanning optical system), 13: polygon mirror (deflector), 14: light source (part of light source unit), 100: surface emission Laser array, 100A ... Surface emitting laser array, 100B ... Surface emitting laser array, 100C ... Surface emitting laser array, 100D ... Surface emitting laser array, 100E ... Surface emitting laser array, 1000 ... Laser printer (image forming apparatus), 1010 ... Optical scanning device, 1010A ... Optical scanning device, 1030 ... Photosensitive drum (photosensitive member), 1500 ... Tandem color machine (image forming device), K1, C1, M1, Y1 ... Photosensitive drum (photosensitive member), ch1 to ch40 ... light emitting part.

特開平11−340570号公報JP 11-340570 A 特開平11−354888号公報JP 11-354888 A 特開2005−274755号公報JP 2005-274755 A 特開2005−234510号公報JP 2005-234510 A 特開2001−272615号公報JP 2001-272615 A

Claims (10)

複数の発光部が2次元配列されている面発光レーザアレイにおいて、
前記複数の発光部は、一の方向に延びる仮想線上に正射影したとき、前記仮想線上における間隔が所定の値の自然数倍であり、
前記複数の発光部は、第1の発光部と、前記正射影したときに前記第1の発光部に隣接する第2の発光部と、前記正射影したときに前記第2の発光部に隣接する第3の発光部とを含み、
前記一の方向に関して、前記第1の発光部と前記第2の発光部の間隔は、前記第2の発光部と前記第3の発光部の間隔と異なり、
前記複数の発光部の数は、偶数であることを特徴とする面発光レーザアレイ。
In a surface emitting laser array in which a plurality of light emitting portions are two-dimensionally arranged,
When the plurality of light emitting units are orthogonally projected onto a virtual line extending in one direction, an interval on the virtual line is a natural number multiple of a predetermined value,
The plurality of light emitting units are adjacent to the first light emitting unit, the second light emitting unit adjacent to the first light emitting unit when the orthographic projection is performed, and the second light emitting unit when the orthographic projection is performed. And a third light emitting unit
With respect to the one direction, an interval between the first light emitting unit and the second light emitting unit is different from an interval between the second light emitting unit and the third light emitting unit.
The number of the said several light emission parts is an even number, The surface emitting laser array characterized by the above-mentioned.
前記第1〜第3の発光部は、前記一の方向に関して前記2次元配列の中央部に配置され、
前記第2の発光部と前記第3の発光部は、前記一の方向に直交する方向に関して前記2次元配列の両端近傍に配置され、
前記一の方向に関して、前記第2の発光部と前記第3の発光部の間隔は、前記第1の発光部と前記第2の発光部の間隔よりも狭いことを特徴とする請求項1に記載の面発光レーザアレイ。
The first to third light emitting units are arranged at the center of the two-dimensional array with respect to the one direction,
The second light emitting unit and the third light emitting unit are arranged near both ends of the two-dimensional array with respect to a direction orthogonal to the one direction,
The distance between the second light emitting unit and the third light emitting unit with respect to the one direction is narrower than the interval between the first light emitting unit and the second light emitting unit. The surface emitting laser array described.
前記一の方向に関して、
前記複数の発光部の間隔は、前記2次元配列における端部よりも中央部のほうが広いことを特徴とする請求項1に記載の面発光レーザアレイ。
Regarding the one direction,
2. The surface emitting laser array according to claim 1, wherein an interval between the plurality of light emitting portions is wider in a central portion than in an end portion in the two-dimensional array.
前記一の方向に直交する方向に関して、
前記複数の発光部の間隔は、前記2次元配列における端部よりも中央部のほうが広いことを特徴とする請求項1〜3のいずれか一項に記載の面発光レーザアレイ。
Regarding a direction orthogonal to the one direction,
The surface emitting laser array according to any one of claims 1 to 3, wherein the interval between the plurality of light emitting portions is wider at a central portion than at an end portion in the two-dimensional array.
前記複数の発光部は、前記一の方向に沿って配列された少なくとも2個の発光部からなる発光部列が、前記一の方向に直交する方向に複数列配置され、
前記発光部列の数は、1つの発光部列を構成する発光部の数よりも多いことを特徴とする請求項1〜4のいずれか一項に記載の面発光レーザアレイ。
The plurality of light emitting units are arranged in a plurality of rows in a direction orthogonal to the one direction, and the light emitting unit row composed of at least two light emitting units arranged along the one direction.
5. The surface-emitting laser array according to claim 1, wherein the number of the light emitting unit rows is larger than the number of light emitting units constituting one light emitting unit row.
前記一の方向に関して両端に位置する2つの発光部は、いずれも前記一の方向に直交する方向に関しては、両端を除く位置に配置されていることを特徴とする請求項1〜5のいずれか一項に記載の面発光レーザアレイ。   The two light emitting units located at both ends with respect to the one direction are arranged at positions excluding both ends with respect to a direction orthogonal to the one direction. The surface emitting laser array according to one item. 光によって被走査面を走査する光走査装置であって、
請求項1〜6のいずれか一項に記載の面発光レーザアレイを有し、該面発光レーザアレイの一の方向が副走査方向に対応する方向と一致している光源ユニットと;
前記光源ユニットからの光を偏向する偏向器と;
前記偏向器で偏向された光を前記被走査面上に集光する走査光学系と;を備える光走査装置。
An optical scanning device that scans a surface to be scanned with light,
A light source unit comprising the surface emitting laser array according to claim 1, wherein one direction of the surface emitting laser array coincides with a direction corresponding to a sub-scanning direction;
A deflector for deflecting light from the light source unit;
A scanning optical system for condensing the light deflected by the deflector onto the surface to be scanned.
少なくとも1つの感光体と;
前記少なくとも1つの感光体に対して画像情報が含まれる光を走査する少なくとも1つの請求項7に記載の光走査装置と;を備える画像形成装置。
At least one photoreceptor;
An image forming apparatus comprising: at least one optical scanning device according to claim 7 that scans the at least one photosensitive member with light including image information.
前記画像情報は、多色のカラー画像情報であることを特徴とする請求項8に記載の画像形成装置。   The image forming apparatus according to claim 8, wherein the image information is multicolor color image information. 感光体に画像情報を書き込む際の書き込み光源として請求項1〜6のいずれか一項に記載の面発光レーザアレイを備える画像形成装置。   An image forming apparatus comprising the surface emitting laser array according to any one of claims 1 to 6 as a writing light source for writing image information on a photoconductor.
JP2013002461A 2007-07-13 2013-01-10 Surface emitting laser array, optical scanning device, and image forming apparatus Expired - Fee Related JP5582460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013002461A JP5582460B2 (en) 2007-07-13 2013-01-10 Surface emitting laser array, optical scanning device, and image forming apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007184190 2007-07-13
JP2007184190 2007-07-13
JP2013002461A JP5582460B2 (en) 2007-07-13 2013-01-10 Surface emitting laser array, optical scanning device, and image forming apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008107363A Division JP5177399B2 (en) 2007-07-13 2008-04-17 Surface emitting laser array, optical scanning device, and image forming apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014148430A Division JP2014240967A (en) 2007-07-13 2014-07-22 Surface emission laser array, optical scanning device, and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2013122600A JP2013122600A (en) 2013-06-20
JP5582460B2 true JP5582460B2 (en) 2014-09-03

