JP5555910B2 - Photoacoustic measurement system - Google Patents

Photoacoustic measurement system Download PDF

Info

Publication number
JP5555910B2
JP5555910B2 JP2008544136A JP2008544136A JP5555910B2 JP 5555910 B2 JP5555910 B2 JP 5555910B2 JP 2008544136 A JP2008544136 A JP 2008544136A JP 2008544136 A JP2008544136 A JP 2008544136A JP 5555910 B2 JP5555910 B2 JP 5555910B2
Authority
JP
Japan
Prior art keywords
sample
frequency
vibration
attached
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008544136A
Other languages
Japanese (ja)
Other versions
JPWO2008059812A1 (en
Inventor
洋人 立野
Original Assignee
国立大学法人 鹿児島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 鹿児島大学 filed Critical 国立大学法人 鹿児島大学
Priority to JP2008544136A priority Critical patent/JP5555910B2/en
Publication of JPWO2008059812A1 publication Critical patent/JPWO2008059812A1/en
Application granted granted Critical
Publication of JP5555910B2 publication Critical patent/JP5555910B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • G01N29/245Ceramic probes, e.g. lead zirconate titanate [PZT] probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1706Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids in solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1708Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids with piezotransducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • G01N2021/1729Piezomodulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force

Description

本発明は、光音響測定システムに関し、特に、光音響効果を利用して、測定対象の試料の状態を観察可能にするために用いて好適なものである。   The present invention relates to a photoacoustic measurement system, and is particularly suitable for use in order to make it possible to observe the state of a sample to be measured using a photoacoustic effect.

一般に、試料表面に断続する励起光(以下、断続光と称する)が照射されると、試料表面に温度変化が発生し、音波が発生する。このような現象を光音響効果といい、この光音響効果を利用して試料の画像を得るようにした光音響顕微鏡が提案されている。
特許文献1では、マイクロフォンにより光音響波を検出し、検出した光音響波に基づいて、試料の画像(光音響像)をテレビモニタに表示する光音響顕微鏡が開示されている。
In general, when intermittent excitation light (hereinafter referred to as intermittent light) is irradiated on the sample surface, a temperature change occurs on the sample surface, and a sound wave is generated. Such a phenomenon is called a photoacoustic effect, and a photoacoustic microscope has been proposed in which an image of a sample is obtained using the photoacoustic effect.
Patent Document 1 discloses a photoacoustic microscope that detects a photoacoustic wave with a microphone and displays an image (photoacoustic image) of a sample on a television monitor based on the detected photoacoustic wave.

しかしながら、従来の技術では、音波物性のうち、音響減衰係数のみを捉えているので、試料の詳細な情報を得ることが困難であるという問題点があった。   However, the conventional technique has a problem that it is difficult to obtain detailed information of the sample because only the acoustic attenuation coefficient is captured among the acoustic wave properties.

特開平4−213053号公報JP-A-4-213053

本発明は、このような問題点に鑑みてなされたものであり、光音響効果を利用して、従来よりも試料の詳細な情報が得られるようにすることを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to make it possible to obtain more detailed information about a sample than in the past by using a photoacoustic effect.

本発明の光音響測定システムは、試料に取り付けられ、前記試料の振動を検出する振動検出素子と、前記振動検出素子が取り付けられた試料に対して、任意の断続周期の励起光を照射する光音響顕微鏡と、前記光音響顕微鏡に対し、前記断続周期の励起光を与える発光手段と、前記試料の前記振動検出素子が取り付けられている面から、前記断続周期の励起光によって前記試料の内部に励起される光音響波源の任意の一点にある物質までの間にある媒質と前記振動検出素子との複合共鳴周波数の周波数を求めるために、前記振動検出素子で検出された前記試料の振動を示す音響信号を相関検波する相関検波手段を有する周波数導出手段であって、前記複合共鳴周波数を、前記相関検波手段により相関検波された音響信号のcos成分がゼロになる周波数として求める周波数導出手段と、前記周波数導出手段により求められた複合共鳴周波数で、前記断続周期の励起光が前記振動検出素子に取り付けられた試料に対して照射されるように、前記発光手段を制御する制御手段と、前記周波数導出手段により求められた複合共鳴周波数を用いて、前記試料における音速、及び前記試料のヤング率の少なくとも何れか一方を音波物性として求める第1の音波物性導出手段と、前記試料の前記振動検出素子が取り付けられている面から前記試料に含まれる前記物質までの深さを音波物性として求める第2の音波物性導出手段と、を有し、前記周波数導出手段は、前記試料に含まれる前記物質の量子力学的吸収波長を有する前記断続周期の励起光が、前記振動検出素子に取り付けられた試料に照射された場合の前記複合共鳴周波数を求める第1の周波数導出手段と、前記試料に含まれる前記物質の内部に到達しない波長を有する前記断続周期の励起光が前記振動検出素子に取り付けられた試料に照射された場合の前記複合共鳴周波数を求める第2の周波数導出手段と、を更に有し、前記第2の音波物性導出手段は、前記第1の周波数導出手段と、前記第2の周波数導出手段とによって求められた複合共鳴周波数と、前記試料の厚さとに基づいて、前記試料の前記振動検出素子が取り付けられている面から前記試料に含まれる前記物質までの深さを求めることを有することを特徴とする。 The photoacoustic measurement system of the present invention is attached to a sample and detects a vibration detection element that detects the vibration of the sample, and light that irradiates the sample to which the vibration detection element is attached with excitation light having an arbitrary intermittent period. An acoustic microscope, a light emitting means for applying excitation light of the intermittent period to the photoacoustic microscope, and a surface on which the vibration detection element of the sample is attached, is excited inside the sample by the excitation light of the intermittent period. The vibration of the sample detected by the vibration detection element is obtained in order to obtain the frequency of the composite resonance frequency of the medium and the vibration detection element between the material at an arbitrary point of the photoacoustic wave source to be excited. A frequency deriving unit having a correlation detecting unit for performing correlation detection on the acoustic signal, wherein the cos component of the acoustic signal correlated and detected by the correlation detecting unit is set to zero. A frequency deriving unit for obtaining a frequency to be obtained, and the light emitting unit for irradiating the excitation light having the intermittent period to the sample attached to the vibration detecting element at a complex resonance frequency obtained by the frequency deriving unit. And a first sound wave property deriving unit that obtains at least one of the sound velocity of the sample and the Young's modulus of the sample as the sound wave property using the complex resonance frequency obtained by the frequency deriving unit. And second sound wave property deriving means for obtaining a depth from the surface of the sample to which the vibration detecting element is attached to the substance contained in the sample as sound wave properties, the frequency deriving means The excitation light of the intermittent period having the quantum mechanical absorption wavelength of the substance contained in the sample is irradiated onto the sample attached to the vibration detecting element. A first frequency deriving means for obtaining the composite resonance frequency when it is, the sample excitation light of the intermittent period is attached to the vibration detecting device having a wavelength not reaching the interior of the material contained in the sample And second frequency deriving means for obtaining the composite resonance frequency when irradiated, wherein the second acoustic wave property deriving means is the first frequency deriving means and the second frequency deriving means. And determining the depth from the surface of the sample to which the vibration detecting element is attached to the substance contained in the sample, based on the composite resonance frequency obtained by the above and the thickness of the sample. It is characterized by.

図1は、本発明の実施形態を示し、光音響測定システムの構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of a configuration of a photoacoustic measurement system according to an embodiment of the present invention. 図2は、本発明の実施形態を示し、PZT振動子に固定された試料の様子の一例を示す図である。FIG. 2 is a diagram illustrating an embodiment of the present invention and an example of a state of a sample fixed to a PZT vibrator. 図3は、本発明の実施形態を示し、図2に示した試料における周波数偏移のトポグラフの一例を示した図である。FIG. 3 shows an embodiment of the present invention, and is a diagram showing an example of a topography of frequency shift in the sample shown in FIG. 図4は、本発明の実施形態を示し、図2に示した試料3における振動減衰率のトポグラフの一例を示した図である。FIG. 4 shows an embodiment of the present invention and is a diagram showing an example of a topography of the vibration damping rate in the sample 3 shown in FIG.

以下に、本発明の一実施形態を説明する。
図1は、光音響測定システムの構成の一例を示す図である。
図1において、光音響測定システムは、発光ダイオードアレイ(発光ダイオードアレイを構成する複数の発光ダイオード)1と、光音響共鳴顕微鏡20と、CCDカメラ18と、モニタ17と、PZT(チタン酸ジルコン酸鉛)振動子4と、XY稼動試料台5と、試料台駆動装置19と、振動検出回路6と、同調型増幅器7と、ベクトル電圧計9と、VFコンバータ11と、コンピュータ制御パルス発生器13と、ダイオードパワー制御器14と、特定ダイオード切り替え器15と、PC(パーソナルコンピュータ)12とを有している。
Hereinafter, an embodiment of the present invention will be described.
FIG. 1 is a diagram illustrating an example of a configuration of a photoacoustic measurement system.
In FIG. 1, the photoacoustic measurement system includes a light emitting diode array (a plurality of light emitting diodes constituting a light emitting diode array) 1, a photoacoustic resonance microscope 20, a CCD camera 18, a monitor 17, and PZT (zirconate titanate). Lead) vibrator 4, XY operation sample stage 5, sample stage drive device 19, vibration detection circuit 6, tuning amplifier 7, vector voltmeter 9, VF converter 11, and computer-controlled pulse generator 13 A diode power controller 14, a specific diode switch 15, and a PC (personal computer) 12.

