JP5581174B2 - Obstacle detection device - Google Patents

Obstacle detection device Download PDF

Info

Publication number
JP5581174B2
JP5581174B2 JP2010239104A JP2010239104A JP5581174B2 JP 5581174 B2 JP5581174 B2 JP 5581174B2 JP 2010239104 A JP2010239104 A JP 2010239104A JP 2010239104 A JP2010239104 A JP 2010239104A JP 5581174 B2 JP5581174 B2 JP 5581174B2
Authority
JP
Japan
Prior art keywords
wave
signal
unit
sampling
obstacle detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010239104A
Other languages
Japanese (ja)
Other versions
JP2012093142A (en
Inventor
直人 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010239104A priority Critical patent/JP5581174B2/en
Publication of JP2012093142A publication Critical patent/JP2012093142A/en
Application granted granted Critical
Publication of JP5581174B2 publication Critical patent/JP5581174B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、反射波を用いて障害物を検知する障害物検知装置に関する。   The present invention relates to an obstacle detection device that detects an obstacle using a reflected wave.

従来から、マイクロ波などの空間を伝播する信号波を用いて障害物を検知することが行われている。例えば、送信回路からの高周波信号をOn/Offしてパルス化するとともに装置外部に向けて送波し、その送波の障害物からの反射波を受信し、送信回路からの高周波信号と受信波とをミキシングするとともにAM検波する。得られた検波波形を微分回路で微分し、正の微分出力から反射波の立上りを検出して受波開始時刻を取得し、送信開始時刻との時間差に基づいて物体までの距離を算出して障害物を検知する障害物検知装置が知られている(例えば、特許文献1参照)。この装置において、時間差の取得のために、のこぎり刃状の波形の電圧−時間変換処理を用いたり、サンプリングパルスのパルス数をカウントしたりする処理が行われている。   Conventionally, an obstacle is detected using a signal wave propagating in a space such as a microwave. For example, the high frequency signal from the transmission circuit is turned on / off to be pulsed and transmitted to the outside of the apparatus, the reflected wave from the obstacle of the transmission is received, and the high frequency signal and the reception wave from the transmission circuit are received. And AM detection. The obtained detection waveform is differentiated by a differentiation circuit, the rising edge of the reflected wave is detected from the positive differential output to obtain the reception start time, and the distance to the object is calculated based on the time difference from the transmission start time. An obstacle detection device that detects an obstacle is known (see, for example, Patent Document 1). In this apparatus, in order to acquire a time difference, a voltage-time conversion process of a sawtooth waveform is performed, or a process of counting the number of sampling pulses is performed.

ここで、図12、図13を参照して、パルスカウンタを用いて時間差を取得し、障害物までの距離を求める従来技術の一般的な例を説明する。時間差取得に関連する回路部分は、図12に示すように、送信部91、受信部92、クロック発生部93、およびカウンタ94を備えたものとなる。受波開始時刻は、例えば、上述のように微分出力などによって検出されているものとする。カウンタ94は、送信部91からの送波開始時刻の情報と受信部92からの受波開始時刻の情報とに基づいて、これらの時刻の間にクロック発生部93が発生したクロックパルス数(nとする)をカウントする。求める時間差δTは、図13(a)(b)に示すように、送信信号と受信信号の立上りの時刻の時間差であり、クロックパルスは、図13(c)に示すように、時間差δTよりも十分短い周期Tcの高周波(周波数fc=1/Tc)のパルス列である。図13(d)に示すように、カウンタ94によって時間差δTの測定値として、時間t1=n/fc=n×Tcが得られる。時間t1は信号波の障害物までの往復時間であり、信号波(電波、光、超音波など)の伝播速度cを用いて、障害物までの距離Lは、L=c×t1/2によって求められる。   Here, with reference to FIG. 12 and FIG. 13, a general example of the related art for obtaining a time difference using a pulse counter and obtaining a distance to an obstacle will be described. As shown in FIG. 12, the circuit portion related to the time difference acquisition includes a transmission unit 91, a reception unit 92, a clock generation unit 93, and a counter 94. For example, it is assumed that the reception start time is detected by differential output as described above. Based on the information on the transmission start time from the transmission unit 91 and the information on the reception start time from the reception unit 92, the counter 94 counts the number of clock pulses (n Count). The obtained time difference δT is the time difference between the rising times of the transmission signal and the reception signal as shown in FIGS. 13A and 13B, and the clock pulse is larger than the time difference δT as shown in FIG. 13C. This is a pulse train of high frequency (frequency fc = 1 / Tc) with a sufficiently short period Tc. As shown in FIG. 13D, the counter 94 obtains the time t1 = n / fc = n × Tc as the measurement value of the time difference δT. The time t1 is a round trip time of the signal wave to the obstacle, and the distance L to the obstacle using the propagation velocity c of the signal wave (radio wave, light, ultrasonic wave, etc.) is L = c × t1 / 2 Desired.