Family

ID=40441305

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2013002461A Expired - Fee Related JP5582460B2 (en) 2007-07-13 2013-01-10 Surface emitting laser array, optical scanning device, and image forming apparatus
JP2014148430A Pending JP2014240967A (en) 2007-07-13 2014-07-22 Surface emission laser array, optical scanning device, and image forming apparatus
JP2016245017A Expired - Fee Related JP6459076B2 (en) 2007-07-13 2016-12-19 Optical scanning apparatus and image forming apparatus
JP2018200197A Expired - Fee Related JP6660570B2 (en) 2007-07-13 2018-10-24 Surface emitting laser, surface emitting laser device, and optical scanning device
JP2020018393A Active JP7056678B2 (en) 2007-07-13 2020-02-06 Surface emitting laser, surface emitting laser device, optical scanning device and image forming device

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2014148430A Pending JP2014240967A (en) 2007-07-13 2014-07-22 Surface emission laser array, optical scanning device, and image forming apparatus
JP2016245017A Expired - Fee Related JP6459076B2 (en) 2007-07-13 2016-12-19 Optical scanning apparatus and image forming apparatus
JP2018200197A Expired - Fee Related JP6660570B2 (en) 2007-07-13 2018-10-24 Surface emitting laser, surface emitting laser device, and optical scanning device
JP2020018393A Active JP7056678B2 (en) 2007-07-13 2020-02-06 Surface emitting laser, surface emitting laser device, optical scanning device and image forming device

Country Status (1)

Country Link
JP (5) JP5582460B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582460B2 (en) * 2007-07-13 2014-09-03 株式会社リコー Surface emitting laser array, optical scanning device, and image forming apparatus
EP3415357A4 (en) 2016-02-09 2018-12-26 Ricoh Company, Ltd. Image display apparatus and image display method
WO2020027296A1 (en) 2018-08-02 2020-02-06 ローム株式会社 Surface-emitting laser device