XY稼動試料台5の上に、振動検出素子の一例であるPZT振動子4が取り付けられている。このPZT振動子4の表面に試料3が取り付けられ、固定されている。図2は、PZT振動子4に固定された試料3の様子の一例を示す図である。図2に示すように、本実施形態では、略正三角形のアルミニウムプレート(アルミ粘着テープ)を試料3として用いた場合を例示する。尚、試料3の厚さは、0.13mmである。   On the XY operation sample stage 5, a PZT vibrator 4 which is an example of a vibration detection element is attached. The sample 3 is attached and fixed to the surface of the PZT vibrator 4. FIG. 2 is a diagram illustrating an example of a state of the sample 3 fixed to the PZT vibrator 4. As shown in FIG. 2, in this embodiment, a case where a substantially equilateral triangular aluminum plate (aluminum adhesive tape) is used as the sample 3 is illustrated. Note that the thickness of the sample 3 is 0.13 mm.

試料台駆動装置19は、X方向試料台駆動装置19aと、Y方向試料台駆動装置19bとを有している。X方向試料台駆動装置19aは、XY稼動試料台5をX軸方向(図1に向かって横方向)に動かすためのものである。Y方向試料台駆動装置19bは、XY稼動試料台5をY軸方向(図1の奥行き方向)に動かすためのものである。これらX方向試料台駆動装置19a及びY方向試料台駆動装置19bは、例えば、パルスモータを有し、PC12から送信された制御信号を受信し、受信した制御信号に基づいてパルスモータを動作させることにより、XY稼動試料台5を駆動する。   The sample stage driving device 19 has an X direction sample stage driving device 19a and a Y direction sample stage driving device 19b. The X-direction sample stage drive device 19a is for moving the XY operation sample stage 5 in the X-axis direction (lateral direction toward FIG. 1). The Y-direction sample stage drive device 19b is for moving the XY operation sample stage 5 in the Y-axis direction (depth direction in FIG. 1). These X-direction sample stage drive device 19a and Y-direction sample stage drive device 19b have, for example, a pulse motor, receive a control signal transmitted from the PC 12, and operate the pulse motor based on the received control signal. Thus, the XY operation sample stage 5 is driven.

光音響共鳴顕微鏡20は、ハーフミラー2を有しており、発光ダイオードアレイ1から、例えば50[μm]程度のビーム径を有する断続光が発光されると、その断続光を、ハーフミラー2を介して試料3に照射する。そうすると、試料3の表面に励起された光の信号が、試料3の内部を通過してPZT振動子4の表面をたたく。これにより、PZT振動子4やその周囲の気体に周期的な圧力変化が生じ、音波が発生する。   The photoacoustic resonance microscope 20 has a half mirror 2. When intermittent light having a beam diameter of, for example, about 50 [μm] is emitted from the light emitting diode array 1, the intermittent light is transmitted to the half mirror 2. And irradiate the sample 3. Then, the light signal excited on the surface of the sample 3 passes through the inside of the sample 3 and strikes the surface of the PZT vibrator 4. Thereby, a periodic pressure change occurs in the PZT vibrator 4 and the surrounding gas, and a sound wave is generated.

また、断続光が試料3に照射されると、試料3から反射光が発生する。この反射光は、ハーフミラー2を介してCCDカメラ18に取り込まれる。CCDカメラ18は、取り込んだ反射光に基づいて、試料3の画像データを生成し、生成した画像データをモニタ17に表示する。モニタ17は、例えば、LCD(Liquid Crystal Display)である。尚、光音響共鳴顕微鏡20の内部には、ハーフミラー2の他に、断続光を試料3に照射するためのレンズ21や、断続光をハーフミラー2に導くためのレンズ22等も設けられている。   Moreover, when the sample 3 is irradiated with intermittent light, reflected light is generated from the sample 3. This reflected light is taken into the CCD camera 18 through the half mirror 2. The CCD camera 18 generates image data of the sample 3 based on the captured reflected light, and displays the generated image data on the monitor 17. The monitor 17 is, for example, an LCD (Liquid Crystal Display). In addition to the half mirror 2, a lens 21 for irradiating the sample 3 with intermittent light, a lens 22 for guiding the intermittent light to the half mirror 2, and the like are provided inside the photoacoustic resonance microscope 20. Yes.

PZT振動子4は、圧電素子である。従って、PZT振動子4に固定された試料3の表面に励起された光の信号が、試料3の内部を通過してPZT振動子4の表面をたたくと、PZT振動子4は振動を起こし、その振動に応じた電気信号(すなわち音響信号)を発生(検出)する。
振動検出回路6は、PZT振動子4で発生した音響信号を増幅するための回路である。具体的に振動検出回路6は、正帰還回路を備えた電流増幅回路である。振動検出回路6が、正帰還回路を備えることにより、PZT振動子4の共鳴特性値Qを上げることができる。
The PZT vibrator 4 is a piezoelectric element. Therefore, when a signal of light excited on the surface of the sample 3 fixed to the PZT vibrator 4 passes through the inside of the sample 3 and hits the surface of the PZT vibrator 4, the PZT vibrator 4 vibrates. An electric signal (that is, an acoustic signal) corresponding to the vibration is generated (detected).
The vibration detection circuit 6 is a circuit for amplifying an acoustic signal generated by the PZT vibrator 4. Specifically, the vibration detection circuit 6 is a current amplification circuit including a positive feedback circuit. Since the vibration detection circuit 6 includes a positive feedback circuit, the resonance characteristic value Q of the PZT vibrator 4 can be increased.

同調型増幅器7は、振動検出回路6から出力された音響信号を、PC12から出力される同調信号に基づいて増幅する。具体的に、同調型増幅器7は、複合共鳴周波数ftを含む周波数帯域を増幅する増幅回路を備えている。
ここで、複合共鳴周波数ftについて説明する。
厚さがL[m]の振動検出素子(例えばPZT振動子4)が、fR[Hz]の基本共鳴周波数を持つとする。この振動検出素子に厚さがΔL[m]の試料(例えば試料3)を貼り付けた場合(取り付けた場合)、振動検出素子と試料との全体の共鳴周波数は、振動検出素子の基本共鳴周波数fRより若干周波数の低い周波数であって、厚さL+ΔL[m]の長さを一波長とする複合共鳴周波数ftとなる。このように複合共鳴周波数ftは、振動検出素子と試料との全体の共鳴周波数である。後述するように、本実施形態では、この複合共鳴周波数ftで断続光がダイオードアレイ1から照射されるように、PC12が各部を制御する。
The tuning amplifier 7 amplifies the acoustic signal output from the vibration detection circuit 6 based on the tuning signal output from the PC 12. Specifically, tuned amplifier 7 includes an amplifier circuit for amplifying a frequency band including a composite resonance frequency f t.
Here, the composite resonance frequency ft will be described.
It is assumed that a vibration detection element (for example, PZT vibrator 4) having a thickness of L [m] has a fundamental resonance frequency of f R [Hz]. When a sample having a thickness of ΔL [m] (for example, sample 3) is attached to this vibration detection element (when attached), the overall resonance frequency of the vibration detection element and the sample is the basic resonance frequency of the vibration detection element. a frequency slightly lower frequency than f R, a composite resonance frequency f t of the thickness L + [Delta] L length of the [m] as one wavelength. Thus, the composite resonance frequency ft is the overall resonance frequency of the vibration detecting element and the sample. As will be described later, in this embodiment, the PC 12 controls each unit so that intermittent light is emitted from the diode array 1 at the composite resonance frequency f t .

コンピュータ制御パルス発生器(シンセサイザ)13は、PC12から送信された制御信号に基づいて、複合共鳴周波数ftと同じ周波数を有する参照信号10を発生する。この制御信号は、後述するようにしてPC12により決定された複合共鳴周波数ftを示す信号である。
ベクトル電圧計9は、複合共鳴周波数ftと同じ周波数を有する参照信号10を用いて、同調型増幅器7から出力された音響信号の電圧レベルと位相とを測定する。具体的にベクトル電圧計9は、sin成分用の位相検波回路と、cos成分用の位相検波回路とを有し、これらの位相検波回路により、複合共鳴周波数ftと同じ周波数を有する参照信号10を用いて自己相関検波を行う。これにより、同調型増幅器7から出力された音響信号のsin成分と、cos成分とを分離することができる。ベクトル電圧計9は、これら音響信号のsin成分と、cos成分とをVFコンバータ11に送信する。このように本実施形態では、複合共鳴周波数ftの信号を参照信号として、測定された音響信号を相関検波することにより、測定される音響信号の感度と信号対雑音比(SN比)とを上げることができる。
The computer control pulse generator (synthesizer) 13 generates a reference signal 10 having the same frequency as the composite resonance frequency f t based on the control signal transmitted from the PC 12. The control signal is a signal indicating a composite resonance frequency f t, which is determined by the PC12 as described later.
The vector voltmeter 9 measures the voltage level and phase of the acoustic signal output from the tuned amplifier 7 using the reference signal 10 having the same frequency as the composite resonance frequency f t . Specifically, the vector voltmeter 9 includes a phase detection circuit for the sin component and a phase detection circuit for the cos component, and the reference signal 10 having the same frequency as the composite resonance frequency f t by these phase detection circuits. To perform autocorrelation detection. Thereby, the sin component and the cos component of the acoustic signal output from the tuning amplifier 7 can be separated. The vector voltmeter 9 transmits the sin component and the cos component of these acoustic signals to the VF converter 11. As described above, in this embodiment, as a reference signal a signal of a composite resonance frequency f t, by correlation detection of the measured acoustic signals, sensitivity and signal-to-noise ratio of the measured acoustic signal and a (SN ratio) Can be raised.

VFコンバータ11は、ベクトル電圧計9から送信された音響信号のsin成分と、cos成分とをデジタル化する。デジタル化された音響信号のsin成分と、cos成分は、PC12に取り込まれる。   The VF converter 11 digitizes the sin component and the cos component of the acoustic signal transmitted from the vector voltmeter 9. The sin component and the cos component of the digitized acoustic signal are taken into the PC 12.

PC12は、プログラムやデータを記憶するROM及びハードディスクと、そのプログラムを実行するCPUと、CPUがプログラムを実行する際のワークエリアやデータの一時的な保存エリアとして機能するRAM等を備えている。また、PC12は、キーボードやマウス等のユーザインターフェースと、CPUで実行された処理結果に基づく画像等を表示するディスプレイも備えている。   The PC 12 includes a ROM and a hard disk that store programs and data, a CPU that executes the programs, a work area when the CPU executes the programs, and a RAM that functions as a temporary storage area for data. The PC 12 also includes a user interface such as a keyboard and a mouse, and a display for displaying an image based on a processing result executed by the CPU.

PC12は、前述した同調型増幅器7への同調信号8や、コンピュータ制御パルス発生器13への制御信号の他に、光強度指示信号及びダイオード選択指示信号を生成する。
具体的にPC12は、発光ダイオードアレイ1の各ダイオードアレイから発光される光の波長毎に、発光強度を予め記憶している。そして、PC12は、デジタル化された音響信号のsin成分と、cos成分とに基づいて、発光ダイオードアレイ1から発光される光の波長(複合共鳴周波数ft)に応じた適切な強度を示す光強度指示信号を生成して、ダイオードパワー制御器14に送信する。
The PC 12 generates a light intensity instruction signal and a diode selection instruction signal in addition to the tuning signal 8 to the tuning amplifier 7 and the control signal to the computer control pulse generator 13 described above.
Specifically, the PC 12 stores light emission intensity in advance for each wavelength of light emitted from each diode array of the light emitting diode array 1. Then, the PC 12 is a light having an appropriate intensity corresponding to the wavelength of light emitted from the light emitting diode array 1 (composite resonance frequency f t ), based on the sin component and the cos component of the digitized acoustic signal. An intensity indication signal is generated and transmitted to the diode power controller 14.

また、PC12は、デジタル化された音響信号のsin成分と、cos成分とに基づいて、ダイオードアレイ1に含まれる複数のダイオードのうち、複合共鳴周波数ftの断続光を発光させるために使用するダイオードを選択するためのダイオード選択指示信号を生成して、特定ダイオード切り替え器15に送信する。Moreover, PC12 is a sin component of the digitized acoustic signal, on the basis of the cos component, among the plurality of diodes included in the diode array 1 is used to emit intermittent light composite resonance frequency f t A diode selection instruction signal for selecting a diode is generated and transmitted to the specific diode switch 15.

ダイオードパワー制御器14は、PC12から出力された光強度指示信号と、コンピュータ制御パルス発生器13から送信された信号であって、複合共鳴周波数ftと同じ周波数を有する参照信号10とに基づいて、ダイオードアレイ1から発光される光の強度を決定し、決定した光の強度を示す光強度信号を特定ダイオード切り替え器15に送信する。The diode power controller 14 is based on the light intensity indication signal output from the PC 12 and the reference signal 10 transmitted from the computer control pulse generator 13 and having the same frequency as the composite resonance frequency f t. The light intensity emitted from the diode array 1 is determined, and a light intensity signal indicating the determined light intensity is transmitted to the specific diode switch 15.

特定ダイオード切り替え器15は、ダイオードパワー制御器14から送信された光強度信号と、PC12から送信されたダイオード選択指示信号とに基づいて、ダイオードアレイ1に含まれるダイオードから、複合共鳴周波数ftで断続光を発光させるためのパルス信号(ダイオードパワーパルス)をダイオードに出力する。これにより、発光ダイオードアレイ1から、複合共鳴周波数ft[Hz]で断続光が発光される。
ここで、複合共鳴周波数ft[Hz]の決定方法の一例について説明する。
まず、試料3が貼り付けられたPZT振動子4は、RLC直列共振回路と等価であるから、定常状態の解として以下の(1)式〜(3)式のように表すことができる。
Based on the light intensity signal transmitted from the diode power controller 14 and the diode selection instruction signal transmitted from the PC 12, the specific diode switch 15 generates a complex resonance frequency f t from the diodes included in the diode array 1. A pulse signal (diode power pulse) for emitting intermittent light is output to the diode. Thereby, intermittent light is emitted from the light emitting diode array 1 at the composite resonance frequency f t [Hz].
Here, an example of a method for determining the composite resonance frequency f t [Hz] will be described.
First, since the PZT vibrator 4 to which the sample 3 is attached is equivalent to an RLC series resonance circuit, it can be expressed as the following equations (1) to (3) as solutions in a steady state.

Figure 0005555910
Figure 0005555910

ここで、Is(t)は定常電流[A]、ωは角周波数[rad/s]、ω0は共鳴角周波数[rad/s]である。Rは、試料3が貼り付けられたPZT振動子4と等価なRLC直列共振回路の抵抗[Ω]、Lは、試料3が貼り付けられたPZT振動子4と等価なRLC直列共振回路のリアクタンス[H]である。
(2)式に示す定数Aabは、吸収的振幅であり、(3)式に示す定数Belは、弾性的振幅である。尚、試料3が貼り付けられたPZT振動子4における減衰強度の値は、(1)式の右辺の第1項のAabsinωtに依存する。
そして、(3)式に示す定数Belは、複合共鳴周波数ftで0(ゼロ)になる。そこで、本実施形態では、PC12は、(3)式に示す定数Bel(前記cos成分)が0(ゼロ)になる周波数を、複合共鳴周波数周波数ft[Hz]として求める。そして、PC12は、求めた複合共鳴周波数ftに基づいて、コンピュータ制御パルス発生器13に送信する制御信号と、ダイオードパワー制御器14に送信する光強度指示信号と、特定ダイオード切り替え器15に送信するダイオード選択指示信号とを生成する。以上のように、本実施形態では、(3)式に示す定数Belが0(ゼロ)になる複合共鳴周波数周波数ft[Hz]で断続光が発光されるようにしている。
Here, I s (t) is a steady current [A], ω is an angular frequency [rad / s], and ω 0 is a resonance angular frequency [rad / s]. R is the resistance [Ω] of the RLC series resonance circuit equivalent to the PZT vibrator 4 to which the sample 3 is attached, and L is the reactance of the RLC series resonance circuit equivalent to the PZT vibrator 4 to which the sample 3 is attached. [H].
The constant A ab shown in the equation (2) is an absorptive amplitude, and the constant Bel shown in the equation (3) is an elastic amplitude. Note that the value of the attenuation intensity in the PZT vibrator 4 to which the sample 3 is attached depends on A ab sin ωt in the first term on the right side of the equation (1).
The constant Be1 shown in the equation (3) becomes 0 (zero) at the composite resonance frequency f t . Therefore, in the present embodiment, the PC 12 obtains the frequency at which the constant B el (cos component) shown in Equation (3) becomes 0 (zero) as the composite resonance frequency frequency f t [Hz]. Then, the PC 12 transmits a control signal to be transmitted to the computer control pulse generator 13, a light intensity instruction signal to be transmitted to the diode power controller 14, and a specific diode switch 15 based on the obtained composite resonance frequency f t. A diode selection instruction signal to be generated. As described above, in the present embodiment, intermittent light is emitted at the complex resonance frequency frequency f t [Hz] at which the constant Bel shown in the equation (3) is 0 (zero).