特開2002−365362号公報JP 2002-365362 A

しかしながら、距離Lを求めるために、上述した特許文献1や図12、図13に示されるような時間差δTの測定値である時間t1を用いる障害物検知装置においては、距離精度をより向上するためにクロックパルスの周波数fcをより高周波化する必要がある。上述の距離L=c×t1/2における信号波の伝播速度cは、信号波が電波や光の場合、c≒3×10mである。また、距離の誤差ΔLはΔL=c/fc/2となる。従って、例えばfc=150MHzの場合、ΔL=1mとなる。そして、距離の誤差ΔLを5cmまで向上するには、クロックパルスの周波数をfc=3GHzとする必要がある。電気回路は、一般に周波数が高いほど高価であり、実際の回路構成を高速化すると高価な回路構成となり、経済的ではないという問題がある。 However, in order to obtain the distance L, in the obstacle detection apparatus using the time t1, which is a measured value of the time difference δT as shown in Patent Document 1 and FIGS. In addition, it is necessary to increase the frequency fc of the clock pulse. The propagation speed c of the signal wave at the distance L = c × t1 / 2 is c≈3 × 10 8 m when the signal wave is a radio wave or light. The distance error ΔL is ΔL = c / fc / 2. Therefore, for example, when fc = 150 MHz, ΔL = 1 m. In order to improve the distance error ΔL to 5 cm, it is necessary to set the frequency of the clock pulse to fc = 3 GHz. In general, an electric circuit is more expensive as the frequency is higher. If the actual circuit configuration is increased in speed, it becomes an expensive circuit configuration, which is not economical.

本発明は、上記課題を解消するものであって、光、電波、超音波等の信号波とその反射波とを用いて障害物までの距離を精度良く求めることができる低コストの障害物検知装置を提供することを目的とする。   The present invention solves the above-described problem, and is a low-cost obstacle detection method that can accurately determine the distance to an obstacle using a signal wave such as light, radio wave, or ultrasonic wave and its reflected wave. An object is to provide an apparatus.

上記課題を達成するために、本発明の障害物検知装置は、信号波とその信号波の対象物からの反射波の位相差を求めることにより対象物までの距離を求める障害物検知装置において、正弦波状の信号波を生成する信号生成部と、信号生成部により生成された信号波を対象物に向けて送信する送信部と、送信部から送信された信号波の対象物からの反射波を受信する受信部と、受信部により受信された反射波の信号強度を標本化して標本列を取得するサンプリング部と、標本列における互いに位相が90°異なる2つの標本列の平均値をそれぞれ求め、2つの平均値の比の逆正接値とサンプリング開始のタイミングに依存する既知のパラメータとに基づいて信号波と反射波の位相差を求める演算部と、を備えることを特徴とする。
To achieve the above object, obstacle detecting apparatus of the present invention, in the obstacle detection device for determining the distance to the object by obtaining the phase difference between the reflected waves from the object of the signal wave and the signal wave A signal generation unit that generates a sine wave signal wave, a transmission unit that transmits the signal wave generated by the signal generation unit toward the object, and a reflected wave from the object of the signal wave transmitted from the transmission unit determined a receiving unit for receiving a sampling section that acquires sample row signal strength of the received reflected wave by sampling by the receiver, out of phase with each other in the specimen columns 90 ° two different average values of the sample column, respectively And an arithmetic unit that obtains a phase difference between the signal wave and the reflected wave based on an arctangent value of a ratio of two average values and a known parameter depending on a sampling start timing .

この障害物検知装置において、信号生成部により生成された信号波または受信部により受信された反射波の位相を90°ずらす位相シフト部を備え、サンプリング部は、第1および第2のサンプリング部を有し、第1のサンプリング部は、信号生成部により生成された信号波の周期毎に反射波の信号強度を標本化して第1の標本列を取得し、第2のサンプリング部は、位相シフト部によって信号波または反射波のいずれか一方の位相を90°ずらした上で信号波の周期毎に反射波の信号強度を標本化して第2の標本列を取得し、サンプリング部は、第1および第2の標本列を互いに位相が90°異なる2つの標本列として取得することが好ましい。
The obstacle detection device includes a phase shift unit that shifts the phase of the signal wave generated by the signal generation unit or the reflected wave received by the reception unit by 90 °, and the sampling unit includes the first and second sampling units. A first sampling unit that samples the signal intensity of the reflected wave for each period of the signal wave generated by the signal generation unit to obtain a first sample string, and the second sampling unit includes a phase shift The phase of either the signal wave or the reflected wave is shifted by 90 ° by the unit, the signal intensity of the reflected wave is sampled for each period of the signal wave, and a second sample sequence is obtained . It is preferable to acquire the second sample row as two sample rows whose phases are different from each other by 90 ° .

これらの障害物検知装置において、信号生成部により生成された信号波の周波数を逓倍してなる逓倍波を生成する逓倍部を備え、サンプリング部は、逓倍波の周期毎に反射波の信号強度を標本化して標本列を取得することが好ましい。   These obstacle detection devices include a multiplication unit that generates a multiplied wave obtained by multiplying the frequency of the signal wave generated by the signal generation unit, and the sampling unit calculates the signal intensity of the reflected wave for each cycle of the multiplied wave. It is preferable to obtain a sample string by sampling.

これらの障害物検知装置において、サンプリング部は、標本化に用いるADコンバータを備えていることが好ましい。   In these obstacle detection devices, the sampling unit preferably includes an AD converter used for sampling.

これらの障害物検知装置において、信号生成部は、生成する信号波の周波数を2種類以上の周波数間で切り替え自在であることが好ましい。   In these obstacle detection devices, it is preferable that the signal generation unit can switch the frequency of the signal wave to be generated between two or more types of frequencies.

本発明の障害物検知装置によれば、位相が異なる2系列の標本列の各平均値に基づいて信号波と受信波との位相差を求めるので、高価な高速回路によらずに位相差、従って障害物までの距離を精度良く求めることができ、低コストの障害物検知装置を実現できる。   According to the obstacle detection device of the present invention, since the phase difference between the signal wave and the received wave is obtained based on the average values of the two series of sample sequences having different phases, the phase difference can be obtained without using an expensive high-speed circuit. Accordingly, the distance to the obstacle can be obtained with high accuracy, and a low-cost obstacle detection device can be realized.

本発明の第1の実施形態に係る障害物検知装置のブロック構成図。The block block diagram of the obstruction detection apparatus which concerns on the 1st Embodiment of this invention. (a)(b)は同装置の動作を説明するためのタイミングチャート。(A) and (b) are timing charts for explaining the operation of the apparatus. 第2の実施形態に係る障害物検知装置のブロック構成図。The block block diagram of the obstruction detection apparatus which concerns on 2nd Embodiment. 同装置の変形例を示すブロック構成図。The block block diagram which shows the modification of the apparatus. 第3の実施形態に係る障害物検知装置のブロック構成図。The block block diagram of the obstruction detection apparatus which concerns on 3rd Embodiment. (a)(b)(c)は同装置の動作を説明するためのタイミングチャート。(A) (b) (c) is a timing chart for demonstrating operation | movement of the apparatus. 同装置の変形例を示すブロック構成図。The block block diagram which shows the modification of the apparatus. 同装置の他の変形例を示すブロック構成図。The block block diagram which shows the other modification of the apparatus. 第4の実施形態に係る障害物検知装置のブロック構成図。The block block diagram of the obstruction detection apparatus which concerns on 4th Embodiment. 同装置の変形例を示すブロック構成図。The block block diagram which shows the modification of the apparatus. 第5の実施形態に係る障害物検知装置のブロック構成図。The block block diagram of the obstruction detection apparatus which concerns on 5th Embodiment. 従来の障害物検知装置における一般的な時間差検出部のブロック構成図。The block block diagram of the general time difference detection part in the conventional obstacle detection apparatus. (a)〜(d)は同装置の動作を説明するためのタイミングチャート。(A)-(d) is a timing chart for demonstrating operation | movement of the apparatus.

(第1の実施形態)
以下、本発明の実施形態に係る障害物検知装置について、図面を参照して説明する。図1、図2は第1の実施形態を示す。図1に示すように、本実施形態の障害物検知装置1は、正弦波状の信号波を生成する信号生成部2と、信号波を対象物に向けて送信する送信部3と、信号波の対象物からの反射波を受信する受信部4と、サンプリング部5と、演算部6と、を備える。サンプリング部5は、受信部4で受信された反射波の信号強度を標本化して標本列を取得する。演算部6は、標本列における同位相の標本点毎の信号強度の平均値を求め、平均値のうち互いに位相が90°異なる2つの平均値に基づいて信号波と反射波の位相差(θとする)を求める。障害物検知装置1は、反射波を含む2波、すなわち、送信波と反射波(受信波)の位相差θを測定し、その位相差θと信号波の既知の伝搬速度とから反射体である障害物までの距離を求めること、すなわち障害物を検知することができる。
(First embodiment)
Hereinafter, an obstacle detection device according to an embodiment of the present invention will be described with reference to the drawings. 1 and 2 show a first embodiment. As shown in FIG. 1, the obstacle detection device 1 of the present embodiment includes a signal generation unit 2 that generates a sinusoidal signal wave, a transmission unit 3 that transmits the signal wave toward an object, and a signal wave A receiving unit 4 that receives a reflected wave from an object, a sampling unit 5, and a calculation unit 6 are provided. The sampling unit 5 samples the signal intensity of the reflected wave received by the receiving unit 4 and acquires a sample string. The computing unit 6 obtains an average value of signal intensities for each sample point of the same phase in the sample sequence, and based on two average values of the average values that are 90 ° out of phase with each other, the phase difference (θ ). The obstacle detection device 1 measures a phase difference θ between two waves including a reflected wave, that is, a transmitted wave and a reflected wave (received wave), and uses a reflector from the phase difference θ and a known propagation velocity of the signal wave. The distance to an obstacle can be obtained, that is, the obstacle can be detected.