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175174A (en) * 1983-03-25 1984-10-03 Hitachi Ltd Light emitting diode array
WO1995008160A1 (en) * 1993-09-15 1995-03-23 Siemens Nixdorf Informationssysteme Aktiengesellschaft Process and arrangement for generating a matrix image on a photosensitive recording medium
JPH07111559A (en) * 1993-10-13 1995-04-25 Dainippon Screen Mfg Co Ltd Device for exposing image and its method
US6144685A (en) * 1996-01-23 2000-11-07 Fuji Xerox Co., Ltd. Two-dimensional surface emitting laser array, two-dimensional surface emitting laser beam scanner, two-dimensional surface emitting laser beam recorder, and two-dimensional surface emitting laser beam recording method
JP3697821B2 (en) * 1997-03-10 2005-09-21 コニカミノルタビジネステクノロジーズ株式会社 Optical beam scanning optical device
US6553044B1 (en) * 1998-10-20 2003-04-22 Quantum Devices, Inc. Method and apparatus for reducing electrical and thermal crosstalk of a laser array
JP2002127493A (en) * 2000-10-19 2002-05-08 Fuji Xerox Co Ltd Imaging apparatus
JP2001358411A (en) * 2001-04-13 2001-12-26 Fuji Xerox Co Ltd Two-dimensional surface light emitting laser array, two- dimensional surface light emitting laser beam scanner, and two-dimensional surface light emitting laser beam recording equipment and method
JP2002347270A (en) * 2001-05-23 2002-12-04 Konica Corp Method and device for reducing image variation in image forming apparatus
KR100525785B1 (en) * 2001-06-15 2005-11-03 엘지전자 주식회사 Filtering method for pixel of image
JP4363015B2 (en) * 2002-09-19 2009-11-11 富士ゼロックス株式会社 Optical scanning device
US20050151828A1 (en) * 2004-01-14 2005-07-14 Xerox Corporation. Xerographic printing system with VCSEL-micro-optic laser printbar
JP4552443B2 (en) * 2004-01-27 2010-09-29 富士ゼロックス株式会社 Surface emitting semiconductor laser array
JP4470668B2 (en) * 2004-09-24 2010-06-02 富士ゼロックス株式会社 Optical scanning apparatus and image forming apparatus
JP4680604B2 (en) * 2005-01-05 2011-05-11 株式会社リコー Optical scanning apparatus and image forming apparatus
JP4548160B2 (en) * 2005-03-15 2010-09-22 富士ゼロックス株式会社 Optical scanning device
JP4539401B2 (en) * 2005-03-28 2010-09-08 富士ゼロックス株式会社 Optical scanning apparatus and image forming apparatus
JP4530922B2 (en) * 2005-06-20 2010-08-25 株式会社リコー Optical scanning apparatus and image forming apparatus
JP4876480B2 (en) * 2005-08-18 2012-02-15 富士ゼロックス株式会社 Surface emitting semiconductor laser array
EP1770836B1 (en) * 2005-09-29 2015-04-22 OSRAM Opto Semiconductors GmbH Laserdiode device, package with at least one laserdiode device and optically pumped laser
US7466331B2 (en) * 2005-12-07 2008-12-16 Palo Alto Research Center Incorporated Bow-free telecentric optical system for multiple beam scanning systems
JP5224159B2 (en) * 2006-04-28 2013-07-03 株式会社リコー Surface emitting laser array, optical scanning device, and image forming apparatus
JP5582460B2 (en) * 2007-07-13 2014-09-03 株式会社リコー Surface emitting laser array, optical scanning device, and image forming apparatus

Also Published As

Publication number Publication date
JP2013122600A (en) 2013-06-20
JP6660570B2 (en) 2020-03-11
JP6459076B2 (en) 2019-01-30
JP2014240967A (en) 2014-12-25
JP2019061245A (en) 2019-04-18
JP2017072851A (en) 2017-04-13
JP2020106843A (en) 2020-07-09
JP7056678B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
JP5177399B2 (en) Surface emitting laser array, optical scanning device, and image forming apparatus
US9035988B2 (en) Light source driving device, light scanning device and image forming apparatus
US7760223B2 (en) Optical scan apparatus and image formation apparatus
JP7056678B2 (en) Surface emitting laser, surface emitting laser device, optical scanning device and image forming device
JP5407880B2 (en) Optical scanning apparatus and image forming apparatus
JP2007269001A (en) Light scanning apparatus, light scanning method, image forming apparatus, color image forming apparatus, program, and recording medium
US20090067882A1 (en) Image forming apparatus, beam scanning apparatus thereof, and method of beam scanning thereof
JP2004276532A (en) Color image forming apparatus
US20050195272A1 (en) Optical scanning apparatus for use in image forming apparatus having plural photosensitive members and semiconductor laser chip for use therein
JP2008275711A (en) Optical scanner and image forming apparatus
JP5879829B2 (en) Surface emitting laser unit, optical scanning device, and image forming apparatus
JP2009023176A (en) Scanning optical device and image forming apparatus
JP6848293B2 (en) Optical scanning device and image forming device
JP5458827B2 (en) Beam pitch adjusting method, optical scanning device, and image forming apparatus
JP2009080457A (en) Optical scanning device, adjustment method and image forming device
JP4508817B2 (en) Exposure head and image forming apparatus using the same
JP4508816B2 (en) Exposure head and image forming apparatus using the same
JP2013160819A (en) Optical scanner and image forming device
JP5203631B2 (en) Light beam scanning apparatus and image forming apparatus
JP2013101252A (en) Scanning optical device and image forming apparatus
JP5659565B2 (en) Optical scanning device, optical scanning method, and image forming apparatus
US20170149994A1 (en) Light scanning unit and image forming apparatus having the same
JP2010089329A (en) Image forming apparatus and image forming system
JP2008209803A (en) Optical scanner and image forming apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140623

R151 Written notification of patent or utility model registration

Ref document number: 5582460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140706

LAPS Cancellation because of no payment of annual fees