次に、PC12が求める音波物性について説明する。本実施形態の光学顕微鏡装置に設けられたPC12では、音波物性として、振動減衰係数αと、音速νと、ヤング率Eと、振動減衰率τと、試料3中の特定物質の濃度I0と、試料3の表面から特定物質までの深さDとを求める。Next, the sound wave physical properties required by the PC 12 will be described. In the PC 12 provided in the optical microscope apparatus of the present embodiment, the vibration attenuation coefficient α, the sound velocity ν, the Young's modulus E, the vibration attenuation ratio τ, and the concentration I 0 of the specific substance in the sample 3 are used as sound wave properties. The depth D from the surface of the sample 3 to the specific substance is obtained.

(振動減衰率τ)
試料3が貼り付けられたPZT振動子4に対して一定の力F[N]が与えられたときに、PZT振動子4に生じる電圧V[V]は、以下の(4)式で与えられる。
V=kF ・・・(4)
(Vibration damping factor τ)
When a constant force F [N] is applied to the PZT vibrator 4 to which the sample 3 is attached, the voltage V [V] generated in the PZT vibrator 4 is given by the following equation (4). .
V = kF (4)

ここで、kは、機械電気音響変換定数である。尚、この機械電気音響変換定数は、試料3及びPZT振動子4の全体の機械電気音響変換定数(試料3の機械電気音響変換定数と、PZT振動子4の機械電気音響変換定数とを合成したもの)である。
また、試料3が貼り付けられたPZT振動子4と等価なRLC直列共振回路の抵抗をR[Ω]、そのRLC直列共振回路における共振電流をI[A]とすると、PZT振動子4に生じる電圧V[V]は、以下の(5)式で与えられる。
V=RI ・・・(5)
(4)式及び(5)式より、以下の(6)式が成り立つ。
R=kF/I ・・・(6)
このように、試料3が貼り付けられたPZT振動子4に対して与えられる力Fは、一定で測定されるため、試料3が貼り付けられたPZT振動子4と等価なRLC直列共振回路の抵抗Rは、そのRLC直列共振回路における共振電流Iの逆数に比例する。
そして、(6)式より、振動減衰率τは、以下の(7)式で表される。
Here, k is a mechanical electroacoustic conversion constant. This mechanical electroacoustic conversion constant is obtained by synthesizing the entire electromechanical conversion constant of the sample 3 and the PZT vibrator 4 (the mechanical electroacoustic conversion constant of the sample 3 and the mechanical electroacoustic conversion constant of the PZT vibrator 4). Stuff).
Further, when the resistance of the RLC series resonance circuit equivalent to the PZT vibrator 4 to which the sample 3 is attached is R [Ω] and the resonance current in the RLC series resonance circuit is I [A], the PZT vibrator 4 is generated. The voltage V [V] is given by the following equation (5).
V = RI (5)
From the equations (4) and (5), the following equation (6) is established.
R = kF / I (6)
Thus, since the force F applied to the PZT vibrator 4 to which the sample 3 is attached is measured at a constant level, an equivalent RLC series resonance circuit to the PZT vibrator 4 to which the sample 3 is attached is provided. The resistance R is proportional to the reciprocal of the resonance current I in the RLC series resonance circuit.
From the equation (6), the vibration damping rate τ is expressed by the following equation (7).

Figure 0005555910
Figure 0005555910

ここで、Lは、試料3が貼り付けられたPZT振動子4と等価なRLC直列共振回路のリアクタンス[H]である。   Here, L is the reactance [H] of the RLC series resonance circuit equivalent to the PZT vibrator 4 to which the sample 3 is attached.

本実施形態では、試料3が貼り付けられたPZT振動子4と等価なRLC直列共振回路のリアクタンスLと、試料3が貼り付けられたPZT振動子4に対して与えられる力Fと、PZT振動子4の機械電気音響変換定数kとを一定とする。PC12は、リアクタンスLと、力Fと、機械電気音響変換定数kとを、PC12が備えるユーザインターフェースのユーザによる操作に基づいて取得して、ハードディスク等に予め記憶しておく。   In this embodiment, the reactance L of the RLC series resonance circuit equivalent to the PZT vibrator 4 to which the sample 3 is attached, the force F applied to the PZT vibrator 4 to which the sample 3 is attached, and the PZT vibration The mechanical electroacoustic conversion constant k of the child 4 is made constant. The PC 12 acquires the reactance L, the force F, and the mechanical electroacoustic conversion constant k based on the user's operation of the user interface provided in the PC 12, and stores them in a hard disk or the like in advance.

そして、PC12は、音響信号のsin成分と、cos成分とに基づき、cos成分が0(ゼロ)となるときのsin成分の振幅(共振電流I)を求め、求めた振幅(共振電流I)と、予め記憶しておいたリアクタンスL、力F、及び機械電気音響変換定数kとを(7)式に代入して、振動減衰率τ(試料3及びPZT振動子4の全体の振動減衰率)を求める。
尚、振動減衰率τは、試料3及びPZT振動子4の全体の振動減衰率(試料3の振動減衰率と、PZT振動子4の振動減衰率とを合成したもの)であるが、これらのうち、PZT振動子4の振動減衰率は、一定と見なすことができ、試料3の振動減衰率よりも十分小さい。
Then, the PC 12 obtains the amplitude (resonance current I) of the sin component when the cos component becomes 0 (zero) based on the sin component and the cos component of the acoustic signal, and the obtained amplitude (resonance current I) and Then, the previously stored reactance L, force F, and mechanical electroacoustic conversion constant k are substituted into the equation (7), and the vibration attenuation rate τ (the overall vibration attenuation rate of the sample 3 and the PZT vibrator 4). Ask for.
The vibration attenuation rate τ is the overall vibration attenuation rate of the sample 3 and the PZT vibrator 4 (a combination of the vibration attenuation rate of the sample 3 and the vibration attenuation rate of the PZT vibrator 4). Among them, the vibration attenuation rate of the PZT vibrator 4 can be regarded as being constant, and is sufficiently smaller than the vibration attenuation rate of the sample 3.

また、本実施形態では、ダイオードアレイ1から、試料3の内部へ侵入する深さが浅い短波長λVの波長を有する光(以下、短波長光と称する)を試料3に照射した場合の試料3における振動減衰率τVを求める。ここで、短波長λVは、例えば、試料3内に含まれる特定物質に到達しないような波長を言う。尚、振動減衰率τsは、例えば、短波長光を試料3に照射した場合にPZT振動子4から得られる音響信号の振幅を測定し、測定した音響信号の振幅を(11)式のIに代入することにより求めることができる。In the present embodiment, the sample 3 is irradiated with light having a short wavelength λ V having a shallow depth that penetrates into the sample 3 from the diode array 1 (hereinafter referred to as short wavelength light). Request vibration damping factor tau V at 3. Here, the short wavelength λ V refers to a wavelength that does not reach a specific substance contained in the sample 3, for example. For example, the vibration attenuation rate τ s is measured by measuring the amplitude of the acoustic signal obtained from the PZT vibrator 4 when the sample 3 is irradiated with short-wavelength light, and the measured amplitude of the acoustic signal is expressed by I in equation (11). Can be obtained by substituting for.

(振動減衰係数α)
PC12は、前述したように(7)式を用いて求めた振動減衰率τに基づいて、PZT振動子4に貼り付けられた試料3における振動減衰係数αを求める。尚、振動減衰係数αは、音響信号の振幅(共振電流I)の逆数に比例する。
(Vibration damping coefficient α)
The PC 12 obtains the vibration damping coefficient α in the sample 3 attached to the PZT vibrator 4 based on the vibration damping rate τ obtained using the equation (7) as described above. The vibration damping coefficient α is proportional to the inverse of the amplitude (resonance current I) of the acoustic signal.

(音速ν、ヤング率E)
複合共鳴周波数ftで断続光を試料3に照射したときに、試料3が貼り付けられたPZT振動子4を共鳴させるためには、以下の(8)式の条件を満たす必要がある。
t=TR+ΔT ・・・(8)
ここで、Ttは、試料3とPZT振動子4とを、音速が伝搬する時間[s]であり、TRは、PZT振動子4を音速が伝搬する時間[s]であり、ΔTは、試料3を音速が伝搬する時間[s]である。このように、Ttは、試料3の厚さΔLと、振動検出素子(例えばPZT振動子4)の厚さLとの加算値(=L+ΔL)を一波長とする振動モードの周期となる。
ここで、試料3中の音速をνとすると、以下の(9)式が成立する。よって、音速ν[m/s]は、以下の(10)式で表される。また、試料3のヤング率E[Pa]と音速νとの関係は、以下の(11)式で表される。
(Sonic velocity ν, Young's modulus E)
In order to resonate the PZT vibrator 4 to which the sample 3 is attached when the sample 3 is irradiated with intermittent light at the composite resonance frequency f t , the following equation (8) must be satisfied.
T t = T R + ΔT (8)
Here, T t is the sample 3 and the PZT vibrator 4, the time that sound speed propagated [s], T R is the time the PZT vibrator 4 sound speed propagated [s], [Delta] T is This is the time [s] during which the sound velocity propagates through the sample 3. Thus, T t is the period of the vibration mode in which the added value (= L + ΔL) of the thickness ΔL of the sample 3 and the thickness L of the vibration detection element (for example, the PZT vibrator 4) is one wavelength. Become.
Here, when the sound speed in the sample 3 is ν, the following equation (9) is established. Therefore, the sound speed ν [m / s] is expressed by the following equation (10). Further, the relationship between the Young's modulus E [Pa] of the sample 3 and the sound velocity ν is expressed by the following equation (11).

Figure 0005555910
Figure 0005555910

ここで、ΔLは、試料3の厚さ[m]であり、fRは、PZT振動子4の共鳴周波数[Hz]であり、ftは、複合共鳴周波数[Hz]であり、Δf(= R −f t )は、周波数偏移[Hz]であり、ρは、試料3の密度[kg/m3]である。
PC12は、試料3の厚さΔLと、PZT振動子4の共鳴周波数fRと、試料3の密度ρとを、PC12が備えるユーザインターフェースのユーザによる操作に基づいて取得して、ハードディスク等に予め記憶しておく。
PC12は、前述したようにして決定した複合共鳴周波数ftと、予め記憶しておいたPZT振動子4の共鳴周波数fRとから、周波数偏移Δfを求める。そして、PC12は、求めた周波数偏移Δfと、予め記憶しておいた試料3の厚さΔL及びPZT振動子4の共鳴周波数fRとを、(10)式に代入して、PZT振動子4に貼り付けられた試料3における音速νを求める。その後、PC12は、求めた音速νと、予め記憶しておいた試料3の密度ρとを、(11)式に代入して、試料3のヤング率Eを求める。
Here, [Delta] L is the thickness of the sample 3 [m], f R is resonant frequency of the PZT vibrator 4 [Hz], f t is a composite resonance frequency [Hz], Δf (= f R -f t) is the frequency shift [Hz], [rho is the density of the sample 3 [kg / m 3].
The PC 12 acquires the thickness ΔL of the sample 3, the resonance frequency f R of the PZT vibrator 4, and the density ρ of the sample 3 based on an operation by a user of a user interface provided in the PC 12, and stores it in a hard disk or the like in advance. Remember.
The PC 12 obtains the frequency shift Δf from the composite resonance frequency f t determined as described above and the resonance frequency f R of the PZT vibrator 4 stored in advance. Then, the PC 12 substitutes the obtained frequency deviation Δf, the thickness ΔL of the sample 3 and the resonance frequency f R of the PZT vibrator 4 stored in advance in the equation (10), and the PZT vibrator The sound speed ν in the sample 3 attached to 4 is obtained. Thereafter, the PC 12 obtains the Young's modulus E of the sample 3 by substituting the obtained sound velocity ν and the density ρ of the sample 3 stored in advance into the equation (11).

尚、本実施形態では、複合共鳴周波数ftで断続光を試料3に照射した場合にPZT振動子4に貼り付けられた試料3に生じる音速νの他に、ダイオードアレイ1から短波長光を試料3に照射した場合にPZT振動子4に貼り付けられた試料3に生じる音速νVと、試料3中の特定物質の量子力学的吸収波長λsの波長を有する吸収光を試料3に照射した場合にPZT振動子4に貼り付けられた試料3に生じる音速νsも求めるようにしている。In the present embodiment, in addition to the composite resonance frequency f t sound velocity occurring sample 3 affixed to PZT vibrator 4 when irradiated with chopped light to the sample 3 at [nu, short wavelength light from the diode array 1 When the sample 3 is irradiated, the sample 3 is irradiated with the absorption light having the sound velocity ν V generated in the sample 3 attached to the PZT vibrator 4 and the quantum mechanical absorption wavelength λ s of the specific substance in the sample 3. In this case, the speed of sound ν s generated in the sample 3 attached to the PZT vibrator 4 is also obtained.

尚、試料3の密度ρとヤング率Eとが一定ではなく、場所の関数で表される場合には、速度νから試料3の密度ρとヤング率Eを知ることが可能である。   When the density ρ and the Young's modulus E of the sample 3 are not constant and are expressed as a function of location, it is possible to know the density ρ and the Young's modulus E of the sample 3 from the speed ν.

(試料3の表面から特定物質までの深さD)
PC12は、前述したようにして求めたダイオードアレイ1から短波長光を試料3に照射した場合にPZT振動子4に貼り付けられた試料3に生じる複合共鳴周波数ftVとfより、ΔfV(=ftV−f)を定義する。また、試料3中の特定物質の量子力学的吸収波長λsの波長を有する吸収光を試料3に照射した場合にPZT振動子4に貼り付けられた試料3に生じる複合共鳴周波数ftsとfより、Δf(=fts−f)を定義する。予め記憶された試料3の厚さΔLとを、以下の(12)式に代入することにより、試料3の表面から特定物質までの深さD[m]を求める。
D=ΔL{1−(Δf/ΔfV)} ・・・(12)
(Depth D from the surface of sample 3 to the specified substance)
The PC 12 calculates Δf V based on the composite resonance frequency f tV and f R generated in the sample 3 attached to the PZT vibrator 4 when the sample 3 is irradiated with the short wavelength light from the diode array 1 obtained as described above. (= F tV -f R ) is defined. Further, when the sample 3 is irradiated with absorption light having a wavelength of the quantum mechanical absorption wavelength λ s of the specific substance in the sample 3, the composite resonance frequencies f ts and f generated in the sample 3 attached to the PZT vibrator 4. From R , Δf s (= f ts −f R ) is defined. By substituting the thickness ΔL of the sample 3 stored in advance into the following equation (12), the depth D [m] from the surface of the sample 3 to the specific substance is obtained.
D = ΔL {1− (Δf s / Δf V )} (12)

(試料3中の特定物質の濃度I0
試料3の表面から深さD[m]の位置にある特定物質の濃度I0は、以下の(13)式で表される。
(Concentration I 0 of specific substance in sample 3)
The concentration I 0 of the specific substance at the position of the depth D [m] from the surface of the sample 3 is expressed by the following equation (13).

Figure 0005555910
Figure 0005555910

ここで、τsは、試料3中の特定物質の量子力学的吸収波長λsの波長を有する吸収光を試料3に照射した場合の、PZT振動子4に貼り付けられた試料3における振動減衰率であり、Isは、吸収光を試料3に照射することにより得られる音響信号の強度である。
PC12は、吸収光を試料3に照射することにより得られる音響信号の強度Isを求める。そして、PC12は、求めた音響信号の強度Isと、前述したようにして求めた振動減衰率τsとを(13)式に代入することによって、試料3の表面から深さD[m]の位置にある特定物質の濃度I0を求める、
Here, τ s is vibration attenuation in the sample 3 attached to the PZT vibrator 4 when the sample 3 is irradiated with absorption light having a wavelength of the quantum mechanical absorption wavelength λ s of the specific substance in the sample 3. a rate, I s is the intensity of the resultant acoustic signal by applying the absorbed light to the sample 3.
PC12 determines the intensity I s of the audio signal obtained by irradiating the absorbed light to the sample 3. Then, the PC 12 assigns the depth D [m] from the surface of the sample 3 by substituting the obtained intensity I s of the acoustic signal and the vibration damping rate τ s obtained as described above into the equation (13). Obtain the concentration I 0 of the specific substance at the position of

(トポグラフの作成)
PC12は、以上のような音波物性を求めるに際し、X−Y平面上の複数箇所で前述した測定を行うことにより、例えば、音速ν、ヤング率E、振動減衰率τ、試料3中の特定物質の濃度I0、試料3の表面から特定物質までの深さD、及び周波数遷移Δfのトポグラフ(3次元画像データ)を生成してディスプレイに表示する。また、PC12は、これらのトポグラフのデータを、例えばハードディスクに記憶する。
(Create topograph)
The PC 12 performs the above-described measurement at a plurality of locations on the XY plane when obtaining the above-described acoustic wave properties, for example, the sound velocity ν, Young's modulus E, vibration damping rate τ, and a specific substance in the sample 3 The topography (three-dimensional image data) of the concentration I 0 , the depth D from the surface of the sample 3 to the specific substance, and the frequency transition Δf is generated and displayed on the display. Further, the PC 12 stores the data of these topographs on, for example, a hard disk.

具体的にトポグラフを生成するために、PC12は、光音響共鳴顕微鏡20と正対する試料3の位置が、予めハードディスク等に設定された位置(複数の所定位置)になるように、試料台駆動装置19(X方向試料台駆動装置19a及びY方向試料台駆動装置19b)を順次駆動する。そして、PC12は、複数の位置で前述した測定を行い、それら複数の位置において、音速ν、ヤング率E、振動減衰率τ、試料3中の特定物質の濃度I0、試料3の表面から特定物質までの深さD、及び周波数遷移Δfを求め、求めた結果に基づいて、トポグラフ(3次元画像データ)を生成する。そして、PC12に設けられたディスプレイは、生成されたトポグラフを表示する。Specifically, in order to generate a topograph, the PC 12 uses a sample stage driving device so that the position of the sample 3 facing the photoacoustic resonance microscope 20 is a position (a plurality of predetermined positions) set in advance on a hard disk or the like. 19 (X direction sample stage drive unit 19a and Y direction sample stage drive unit 19b) are sequentially driven. Then, the PC 12 performs the above-described measurement at a plurality of positions, and the sound velocity ν, Young's modulus E, vibration damping ratio τ, specific substance concentration I 0 in the sample 3 and the surface of the sample 3 are specified at the plurality of positions. A depth D to the substance and a frequency transition Δf are obtained, and a topograph (three-dimensional image data) is generated based on the obtained result. A display provided in the PC 12 displays the generated topograph.

尚、PC12は、周波数遷移Δfのトポグラフの中から、音速ν、ヤング率Eを求めるのに適した周波数偏移Δfを、PC12が備えるユーザインターフェースのユーザによる操作に基づいて取得し、取得した周波数偏移Δfを用いて、試料3の音速νとヤング率Eとを求めるようにすることができる。   The PC 12 acquires a frequency shift Δf suitable for obtaining the sound velocity ν and the Young's modulus E from the topography of the frequency transition Δf based on the operation of the user interface of the PC 12 and the acquired frequency. The sound speed ν and Young's modulus E of the sample 3 can be obtained using the shift Δf.

図3は、図2に示した試料3における周波数偏移Δfのトポグラフの一例を示した図である。また、図4は、図2に示した試料3における振動減衰率τのトポグラフの一例を示した図である。図3及び図4では、2[mm]あたり40点求め、±50[μm]の位置分解能が得られている。   FIG. 3 is a diagram showing an example topograph of the frequency shift Δf in the sample 3 shown in FIG. FIG. 4 is a diagram showing an example of a topograph of the vibration damping rate τ in the sample 3 shown in FIG. 3 and 4, 40 points are obtained per 2 [mm], and a positional resolution of ± 50 [μm] is obtained.

アルミニウムプレート(アルミ粘着テープ)をはさみで切断して略正三角形としたものを試料3として用いた。このことから、図3及び図4に示すトポグラフ300、400では、試料3の一辺(向かって右側の辺)が上方にめくれ上がっている様子が示されている。試料3の中央部では、周波数偏移Δfが低く、試料3がPZT振動子4によく接着されている様子が見える。すなわち、試料3がPZT振動子4によく接着されている試料3の中央部では、音響信号が試料3を伝搬する時間が短くなるため、周波数偏移Δfが低くなる。   Sample 3 was formed by cutting an aluminum plate (aluminum adhesive tape) with scissors into a substantially equilateral triangle. From this, the topographs 300 and 400 shown in FIGS. 3 and 4 show that one side of the sample 3 (the side on the right side) is turned up. At the center of the sample 3, the frequency shift Δf is low, and it can be seen that the sample 3 is well bonded to the PZT vibrator 4. That is, in the central portion of the sample 3 where the sample 3 is well bonded to the PZT vibrator 4, the time for the acoustic signal to propagate through the sample 3 is shortened, and thus the frequency shift Δf is lowered.

本実施形態では、PC12は、周波数偏移Δfのトポグラフ300において、試料3の中央部における比較的変化がなだらかで且つ低い値の周波数偏移Δfを、ユーザによるユーザインターフェースの操作に基づいて取得して、試料3の音速νとヤング率Eとを求める。   In the present embodiment, the PC 12 acquires the frequency shift Δf having a relatively gentle and low value in the center portion of the sample 3 in the topograph 300 of the frequency shift Δf based on the user interface operation by the user. Then, the sound velocity ν and Young's modulus E of the sample 3 are obtained.

以上のように本実施形態では、PZT振動子4の表面(上面)に固定(接着)された測定対象の試料3の表面(上面)に、断続光を照射することによってPZT振動子4から発生した音響信号の振幅に基づいて、複合共鳴周波数ftを求め、求めた複合共鳴周波数ftの断続光がダイオードアレイ1から断続光が照射されるようにダイオードアレイ1の発光状態を制御するようにした。そして、求めた複合共鳴周波数ftを用いて、試料3の音速ν、ヤング率E等の音波物性を求めるようにした。従って、振動減衰率だけでなく、様々な音波物性を得ることができ、光音響効果を利用して、従来よりも試料3の詳細な情報を得ることができる。よって、例えば生体検査等を高い精度で行うようにすることが可能になる。As described above, in the present embodiment, the light is generated from the PZT vibrator 4 by irradiating the surface (upper face) of the sample 3 to be measured fixed (adhered) to the surface (upper face) of the PZT vibrator 4 with intermittent light. based on the amplitude of the acoustic signal, obtains a composite resonance frequency f t, so that the intermittent light of the complex resonance frequency f t of the determined intermittent light from the diode array 1 for controlling the diode light-emitting state of the array 1 so as to irradiate I made it. Then, using the obtained composite resonance frequency f t , the sound wave physical properties such as the sound velocity ν and Young's modulus E of the sample 3 were obtained. Therefore, not only the vibration attenuation rate but also various sound wave physical properties can be obtained, and more detailed information of the sample 3 can be obtained than the prior art by utilizing the photoacoustic effect. Therefore, for example, it is possible to perform a biopsy or the like with high accuracy.

また、振動減衰率α、振動減衰率τ、及び試料3の表面から特定物質までの深さDも求めるようにしたので、試料3のより詳細な情報を得ることができる。
更に、音速ν、ヤング率E、振動減衰率τ、試料3中の特定物質の濃度I0、試料3の表面から特定物質までの深さD、及び周波数遷移Δfのトポグラフ(3次元画像データ)を生成してディスプレイに表示するようにしたので、試料3の状態をユーザに視覚的に容易に認識させることができる。従って、例えば、生体検査の試料等において異様繁殖した癌細胞とその周りの通常細胞とを、トポグラフ(例えば、ヤング率Eや(密度を考慮した)音速νのトポグラフ)によって視覚的に容易に判別することが可能になる。
Further, since the vibration attenuation rate α, the vibration attenuation rate τ, and the depth D from the surface of the sample 3 to the specific substance are obtained, more detailed information of the sample 3 can be obtained.
Furthermore, the topography (three-dimensional image data) of the sound velocity ν, Young's modulus E, vibration damping rate τ, concentration I 0 of the specific substance in the sample 3, depth D from the surface of the sample 3 to the specific substance, and frequency transition Δf Is generated and displayed on the display, the state of the sample 3 can be easily recognized visually by the user. Therefore, for example, cancer cells that proliferated abnormally in biopsy samples and normal cells around them can be easily distinguished visually using a topograph (for example, a Young's modulus E or a topography with a speed of sound ν (considering density)). It becomes possible to do.

更に、トポグラフ300に基づいて、音速ν及びヤング率Eを求めるのに使う周波数偏移Δfを決定するようにしたので、音速ν及びヤング率Eをより正確に決定することができる。   Furthermore, since the frequency shift Δf used to determine the sound speed ν and the Young's modulus E is determined based on the topograph 300, the sound speed ν and the Young's modulus E can be determined more accurately.

尚、本実施形態では、VFコンバータ11を用いて、PC12で処理できる形に音響信号を加工するようにしたが、VFコンバータ11の代わりにADコンバータを用いて、PC12で処理できる形に音響信号を加工するようにしてもよい。
また、本実施形態では、周波数偏移Δfのトポグラフ300を参照したユーザによる操作に基づいて取得した周波数偏移Δfを用いて、試料3の音速νとヤング率Eとを求めるようにしたが、必ずしもこのようにする必要はない。すなわち、周波数偏移Δfのトポグラフ300から、PC12自身が、試料3の音速νとヤング率Eとを求めるための周波数偏移Δfを決定し、決定した周波数偏移Δfを用いて、試料3の音速νとヤング率Eとを求めるようにしてもよい。周波数偏移Δfの決定に際しては、例えば、周波数偏移Δfのトポグラフ300における周波数偏移Δfの最低値を用いてもよいし、周波数偏移Δfのトポグラフ300における周波数偏移Δfの平均値を用いてもよいし、周波数偏移Δfのトポグラフ300における周波数偏移Δfの変化が閾値以下の領域における最低値又は平均値を用いてもよい。
In this embodiment, the acoustic signal is processed into a form that can be processed by the PC 12 using the VF converter 11. However, the acoustic signal is processed into a form that can be processed by the PC 12 using an AD converter instead of the VF converter 11. May be processed.
In this embodiment, the sound velocity ν and the Young's modulus E of the sample 3 are obtained using the frequency shift Δf acquired based on the operation by the user referring to the topograph 300 of the frequency shift Δf. This is not always necessary. That is, from the topograph 300 of the frequency deviation Δf, the PC 12 itself determines the frequency deviation Δf for obtaining the sound velocity ν and the Young's modulus E of the sample 3, and the determined frequency deviation Δf is used to determine the frequency deviation Δf of the sample 3. The speed of sound ν and Young's modulus E may be obtained. In determining the frequency deviation Δf, for example, the lowest value of the frequency deviation Δf in the topograph 300 of the frequency deviation Δf may be used, or the average value of the frequency deviation Δf in the topograph 300 of the frequency deviation Δf is used. Alternatively, a minimum value or an average value in a region where the change of the frequency shift Δf in the topography 300 of the frequency shift Δf is not more than a threshold value may be used.

また、本実施形態では、発光ダイオードを用いて断続光を発光するようにしたが、必ずしも発光ダイオードを用いる必要はない。例えば、レーザダイオードを用いるようにしてもよい。また、発光ダイオードやレーザダイオード等の光源は、複数であっても1つであってもよい。また、ビーム径が50[μm]の場合を例示したが、ビーム径はこれに限定されず、例えば1[μm]以下に設定できる。ビーム径を小さくすれば、位置の分解能を向上させることができる。   In this embodiment, intermittent light is emitted using a light emitting diode, but it is not always necessary to use a light emitting diode. For example, a laser diode may be used. Further, the light source such as a light emitting diode or a laser diode may be plural or one. Moreover, although the case where the beam diameter is 50 [μm] is illustrated, the beam diameter is not limited to this, and can be set to 1 [μm] or less, for example. If the beam diameter is reduced, the position resolution can be improved.

また、本実施形態では、X方向試料台駆動装置19a及びY方向試料台駆動装置19bを駆動させて、X軸方向及びY軸方向の2方向にXY稼動試料台5を駆動させるようにしたが、X軸方向及びY軸方向の一方向のみXY稼動試料台5を駆動させるようにしてもよい。   In this embodiment, the X-direction sample stage drive device 19a and the Y-direction sample stage drive device 19b are driven to drive the XY operation sample stage 5 in two directions, the X-axis direction and the Y-axis direction. The XY working sample stage 5 may be driven only in one direction in the X-axis direction and the Y-axis direction.

また、本実施形態では、振動検出素子としてPZT振動子4を用いた場合を例に挙げて説明したが、振動検出素子は、PZT振動子(圧電素子)に限定されず、試料3の振動を検出する素子であればどのような素子であってもよい。例えば、磁歪共鳴振動子、PDF合成共鳴振動子、静電誘導合成共鳴振動子、電磁誘導型合成共鳴振動子、又は光検出合成共鳴振動子等を、振動検出素子として用いることができる。   In this embodiment, the case where the PZT vibrator 4 is used as the vibration detection element has been described as an example. However, the vibration detection element is not limited to the PZT vibrator (piezoelectric element), and the vibration of the sample 3 is measured. Any element may be used as long as it is an element to be detected. For example, a magnetostrictive resonance vibrator, a PDF synthetic resonance vibrator, an electrostatic induction synthetic resonance vibrator, an electromagnetic induction type synthetic resonance vibrator, a light detection synthetic resonance vibrator, or the like can be used as the vibration detection element.

以上説明した本発明の実施形態は、コンピュータがプログラムを実行することによって実現することができる。また、プログラムをコンピュータに供給するための手段、例えばかかるプログラムを記録したCD−ROM等のコンピュータ読み取り可能な記録媒体、又はかかるプログラムを伝送する伝送媒体も本発明の実施の形態として適用することができる。また、上記プログラムを記録したコンピュータ読み取り可能な記録媒体などのプログラムプロダクトも本発明の実施の形態として適用することができる。上記のプログラム、コンピュータ読み取り可能な記録媒体、伝送媒体及びプログラムプロダクトは、本発明の範疇に含まれる。   The embodiment of the present invention described above can be realized by a computer executing a program. Further, a means for supplying the program to the computer, for example, a computer-readable recording medium such as a CD-ROM recording such a program, or a transmission medium for transmitting such a program may be applied as an embodiment of the present invention. it can. A program product such as a computer-readable recording medium in which the program is recorded can also be applied as an embodiment of the present invention. The above programs, computer-readable recording media, transmission media, and program products are included in the scope of the present invention.

また、前述した実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。   In addition, the above-described embodiments are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention should not be construed as being limited thereto. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.

本発明によれば、試料に取り付けられ、その試料の振動を検出する振動検出素子と、その振動検出素子に取り付けられた試料の表面から内部に向かって励起される光音響波源群柱の任意の一点からの距離の間にある媒質との複合共鳴周波数を、前記振動検出素子で検出された前記試料の振動を示す音響信号に基づいて求めるようにしたので、複合共鳴周波数を用いて、従来よりも多くの音波物性を求めることができる。   According to the present invention, the vibration detection element attached to the sample and detecting the vibration of the sample, and any photoacoustic wave source group column excited from the surface of the sample attached to the vibration detection element toward the inside Since the composite resonance frequency with the medium between the distance from one point is obtained based on the acoustic signal indicating the vibration of the sample detected by the vibration detection element, using the composite resonance frequency, Many sound wave properties can be obtained.

Claims (5)

試料に取り付けられ、前記試料の振動を検出する振動検出素子と、
前記振動検出素子が取り付けられた試料に対して、任意の断続周期の励起光を照射する光音響顕微鏡と、
前記光音響顕微鏡に対し、前記断続周期の励起光を与える発光手段と、
前記試料の前記振動検出素子が取り付けられている面から、前記断続周期の励起光によって前記試料の内部に励起される光音響波源の任意の一点にある物質までの間にある媒質と前記振動検出素子との複合共鳴周波数の周波数を求めるために、前記振動検出素子で検出された前記試料の振動を示す音響信号を相関検波する相関検波手段を有する周波数導出手段であって、前記複合共鳴周波数を、前記相関検波手段により相関検波された音響信号のcos成分がゼロになる周波数として求める周波数導出手段と、
前記周波数導出手段により求められた複合共鳴周波数で、前記断続周期の励起光が前記振動検出素子に取り付けられた試料に対して照射されるように、前記発光手段を制御する制御手段と、
前記周波数導出手段により求められた複合共鳴周波数を用いて、前記試料における音速、及び前記試料のヤング率の少なくとも何れか一方を音波物性として求める第1の音波物性導出手段と、
前記試料の前記振動検出素子が取り付けられている面から前記試料に含まれる前記物質までの深さを音波物性として求める第2の音波物性導出手段と、を有し、
前記周波数導出手段は、前記試料に含まれる前記物質の量子力学的吸収波長を有する前記断続周期の励起光が、前記振動検出素子に取り付けられた試料に照射された場合の前記複合共鳴周波数を求める第1の周波数導出手段と、
前記試料に含まれる前記物質の内部に到達しない波長を有する前記断続周期の励起光が前記振動検出素子に取り付けられた試料に照射された場合の前記複合共鳴周波数を求める第2の周波数導出手段と、を更に有し、
前記第2の音波物性導出手段は、前記第1の周波数導出手段と、前記第2の周波数導出手段とによって求められた複合共鳴周波数と、前記試料の厚さとに基づいて、前記試料の前記振動検出素子が取り付けられている面から前記試料に含まれる前記物質までの深さを求めることを有することを特徴とする光音響測定システム。
A vibration detecting element attached to the sample and detecting the vibration of the sample;
A photoacoustic microscope that irradiates excitation light of an arbitrary intermittent period to the sample to which the vibration detection element is attached,
A light emitting means for providing excitation light of the intermittent period to the photoacoustic microscope;
The medium and the vibration detection between the surface of the sample on which the vibration detection element is attached and the substance at any one point of the photoacoustic wave source excited inside the sample by the excitation light of the intermittent period A frequency deriving unit having a correlation detecting unit for correlating and detecting an acoustic signal indicating the vibration of the sample detected by the vibration detecting element in order to obtain a frequency of a complex resonant frequency with the element; Frequency derivation means for obtaining a frequency at which the cos component of the acoustic signal correlation-detected by the correlation detection means becomes zero;
Control means for controlling the light-emitting means so that the excitation light of the intermittent period is irradiated to the sample attached to the vibration detecting element at the composite resonance frequency obtained by the frequency deriving means;
A first acoustic wave property deriving unit that obtains at least one of a sound velocity in the sample and a Young's modulus of the sample as a sound wave property using the complex resonance frequency obtained by the frequency deriving unit;
Second sound wave property deriving means for obtaining a depth from the surface of the sample to which the vibration detecting element is attached to the substance contained in the sample as sound wave property,
The frequency deriving unit obtains the complex resonance frequency when the intermittent light having the quantum mechanical absorption wavelength of the substance contained in the sample is irradiated to the sample attached to the vibration detecting element. First frequency deriving means;
Second frequency deriving means for obtaining the composite resonance frequency when the intermittent light having a wavelength that does not reach the inside of the substance included in the sample is irradiated to the sample attached to the vibration detecting element; Further comprising
The second acoustic wave property deriving unit is configured to generate the vibration of the sample based on a composite resonance frequency obtained by the first frequency deriving unit and the second frequency deriving unit and a thickness of the sample. A photoacoustic measurement system comprising obtaining a depth from a surface on which a detection element is attached to the substance contained in the sample.
前記発光手段から、前記試料に含まれる前記物質の量子力学的吸収波長に基づく周波数を有する前記断続周期の励起光が前記振動検出素子に取り付けられた試料に対して照射されることによって前記振動検出素子で検出された前記試料の振動を示す音響信号を用いて、前記試料における振動減衰率を音波物性として求める第3の音波物性導出手段とを有することを特徴とする請求項1に記載の光音響測定システム。 From the light emitting means, the vibration detection by being irradiated to the sample which the excitation light of the intermittent period is attached to the vibration detecting element having a frequency based on the quantum mechanical absorption wavelength of the substance contained in the sample 2. The light according to claim 1, further comprising: a third sound wave property deriving unit that obtains a vibration attenuation rate of the sample as a sound wave property using an acoustic signal indicating the vibration of the sample detected by an element. Acoustic measurement system. 前記発光手段から、前記試料に含まれる前記物質の量子力学的吸収波長に基づく周波数を有する前記断続周期の励起光が前記振動検出素子に取り付けられた試料に対して照射されることによって前記振動検出素子で検出された前記試料の振動を示す音響信号と、その音響信号を用いて前記第3の音波物性導出手段により求められた振動減衰率とを用いて、前記試料に含まれる前記物質の濃度を音波物性として求める第4の音波物性導出手段とを有することを特徴とする請求項2に記載の光音響測定システム。 From the light emitting means, the vibration detection by being irradiated to the sample which the excitation light of the intermittent period is attached to the vibration detecting element having a frequency based on the quantum mechanical absorption wavelength of the substance contained in the sample using an acoustic signal indicating a vibration of the sample detected by the element, and a vibration damping factor obtained by the third wave properties deriving means using the sound signal, the concentration of the substance contained in the sample The photoacoustic measurement system according to claim 2, further comprising: a fourth sound wave property deriving unit that obtains the sound wave property as a sound wave property. 前記試料と、前記光音響顕微鏡との相対的な位置を変更する位置変更手段を有し、
前記位置変更手段により変更されたそれぞれの位置で、前記音波物性を求めることを特徴とする請求項1〜3の何れか1項に記載の光音響測定システム。
A position changing means for changing a relative position between the sample and the photoacoustic microscope;
The photoacoustic measurement system according to any one of claims 1 to 3, wherein the sound wave physical property is obtained at each position changed by the position changing means.
前記位置変更手段により変更されたそれぞれの位置で求められた音波物性に基づく3次元画像を表示装置に表示する表示手段を有することを特徴とする請求項4に記載の光音響測定システム。   5. The photoacoustic measurement system according to claim 4, further comprising display means for displaying on a display device a three-dimensional image based on sound wave physical properties obtained at each position changed by the position changing means.
JP2008544136A 2006-11-14 2007-11-13 Photoacoustic measurement system Expired - Fee Related JP5555910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008544136A JP5555910B2 (en) 2006-11-14 2007-11-13 Photoacoustic measurement system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006308317 2006-11-14
JP2006308317 2006-11-14
JP2008544136A JP5555910B2 (en) 2006-11-14 2007-11-13 Photoacoustic measurement system
PCT/JP2007/071961 WO2008059812A1 (en) 2006-11-14 2007-11-13 Opto-acoustic measurement system

Publications (2)

Publication Number Publication Date
JPWO2008059812A1 JPWO2008059812A1 (en) 2010-03-04
JP5555910B2 true JP5555910B2 (en) 2014-07-23

Family

ID=39401620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008544136A Expired - Fee Related JP5555910B2 (en) 2006-11-14 2007-11-13 Photoacoustic measurement system

Country Status (2)

Country Link
JP (1) JP5555910B2 (en)
WO (1) WO2008059812A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4902508B2 (en) * 2007-12-03 2012-03-21 日本電信電話株式会社 Component concentration measuring apparatus and component concentration measuring apparatus control method
FR2940444B1 (en) * 2008-12-24 2014-03-07 Areva Np NON-DESTRUCTIVE, CONTACTLESS CHARACTERIZATION METHOD OF A SUBSTANTIALLY SPHERIC MULTI-LAYER STRUCTURE AND ASSOCIATED DEVICE
US10235551B2 (en) * 2016-05-06 2019-03-19 Qualcomm Incorporated Biometric system with photoacoustic imaging

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203966A (en) * 1988-02-10 1989-08-16 Hitachi Constr Mach Co Ltd Method and device for inspecting joining state of joined part of extremely small member
JPH0280951A (en) * 1988-09-17 1990-03-22 Unyusho Senpaku Gijutsu Kenkyusho Method and apparatus for evaluating constituent distribution of sample using ultrasonic tomography
JPH04213053A (en) * 1990-10-09 1992-08-04 Yokogawa Electric Corp Photo-acoustic microscope
JPH10160711A (en) * 1996-12-02 1998-06-19 Kao Corp Photoacoustic signal measuring device
JP2004249025A (en) * 2003-02-17 2004-09-09 Hiroto Tateno Biological photoacoustic resonance noninvasive biochemical component analyzer and method of measuring blood component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203966A (en) * 1988-02-10 1989-08-16 Hitachi Constr Mach Co Ltd Method and device for inspecting joining state of joined part of extremely small member
JPH0280951A (en) * 1988-09-17 1990-03-22 Unyusho Senpaku Gijutsu Kenkyusho Method and apparatus for evaluating constituent distribution of sample using ultrasonic tomography
JPH04213053A (en) * 1990-10-09 1992-08-04 Yokogawa Electric Corp Photo-acoustic microscope
JPH10160711A (en) * 1996-12-02 1998-06-19 Kao Corp Photoacoustic signal measuring device
JP2004249025A (en) * 2003-02-17 2004-09-09 Hiroto Tateno Biological photoacoustic resonance noninvasive biochemical component analyzer and method of measuring blood component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012017131; 立野洋人,外: '生体光音響非侵襲血液成分測定法の研究' 超音波エレクトロニクスの基礎と応用に関するシンポジウム論文集 第26巻, 20051116, P.161-162 *

Also Published As

Publication number Publication date
JPWO2008059812A1 (en) 2010-03-04
WO2008059812A1 (en) 2008-05-22

Similar Documents

Publication Publication Date Title
US9753016B1 (en) Nanoindenter ultrasonic probe tip
JPH09159681A (en) Method and equipment for measuring physical properties using cantilever for introducing ultrasonic wave
CN103906474A (en) A skeletal method and arrangement utilizing electromagnetic waves
CN107091880B (en) A kind of metal-base composites unsticking detection method
JP4688643B2 (en) Excitation cantilever holder and scanning probe microscope
TW201840982A (en) Method of and system for performing subsurface imaging
JP5555910B2 (en) Photoacoustic measurement system
Hayashi Imaging defects in a plate with complex geometries
JP2010190884A (en) Crack detection support device and crack detection support method
TWI468663B (en) Method of ultrasonic testing a target object made of composite materials using a high energy generation laser beam and ultrasonic detection system
JP6294840B2 (en) Vibration measuring device
JP2019196973A (en) Non-contact acoustic analysis system and non-contact acoustic analysis method
JP2007127547A (en) Elastic constant measuring device, elastic constant measuring method, program, and computer-readable storage medium
JP2012107918A (en) Crack detection device and crack detection method
JP3785785B2 (en) Material property measuring device
KR102519391B1 (en) Subsurface Atomic Force Microscopy Using Guided Ultrasound
JPH08248006A (en) Method and system for inspecting defect of structure
JP2003207390A (en) Method and device for detecting resonance mode of solid, and method and device for measuring elastic constant of solid
JP4672879B2 (en) Vibration measuring method and ultrasonic microscope system
JPS6170433A (en) Method for detecting peeled part of wall body
JP2010133910A (en) Material evaluator using elastic wave
JP2011069786A (en) Method and device for measuring internal structure
KR101558921B1 (en) Dual type ultrasonic sensor for adjusting focal length
JP2007093278A (en) Internal quality evaluation method for produce and its device
CN106461537A (en) Device for characterizing an interface of a structure and corresponding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5555910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees