JP5573025B2 - Illumination optical system and projector apparatus using the illumination optical system - Google Patents

Illumination optical system and projector apparatus using the illumination optical system Download PDF

Info

Publication number
JP5573025B2
JP5573025B2 JP2009159482A JP2009159482A JP5573025B2 JP 5573025 B2 JP5573025 B2 JP 5573025B2 JP 2009159482 A JP2009159482 A JP 2009159482A JP 2009159482 A JP2009159482 A JP 2009159482A JP 5573025 B2 JP5573025 B2 JP 5573025B2
Authority
JP
Japan
Prior art keywords
light
optical system
polarization
component
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009159482A
Other languages
Japanese (ja)
Other versions
JP2011013590A (en
Inventor
孝夫 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009159482A priority Critical patent/JP5573025B2/en
Publication of JP2011013590A publication Critical patent/JP2011013590A/en
Application granted granted Critical
Publication of JP5573025B2 publication Critical patent/JP5573025B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明は、照明光学系及びこの照明光学系を用いたプロジェクタ装置に関する。   The present invention relates to an illumination optical system and a projector apparatus using the illumination optical system.

液晶デバイス(LCD,LCOS)やDMD等の表示素子をライトバルブとして用い、その表示画像を投影光学系によりスクリーン等に拡大投影するプロジェクタ装置を小型化するために、表示素子に照明光を照射するための光源には、高輝度白色LEDが用いられる。この高輝度白色LEDは、一般的に青色LEDと、この青色LEDの前面に配置されたYAG(イットリウム・アルミニウム・ガーネット)系の蛍光体層とで実現されていて、蛍光体層は青色LEDの光の一部を吸収して黄色成分の光を発生する。(例えば、特許文献1参照)。   A display element such as a liquid crystal device (LCD, LCOS) or DMD is used as a light valve, and illumination light is irradiated to the display element in order to reduce the size of a projector apparatus that enlarges and projects the display image onto a screen or the like by a projection optical system. For this purpose, a high-intensity white LED is used. This high-intensity white LED is generally realized by a blue LED and a YAG (yttrium, aluminum, garnet) -based phosphor layer disposed in front of the blue LED, and the phosphor layer is a blue LED. Absorbs part of the light and generates yellow component light. (For example, refer to Patent Document 1).

特開2008−268639号公報JP 2008-268639 A

しかしながら、青色LEDの前面に蛍光体層を設けると、この青色LEDから放射する光の方向(発射角度)によって光が透過する蛍光体層内の距離が異なることになり、この白色LEDから得られる白色光の色温度にムラができてしまい、結果としてプロジェクター画面内で色温度が不均一になってしまうという課題があった。   However, when the phosphor layer is provided on the front surface of the blue LED, the distance in the phosphor layer through which the light is transmitted differs depending on the direction of light emitted from the blue LED (emission angle). There has been a problem that the color temperature of the white light becomes uneven, and as a result, the color temperature becomes non-uniform in the projector screen.

本発明はこのような課題に鑑みてなされたものであり、表示素子に照射される照明光(白色光)の色温度を均一にした照明光学系及びこの照明光学系を用いたプロジェクタ装置を提供することを目的とする。   The present invention has been made in view of such a problem, and provides an illumination optical system in which the color temperature of illumination light (white light) irradiated on a display element is made uniform, and a projector apparatus using the illumination optical system. The purpose is to do.

前記課題を解決するために、本発明に係る照明光学系は、光源からの光を略平行光に集光して被照明部材に照射する集光光学系と、この集光光学系と前記被照明部材との間の略平行光が通過する光路上に配置され、透過する光の色温度を変化させる色温度変換部材と、集光光学系と被照明部材との間に配置され、被照明部材に照射される光の偏光方向を揃える偏光変換素子と、を有し、偏光変換素子は、集光光学系からの光が入射する入射面と、偏光方向が揃えられ光が射出する射出面と、を有し、入射面から入射した光のうち、所定の偏光成分の光、及び、所定の偏光成分とは異なる偏光成分の光が所定の偏光成分に変換された光の少なくとも一部が重ならないように射出面から射出するように構成され、色温度変換部材は、入射面に取り付けられ、この入射面に入射する光源からの光は色温度変換部材で色温度が変化して、入射面に入射する光の幅に比べて幅が広い状態で射出面から射出し、色温度変換部材の面積は、射出面から射出した光が照射される被照明部材の面積よりも小さいことを特徴とする。 In order to solve the above-described problems, an illumination optical system according to the present invention includes a condensing optical system that condenses light from a light source into substantially parallel light and irradiates an illuminated member, and A color temperature conversion member that is arranged on an optical path through which substantially parallel light passes between the illumination member and the color temperature of the transmitted light, and is arranged between the condensing optical system and the illumination target member, and is illuminated possess a polarization conversion element to align the polarization directions of light irradiated to a member, the exit surface polarization conversion element, an incident surface which light from the focusing optical system is incident, in which the polarization directions are aligned light emitted And at least part of the light having a predetermined polarization component and the light having a polarization component different from the predetermined polarization component converted into the predetermined polarization component among the light incident from the incident surface. It is configured to emit from the exit surface so that it does not overlap, and the color temperature conversion member is attached to the entrance surface. The light from the light source incident on the incident surface is changed in color temperature by the color temperature conversion member, and is emitted from the emission surface in a state where the width is wider than the width of the light incident on the incident surface. The area of the conversion member is smaller than the area of the illuminated member to which the light emitted from the emission surface is irradiated.

このような照明光学系において、偏光変換素子は、入射面と、入射面から入射した光のうち、P偏光成分の光を透過し、S偏光成分の光を反射する第1の偏光分離面と、射出面の一部分であって、第1の偏光分離面を透過したP偏光成分の光を射出する第1の射出面と、第1の偏光分離面で反射したS偏光成分の光を、P偏光成分の光の射出方向と略同一方向に反射する第2の偏光分離面と、射出面のうち、第1の射出面以外の部分であって、第2の偏光分離面で反射したS偏光成分の光を射出する第2の射出面と、第1の射出面から射出したP偏光成分の光、若しくは、第2の射出面から射出したS偏光成分の光のいずれか一方の偏光面を90°回転させる回転面と、を有することが好ましい。 In such an illumination optical system, the polarization conversion element includes: an incident surface; and a first polarization separation surface that transmits P-polarized component light and reflects S-polarized component light out of light incident from the incident surface; A first exit surface that is a part of the exit surface and emits P-polarized component light that has been transmitted through the first polarization separation surface, and S-polarized component light that is reflected by the first polarization separation surface A second polarization separation surface that reflects in the substantially same direction as the light emission direction of the polarization component light, and S-polarized light that is a portion of the emission surface other than the first emission surface and reflected by the second polarization separation surface The second emission surface that emits the component light and the polarization plane of either the P-polarized component light emitted from the first emission surface or the S-polarized component light emitted from the second emission surface It is preferable to have a rotating surface that rotates 90 °.