図2(a)(b)に示すように、送信信号(送信波)は適宜波数分の連続正弦波であり、受信信号(反射波)は送信部3から反射体を経由して受信部4に至る経路長に相当する時間差δTだけ遅延した信号である。送信波の周期を周期Tとすると、時間差δTを用いて、位相差θ=2π×δT/T(ラジアン)となり、逆に時間差δT=T×θ/(2π)となる。サンプリング部5は、互いに位相が90°(π/2ラジアン)異なる2系列の標本列を取得する。各標本列における標本点は、反射波中の同一位相状態における測定値(受信信号強度値)であり、周期T毎の測定値、または周期Tの整数倍毎の測定値である。図2(b)において、図中に白丸で示す測定点のうち、上側の測定点の系列と、下側測定点の系列が、互いに位相が90°異なる標本列である。演算部6は、各標本列における測定値の平均値(それぞれV0,V1とする)を求める。   As shown in FIGS. 2A and 2B, the transmission signal (transmission wave) is a continuous sine wave corresponding to the appropriate wave number, and the reception signal (reflection wave) is transmitted from the transmission unit 3 via the reflector to the reception unit 4. Is a signal delayed by a time difference δT corresponding to the path length leading to. When the period of the transmission wave is a period T, the phase difference θ = 2π × δT / T (radian) is obtained using the time difference δT, and conversely, the time difference δT = T × θ / (2π). The sampling unit 5 acquires two series of sample sequences whose phases are different from each other by 90 ° (π / 2 radians). The sample point in each sample row is a measurement value (received signal intensity value) in the same phase state in the reflected wave, and is a measurement value for each period T or a measurement value for every integer multiple of the period T. In FIG. 2B, among the measurement points indicated by white circles in the drawing, a series of upper measurement points and a series of lower measurement points are sample rows whose phases are 90 ° different from each other. The calculation unit 6 obtains average values (measured as V0 and V1 respectively) of the measurement values in each sample sequence.

次に、平均値V0,V1から、位相差θを求め、障害物までの距離Lを求める方法を説明する。信号波の角周波数をω、初期位相をα、時間変数をtとし、位相差θを用いて、信号波S=A×sin(ωt+α)、反射波R=B×sin(ωt+α+θ)、とする。上述のV0,V1は、下式のように表される。ここでβは、サンプリング開始のタイミングに依存するパラメータであり、一般的に既知、または、設定によりβ=0とすることができる。演算部6は、下記のように、位相差θ、従って時間差δTを算出し、信号波の伝播速度cを用いて距離Lを算出する。
V0=B×sin(β+θ)、
V1=B×sin(β+θ−π/2)=B×cos(β+θ)。
V0/V1=tan(β+θ)。
θ=arctan(V0/V1)−β。
L=c×δT/2=c×T×θ/(4π)。
Next, a method of obtaining the phase difference θ from the average values V0 and V1 and obtaining the distance L to the obstacle will be described. The angular frequency of the signal wave is ω, the initial phase is α, the time variable is t, and using the phase difference θ, the signal wave S = A × sin (ωt + α) and the reflected wave R = B × sin (ωt + α + θ). . The above-described V0 and V1 are represented by the following equations. Here, β is a parameter that depends on the sampling start timing, and is generally known or can be set to β = 0 by setting. The calculation unit 6 calculates the phase difference θ, and thus the time difference δT, as described below, and calculates the distance L using the propagation speed c of the signal wave.
V0 = B × sin (β + θ),
V1 = B × sin (β + θ−π / 2) = B × cos (β + θ).
V0 / V1 = tan (β + θ).
θ = arctan (V0 / V1) −β.
L = c × δT / 2 = c × T × θ / (4π).

本実施形態によると、標本列の平均値を求めるという統計処理を用いて位相差を求めるので、ノイズなどの測定上の影響の少ない位相差の検出を行うことができる。また、信号波と受信波との位相差に基づいて距離を求めるので、高価な高速回路によらずに障害物までの距離を精度良く求めることができ、低コストの障害物検知装置を実現できる。なお、信号波の媒体として電波、光、超音波などを用いることができ、送信部3や受信部4などの障害物検知装置1の各部は、各媒体に応じた構成とされる。例えば、光を媒体とする場合、光強度を正弦波で振幅変調すればよい。送信波の波数、すなわち信号波の長さは、標本点の適切な平均処理に必要な測定点数が得られる長さであればよい。信号波が長すぎると、繰り返し距離測定の繰り返し時間間隔を短縮できなくなるので、測定条件に合わせて信号波の長さを設定する。   According to the present embodiment, the phase difference is obtained by using statistical processing for obtaining the average value of the sample sequence, so that it is possible to detect the phase difference with little influence on measurement such as noise. In addition, since the distance is obtained based on the phase difference between the signal wave and the received wave, the distance to the obstacle can be obtained accurately without using an expensive high-speed circuit, and a low-cost obstacle detection device can be realized. . Note that radio waves, light, ultrasonic waves, and the like can be used as the signal wave medium, and each unit of the obstacle detection apparatus 1 such as the transmission unit 3 and the reception unit 4 is configured according to each medium. For example, when light is used as a medium, the light intensity may be amplitude-modulated with a sine wave. The wave number of the transmission wave, that is, the length of the signal wave may be a length that can obtain the number of measurement points necessary for appropriate averaging of the sample points. If the signal wave is too long, the repetition time interval of the repeated distance measurement cannot be shortened, so the length of the signal wave is set according to the measurement conditions.

(第2の実施形態)
図3、図4は第2の実施形態とその変形例を示す。図3に示すように、本実施形態の障害物検知装置1は、上述の第1の実施形態における障害物検知装置1において、信号波の位相を90°ずらす位相シフト部7をさらに備え、サンプリング部5が、第1および第2のサンプリング部51,52を有するものである。第1のサンプリング部51は、信号波の周期毎に反射波を標本化して第1の標本列を取得し、第2のサンプリング部52は、位相シフト部7によって位相を90°ずらした信号波の周期毎に反射波を標本化して第2の標本列を取得する。また、演算部6は、第1および第2の標本列のそれぞれの平均値を求め、その平均値に基づいて信号波と反射波との位相差を求める。
(Second Embodiment)
3 and 4 show the second embodiment and its modification. As shown in FIG. 3, the obstacle detection apparatus 1 of the present embodiment further includes a phase shift unit 7 that shifts the phase of the signal wave by 90 ° in the obstacle detection apparatus 1 of the first embodiment described above, and performs sampling. The unit 5 includes first and second sampling units 51 and 52. The first sampling unit 51 samples a reflected wave for each period of the signal wave to obtain a first sample row, and the second sampling unit 52 is a signal wave whose phase is shifted by 90 ° by the phase shift unit 7. The reflected wave is sampled for each period to obtain a second sample string. Moreover, the calculating part 6 calculates | requires each average value of a 1st and 2nd sample row | line, and calculates | requires the phase difference of a signal wave and a reflected wave based on the average value.

また、図4に示す変形例の障害物検知装置1は、位相シフト部7が反射波の位相を90°ずらし、第2のサンプリング部52が、信号波の周期毎に、位相を90°ずらした反射波を標本化して第2の標本列を取得するものであり、他は図3に示したもの同じである。本実施形態やその変形例によると、互いに位相が90°異なる2系列の標本列を確実に取得することができる。   Further, in the obstacle detection device 1 of the modification shown in FIG. 4, the phase shift unit 7 shifts the phase of the reflected wave by 90 °, and the second sampling unit 52 shifts the phase by 90 ° for each period of the signal wave. The reflected wave is sampled to obtain the second sample row, and the others are the same as those shown in FIG. According to this embodiment and its modification, it is possible to reliably acquire two series of sample sequences whose phases are different from each other by 90 °.

(第3の実施形態)
図5乃至図8は第3の実施形態とその変形例を示す。図5に示すように、本実施形態の障害物検知装置1は、上述の第1の実施形態における障害物検知装置1において、信号波の周波数を逓倍してなる逓倍波を生成する逓倍部8をさらに備え、サンプリング部5は逓倍波の周期毎に反射波を標本化して標本列を取得する。図6(a)(b)(c)は、4倍逓倍波に基づく標本化の例を示す。この例の場合、信号波の1/4周期毎に、すなわち、π/2の位相間隔の4系列の標本列が得られる。また、そのサンプリングのタイミングは、信号波の位相と同相またはπ/2の倍数だけずれた位相のタイミング(すなわち、上述のβ値が既知で、β=0,π/2,π、または3π/2)となっている。これらの4系列の標本列から4つの平均値が得られる。そこで、互いに位相が90°異なる任意の平均値を用いて位相差θを求めることができる。従って、各標本列における測定値変動の大小比較などによって、測定誤差が少ないと思われる平均値を選択して用いることにより、より精度良く位相差θを求めることができる。図7、図8に示す各変形例は、それぞれ、上述した第2の実施形態の図3、図4における障害物検知装置1において逓倍部8を備えたものである。
(Third embodiment)
5 to 8 show the third embodiment and its modification. As shown in FIG. 5, the obstacle detection device 1 of the present embodiment is a multiplication unit 8 that generates a multiplied wave obtained by multiplying the frequency of the signal wave in the obstacle detection device 1 of the first embodiment described above. The sampling unit 5 samples the reflected wave for each period of the multiplied wave and obtains a sample string. FIGS. 6A, 6B, and 6C show examples of sampling based on a quadruple wave. In the case of this example, four series of sample sequences with a phase interval of π / 2 are obtained every 1/4 period of the signal wave. Further, the sampling timing is the same as the phase of the signal wave or a phase timing shifted by a multiple of π / 2 (that is, the β value is known and β = 0, π / 2, π, or 3π / 2). Four average values are obtained from these four series of sample strings. Therefore, the phase difference θ can be obtained using an arbitrary average value whose phases are different from each other by 90 °. Therefore, the phase difference θ can be obtained with higher accuracy by selecting and using an average value that is considered to have a small measurement error, for example, by comparing the magnitudes of measurement value fluctuations in each sample row. Each modification shown in FIGS. 7 and 8 includes a multiplier 8 in the obstacle detection apparatus 1 in FIGS. 3 and 4 of the second embodiment described above.

(第4の実施形態)
図9、図10は第4の実施形態とその変形例を示す。図9に示すように、本実施形態の障害物検知装置1は、上述の第1の実施形態における障害物検知装置1において、サンプリング部5が、標本化に用いるADコンバータを備えるものである。また、図10に示すように、上述の第3の実施形態における障害物検知装置1において、サンプリング部5にADコンバータを備えたり、その他の実施形態においても、サンプリング部5にADコンバータを備えたりすることができる。このようなADコンバータを備えることにより、標本列をデジタル値として取得することができ、その後の演算部6においてデジタル処理が行えるので、演算部の処理の負荷が少なく、処理が簡便な装置が得られる。
(Fourth embodiment)
9 and 10 show the fourth embodiment and its modification. As shown in FIG. 9, the obstacle detection device 1 of the present embodiment is such that the sampling unit 5 includes an AD converter used for sampling in the obstacle detection device 1 of the first embodiment described above. Further, as shown in FIG. 10, in the obstacle detection device 1 in the above-described third embodiment, the sampling unit 5 includes an AD converter, and in other embodiments, the sampling unit 5 includes an AD converter. can do. By providing such an AD converter, the sample sequence can be acquired as a digital value, and digital processing can be performed in the subsequent calculation unit 6, so that an apparatus with a small processing load and simple processing is obtained. It is done.

(第5の実施形態)
図11は第5の実施形態について示す。本実施形態の障害物検知装置1は、上述の第1の実施形態における障害物検知装置1において、信号生成部2が生成する信号波の周波数をシフトする周波数シフト部2aをさらに備えるものである。信号生成部2と周波数シフト部2aとは、全体で新たな信号生成部20を構成したものと見做すことができる。このような構成により、信号波の周波数が2種類以上の周波数間で切り替え自在である周波数可変の障害物検知装置1が得られる。一般に、送信波と反射波の位相差に基づいて障害物までの距離を求める装置においては、一意的に求めることができる最遠距離が信号波の波長によって制限される。つまり、位相が、1周期内で定義されることに起因して、波長より遠距離では、波長の整数倍の不確定さが伴うことになる。また、長い波長の信号波を用いると、複数周期にわたって十分な標本点数の標本列を得る必要性から、近距離における測定に時間がかかるなどの不具合が発生する。言い換えると、周波数を高くすればする程、距離分解能が高くなり、より正確な測距が可能となる。また、周波数を低くすればする程、1周期の時間が長くなり、より遠距離の対象物の検知が可能となる。本実施形態によれば、周波数シフト部2aを備えて信号波の周波数を切り替えることにより、対象物が遠距離または未検知の場合は周波数を低くしておき、対象物が検出され、近距離でより高い精度が必要な場合、周波数を高くするといった使用方法が可能となる。
(Fifth embodiment)
FIG. 11 shows the fifth embodiment. The obstacle detection device 1 according to the present embodiment further includes a frequency shift unit 2a that shifts the frequency of the signal wave generated by the signal generation unit 2 in the obstacle detection device 1 according to the first embodiment described above. . The signal generation unit 2 and the frequency shift unit 2a can be considered to constitute a new signal generation unit 20 as a whole. With such a configuration, it is possible to obtain the variable-frequency obstacle detection device 1 in which the frequency of the signal wave can be switched between two or more types of frequencies. In general, in a device that determines the distance to an obstacle based on the phase difference between a transmitted wave and a reflected wave, the farthest distance that can be uniquely determined is limited by the wavelength of the signal wave. That is, due to the fact that the phase is defined within one period, an uncertainty of an integral multiple of the wavelength is involved at a distance farther than the wavelength. In addition, when a signal wave having a long wavelength is used, it is necessary to obtain a sample row having a sufficient number of sample points over a plurality of cycles, and thus a problem such as taking a long time for measurement at a short distance occurs. In other words, the higher the frequency, the higher the distance resolution and the more accurate distance measurement becomes possible. In addition, the lower the frequency, the longer the period of one cycle and the longer distance objects can be detected. According to the present embodiment, the frequency shift unit 2a is provided to switch the frequency of the signal wave, thereby lowering the frequency when the object is far away or undetected, and the object is detected. When higher accuracy is required, a usage method of increasing the frequency is possible.

なお、本発明は、上記構成に限られることなく種々の変形が可能であり、上述した各実施形態の構成を互いに組み合わせた構成とすることができる。例えば、第5の実施形態における周波数シフト部2aを備える構成は、第2〜4の実施形態においても適用することができる。上記では、信号生成部2が正弦波状の信号波を生成する旨説明したが、信号波は、正弦波状の信号波に限らず、反射波との間で位相差θを定義できる信号波、例えば、三角波、のこぎり波その他の周期波であればよい。   The present invention is not limited to the above-described configuration, and various modifications are possible, and the configurations of the above-described embodiments can be combined with each other. For example, the configuration including the frequency shift unit 2a in the fifth embodiment can be applied to the second to fourth embodiments. In the above description, it has been described that the signal generation unit 2 generates a sinusoidal signal wave. However, the signal wave is not limited to a sinusoidal signal wave, and a signal wave that can define a phase difference θ with respect to a reflected wave, for example, , Triangular wave, sawtooth wave and other periodic waves.

1 障害物検知装置
2 信号生成部
2a 周波数シフト部
3 送信部
4 受信部
5 サンプリング部
51 第1のサンプリング部
52 第2のサンプリング部
6 演算部
7 位相シフト部
8 逓倍部
T 周期
θ 位相差
DESCRIPTION OF SYMBOLS 1 Obstacle detection apparatus 2 Signal generation part 2a Frequency shift part 3 Transmission part 4 Reception part 5 Sampling part 51 1st sampling part 52 2nd sampling part 6 Calculation part 7 Phase shift part 8 Multiplication part T Period (theta) Phase difference

Claims (5)

信号波とその信号波の対象物からの反射波の位相差を求めることにより対象物までの距離を求める障害物検知装置において、
正弦波状の信号波を生成する信号生成部と、
前記信号生成部により生成された信号波を対象物に向けて送信する送信部と、
前記送信部から送信された信号波の対象物からの反射波を受信する受信部と、
前記受信部により受信された反射波の信号強度を標本化して標本列を取得するサンプリング部と、
前記サンプリング部により取得された標本列における互いに位相が90°異なる2つの標本列の平均値をそれぞれ求め、前記2つの平均値の比の逆正接値とサンプリング開始のタイミングに依存する既知のパラメータとに基づいて前記信号波と前記反射波の位相差を求める演算部と、を備えることを特徴とする障害物検知装置。
The obstacle detection device for determining the distance to the object by obtaining the phase difference between the reflected waves from the object of the signal wave and the signal wave,
A signal generator for generating a sinusoidal signal wave;
A transmission unit that transmits the signal wave generated by the signal generation unit toward an object;
A receiving unit that receives a reflected wave from an object of the signal wave transmitted from the transmitting unit;
A sampling unit that samples the signal intensity of the reflected wave received by the receiving unit to obtain a sample string;
An average value of two samples columns phases are different from each other by 90 ° in the specimens columns acquired by the sampling unit, respectively, and the known parameters depending on the arctangent value and timing of start of sampling ratio of the two averages An obstacle detection device comprising: an arithmetic unit that obtains a phase difference between the signal wave and the reflected wave based on
前記信号生成部により生成された信号波または前記受信部により受信された反射波の位相を90°ずらす位相シフト部を備え、
前記サンプリング部は、第1および第2のサンプリング部を有し、
前記第1のサンプリング部は、前記信号生成部により生成された信号波の周期毎に前記反射波の信号強度を標本化して第1の標本列を取得し、
前記第2のサンプリング部は、前記位相シフト部によって前記信号波または前記反射波のいずれか一方の位相を90°ずらした上で信号波の周期毎に反射波の信号強度を標本化して第2の標本列を取得し、
前記サンプリング部は、前記第1および第2の標本列を前記互いに位相が90°異なる2つの標本列として取得することを特徴とする請求項1に記載の障害物検知装置。
A phase shift unit that shifts the phase of the signal wave generated by the signal generation unit or the reflected wave received by the reception unit by 90 °;
The sampling unit includes first and second sampling units,
The first sampling unit samples the signal intensity of the reflected wave for each period of the signal wave generated by the signal generation unit to obtain a first sample sequence,
The second sampling unit samples the signal intensity of the reflected wave for each period of the signal wave after shifting the phase of either the signal wave or the reflected wave by 90 ° by the phase shift unit. Sample sequence of
The obstacle detection apparatus according to claim 1 , wherein the sampling unit acquires the first and second sample sequences as the two sample sequences whose phases are different from each other by 90 ° .
前記信号生成部により生成された信号波の周波数を逓倍してなる逓倍波を生成する逓倍部を備え、
前記サンプリング部は、前記逓倍波の周期毎に前記反射波の信号強度を標本化して前記標本列を取得することを特徴とする請求項1または請求項2に記載の障害物検知装置。
A multiplier for generating a multiplied wave obtained by multiplying the frequency of the signal wave generated by the signal generator;
The obstacle detection device according to claim 1, wherein the sampling unit samples the signal intensity of the reflected wave for each period of the multiplied wave to acquire the sample string.
前記サンプリング部は、前記標本化に用いるADコンバータを備えていることを特徴とする請求項1乃至請求項3のいずれか一項に記載の障害物検知装置。   The obstacle detection device according to claim 1, wherein the sampling unit includes an AD converter used for the sampling. 前記信号生成部は、生成する信号波の周波数を2種類以上の周波数間で切り替え自在であることを特徴とする請求項1乃至請求項4のいずれか一項に記載の障害物検知装置。   The obstacle detection device according to any one of claims 1 to 4, wherein the signal generation unit is capable of switching a frequency of a signal wave to be generated between two or more types of frequencies.
JP2010239104A 2010-10-25 2010-10-25 Obstacle detection device Expired - Fee Related JP5581174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010239104A JP5581174B2 (en) 2010-10-25 2010-10-25 Obstacle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010239104A JP5581174B2 (en) 2010-10-25 2010-10-25 Obstacle detection device

Publications (2)

Publication Number Publication Date
JP2012093142A JP2012093142A (en) 2012-05-17
JP5581174B2 true JP5581174B2 (en) 2014-08-27

Family

ID=46386639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010239104A Expired - Fee Related JP5581174B2 (en) 2010-10-25 2010-10-25 Obstacle detection device

Country Status (1)

Country Link
JP (1) JP5581174B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10802119B2 (en) 2016-07-26 2020-10-13 Samsung Electronics Co., Ltd. Lidar device and method of measuring distance using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6186882B2 (en) * 2013-05-21 2017-08-30 トヨタ自動車株式会社 Object displacement detection device and object displacement detection method
JP6318774B2 (en) * 2014-03-28 2018-05-09 トヨタ自動車株式会社 Object displacement detection signal processor
JP6835065B2 (en) 2016-03-18 2021-02-24 日本電気株式会社 Information processing equipment, control methods, and programs

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890856A (en) * 1981-11-26 1983-05-30 Toshiba Corp Sampling phase synchronizing circuit
JPH0224590A (en) * 1988-07-13 1990-01-26 Fujitsu Ltd Amplitude-modulation-type apparatus for measuring distance
JPH0793587B2 (en) * 1989-10-17 1995-10-09 日本電気株式会社 Microwave signal processing circuit
JPH04150125A (en) * 1990-10-09 1992-05-22 Nec Corp High frequency reception circuit
JPH04177946A (en) * 1990-11-09 1992-06-25 Sony Corp Digital demodulator
JP3584328B2 (en) * 1995-07-04 2004-11-04 株式会社日立メディコ Ultrasound diagnostic equipment
JPH0961526A (en) * 1995-08-24 1997-03-07 Mitsubishi Heavy Ind Ltd Optical distance-measuring apparatus
JPH1020036A (en) * 1996-06-28 1998-01-23 Toyota Central Res & Dev Lab Inc Method and device for measuring distance
JP3572394B2 (en) * 1999-12-20 2004-09-29 日産自動車株式会社 Radar equipment
JP2002290929A (en) * 2001-03-23 2002-10-04 Matsushita Electric Ind Co Ltd Teletext decoding circuit
JP2002365362A (en) * 2001-06-07 2002-12-18 Mitsubishi Electric Corp Pulse radar device
EP1645890A1 (en) * 2004-10-09 2006-04-12 Leica Geosystems AG Method for measuring distances including the determination of the non-ideal characteristics of the chirp
JP5190866B2 (en) * 2007-09-04 2013-04-24 富士フイルム株式会社 Ranging method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10802119B2 (en) 2016-07-26 2020-10-13 Samsung Electronics Co., Ltd. Lidar device and method of measuring distance using the same

Also Published As

Publication number Publication date
JP2012093142A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
JP5108526B2 (en) Single channel heterodyne distance measurement method
US7777865B2 (en) Time difference measuring device, measuring method, distance measuring device, and distance measuring method
JP4878127B2 (en) Time difference measuring device, distance measuring device, and distance measuring method
EP1560041B1 (en) Processing apparatus for pulsed signal and processing method for pulsed signal and program therefor
JP4464416B2 (en) Lightwave ranging method and ranging device
JP2008524563A5 (en)
CN101828130B (en) Distance measuring equipment and distance measuring method
CN102348998B (en) Distance measurement
JP5581174B2 (en) Obstacle detection device
EP3729013B1 (en) Precision analog-digital converter sampling clock for high accuracy wireless guided wave radar
US20210341524A1 (en) Timing Difference Detection Circuit Capable of Detecting a Phase Difference Between Different Channels
JP2007240485A (en) Pulse radar system and distance measuring method
JP7257105B2 (en) Absolute distance measuring device and method
JP5654253B2 (en) Obstacle detection device
EP3220545B1 (en) Phase measuring device and apparatuses using phase measuring device
JP2012093143A (en) Obstacle detector
JP2011043476A (en) Pulse radar apparatus
JP2005214672A (en) Microwave pulse radar system
RU2360265C1 (en) Method of radar detection of mobile targets with phase selection on range and device to this end
JP2012026853A (en) Distance sensor
JP2007232659A (en) Ultrasonic flowmeter
JP2007218728A (en) Range finder
JP2022095971A (en) Absolute distance measuring device and method therefor
JP4857575B2 (en) Pulse radar equipment
RU2576654C1 (en) Radio measuring device for measuring radial velocity of object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

LAPS Cancellation because of no payment of annual fees