また、このような偏光変換素子は、入射面、第1の偏光分離面、第2の偏光分離面、第1の射出面及び第2の射出面を有する偏光分離素子と、回転面を有する半波長板と、を有することが好ましい。   In addition, such a polarization conversion element includes a polarization separation element having an incident surface, a first polarization separation surface, a second polarization separation surface, a first exit surface, and a second exit surface, and a half surface having a rotation surface. It is preferable to have a wave plate.

また、このような照明光学系は、集光光学系と偏光変換素子との間に絞りを有することが好ましい。   Such an illumination optical system preferably has a stop between the condensing optical system and the polarization conversion element.

また、このような照明光学系は、偏光分離面を有し、集光光学系と被照明部材との間の光路上に配置されて、光を偏光分離面で透過若しくは反射させて被照明部材に照射する偏光ビームスプリッタを有することが好ましい。 Further, such an illumination optical system has a polarization separation surface, and is disposed on an optical path between the condensing optical system and the illumination target member, and transmits or reflects light on the polarization separation surface to be illuminated member. It is preferable to have a polarizing beam splitter that irradiates the light beam.

また、このような照明光学系において、集光光学系は、集光レンズ群であることが好ましい。あるいは、集光光学系は、集光ミラーであることが好ましい。   In such an illumination optical system, the condensing optical system is preferably a condensing lens group. Alternatively, the condensing optical system is preferably a condensing mirror.

また、本発明に係るプロジェクタ装置は、光源と、被照明部材である表示素子と、光源の光を表示素子に照射する上述の照明光学系のいずれかと、表示素子で反射した光もしくはこの表示素子を透過した光を集光して表示素子の像を投影する投影レンズ群と、を有する。   In addition, a projector device according to the present invention includes a light source, a display element that is a member to be illuminated, one of the above-described illumination optical systems that irradiates the display element with light from the light source, and light reflected by the display element or the display element. And a projection lens group that projects the image of the display element by condensing the light transmitted through.

このようなプロジェクタ装置において、光源は青色成分の光を放射するLED光源であり、色温度変換部材は、この青色成分の光の一部を吸収して黄色成分の光を放射し、残りを透過させる蛍光体であることが好ましい。
また、このようなプロジェクタ装置において、集光光学系は、青色成分の光に基づいて光学性能が設計されていることが好ましい。
In such a projector device, the light source is an LED light source that emits blue component light, and the color temperature conversion member absorbs part of the blue component light and emits yellow component light, and transmits the rest. The phosphor is preferably made to be a phosphor.
In such a projector apparatus, it is preferable that the condensing optical system is designed with optical performance based on blue component light.

また、このようなプロジェクタ装置において、表示素子は液晶素子であることが好ましい。   In such a projector device, the display element is preferably a liquid crystal element.

本発明に係る照明光学系及びこの照明光学系を用いたプロジェクタ装置を以上のように構成すると、表示素子に照射される照明光(白色光)の色温度を均一にすることができる。   When the illumination optical system according to the present invention and the projector device using the illumination optical system are configured as described above, the color temperature of illumination light (white light) irradiated on the display element can be made uniform.

第1の実施形態に係る照明光学系を有するプロジェクタ装置の説明図である。It is explanatory drawing of the projector apparatus which has the illumination optical system which concerns on 1st Embodiment. 第2の実施形態に係る照明光学系を有するプロジェクタ装置の説明図であって、色温度変換部材を偏光変換素子の入射面に設けた場合を示す。It is explanatory drawing of the projector apparatus which has the illumination optical system which concerns on 2nd Embodiment, Comprising: The case where a color temperature conversion member is provided in the entrance plane of the polarization conversion element is shown. 第2の実施形態に係る照明光学系を有するプロジェクタ装置の説明図であって、色温度変換部材を偏光ビームスプリッタの入射面に設けた場合を示す。It is explanatory drawing of the projector apparatus which has the illumination optical system which concerns on 2nd Embodiment, Comprising: The case where a color temperature conversion member is provided in the entrance plane of the polarization beam splitter is shown.

以下、本発明の好ましい実施形態について図面を参照して説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

[第1の実施形態]
まず、図1を用いて第1の実施形態に係る照明光学系を有するプロジェクタ装置の構成について説明する。このプロジェクタ装置10は、青色成分の光(以下「青色光」と呼ぶ)を放射する単色LEDで構成され、この青色光を照明光として放射する光源1と、この光源1から放射された青色光を白色光に変換して被照明部材である反射型の表示素子5(例えば、LCOS(シリコン基板の上に液晶を形成した反射型の液晶表示パネル))に照射する照明光学系11と、この表示素子5で反射した光の像を実像として投影面(スクリーン等)に拡大投影する投影光学系12と、から構成される。
[First Embodiment]
First, the configuration of a projector apparatus having an illumination optical system according to the first embodiment will be described with reference to FIG. The projector device 10 is composed of a single color LED that emits blue component light (hereinafter referred to as “blue light”), a light source 1 that emits the blue light as illumination light, and a blue light emitted from the light source 1. Illuminating optical system 11 that irradiates the reflective display element 5 (for example, LCOS (reflective liquid crystal display panel in which a liquid crystal is formed on a silicon substrate)) that is a member to be illuminated by converting the light into white light, And a projection optical system 12 that magnifies and projects an image of light reflected by the display element 5 onto a projection surface (screen or the like) as a real image.

照明光学系11は、光源1と表示素子5との間に設けられており、光源1側から順に、集光光学系の一実施形態である集光レンズ群2と、上述のYAG系の蛍光体(以下、「黄色蛍光体」と呼ぶ)からなる色温度変換部材3と、偏光ビームスプリッタ4と、が光軸上にこの順で並んで配置されている。また、投影光学系12は、照明光学系11と偏光ビームスプリッタ4を共用し、表示素子5側から、この偏光ビームスプリッタ4と、投影レンズ群6と、がこの順で光軸上に並んで配置されている。なお、光源1は、青色光を放射する発光部(例えば、LEDチップ)1aと、透明な部材で構成されてこの発光部1aを覆って保護するカバー1bとから構成される。また、色温度変換部材3は、偏光ビームスプリッタ4の光源1側の面に、黄色蛍光体を塗布して構成している。偏光ビームスプリッタ4の光源1側の面は、光軸に略直交する面であり、このような光学部材の面に塗布して蛍光体層とすることにより、この色温度変換部材3を簡単に構成することができる。   The illumination optical system 11 is provided between the light source 1 and the display element 5, and in order from the light source 1 side, the condensing lens group 2 which is an embodiment of the condensing optical system, and the YAG-based fluorescence described above. A color temperature conversion member 3 made of a body (hereinafter referred to as “yellow phosphor”) and a polarizing beam splitter 4 are arranged in this order on the optical axis. The projection optical system 12 shares the illumination optical system 11 and the polarization beam splitter 4, and the polarization beam splitter 4 and the projection lens group 6 are arranged on the optical axis in this order from the display element 5 side. Has been placed. The light source 1 includes a light emitting unit (for example, an LED chip) 1a that emits blue light and a cover 1b that is made of a transparent member and covers and protects the light emitting unit 1a. The color temperature conversion member 3 is configured by applying a yellow phosphor on the surface of the polarizing beam splitter 4 on the light source 1 side. The surface on the light source 1 side of the polarizing beam splitter 4 is a surface substantially orthogonal to the optical axis. By applying the surface of such an optical member to form a phosphor layer, the color temperature conversion member 3 can be easily formed. Can be configured.

このような構成のプロジェクタ装置10において、光源1の発光部1aから放射された照明光(青色光)は、集光レンズ群2で集光されて略平行光に変換された後、色温度変換部材3に入射する。この色温度変換部材3は、入射した青色光の一部を吸収して黄色成分の光(黄色光)を放射し、残りを透過させることにより白色光に変換するものである。そのため、色温度変換部材3に入射した青色光は白色光に変換されて射出し、さらに、偏光ビームスプリッタ4に入射する。そして、この偏光ビームスプリッタ4に入射した白色光のうち、P偏光成分の光は偏光分離面4aを透過してこの偏光ビームスプリッタ4から外部に放射され、S偏光成分の光は偏光分離面4aで反射して表示素子5の表示面5aに照射される。   In the projector device 10 having such a configuration, the illumination light (blue light) emitted from the light emitting unit 1a of the light source 1 is condensed by the condenser lens group 2 and converted into substantially parallel light, and then converted into color temperature. Incident on the member 3. This color temperature conversion member 3 absorbs a part of incident blue light, emits yellow component light (yellow light), and transmits the remaining light to convert it into white light. Therefore, the blue light incident on the color temperature conversion member 3 is converted into white light and emitted, and further incident on the polarization beam splitter 4. Of the white light incident on the polarization beam splitter 4, the P-polarized component light is transmitted through the polarization separation surface 4a and emitted from the polarization beam splitter 4, and the S-polarization component light is emitted from the polarization separation surface 4a. And is irradiated onto the display surface 5a of the display element 5.

本実施の形態に係る表示素子5は、シリコン基板とガラス基板との間に液晶を介在させた液晶パネル(LCOS)であり、シリコン基板上にはTFT等のスイッチング素子や電極が画素の各サブピクセルに対応して設けられている。また、シリコン基板の最表面には光を反射させるアルミ層が形成されている。そして、透明電極が形成されたガラス基板との間に介在する液晶層を電気的に駆動して映像を表示させることができる。不図示の駆動回路から入力される映像信号のレベルに基づいて表示素子5の各画素に設けられた電極への電圧の印加を制御することにより、映像信号のレベルに応じて表示素子5の各電極に電圧が印加されると、液晶層の液晶分子の配列が変化してこの液晶層が位相板の役目を果たすようになる。その結果、電圧印加状態に応じた映像パターンが表示素子5に形成され、空間光変調が行われる。すなわち、表示素子5のガラス基板側から入射したS偏光成分の光は、シリコン基板側の反射面(アルミ層)で反射されて再びガラス基板から射出されるが、その間に白画素部に入射したS偏光成分の光は偏光方向が90°回転されてP偏光成分の光に変調(偏光変換)される。一方、黒画素部に入射したS偏光成分の光は偏光状態が変化せず、S偏光成分のまま射出される。なお、表示素子5は、カラーフィルタを備えたカラー表示のLCOSを用いることで、カラー画像の表示が可能になる。   The display element 5 according to the present embodiment is a liquid crystal panel (LCOS) in which a liquid crystal is interposed between a silicon substrate and a glass substrate, and switching elements such as TFTs and electrodes are provided on each of the sub-pixels on the silicon substrate. It is provided corresponding to the pixel. An aluminum layer that reflects light is formed on the outermost surface of the silicon substrate. Then, the liquid crystal layer interposed between the transparent electrode and the glass substrate can be electrically driven to display an image. By controlling the application of voltage to the electrodes provided in each pixel of the display element 5 based on the level of the video signal input from a drive circuit (not shown), each of the display elements 5 is controlled according to the level of the video signal. When a voltage is applied to the electrodes, the arrangement of liquid crystal molecules in the liquid crystal layer changes, and this liquid crystal layer serves as a phase plate. As a result, a video pattern corresponding to the voltage application state is formed on the display element 5, and spatial light modulation is performed. That is, the S-polarized component light incident from the glass substrate side of the display element 5 is reflected by the reflecting surface (aluminum layer) on the silicon substrate side and is emitted from the glass substrate again, but is incident on the white pixel portion in the meantime. The polarization direction of the S-polarized light component is rotated by 90 ° and modulated (polarized light) into the P-polarized light component. On the other hand, the light of the S-polarized component incident on the black pixel portion is emitted as the S-polarized component without changing the polarization state. The display element 5 can display a color image by using a color display LCOS provided with a color filter.

そして、この表示素子5の表示面5aで反射した光は、再び偏光ビームスプリッタ4に入射する。ここで、表示素子5の黒画素部を透過したS偏光成分の光のほとんどは、偏光分離面4aで反射されて光源1側へと戻る。一方、表示素子5の白画素部で変調されて射出されたP偏光成分の光は偏光分離面4aを透過した後この偏光ビームスプリッタ4から射出され、投影レンズ群6により不図示のスクリーンに投影される。その結果、表示素子5に表示された画像の拡大画像がスクリーン上に投影される。   Then, the light reflected by the display surface 5 a of the display element 5 enters the polarization beam splitter 4 again. Here, most of the S-polarized component light transmitted through the black pixel portion of the display element 5 is reflected by the polarization separation surface 4a and returns to the light source 1 side. On the other hand, the P-polarized component light modulated and emitted from the white pixel portion of the display element 5 is transmitted through the polarization separation surface 4a and then emitted from the polarization beam splitter 4, and projected onto a screen (not shown) by the projection lens group 6. Is done. As a result, an enlarged image of the image displayed on the display element 5 is projected on the screen.

このように、光源1から放射された青色光を白色光に変換するための色温度変換部材3を、照明光が略平行光になるところ、すなわち、照明光(青色光)が入射する偏光ビームスプリッタ4の光源1側の面に配置することにより、青色光が平行光のままこの色温度変換部材3をその厚さ方向に透過するため、この色温度変換部材3内を透過する青色光の透過距離が均一になり、そのため、この色温度変換部材3から射出される白色光の色温度を均一にすることができる。また、光源1から放射された光を屈折力により集光する集光レンズ群2においては、その光学性能を単色の光(青色光)に基づいて設計をすることができるため、収差(特に色収差等)に対する考慮が少なくなり設計の自由度が向上する。なお、以上の説明においては、偏光ビームスプリッタ4の入射側の面に色温度変換部材3を配置した場合について説明したが、この偏光ビームスプリッタ4の表示素子5側の面に配置する(黄色蛍光体を塗布する)ことも可能である。あるいは、偏光ビームスプリッタ4とは独立した光学素子として色温度変換部材3を構成することも可能である(例えば、透明な平行平板状の光学部材の面に黄色蛍光体を塗布して構成する)。この場合も、この色温度変換部材3は、照明光学系11内の、集光レンズ群2と表示素子5との間であって、照明光が略平行光の状態にある光路上に配置することにより、この色温度変換部材3から射出される白色光の色温度を均一にすることができる。   As described above, the color temperature conversion member 3 for converting the blue light emitted from the light source 1 into the white light is used in the case where the illumination light becomes substantially parallel light, that is, a polarized beam on which the illumination light (blue light) is incident. By arranging on the surface of the splitter 4 on the light source 1 side, the blue light is transmitted through the color temperature conversion member 3 in the thickness direction as parallel light, so that the blue light transmitted through the color temperature conversion member 3 is transmitted. The transmission distance becomes uniform, so that the color temperature of the white light emitted from the color temperature conversion member 3 can be made uniform. Further, in the condenser lens group 2 that condenses the light emitted from the light source 1 by refractive power, its optical performance can be designed based on monochromatic light (blue light), and therefore aberration (particularly chromatic aberration). Etc.) and the degree of freedom in design is improved. In the above description, the case where the color temperature conversion member 3 is disposed on the incident side surface of the polarization beam splitter 4 has been described. However, the color temperature conversion member 3 is disposed on the surface of the polarization beam splitter 4 on the display element 5 side (yellow fluorescent light). It is also possible to apply the body. Alternatively, the color temperature conversion member 3 can be configured as an optical element independent of the polarization beam splitter 4 (for example, configured by applying a yellow phosphor on the surface of a transparent parallel plate-shaped optical member). . Also in this case, the color temperature conversion member 3 is disposed between the condenser lens group 2 and the display element 5 in the illumination optical system 11 and on the optical path where the illumination light is in a substantially parallel light state. Thus, the color temperature of the white light emitted from the color temperature conversion member 3 can be made uniform.

なお、表示素子5は、P偏光成分の光で照明して白画素部で空間光変調されたS偏光成分の光を投影レンズ群6で投影するように構成することも可能である。このような構成の場合、偏光ビームスプリッタ4に対して、表示素子5は、照明光が偏光分離面4aを透過して射出する面側に配置され、また、投影光学系6は、この表示素子5で反射された光が偏光分離面4aで反射されて射出される面側に配置される。   The display element 5 can also be configured to project the S-polarized component light, which is illuminated with the P-polarized component light and spatially modulated by the white pixel portion, with the projection lens group 6. In the case of such a configuration, the display element 5 is disposed on the surface side where the illumination light passes through the polarization separation surface 4a and exits with respect to the polarization beam splitter 4, and the projection optical system 6 includes the display element. The light reflected by 5 is arranged on the surface side that is reflected by the polarization separation surface 4a and emitted.

[第2の実施形態]
次に、図2を用いて第2の実施形態に係る照明光学系を有するプロジェクタ装置の構成について説明する。このプロジェクタ装置110も、青色の照明光を放射する光源101と、この光源101から射出した青色光を白色光に変換して反射型の表示素子105に照射する照明光学系111と、この表示素子105で反射した光の像を実像として投影面(スクリーン等)に拡大投影する投影光学系112と、から構成される。
[Second Embodiment]
Next, the configuration of the projector apparatus having the illumination optical system according to the second embodiment will be described with reference to FIG. The projector device 110 also includes a light source 101 that emits blue illumination light, an illumination optical system 111 that converts blue light emitted from the light source 101 into white light, and irradiates the reflective display element 105, and the display element. And a projection optical system 112 that magnifies and projects the image of the light reflected by 105 on a projection surface (screen or the like) as a real image.

照明光学系111は、光源101側から順に、集光光学系の一実施形態である集光レンズ群102と、絞り120と、黄色蛍光体からなる色温度変換部材103と、偏光変換素子121と、偏光ビームスプリッタ104と、が光軸上にこの順で並んで配置されている。また、投影光学系112は、照明光学系111と偏光ビームスプリッタ104を共用し、表示素子105側から、この偏光ビームスプリッタ104と、投影レンズ群106と、がこの順で光軸上に並んで配置されている。上述の第1の実施形態に係る照明光学系11では、光源1から放射されて色温度変換部材3で白色光に変換された照明光は、偏光ビームスプリッタ4を介して表示素子5に照射されるが、この表示素子5に照射される光は、白色光のうち、偏光ビームスプリッタ4の偏光分離面4aで反射されるS偏光成分の光だけである。そのため、光源1から放射される照明光の利用効率が低くなる。そこで、この第2の実施形態に係る照明光学系111では、偏光変換素子121を設け、照明光をS偏光成分の光に揃えている。   The illumination optical system 111 includes, in order from the light source 101 side, a condensing lens group 102 that is an embodiment of the condensing optical system, a diaphragm 120, a color temperature conversion member 103 made of a yellow phosphor, and a polarization conversion element 121. The polarizing beam splitter 104 is arranged in this order on the optical axis. The projection optical system 112 shares the illumination optical system 111 and the polarization beam splitter 104, and the polarization beam splitter 104 and the projection lens group 106 are arranged on the optical axis in this order from the display element 105 side. Has been placed. In the illumination optical system 11 according to the first embodiment described above, the illumination light emitted from the light source 1 and converted into white light by the color temperature conversion member 3 is applied to the display element 5 via the polarization beam splitter 4. However, the light emitted to the display element 5 is only the S-polarized light component reflected by the polarization separation surface 4a of the polarization beam splitter 4 in the white light. Therefore, the utilization efficiency of the illumination light radiated from the light source 1 is lowered. Therefore, in the illumination optical system 111 according to the second embodiment, the polarization conversion element 121 is provided to align the illumination light with the light of the S polarization component.

この偏光変換素子121は、偏光分離素子122と半波長板123とから構成されている。偏光分離素子122は、絞り120の開口と略同一大きさを有し、照明光が垂直に入射する入射面122aと、この入射面122aの略中心部(光軸と交わる点)から、この入射面122aに対して45度の角度でV字状に延びる2枚の第1の偏光分離面122bと、この第1の偏光分離面122bの各々と略平行に配置された2枚の第2の偏光分離面122cと、入射面122aと略同一大きさで、この入射面122aと位置整合されて略平行に配置された第1の射出面122dと、第1の射出面122dの上下に略同一面上に並んで配置された2枚の第2の射出面122eと、を有して構成され、第1の射出面122dの表示素子105側には、この第1の射出面122dと略同一形状を有する半波長板123が取り付けられている。ここで、半波長板123は、透過する光の偏光面を90°回転させる回転面としての機能を有している。また、この照明光学系111において、色温度変換部材103は、偏光分離素子122の入射面122aと略同一大きさを有し、この入射面122aの光源101側の面に設けられている(黄色蛍光体が入射面122aに塗布されている)。   The polarization conversion element 121 includes a polarization separation element 122 and a half-wave plate 123. The polarization separation element 122 has substantially the same size as the aperture of the stop 120, and is incident from an incident surface 122a on which illumination light is incident vertically and a substantially central portion (a point intersecting the optical axis) of the incident surface 122a. Two first polarization separation surfaces 122b extending in a V shape at an angle of 45 degrees with respect to the surface 122a, and two second polarization layers arranged substantially parallel to each of the first polarization separation surfaces 122b A first exit surface 122d, which is substantially the same size as the polarization separation surface 122c and is aligned with the entrance surface 122a and arranged substantially parallel to the entrance surface 122a, is substantially the same as the upper and lower sides of the first exit surface 122d. Two second exit surfaces 122e arranged side by side on the surface, and the display surface 105 side of the first exit surface 122d is substantially the same as the first exit surface 122d. A half-wave plate 123 having a shape is attached. Here, the half-wave plate 123 has a function as a rotation surface that rotates the polarization plane of the transmitted light by 90 °. In the illumination optical system 111, the color temperature conversion member 103 has substantially the same size as the incident surface 122a of the polarization separation element 122, and is provided on the surface of the incident surface 122a on the light source 101 side (yellow). A phosphor is applied to the incident surface 122a).

このような構成のプロジェクタ装置110において、光源101から放射された青色光は、集光レンズ群102で略平行光に変換され、色温度変換部材103に入射し、白色光に変換されて、入射面122aから偏光分離素子122に入射する。なお、偏光分離素子122の光源101側には絞り120が設けられているため、入射面122a上に設けられた色温度変換部材103以外には照明光(青色光)は入射しない。そして、この入射面122aから入射した白色光は、上下に分かれて2枚の第1の偏光分離面122bに入射し、この白色光のうち、P偏光成分の光のほとんどは第1の偏光分離面122bを透過し、S偏光成分の光のほとんどはこの第1の偏光分離面122bで光軸と略垂直方向に反射される。そして、第1の偏光分離面122bを透過したP偏光成分の光は略平行光のまま第1の射出面122dから半波長板123に入射し、この半波長板123により偏光面が90°回転させられてS偏光成分の光として射出される。一方、第1の偏光分離面122bで反射されたS偏光成分の光は、さらに第2の偏光分離面122cで反射されて光軸と略平行な光となり、第2の射出面122eから射出される。すなわち、この偏光変換素子121に入射した白色光は、そのほとんどがS偏光成分の光で構成される白色の平行光として射出される。そのため、偏光ビームスプリッタ104に入射した白色光は、そのほとんどが偏光分離面104aで反射されて表示素子105の表示面105aに照射される。そして、表示素子105の表示面105aで空間光変調がされた光のうち、白画素部を透過したしたP偏光成分の光は、偏光分離面104aを透過した後この偏光ビームスプリッタ104から射出され、投影レンズ群106により不図示のスクリーンに投影される。   In the projector device 110 having such a configuration, the blue light emitted from the light source 101 is converted into substantially parallel light by the condenser lens group 102, enters the color temperature conversion member 103, is converted into white light, and is incident. The light enters the polarization separation element 122 from the surface 122a. Since the diaphragm 120 is provided on the light source 101 side of the polarization separation element 122, illumination light (blue light) does not enter other than the color temperature conversion member 103 provided on the incident surface 122a. Then, the white light incident from the incident surface 122a is divided into upper and lower parts and incident on the two first polarization separation surfaces 122b, and most of the light of the P-polarized component of the white light is the first polarization separation. Most of the S-polarized component light is transmitted through the surface 122b and reflected by the first polarization separation surface 122b in a direction substantially perpendicular to the optical axis. Then, the P-polarized component light transmitted through the first polarization separation surface 122b is incident on the half-wave plate 123 from the first emission surface 122d as substantially parallel light, and the polarization plane is rotated by 90 ° by the half-wave plate 123. And emitted as S-polarized light. On the other hand, the S-polarized component light reflected by the first polarization separation surface 122b is further reflected by the second polarization separation surface 122c to become light substantially parallel to the optical axis, and is emitted from the second exit surface 122e. The That is, most of the white light incident on the polarization conversion element 121 is emitted as white parallel light composed of S-polarized light. For this reason, most of the white light incident on the polarization beam splitter 104 is reflected by the polarization separation surface 104 a and applied to the display surface 105 a of the display element 105. Of the light subjected to spatial light modulation on the display surface 105a of the display element 105, the P-polarized component light that has passed through the white pixel portion passes through the polarization separation surface 104a and is then emitted from the polarization beam splitter 104. The projection lens group 106 projects the image onto a screen (not shown).

このように、プロジェクタ装置110を構成する照明光学系111に偏光変換素子121を設け、光源101から射出した照明光をS偏光成分とP偏光成分の光に分離させて、S偏光成分の光はそのまま射出させ、P偏光成分の光はS偏光成分の光に変換することにより、偏光ビームスプリッタ104の偏光分離面104aを透過して表示素子105に照射されない光を少なくして、照明光の利用効率を高めることができる。これにより、輝度の小さい光源101を用いても明るい画像を投影することができ、光源101で消費される電力を少なくすることができる。また、光源101から放射される光の利用効率を高めることにより、このプロジェクタ装置110の発熱を抑えることができ、このプロジェクタ装置110の小型化が可能となる。   As described above, the polarization conversion element 121 is provided in the illumination optical system 111 constituting the projector device 110, and the illumination light emitted from the light source 101 is separated into S-polarized component light and P-polarized component light. By emitting the light as it is and converting the light of the P-polarized light component into the light of the S-polarized light component, the light that passes through the polarization separation surface 104a of the polarizing beam splitter 104 and is not irradiated on the display element 105 is reduced, and the use of the illumination light Efficiency can be increased. As a result, a bright image can be projected even when the light source 101 with low luminance is used, and the power consumed by the light source 101 can be reduced. Further, by increasing the utilization efficiency of the light emitted from the light source 101, heat generation of the projector device 110 can be suppressed, and the projector device 110 can be downsized.

また、第1の実施形態と同様に、光源101から放射された青色光を白色光に変換するための色温度変換部材103を、照明光が略平行光になるところ、すなわち、偏光変換素子121の入射面122aの光源101側に配置することにより、この色温度変換部材103から射出される白色光の色温度を均一にすることができる。また、光源101から放射された光を屈折力により集光する集光レンズ群102においては、その光学性能を単色の光(青色光)に基づいて設計をすることができるため、収差(特に色収差等)に対する考慮が少なくなり設計の自由度が向上する   Similarly to the first embodiment, the color temperature conversion member 103 for converting the blue light emitted from the light source 101 into white light is used in a place where the illumination light becomes substantially parallel light, that is, the polarization conversion element 121. By arranging the light incident surface 122a on the light source 101 side, the color temperature of the white light emitted from the color temperature conversion member 103 can be made uniform. Further, in the condensing lens group 102 that condenses the light emitted from the light source 101 by refractive power, the optical performance can be designed based on monochromatic light (blue light). Etc.) and the degree of freedom in design is improved.

さらに、第1の実施形態と同様に、色温度変換部材103を配置する位置は、偏光変換素子121の入射面122aに限定されることはない。例えば、図3に示すプロジェクタ装置110′に用いられている照明光学系111′のように、色温度変換部材103′を偏光ビームスプリッタ104の照明光(青色光)が入射する面に配置することも可能である。上述のように、偏光変換素子121から射出されるS偏光成分の光は略平行光であるため、この色温度変換部材103′を透過して射出される白色光の色温度を均一にすることができる。この場合、偏光変換素子121を透過する照明光は青色光であるため、第1及び第2の偏光分離面122b,122cの光学性能を単色の光(青色光)に基づいて設計をすることができ、設計の自由度が向上する。ここで、図3に示すプロジェクタ装置110′において、図2に示すプロジェクタ装置110と同一の機能を有する構成部材については同一の符号を付し詳細な説明を省略する。   Furthermore, as in the first embodiment, the position where the color temperature conversion member 103 is disposed is not limited to the incident surface 122a of the polarization conversion element 121. For example, as in the illumination optical system 111 ′ used in the projector apparatus 110 ′ shown in FIG. 3, the color temperature conversion member 103 ′ is disposed on the surface on which the illumination light (blue light) is incident on the polarization beam splitter 104. Is also possible. As described above, since the S-polarized component light emitted from the polarization conversion element 121 is substantially parallel light, the color temperature of the white light emitted through the color temperature conversion member 103 ′ is made uniform. Can do. In this case, since the illumination light transmitted through the polarization conversion element 121 is blue light, the optical performance of the first and second polarization separation surfaces 122b and 122c can be designed based on monochromatic light (blue light). And the degree of freedom in design is improved. Here, in the projector apparatus 110 ′ shown in FIG. 3, the same reference numerals are given to the constituent members having the same functions as those of the projector apparatus 110 shown in FIG.

ところで、上述の第1の実施形態でも説明したとおり、表示素子105は、P偏光成分の光で照明して白画素部で空間光変調されたS偏光成分の光を投影レンズ群106で投影するように構成することも可能であり、このような構成における偏光ビームスプリッタ104、表示素子105及び投影レンズ群106の配置は第1の実施形態での説明と同様である。また、この場合、偏光変換素子121を構成する半波長板123は、偏光分離素子122の第2の射出面122eに取り付けられ、この第2の射出面122eから射出するS偏光成分の光をP偏光成分の光に変換するように構成される。   By the way, as described in the first embodiment, the display element 105 projects the light of the S-polarized light component that is illuminated with the light of the P-polarized light component and spatially modulated in the white pixel portion by the projection lens group 106. The arrangement of the polarizing beam splitter 104, the display element 105, and the projection lens group 106 in such a configuration is the same as that described in the first embodiment. In this case, the half-wave plate 123 constituting the polarization conversion element 121 is attached to the second exit surface 122e of the polarization separation element 122, and the light of the S-polarized component exiting from the second exit surface 122e is P. It is comprised so that it may convert into the light of a polarization component.

なお、以上の第1及び第2の実施形態に係る照明光学系11,111,111′において、光源1,101から放射された青色光を略平行光に変換する集光光学系として集光レンズ群2,102を用いた場合について説明したが、放物面形状の反射面を有する集光ミラーを用いることも可能である。この場合、放物面の焦点上に光源1,101を配置することにより、略平行光を得ることができる。また、以上の説明においては、表示素子5,105として反射型の液晶素子であるLCOS(Liquid Crystal on Silicon)を例に説明したが、本発明がこの表示素子に限定されることはなく、反射型の表示素子としてはDMD(Digital Mirror Device)を用いることもできるし、透過型の液晶素子であるLCD(Liquid Crystal Display)に適用することも可能である。   In the illumination optical systems 11, 111, and 111 ′ according to the first and second embodiments described above, a condensing lens is used as a condensing optical system that converts blue light emitted from the light sources 1 and 101 into substantially parallel light. Although the case where the groups 2 and 102 are used has been described, it is also possible to use a condensing mirror having a parabolic reflecting surface. In this case, substantially parallel light can be obtained by arranging the light sources 1 and 101 on the focal point of the paraboloid. In the above description, LCOS (Liquid Crystal on Silicon), which is a reflective liquid crystal element, has been described as an example of the display elements 5 and 105. However, the present invention is not limited to this display element, and reflective A DMD (Digital Mirror Device) can be used as the display device of the type, and an LCD (Liquid Crystal Display) which is a transmissive liquid crystal device can also be used.

1,101 光源 2,102 集光レンズ群(集光光学系)
3,103,103′ 色温度変換部材 4,104 偏光ビームスプリッタ
5,105 表示素子(被照明部材) 6,106 投影レンズ群
10,110,110′ プロジェクタ装置 120 絞り
121 偏光変換素子 122 偏光分離素子
122a 入射面 122b 第1の偏光分離面 122c 第2の偏光分離面
122d 第1の射出面 122e 第2の射出面 123 半波長板
1,101 Light source 2,102 Condensing lens group (condensing optical system)
3, 103, 103 'Color temperature conversion member 4, 104 Polarization beam splitter 5, 105 Display element (illuminated member) 6, 106 Projection lens group 10, 110, 110' Projector device 120 Aperture 121 Polarization conversion element 122 Polarization separation element 122a Incident surface 122b First polarization separation surface 122c Second polarization separation surface 122d First exit surface 122e Second exit surface 123 Half-wave plate

Claims (11)

光源からの光を略平行光に集光して被照明部材に照射する集光光学系と、
前記集光光学系と前記被照明部材との間の前記略平行光が通過する光路上に配置され、透過する光の色温度を変化させる色温度変換部材と、
前記集光光学系と前記被照明部材との間に配置され、前記被照明部材に照射される前記光の偏光方向を揃える偏光変換素子と、を有し、
前記偏光変換素子は、前記集光光学系からの光が入射する入射面と、偏光方向が揃えられ光が射出する射出面と、を有し、前記入射面から入射した前記光のうち、所定の偏光成分の光、及び、前記所定の偏光成分とは異なる偏光成分の光が前記所定の偏光成分に変換された光の少なくとも一部が重ならないように前記射出面から射出するように構成され、
前記色温度変換部材は、前記入射面に取り付けられ、前記入射面に入射する光源からの光は前記色温度変換部材で色温度が変化して、前記入射面に入射する光の幅に比べて幅が広い状態で前記射出面から射出し、
前記色温度変換部材の面積は、前記射出面から射出した光が照射される前記被照明部材の面積よりも小さいことを特徴とする照明光学系。
A condensing optical system for condensing the light from the light source into substantially parallel light and irradiating the illuminated member;
A color temperature conversion member that is disposed on an optical path through which the substantially parallel light passes between the condensing optical system and the illumination target member, and changes a color temperature of the transmitted light;
A polarization conversion element that is disposed between the condensing optical system and the illuminated member and aligns the polarization direction of the light irradiated on the illuminated member;
The polarization conversion element has an incident surface on which light from the condensing optical system is incident, and an exit surface on which the polarization direction is aligned, and the light is emitted. The polarization component light and the polarization component light different from the predetermined polarization component are emitted from the exit surface so that at least part of the light converted into the predetermined polarization component does not overlap. ,
The color temperature conversion member is attached to the incident surface, and the light from the light source incident on the incident surface changes in color temperature at the color temperature conversion member, compared to the width of the light incident on the incident surface. Injecting from the exit surface in a wide state,
An illumination optical system, wherein an area of the color temperature conversion member is smaller than an area of the illumination target member irradiated with light emitted from the emission surface.
前記偏光変換素子は、
前記入射面と、
前記入射面から入射した前記光のうち、P偏光成分の光を透過し、S偏光成分の光を反射する第1の偏光分離面と、
前記射出面の一部分であって、前記第1の偏光分離面を透過した前記P偏光成分の光を射出する第1の射出面と、
前記第1の偏光分離面で反射した前記S偏光成分の光を、前記P偏光成分の光の射出方向と略同一方向に反射する第2の偏光分離面と、
前記射出面のうち、前記第1の射出面以外の部分であって、前記第2の偏光分離面で反射した前記S偏光成分の光を射出する第2の射出面と、
前記第1の射出面から射出した前記P偏光成分の光、若しくは、前記第2の射出面から射出した前記S偏光成分の光のいずれか一方の偏光面を90°回転させる回転面と、を有する請求項1に記載の照明光学系。
The polarization conversion element is:
The incident surface;
Of the light incident from the incident surface, a first polarization separation surface that transmits P-polarized component light and reflects S-polarized component light;
A first exit surface that is part of the exit surface and that emits light of the P-polarized component that has passed through the first polarization separation surface;
A second polarization separation surface that reflects the light of the S polarization component reflected by the first polarization separation surface in substantially the same direction as the light emission direction of the P polarization component;
Of the exit surface, a portion other than the first exit surface, the second exit surface for emitting the light of the S-polarized component reflected by the second polarization separation surface,
A rotating surface that rotates the polarization plane of either the P-polarized light component emitted from the first exit surface or the S-polarized component light exited from the second exit surface by 90 °. The illumination optical system according to claim 1.
前記偏光変換素子は、
前記入射面、前記第1の偏光分離面、前記第2の偏光分離面、前記第1の射出面及び前記第2の射出面を有する偏光分離素子と、
前記回転面を有する半波長板と、を有する請求項2に記載の照明光学系。
The polarization conversion element is:
A polarization separation element having the entrance surface, the first polarization separation surface, the second polarization separation surface, the first exit surface, and the second exit surface;
The illumination optical system according to claim 2, further comprising a half-wave plate having the rotation surface.
前記集光光学系と前記偏光変換素子との間に絞りを有する請求項1〜3のいずれか一項に記載の照明光学系。   The illumination optical system according to any one of claims 1 to 3, further comprising a stop between the condensing optical system and the polarization conversion element. 偏光分離面を有し、前記集光光学系と前記被照明部材との間の光路上に配置されて、前記光を前記偏光分離面で透過若しくは反射させて前記被照明部材に照射する偏光ビームスプリッタを有する請求項1〜4のいずれか一項に記載の照明光学系。 A polarized beam that has a polarization separation surface, is disposed on an optical path between the condensing optical system and the illumination target member, and irradiates the illumination member by transmitting or reflecting the light on the polarization separation surface. The illumination optical system according to claim 1, further comprising a splitter. 前記集光光学系は、集光レンズ群である請求項1〜5のいずれか一項に記載の照明光学系。   The illumination optical system according to claim 1, wherein the condensing optical system is a condensing lens group. 前記集光光学系は、集光ミラーである請求項1〜5のいずれか一項に記載の照明光学系。   The illumination optical system according to claim 1, wherein the condensing optical system is a condensing mirror. 光源と、
被照明部材である表示素子と、
前記光源の光を前記表示素子に照射する請求項1〜7のいずれか一項に記載の照明光学系と、
前記表示素子で反射した前記光もしくは前記表示素子を透過した前記光を集光して前記表示素子の像を投影する投影レンズ群と、を有するプロジェクタ装置。
A light source;
A display element that is an illuminated member;
The illumination optical system according to any one of claims 1 to 7, wherein the display element is irradiated with light from the light source;
And a projection lens group configured to collect the light reflected by the display element or the light transmitted through the display element and project an image of the display element.
前記光源は青色成分の光を放射するLED光源であり、
前記色温度変換部材は、前記青色成分の光の一部を吸収して黄色成分の光を放射し、残りを透過させる蛍光体である請求項8に記載のプロジェクタ装置。
The light source is an LED light source that emits light of a blue component,
The projector according to claim 8, wherein the color temperature conversion member is a phosphor that absorbs part of the blue component light, emits yellow component light, and transmits the remaining light.
前記集光光学系は、青色成分の光に基づいて光学性能が設計されている請求項9に記載のプロジェクタ装置。   The projector apparatus according to claim 9, wherein the condensing optical system is designed with optical performance based on light of a blue component. 前記表示素子は液晶素子である請求項8〜10のいずれか一項に記載のプロジェクタ装置。   The projector device according to claim 8, wherein the display element is a liquid crystal element.
JP2009159482A 2009-07-06 2009-07-06 Illumination optical system and projector apparatus using the illumination optical system Expired - Fee Related JP5573025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009159482A JP5573025B2 (en) 2009-07-06 2009-07-06 Illumination optical system and projector apparatus using the illumination optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009159482A JP5573025B2 (en) 2009-07-06 2009-07-06 Illumination optical system and projector apparatus using the illumination optical system

Publications (2)

Publication Number Publication Date
JP2011013590A JP2011013590A (en) 2011-01-20
JP5573025B2 true JP5573025B2 (en) 2014-08-20

Family

ID=43592509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009159482A Expired - Fee Related JP5573025B2 (en) 2009-07-06 2009-07-06 Illumination optical system and projector apparatus using the illumination optical system

Country Status (1)

Country Link
JP (1) JP5573025B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5707968B2 (en) * 2011-01-24 2015-04-30 セイコーエプソン株式会社 Lighting device and projector
JP5928559B2 (en) * 2014-11-19 2016-06-01 セイコーエプソン株式会社 Lighting device and projector

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1138901A (en) * 1997-07-23 1999-02-12 Toshiba Corp Display device
JP3585097B2 (en) * 1998-06-04 2004-11-04 セイコーエプソン株式会社 Light source device, optical device and liquid crystal display device
JP2001318359A (en) * 2000-05-08 2001-11-16 Matsushita Electric Ind Co Ltd Liquid crystal projector
JP2002049326A (en) * 2000-08-02 2002-02-15 Fuji Photo Film Co Ltd Plane light source and display element using the same
JP4604458B2 (en) * 2003-04-25 2011-01-05 セイコーエプソン株式会社 Projection display
JP2005025136A (en) * 2003-07-04 2005-01-27 Olympus Corp Light source device
JP2006220762A (en) * 2005-02-08 2006-08-24 Victor Co Of Japan Ltd Projection type image display device
JP2007218956A (en) * 2006-02-14 2007-08-30 Sharp Corp Projection type image display apparatus
JP4586743B2 (en) * 2006-02-20 2010-11-24 セイコーエプソン株式会社 projector
JP4742349B2 (en) * 2009-06-30 2011-08-10 カシオ計算機株式会社 Light source device and projector

Also Published As

Publication number Publication date
JP2011013590A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP6056001B2 (en) Light source device and projection display device
JP3747621B2 (en) Color projection display device
JP5494678B2 (en) Illumination optical system and projector apparatus
US9423680B2 (en) Light source apparatus that irradiates a phosphor layer with excitation light and projector
JPH11234598A (en) Polarized lighting device and projection type display device
WO1998008118A1 (en) Polarized light separating/combining optical element, polarized light illuminating apparatus and projection-type display device
WO2016167110A1 (en) Illumination device and projection-type display apparatus
JP5217823B2 (en) Projector device
CN112987470B (en) Light source device and projector
JP4725456B2 (en) Solid state light source and projector
JPWO2020054397A1 (en) Light source device and projection type image display device
JPWO2020012751A1 (en) Light source device and projection type display device
JP5573025B2 (en) Illumination optical system and projector apparatus using the illumination optical system
JP5277821B2 (en) Polarization conversion element, illumination optical system, and projector apparatus
JP5217822B2 (en) Projector device
CN114114810A (en) Light source device, image display device, and projector
JP4893780B2 (en) LIGHTING DEVICE AND PROJECTOR HAVING THE SAME
JP3512368B2 (en) Image projection device
US7837331B2 (en) Illuminator and projector with increased illumination efficiency
JP2006003636A (en) Illumination optical system and projection display device using same
JP2006337428A (en) Illuminating optical system, optical engine and projection image display apparatus
JP5088423B2 (en) Solid state light source and projector
JP4487484B2 (en) LIGHTING DEVICE AND PROJECTOR HAVING THE SAME
JP2002122812A (en) Illumination optical device and projection display device
JP2001108940A (en) Illuminator and projection type display device using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5573025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees