JP5553064B2 - Vibration generator - Google Patents

Vibration generator Download PDF

Info

Publication number
JP5553064B2
JP5553064B2 JP2011190131A JP2011190131A JP5553064B2 JP 5553064 B2 JP5553064 B2 JP 5553064B2 JP 2011190131 A JP2011190131 A JP 2011190131A JP 2011190131 A JP2011190131 A JP 2011190131A JP 5553064 B2 JP5553064 B2 JP 5553064B2
Authority
JP
Japan
Prior art keywords
weight
nonmagnetic
mover
axial direction
permanent magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011190131A
Other languages
Japanese (ja)
Other versions
JP2013055717A (en
Inventor
竜太 飯島
佳佑 西原
亮也 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2011190131A priority Critical patent/JP5553064B2/en
Publication of JP2013055717A publication Critical patent/JP2013055717A/en
Application granted granted Critical
Publication of JP5553064B2 publication Critical patent/JP5553064B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

本発明は、振動によって発電する振動発電機に関する。   The present invention relates to a vibration generator that generates power by vibration.

従来、振動による運動エネルギーを電気エネルギーに変換する振動発電機が知られている。例えば、特許文献1に記載の振動型電磁発電機では、パイプの外周に、発電コイルが巻回されている。パイプの内部には、複数の磁石が連結された可動磁石が設けられている。可動磁石が、パイプの内部を移動することで、発電が行われる。   Conventionally, a vibration generator that converts kinetic energy caused by vibration into electric energy is known. For example, in the vibration type electromagnetic generator described in Patent Document 1, a power generation coil is wound around the outer periphery of a pipe. A movable magnet connected with a plurality of magnets is provided inside the pipe. Electricity is generated by moving the movable magnet inside the pipe.

一般的に、可動磁石の磁束密度を大きくすれば、振動発電機の発電量を大きくすることができる。従って、特許文献1のように複数の磁石を連結し、さらにそれぞれの磁石を同極対向配置することで、磁束密度を大きくすることができ、発電量を大きくすることができる。また、磁力の強い磁石を可動磁石に用いた場合も磁束密度を大きくすることができ、発電量を大きくすることができる。   Generally, if the magnetic flux density of the movable magnet is increased, the power generation amount of the vibration generator can be increased. Therefore, by connecting a plurality of magnets as in Patent Document 1 and arranging the magnets to face each other with the same polarity, the magnetic flux density can be increased, and the amount of power generation can be increased. Further, when a magnet having a strong magnetic force is used as the movable magnet, the magnetic flux density can be increased and the amount of power generation can be increased.

特開2009−213194号公報JP 2009-213194 A

しかしながら、発電量を大きくするために磁束密度を大きくすると、電磁制動が大きくなり、可動磁石が移動し難くなる。このため、可動子の運動エネルギーが低下して、却って発電量が低下するという問題点があった。   However, if the magnetic flux density is increased to increase the amount of power generation, electromagnetic braking increases and the movable magnet becomes difficult to move. For this reason, there has been a problem that the kinetic energy of the mover is lowered and the power generation amount is reduced.

さらに、磁力の強い磁石を可動子に用いた場合、発電機周辺への漏洩磁場が大きくなり、周辺機器に悪影響を与えるおそれがある。このため、鉄などの軟磁性材料から成る筐体で、発電機全体を覆うことによって、漏洩磁場を低減することが可能である。しかしながら、可動磁石がパイプの端部周辺に移動したときに、可動磁石と筐体端部とが磁気的に引き合って、可動子の運動エネルギーが低下して、発電量が低下するという問題があった。   Furthermore, when a magnet having a strong magnetic force is used for the mover, a leakage magnetic field around the generator is increased, which may adversely affect peripheral devices. For this reason, it is possible to reduce the leakage magnetic field by covering the entire generator with a housing made of a soft magnetic material such as iron. However, there is a problem that when the movable magnet moves around the end of the pipe, the movable magnet and the end of the casing are magnetically attracted to reduce the kinetic energy of the mover, thereby reducing the amount of power generation. It was.

本発明の目的は、漏洩磁場を低減しつつ、発電量の低下を抑制することが可能な振動発電機を提供することである。   An object of the present invention is to provide a vibration power generator capable of suppressing a decrease in power generation amount while reducing a leakage magnetic field.

本発明に係る振動発電機は、軟磁性体から成る筐体と、前記筐体内に設けられ、側面の少なくとも一部にコイルが巻回され、軸線方向に沿って延びる筒状部材と、前記筒状部材の内側を前記軸線方向に沿って往復移動可能であり、同極同士が対向されて前記軸線方向に沿って並んで配置された複数の永久磁石と、並んで配置された前記複数の永久磁石の前記軸線方向の少なくとも一端側に設けられた非磁性体の錘である非磁性錘と、前記複数の永久磁石と前記非磁性錘とを締結する締結部材とを備えた可動子とを備え、前記複数の永久磁石と前記非磁性錘とは、前記軸線方向に沿って貫通する孔部を備え、前記締結部材は、前記孔部に挿通されており、前記非磁性錘の端部のうち前記永久磁石から遠い側の端部より突出した前記締結部材の端部を前記孔部の径方向外側に向けて折り曲げることで加締められ、前記複数の永久磁石と前記非磁性錘とを締結する。この場合、非磁性錘が設けられていることにより、可動子の重さが増加する。可動子の重さが増加すると、可動子の運動エネルギーが大きくなり、電磁制動が抑制される。よって、可動子が移動し易くなり、発電量の低下を抑制できる。また、非磁性錘が端部に設けられているため、可動子が筒状部材端部に移動したときに、軟磁性体から成る筐体と永久磁石との間の磁気的に引き合う力を低減できる。よって、可動子が移動し易くなり、発電量の低下を抑制できる。また、締結部材が、永久磁石と非磁性錘とは別体として設けられている。よって、例えば、永久磁石と非磁性錘とを連結する際に、非磁性錘側に力をかけて永久磁石に連結させるように締結部材を構成すれば、締結する際の負荷は、非磁性錘に対して加えられてから、非磁性錘の永久磁石側端面全体で永久磁石に負荷がかかるため、永久磁石に局所的に負荷が加わって永久磁石が破損することを防止できる。また、磁場を発生させる永久磁石を備えた可動子が軟磁性体から成る筐体の内側に位置するため、振動発電機の外部に漏れる漏洩磁場を低減できる。また、非磁性錘は、並んで配置された複数の永久磁石の少なくとも一端側に設けられているため、同極が対向した永久磁石の磁束密度を低下させることはない。よって、発電量は低下しない。また、締結部材が非磁性錘の端部で加締められ、永久磁石と非磁性錘とが締結される。このため、締結部材の加締めの部位は、非磁性錘とは接触するが、永久磁石とは接触しない。よって、締結部材の加締めが行われた際に、加締めの部位が永久磁石に衝撃を与えて永久磁石が破損することが防止される。 A vibration generator according to the present invention includes a housing made of a soft magnetic material, a cylindrical member provided in the housing, having a coil wound around at least a part of a side surface thereof, and extending along an axial direction. the inner Jo member is movable back and forth along the axial direction, and a plurality of permanent magnets the poles are arranged side by side along the axial direction is opposite, side by side arranged the plurality of permanent A mover including a nonmagnetic weight that is a weight of a nonmagnetic material provided on at least one end side of the magnet in the axial direction, and a fastening member that fastens the plurality of permanent magnets and the nonmagnetic weight. The plurality of permanent magnets and the non-magnetic weight include a hole penetrating along the axial direction, and the fastening member is inserted through the hole, and is out of an end of the non-magnetic weight. The end of the fastening member protruding from the end on the side far from the permanent magnet The hole diameter crimped by bending in the direction outside of the, fastening the said non-magnetic mass and the plurality of permanent magnets. In this case, since the nonmagnetic weight is provided, the weight of the mover increases. When the weight of the mover increases, the kinetic energy of the mover increases and electromagnetic braking is suppressed. Therefore, the mover can easily move, and a decrease in the amount of power generation can be suppressed. In addition, since the non-magnetic weight is provided at the end, when the mover moves to the end of the cylindrical member, the magnetically attracting force between the case made of soft magnetic material and the permanent magnet is reduced. it can. Therefore, the mover can easily move, and a decrease in the amount of power generation can be suppressed. The fastening member is provided as a separate body from the permanent magnet and the non-magnetic weight. Thus, for example, when connecting the permanent magnet and the non-magnetic weight, if the fastening member is configured to apply a force to the non-magnetic weight side and connect to the permanent magnet, the load at the time of fastening is the non-magnetic weight. Since the load is applied to the permanent magnet on the entire end surface of the non-magnetic weight on the permanent magnet side, it is possible to prevent the permanent magnet from being locally damaged by being loaded. In addition, since the mover including a permanent magnet that generates a magnetic field is located inside the casing made of a soft magnetic material, the leakage magnetic field leaking to the outside of the vibration generator can be reduced. Further, since the non-magnetic weight is provided on at least one end side of the plurality of permanent magnets arranged side by side, the magnetic flux density of the permanent magnets facing the same pole does not decrease. Therefore, the power generation amount does not decrease. Further, the fastening member is crimped at the end of the nonmagnetic weight, and the permanent magnet and the nonmagnetic weight are fastened. For this reason, the caulking part of the fastening member is in contact with the nonmagnetic weight, but is not in contact with the permanent magnet. Therefore, when the fastening member is caulked, it is prevented that the caulking part gives an impact to the permanent magnet and the permanent magnet is damaged.

前記振動発電機において、前記コイルは、前記軸線方向に沿って複数並んで前記筒状部材の側面に巻回され、隣接する他の前記コイルとは巻き線方向が異なり、前記可動子に含まれる前記永久磁石の前記軸線方向の幅は、前記コイルの前記軸線方向の幅と略同一であってもよい。この場合、複数の永久磁石は、同極同士が対向されているため、磁束密度が大きくなる。このため、発電量が大きくなる。さらに、永久磁石の軸線方向の幅と、コイルの軸線方向との幅が略同一であり、コイルは、隣接する他のコイルとは巻き線方向が異なる。このため、複数の永久磁石が複数のコイル内部を移動する場合、複数のコイルには、それぞれ同一方向に同時に電流が流れる。よって、発電量が大きくなる In the vibration generator, before Symbol coils along said axial direction are wound around the side surface of the plurality lined said tubular member have different winding direction to the adjacent other of said coils, included in the mover The width of the permanent magnet in the axial direction may be substantially the same as the width of the coil in the axial direction. In this case, since the same poles are opposed to each other, the magnetic flux density is increased. For this reason, the amount of power generation increases. Furthermore, the width in the axial direction of the permanent magnet and the width in the axial direction of the coil are substantially the same, and the coil is different in winding direction from other adjacent coils. For this reason, when a plurality of permanent magnets move inside a plurality of coils, current flows through the coils simultaneously in the same direction. Therefore, the power generation amount increases .

前記振動発電機において、前記非磁性錘の単位体積当たりの質量は、前記永久磁石の単位体積当たりの質量以上であってもよい。この場合、錘として永久磁石を追加する場合よりも、非磁性錘を使用した方が、少ない体積増加で可動子の重さを大きくでき、さらに可動子の移動速度を大きくできる。よって、可動子の運動エネルギーが大きくなり、発電量が増加する。   In the vibration power generator, the mass per unit volume of the non-magnetic weight may be greater than or equal to the mass per unit volume of the permanent magnet. In this case, the weight of the mover can be increased with a small increase in volume and the moving speed of the mover can be further increased by using a nonmagnetic weight as compared with the case where a permanent magnet is added as a weight. Therefore, the kinetic energy of the mover increases and the amount of power generation increases.

前記振動発電機において、前記可動子における前記軸線方向の両端面にそれぞれ対向する対向面を備え、前記対向面のうち前記可動子の前記非磁性錘に対向する面と前記非磁性錘との間に、前記軸線方向に弾性力を有する軟磁性体の弾性部材を備えてもよい。この場合、可動子の永久磁石と弾性部材との間に非磁性錘が存在するので、永久磁石と弾性部材とが隣接する場合に比べて弾性部材に到達する磁束密度が小さい。磁束密度が小さい場合、弾性部材が磁化され難いため、弾性部材に軟磁性体の弾性部材を使用することができる。このため材料の選択肢が拡がり、コストの高い非磁性の銅系材料以外にも、軟磁性の鉄系材料を使用することができ、弾性部材をコストダウンすることができる。


In the vibration generator, between the respective end faces in the axial direction provided with a facing surface that faces the non-magnetic mass the the surface facing the non-magnetic mass of the mover of the facing surface of the armature In addition, a soft magnetic elastic member having an elastic force in the axial direction may be provided. In this case, since a non-magnetic weight exists between the permanent magnet and the elastic member of the mover, the magnetic flux density reaching the elastic member is smaller than when the permanent magnet and the elastic member are adjacent to each other. When the magnetic flux density is small, it is difficult for the elastic member to be magnetized. Therefore, an elastic member made of a soft magnetic material can be used as the elastic member. For this reason, choices of materials are expanded, and soft magnetic iron-based materials can be used in addition to high-cost nonmagnetic copper-based materials, and the cost of elastic members can be reduced.


振動発電機1の断面図である。1 is a cross-sectional view of a vibration generator 1. FIG. 可動子13が製造される過程を示す図である。It is a figure which shows the process in which the needle | mover 13 is manufactured. 可動子13が製造される過程を示す図である。It is a figure which shows the process in which the needle | mover 13 is manufactured.

以下、本発明の一実施形態について、図面を参照して説明する。図1〜図3を参照し、振動発電機1について説明する。以下の説明では、図1の上側、下側、左側、右側をそれぞれ、振動発電機1の上側、下側、左側、右側と定義して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The vibration generator 1 will be described with reference to FIGS. In the following description, the upper side, the lower side, the left side, and the right side in FIG. 1 are defined as the upper side, the lower side, the left side, and the right side of the vibration power generator 1, respectively.

図1に示すように、振動発電機1は、筐体17を備えている。筐体17は、円筒部材180及び壁部181,182を備えている。円筒部材180は、軸線O方向に沿って延びる円筒形の部材である。円筒部材180の軸線O方向の両端は開口している。壁部181は、円筒部材180の軸線O方向の上端の開口部分を覆うように設けられている。壁部182は、円筒部材180の下端の開口部分を覆うように設けられている。筐体17は、例えば、鉄等の軟磁性体材料で形成されている。   As shown in FIG. 1, the vibration generator 1 includes a housing 17. The housing 17 includes a cylindrical member 180 and wall portions 181 and 182. The cylindrical member 180 is a cylindrical member extending along the axis O direction. Both ends of the cylindrical member 180 in the direction of the axis O are open. The wall 181 is provided so as to cover the opening at the upper end of the cylindrical member 180 in the axis O direction. The wall 182 is provided so as to cover the opening at the lower end of the cylindrical member 180. The casing 17 is made of, for example, a soft magnetic material such as iron.

筐体17内には、円筒形の筒状部材11が設けられている。筒状部材11の内径は、円筒部材180の内径の略半分である。筒状部材11は、軸線O方向に沿って延び、その軸線O方向の両端が筐体17の壁部181,182と接触している。筒状部材11の軸線O方向の両端は開口しており、この開口が筐体17の壁部181,182によって覆われている。筒状部材11は、例えば、樹脂(アクリル樹脂)等の非磁性体材料で形成されている。   A cylindrical tubular member 11 is provided in the housing 17. The inner diameter of the cylindrical member 11 is substantially half of the inner diameter of the cylindrical member 180. The cylindrical member 11 extends along the axis O direction, and both ends in the axis O direction are in contact with the wall portions 181 and 182 of the housing 17. Both ends of the cylindrical member 11 in the direction of the axis O are open, and the openings are covered with the wall portions 181 and 182 of the housing 17. The cylindrical member 11 is made of, for example, a nonmagnetic material such as resin (acrylic resin).

なお、筐体17(円筒部材180)及び筒状部材11の形状は円筒形に限定されない。筐体17及び筒状部材11の形状は、例えば、楕円筒形状、四角筒等その他の多角筒形状であってもよい。筐体17の材料は軟磁性体であれば、ケイ素鋼、パーマロイ、フェライト系ステンレスであってもよい。また、筒状部材11の材料は、非磁性体であれば、アルミナ、酸化シリコン等のセラミックであってもよい。   In addition, the shape of the housing | casing 17 (cylindrical member 180) and the cylindrical member 11 is not limited to a cylindrical shape. The shapes of the casing 17 and the cylindrical member 11 may be other polygonal cylinder shapes such as an elliptical cylinder shape and a square cylinder shape, for example. As long as the material of the housing 17 is a soft magnetic material, silicon steel, permalloy, or ferritic stainless steel may be used. The material of the cylindrical member 11 may be a ceramic such as alumina or silicon oxide as long as it is a non-magnetic material.

筒状部材11の外周側面の一部には、コイル21,22,23が巻回されている。コイル21,22,23は、筒状部材11の軸線O方向中央部において、軸線O方向に並べられて配置されている。コイル21,22,23は、筒状部材11の外周側面の周方向に沿って巻回されている。コイル21,22,23は、それぞれ隣接する他のコイルとは巻き線方向が異なる。すなわち、コイル21、23は同一方向に巻回されており、コイル22は、コイル21,23の巻き線方向の逆方向に巻回されている。コイル21,22,23の軸線O方向の幅は、それぞれ略同一である。コイル21,22,23は、例えば、導体部が銅で形成されている。なお、コイル21,22,23は、筒状部材11の全周にわたって巻回されていてもよい。   Coils 21, 22, and 23 are wound around a part of the outer peripheral side surface of the cylindrical member 11. The coils 21, 22, and 23 are arranged side by side in the axis O direction at the center of the cylindrical member 11 in the axis O direction. The coils 21, 22, and 23 are wound along the circumferential direction of the outer peripheral side surface of the cylindrical member 11. Coils 21, 22, and 23 are different in winding direction from other adjacent coils. That is, the coils 21 and 23 are wound in the same direction, and the coil 22 is wound in a direction opposite to the winding direction of the coils 21 and 23. The widths of the coils 21, 22, and 23 in the direction of the axis O are substantially the same. For example, the conductors of the coils 21, 22, and 23 are made of copper. The coils 21, 22, and 23 may be wound around the entire circumference of the tubular member 11.

筒状部材11の内側には、可動子13が収容されている。可動子13は、筒状部材11の内側を軸線O方向に往復移動可能である。可動子13は、永久磁石14,15、非磁性錘31,32、及び締結部材16を備えている。   A mover 13 is accommodated inside the cylindrical member 11. The mover 13 can reciprocate in the direction of the axis O inside the cylindrical member 11. The mover 13 includes permanent magnets 14 and 15, nonmagnetic weights 31 and 32, and a fastening member 16.

永久磁石14,15は、軸線O方向に沿って延びる円柱形である。永久磁石14,15のそれぞれの外径は、筒状部材11の内径と比較して僅かに小さい。永久磁石14,15のそれぞれの軸線O方向の幅(長さ)は、それぞれ略同一である。また、永久磁石14,15のそれぞれの軸線O方向の幅は、コイル21,22,23のそれぞれの軸線方向の幅と略同一である。   The permanent magnets 14 and 15 have a cylindrical shape extending along the axis O direction. The outer diameters of the permanent magnets 14 and 15 are slightly smaller than the inner diameter of the cylindrical member 11. The widths (lengths) of the permanent magnets 14 and 15 in the direction of the axis O are substantially the same. The width of each of the permanent magnets 14 and 15 in the direction of the axis O is substantially the same as the width of each of the coils 21, 22 and 23 in the direction of the axis.

永久磁石14,15は、それぞれ軸線O方向に磁化されている。2つの永久磁石14,15は、同極同士が対向されて軸線O方向に沿って並べて配置されている。より詳細には、永久磁石14は、永久磁石15の上側に設けられ、永久磁石15と接触している。また、永久磁石14の上部の極性はN極であり、下部の極性はS極である。永久磁石14の上部の極性はS極であり、下部の極性はN極である。このため、永久磁石14,15のS極同士が接触している。   The permanent magnets 14 and 15 are each magnetized in the direction of the axis O. The two permanent magnets 14 and 15 are arranged side by side along the axis O direction with the same poles facing each other. More specifically, the permanent magnet 14 is provided on the upper side of the permanent magnet 15 and is in contact with the permanent magnet 15. Moreover, the polarity of the upper part of the permanent magnet 14 is an N pole, and the polarity of the lower part is an S pole. The polarity of the upper part of the permanent magnet 14 is the S pole, and the polarity of the lower part is the N pole. For this reason, the south poles of the permanent magnets 14 and 15 are in contact with each other.

永久磁石14,15には、径方向の中心を軸線O方向に沿って貫通する孔部41がそれぞれ設けられている。孔部41の断面形状は円形である。なお、永久磁石14,15の形状は円柱形に限定されないが、筒状部材11内と同一の断面形状を有していることが望ましい。   The permanent magnets 14 and 15 are each provided with a hole 41 penetrating the center in the radial direction along the axis O direction. The cross-sectional shape of the hole 41 is circular. In addition, although the shape of the permanent magnets 14 and 15 is not limited to a cylindrical shape, it is desirable to have the same cross-sectional shape as the inside of the cylindrical member 11.

可動子13において、並んで配置された永久磁石14,15の軸線O方向の両端側には、非磁性体の錘である非磁性錘31,32が設けられている。より詳細には、非磁性錘31は、永久磁石14の上側に設けられ、非磁性錘32は、永久磁石15の下側に設けられている。非磁性錘31,32は、軸線O方向に沿って延びる円柱形である。非磁性錘31,32のそれぞれの外径は、永久磁石14,15のそれぞれの外径と略同一である。非磁性錘31,32の単位体積当たりの質量(密度)は、永久磁石14,15の単位体積当たりの質量以上である。非磁性錘31,32の材料には、例えば、真鍮、青銅、SUS304、SUS316等を用いることができる。なお、本実施形態では、非磁性錘31の材料は真鍮(単位体積当たりの質量:8.4)、永久磁石14,15の材料はネオジム磁石(単位体積当たりの質量:7.4)であるとする。   In the mover 13, nonmagnetic weights 31 and 32, which are weights of a nonmagnetic material, are provided on both ends of the permanent magnets 14 and 15 arranged side by side in the direction of the axis O. More specifically, the nonmagnetic weight 31 is provided on the upper side of the permanent magnet 14, and the nonmagnetic weight 32 is provided on the lower side of the permanent magnet 15. The nonmagnetic weights 31 and 32 are cylindrical shapes extending along the axis O direction. The outer diameters of the nonmagnetic weights 31 and 32 are substantially the same as the outer diameters of the permanent magnets 14 and 15, respectively. The mass (density) per unit volume of the nonmagnetic weights 31 and 32 is equal to or greater than the mass per unit volume of the permanent magnets 14 and 15. For example, brass, bronze, SUS304, SUS316 or the like can be used as the material of the nonmagnetic weights 31 and 32. In this embodiment, the material of the nonmagnetic weight 31 is brass (mass per unit volume: 8.4), and the material of the permanent magnets 14 and 15 is neodymium magnet (mass per unit volume: 7.4). And

非磁性錘31,32には、径方向の中心を軸線方向に沿って貫通する孔部42が設けられている。孔部42の断面形状は、永久磁石14,15の孔部41の断面形状と略同一の円形である。非磁性錘31,32の孔部42は、永久磁石14,15の孔部41と軸線O方向に連なっている。孔部41と孔部42とが連なることによって、軸線O方向に沿って永久磁石14,15と非磁性錘31,32とを貫通する孔部40(本発明の「孔部」に相当)が形成されている。   The nonmagnetic weights 31 and 32 are provided with a hole portion 42 that penetrates the center in the radial direction along the axial direction. The cross-sectional shape of the hole 42 is a circle that is substantially the same as the cross-sectional shape of the hole 41 of the permanent magnets 14 and 15. The holes 42 of the nonmagnetic weights 31 and 32 are connected to the holes 41 of the permanent magnets 14 and 15 in the direction of the axis O. By connecting the hole 41 and the hole 42, the hole 40 (corresponding to the “hole” of the present invention) penetrating the permanent magnets 14 and 15 and the nonmagnetic weights 31 and 32 along the axis O direction is formed. Is formed.

孔部40の内側には、軸線O方向に延びる締結部材16が挿通されている。締結部材16は、頭部161、軸部162、及び係止部163を備えている。頭部161の形状は円形板状である。頭部161は、表裏面を上下方向に向けた状態で、可動子13の非磁性錘32の下面に接触している。頭部161の径は、非磁性錘32の径と比べて小さい。軸部162は、頭部161の中心から軸線O方向の上側に向かって延びている。軸部162は、孔部40に挿通されている。軸部162の形状は円柱形である。軸部162の径は、孔部40の径よりも僅かに小さい。   A fastening member 16 extending in the direction of the axis O is inserted inside the hole 40. The fastening member 16 includes a head portion 161, a shaft portion 162, and a locking portion 163. The shape of the head 161 is a circular plate. The head 161 is in contact with the lower surface of the nonmagnetic weight 32 of the mover 13 with the front and back surfaces directed in the vertical direction. The diameter of the head 161 is smaller than the diameter of the nonmagnetic weight 32. The shaft 162 extends from the center of the head 161 toward the upper side in the direction of the axis O. The shaft portion 162 is inserted through the hole portion 40. The shape of the shaft portion 162 is a cylindrical shape. The diameter of the shaft portion 162 is slightly smaller than the diameter of the hole portion 40.

軸部162の上端部には、係止部163が設けられている。それぞれの係止部163の形状は、上側に延びる板状である。永久磁石14,15と非磁性錘31,32とは、非磁性錘31の端部のうち、永久磁石14,15から遠い側の端部(非磁性錘31の上端部)で、係止部163が孔部40の径方向外側に向けて加締められることによって締結されている。つまり、係止部163と頭部161との間で、永久磁石14,15と非磁性錘31,32が挟みこまれて固定されている。締結部材16が設けられていることによって、同極が対向した永久磁石14と永久磁石15との間に働く磁気的な反発力によって永久磁石14,15が互いに離れてしまうことや、非磁性錘31,32と永久磁石14,15とが互いに離れてしまうことが防止されている。締結部材16の材料は、例えば、非磁性体材料(樹脂、金属等)である。   A locking portion 163 is provided at the upper end portion of the shaft portion 162. Each locking portion 163 has a plate shape extending upward. The permanent magnets 14, 15 and the nonmagnetic weights 31, 32 are end portions (upper end portions of the nonmagnetic weight 31) on the side far from the permanent magnets 14, 15 among the end portions of the nonmagnetic weight 31. 163 is fastened by caulking toward the radially outer side of the hole 40. That is, the permanent magnets 14 and 15 and the nonmagnetic weights 31 and 32 are sandwiched and fixed between the locking portion 163 and the head 161. Since the fastening member 16 is provided, the permanent magnets 14 and 15 are separated from each other by a magnetic repulsive force acting between the permanent magnet 14 and the permanent magnet 15 facing the same pole, and a non-magnetic weight. 31 and 32 and the permanent magnets 14 and 15 are prevented from being separated from each other. The material of the fastening member 16 is, for example, a non-magnetic material (resin, metal, etc.).

壁部181のうち、可動子13の軸線O方向の上端面(非磁性錘31の上面)に対向する面を対向面183という。また、壁部182のうち、可動子13の軸線O方向の下端面(非磁性錘32の下面)に対向する面を対向面184という。筒状部材11の内側において、非磁性錘31の上面と対向面183との間には、弾性部材35が設けられている。非磁性錘32の下面と対向面184との間には、弾性部材36が設けられている。弾性部材35,36は、軸線O方向に弾性力を有するコイルバネである。弾性部材35,36の材料は、軟磁性体(例えば、鉄等)である。   Of the wall portion 181, the surface facing the upper end surface (the upper surface of the nonmagnetic weight 31) of the mover 13 in the axis O direction is referred to as an opposing surface 183. In addition, a surface of the wall portion 182 that faces the lower end surface (the lower surface of the nonmagnetic weight 32) of the mover 13 in the axis O direction is referred to as a facing surface 184. Inside the cylindrical member 11, an elastic member 35 is provided between the upper surface of the nonmagnetic weight 31 and the facing surface 183. An elastic member 36 is provided between the lower surface of the nonmagnetic weight 32 and the facing surface 184. The elastic members 35 and 36 are coil springs having an elastic force in the direction of the axis O. The material of the elastic members 35 and 36 is a soft magnetic material (for example, iron).

振動発電機1の動作について説明する。ユーザは、筐体17が軸線O方向に振動するように、振動発電機1を振動させる。これによって、運動エネルギーが、筐体17に加えられる。そして、可動子13と筒状部材11との摩擦力、及び、弾性部材35,36から受ける力などを介して、運動エネルギーが可動子13に伝達する。可動子13は、筒状部材11内を軸線O方向に往復移動する。可動子13は、コイル21,22,23に覆われた空間を出入りする。コイル21,22,23内の空間を通過する際、可動子13の永久磁石14,15が発する磁束が、コイル21,22,23を直交する。これによって、コイル21,22,23に誘導電流が発生する。可動子13がコイル21,22,23内の空間への出入りを繰り返すことで、コイル21,22,23に交流電流が発生する。また、弾性部材35,36が設けられているため、可動子13の移動によって可動子13と対向面183,184とが衝突して可動子13が破損することが防止される。このため、永久磁石14,15が破損して発電量が低下することが防止される。   The operation of the vibration generator 1 will be described. The user vibrates the vibration power generator 1 so that the housing 17 vibrates in the direction of the axis O. Thereby, kinetic energy is applied to the housing 17. The kinetic energy is transmitted to the mover 13 through the frictional force between the mover 13 and the cylindrical member 11 and the force received from the elastic members 35 and 36. The mover 13 reciprocates in the cylindrical member 11 in the direction of the axis O. The mover 13 enters and exits the space covered with the coils 21, 22 and 23. When passing through the spaces in the coils 21, 22 and 23, the magnetic fluxes generated by the permanent magnets 14 and 15 of the mover 13 are orthogonal to the coils 21, 22 and 23. As a result, an induced current is generated in the coils 21, 22, and 23. An alternating current is generated in the coils 21, 22, and 23 when the mover 13 repeatedly enters and leaves the spaces in the coils 21, 22, and 23. Further, since the elastic members 35 and 36 are provided, the mover 13 is prevented from colliding with the opposing surfaces 183 and 184 due to the movement of the mover 13 and being damaged. For this reason, it is prevented that the permanent magnets 14 and 15 are damaged and the power generation amount is reduced.

コイル21,22,23に発生した交流電流は、コイル21,22,23のそれぞれの両端に接続された配線を介し図示外の整流部に伝達される。整流部では、交流電流の全波整流が行われ、図示外の蓄電部(例えば、コンデンサ)によって蓄電される。蓄電された電流は、図示外の電極を介して外部に出力される。外部に出力された電流は、図示外の外部装置の負荷に供給される。外部装置は、供給された電流によって駆動する。   The alternating current generated in the coils 21, 22, 23 is transmitted to a rectification unit (not shown) via wiring connected to both ends of the coils 21, 22, 23. In the rectification unit, full-wave rectification of alternating current is performed, and the electric power is stored by a power storage unit (for example, a capacitor) not shown. The stored current is output to the outside through an electrode not shown. The current output to the outside is supplied to a load of an external device not shown. The external device is driven by the supplied current.

図2及び図3を参照し、可動子13の作製方法について説明する。図2では、軸部162の係止部163は、折り曲げられておらず、上方向に延びている。軸部162の係止部163側から頭部161側に向けて、永久磁石14,15と非磁性錘31,32とが、非磁性錘32、永久磁石15、永久磁石14、及び非磁性錘31の順に軸部162に沿って導入される。これによって、軸部162は、孔部40に挿通された状態となり、その係止部163が、孔部40より軸線O方向上側に突出した状態となる。また、このとき、永久磁石14と永久磁石15とは同極(S極)が対向しているので、互いに磁気的に反発し合い、永久磁石14と永久磁石15とがやや離間した状態となる。   With reference to FIG.2 and FIG.3, the preparation methods of the needle | mover 13 are demonstrated. In FIG. 2, the locking portion 163 of the shaft portion 162 is not bent and extends upward. The permanent magnets 14 and 15 and the nonmagnetic weights 31 and 32 are formed from the locking portion 163 side of the shaft portion 162 toward the head 161 side, and the nonmagnetic weight 32, the permanent magnet 15, the permanent magnet 14, and the nonmagnetic weight. They are introduced along the shaft 162 in the order of 31. As a result, the shaft 162 is inserted into the hole 40, and the locking portion 163 protrudes above the hole 40 in the axis O direction. At this time, since the same polarity (S pole) of the permanent magnet 14 and the permanent magnet 15 is opposed to each other, they repel each other magnetically, and the permanent magnet 14 and the permanent magnet 15 are slightly separated from each other. .

そして、作業者は、締結部材16の係止部163の先端を径方向外側に広げていく。これによって、係止部163の側面が、非磁性錘31を頭部161側(図2の紙面下側)に押し、非磁性錘31を介して永久磁石14が永久磁石15に押し付けられる。永久磁石14が永久磁石15に押し付けられた状態で、締結部材16の係止部163は、径方向外側に折り曲げられ、加締められる。これによって、図3に示すように、締結部材16の頭部161と係止部163とが、永久磁石14,15と非磁性錘31,32を挟み込み、可動子13の完成体が得られる。   Then, the operator widens the distal end of the locking portion 163 of the fastening member 16 outward in the radial direction. As a result, the side surface of the locking portion 163 pushes the nonmagnetic weight 31 toward the head 161 side (the lower side in the drawing of FIG. 2), and the permanent magnet 14 is pressed against the permanent magnet 15 via the nonmagnetic weight 31. In a state where the permanent magnet 14 is pressed against the permanent magnet 15, the locking portion 163 of the fastening member 16 is bent radially outward and crimped. As a result, as shown in FIG. 3, the head 161 and the locking portion 163 of the fastening member 16 sandwich the permanent magnets 14, 15 and the nonmagnetic weights 31, 32, and the completed body of the mover 13 is obtained.

以上のように、本実施形態では、締結部材16の係止部163が、非磁性錘31の端部で加締められ、永久磁石14,15と非磁性錘31,32とが締結される。このため、締結部材16の加締めの部位である係止部163は、非磁性錘31とは接触するが、永久磁石14,15とは接触しない。よって、締結部材16を用いた加締めの作業が行われた際に、係止部163が永久磁石14,15に衝撃を与えて永久磁石14,15が破損することが防止される。よって、永久磁石14,15の破損によって、発電量が低下することが防止される。また、振動発電機1を生産する際の可動子13の歩留まりが向上する。   As described above, in the present embodiment, the locking portion 163 of the fastening member 16 is crimped at the end of the nonmagnetic weight 31, and the permanent magnets 14 and 15 and the nonmagnetic weights 31 and 32 are fastened. For this reason, the locking portion 163, which is a caulking portion of the fastening member 16, is in contact with the nonmagnetic weight 31, but is not in contact with the permanent magnets 14, 15. Therefore, when the caulking work using the fastening member 16 is performed, the locking portion 163 prevents the permanent magnets 14 and 15 from being damaged by impacting the permanent magnets 14 and 15. Therefore, it is possible to prevent the power generation amount from being reduced due to the damage of the permanent magnets 14 and 15. Moreover, the yield of the needle | mover 13 at the time of producing the vibration generator 1 improves.

また、本実施形態では、締結部材16は、永久磁石14,15と非磁性錘31,32とは別体として設けられている。このため、非磁性錘31に力をかけて永久磁石14,15に連結させるように締結部材16を構成することができる。よって、締結する際の負荷は、非磁性錘31に対して加えられてから、非磁性錘31の永久磁石14側の端面全体で、永久磁石14に対して加えられる。よって、永久磁石14に局所的に負荷が加わって永久磁石が破損することを防止できる。   In the present embodiment, the fastening member 16 is provided as a separate body from the permanent magnets 14 and 15 and the nonmagnetic weights 31 and 32. For this reason, the fastening member 16 can be configured to apply a force to the non-magnetic weight 31 to be connected to the permanent magnets 14 and 15. Therefore, after the load at the time of fastening is applied to the nonmagnetic weight 31, it is applied to the permanent magnet 14 over the entire end surface of the nonmagnetic weight 31 on the permanent magnet 14 side. Therefore, it is possible to prevent the permanent magnet 14 from being locally damaged and damaged.

また、締結部材16と非磁性錘31,32とが別体で設けられているため、非磁性錘31,32に孔部42を形成できる形状であれば、非磁性錘31,32の形状は任意に定めることができる。よって、非磁性錘31,32の形状の選択の自由度が向上する。   Further, since the fastening member 16 and the nonmagnetic weights 31 and 32 are provided separately, the shape of the nonmagnetic weights 31 and 32 can be any shape as long as the hole 42 can be formed in the nonmagnetic weights 31 and 32. It can be arbitrarily determined. Therefore, the degree of freedom in selecting the shape of the nonmagnetic weights 31 and 32 is improved.

また、可動子13は非磁性錘31,32を備えているため、非磁性錘31,32を備えていない場合に比べて可動子13の重さが増加する。可動子13の重さが増加すると、可動子13の運動エネルギーが大きくなり、永久磁石14,15がコイル21,22,23の内側を通過する際に発生する電磁制動が抑制される。よって、電磁制動によって可動子13が動き難くなることを防止できる。すなわち、可動子13が移動し易くなり、発電量の低下を抑制できる。   Further, since the mover 13 includes the nonmagnetic weights 31 and 32, the weight of the mover 13 increases as compared with the case where the nonmagnetic weights 31 and 32 are not provided. When the weight of the mover 13 increases, the kinetic energy of the mover 13 increases, and the electromagnetic braking that occurs when the permanent magnets 14 and 15 pass through the inside of the coils 21, 22, and 23 is suppressed. Therefore, it can prevent that the needle | mover 13 becomes difficult to move by electromagnetic braking. That is, the mover 13 can easily move, and a decrease in the amount of power generation can be suppressed.

また、非磁性錘31、32を可動子13の端部に備えているため、可動子13が軟磁性体からなる筐体17の壁部181,182に接近しても、非磁性錘31,32がスペーサとなり、筐体17の壁部181,182と可動子13との間の磁気的に引き合う力が低減される。よって、可動子13が移動し易くなり、発電量の低下を抑制できる。また、磁場を発生させる永久磁石14,15を備えた可動子13が軟磁性体で構成された筐体17の内側に位置する。このため、振動発電機1の外部の漏れる漏洩磁場を低減できる。よって、例えば、外部に漏れた磁場が、周辺機器に悪影響を与えることを防止できる。   Further, since the nonmagnetic weights 31 and 32 are provided at the end of the movable element 13, even if the movable element 13 approaches the wall portions 181 and 182 of the casing 17 made of a soft magnetic material, 32 becomes a spacer, and the magnetically attracting force between the wall portions 181 and 182 of the housing 17 and the mover 13 is reduced. Therefore, the mover 13 becomes easy to move, and a decrease in the amount of power generation can be suppressed. Further, the mover 13 including the permanent magnets 14 and 15 for generating a magnetic field is located inside the housing 17 made of a soft magnetic material. For this reason, the leakage magnetic field which leaks outside the vibration generator 1 can be reduced. Therefore, for example, a magnetic field leaked to the outside can be prevented from adversely affecting peripheral devices.

また、永久磁石14,15は、同極(S極)同士が対向されて配置されているため、磁束密度が大きくなる。磁束密度が大きくなるので、発電量が大きくなる。さらに永久磁石14,15の軸線O方向の幅と、コイル21,22,23の軸線O方向の幅とが略同一であり、コイル21,22,23は、互いに隣接するコイルとは巻き線方向が異なる。このため、永久磁石14,15が、コイル21,22,23の内部を移動する場合、コイル21,22,23には、それぞれ同一方向に同時に電流が流れる。よって、発電量が大きくなる。また、例えば、永久磁石14,15の間に非磁性錘が設けられている場合、当該非磁性錘によって、永久磁石14,15が離間するため、同極が対向した永久磁石14,15の磁束密度が低下し、発電量が低下する。本実施形態では、非磁性錘31,32は、並んで配置された永久磁石14,15の両端側に設けられている。このため、同極が対向した永久磁石14,15の磁束密度を低下させることはない。よって、発電量は低下しない。以上のように、振動発電機1は、発電量を大きくすることができる。   Further, since the permanent magnets 14 and 15 are arranged so that the same poles (S poles) face each other, the magnetic flux density increases. Since the magnetic flux density increases, the amount of power generation increases. Further, the width of the permanent magnets 14 and 15 in the direction of the axis O and the width of the coils 21, 22 and 23 in the direction of the axis O are substantially the same, and the coils 21, 22 and 23 are wound in the winding direction. Is different. For this reason, when the permanent magnets 14 and 15 move inside the coils 21, 22 and 23, currents flow through the coils 21, 22 and 23 simultaneously in the same direction. Therefore, the power generation amount increases. Further, for example, when a nonmagnetic weight is provided between the permanent magnets 14 and 15, the permanent magnets 14 and 15 are separated by the nonmagnetic weight. Density decreases and power generation decreases. In this embodiment, the nonmagnetic weights 31 and 32 are provided on both end sides of the permanent magnets 14 and 15 arranged side by side. For this reason, the magnetic flux density of the permanent magnets 14 and 15 with the same polarity facing each other is not reduced. Therefore, the power generation amount does not decrease. As described above, the vibration power generator 1 can increase the power generation amount.

また、非磁性錘31、32の単位体積当たりの質量は、永久磁石14,15の単位体積当たりの質量以上である。よって、錘として永久磁石を追加する場合よりも、非磁性錘31,32を使用した方が、少ない体積増加で可動子13の重さを大きくでき、可動子13の移動速度を大きくできる。よって、可動子13の運動エネルギーが大きくなり、発電量が増加する。   The mass per unit volume of the nonmagnetic weights 31 and 32 is equal to or greater than the mass per unit volume of the permanent magnets 14 and 15. Therefore, using the non-magnetic weights 31 and 32 can increase the weight of the mover 13 with a small volume increase and increase the moving speed of the mover 13 compared with the case where a permanent magnet is added as a weight. Therefore, the kinetic energy of the mover 13 increases and the amount of power generation increases.

また、本実施形態では、可動子13の永久磁石14,15と、弾性部材35,36との間に非磁性錘31,32が存在する(図1参照)。よって、永久磁石14,15と弾性部材35,36とが隣接する場合に比べて、永久磁石14,15と弾性部材35,36との間の距離が長くなり、弾性部材35,36に到達する磁束密度が小さくなる。磁束密度が小さい場合、弾性部材35,36が磁化され難いため、弾性部材35,36の材料に軟磁性体を使用することができる。このため材料の選択肢が拡がり、コストの高い非磁性の銅系材料以外にも軟磁性の鉄系材料を使用することができ、弾性部材35,36をコストダウンすることができる。   Moreover, in this embodiment, the nonmagnetic weights 31 and 32 exist between the permanent magnets 14 and 15 of the needle | mover 13 and the elastic members 35 and 36 (refer FIG. 1). Therefore, compared with the case where the permanent magnets 14 and 15 and the elastic members 35 and 36 are adjacent to each other, the distance between the permanent magnets 14 and 15 and the elastic members 35 and 36 becomes longer and reaches the elastic members 35 and 36. Magnetic flux density is reduced. When the magnetic flux density is small, since the elastic members 35 and 36 are not easily magnetized, a soft magnetic material can be used as the material of the elastic members 35 and 36. For this reason, choices of materials are expanded, and soft magnetic iron-based materials can be used in addition to high-cost non-magnetic copper-based materials, and the cost of the elastic members 35 and 36 can be reduced.

また、締結部材16は、係止部163と頭部161との間で、永久磁石14,15と非磁性錘31,32とを締結している。係止部163と頭部161とは互いに板状であるため、軸線O方向の厚みが小さい。例えば、係止部163や頭部161など、永久磁石14,15と非磁性錘31,32と挟みこむ部材の軸線O方向の厚みが大きければ、その厚み分、可動子13の移動範囲が狭くなる。よって、発電量が低下するおそれがある。もしくは、可動子13の移動範囲を確保するため、筐体17の軸線O方向の長さを大きくする必要がある。このため、振動発電機1のサイズが大きくなる。本実施形態では、係止部163と頭部161との軸線O方向の厚みが小さいので、可動子13の移動範囲は狭くならず、発電量は低下しない。また、振動発電機1のサイズが大きくなることを防止できる。   The fastening member 16 fastens the permanent magnets 14 and 15 and the nonmagnetic weights 31 and 32 between the locking portion 163 and the head 161. Since the locking portion 163 and the head portion 161 are plate-shaped, the thickness in the axis O direction is small. For example, if the thickness of the member sandwiched between the permanent magnets 14 and 15 and the nonmagnetic weights 31 and 32 such as the locking portion 163 and the head 161 is large in the direction of the axis O, the moving range of the movable element 13 is narrowed by the thickness. Become. Therefore, there is a possibility that the power generation amount is reduced. Alternatively, in order to secure the moving range of the mover 13, it is necessary to increase the length of the casing 17 in the axis O direction. For this reason, the size of the vibration generator 1 increases. In this embodiment, since the thickness of the locking portion 163 and the head 161 in the direction of the axis O is small, the moving range of the mover 13 is not narrowed, and the power generation amount does not decrease. Moreover, it can prevent that the size of the vibration generator 1 becomes large.

なお、本発明は上記の実施形態に限定されるものではなく、種々の変更が可能である。例えば、2つの永久磁石14,15が設けられているが、これに限定されない。例えば、1つの永久磁石が設けられていてもよいし、3つ以上の永久磁石が設けられていてもよい。   In addition, this invention is not limited to said embodiment, A various change is possible. For example, although two permanent magnets 14 and 15 are provided, the present invention is not limited to this. For example, one permanent magnet may be provided, or three or more permanent magnets may be provided.

また、2つの非磁性錘31、32が設けられているが、これに限定されない。例えば、永久磁石14,15の軸線O方向の一端側に1つ設けられていてもよい。また、3つ以上の非磁性錘が設けられていてもよい。   Moreover, although the two nonmagnetic weights 31 and 32 are provided, it is not limited to this. For example, one may be provided on one end side of the permanent magnets 14 and 15 in the direction of the axis O. Three or more nonmagnetic weights may be provided.

また、2つの弾性部材35,36が設けられているが、これに限定されない。例えば、1つの弾性部材のみが設けられていてもよい。   Moreover, although the two elastic members 35 and 36 are provided, it is not limited to this. For example, only one elastic member may be provided.

また、弾性部材35,36はコイルバネであるが、これに限定されない。例えば、軸線O方向に弾性力を有する板バネでもよい。   The elastic members 35 and 36 are coil springs, but are not limited thereto. For example, a leaf spring having an elastic force in the direction of the axis O may be used.

また、非磁性錘31,32の単位体積当たりの質量が、永久磁石14,15の単位体積当たりの質量以上であったが、これに限定されない。例えば、非磁性錘31,32の単位体積当たりの質量が、永久磁石14,15の単位体積当たりの質量より小さくてもよい。   Moreover, although the mass per unit volume of the nonmagnetic weights 31 and 32 was more than the mass per unit volume of the permanent magnets 14 and 15, it is not limited to this. For example, the mass per unit volume of the nonmagnetic weights 31 and 32 may be smaller than the mass per unit volume of the permanent magnets 14 and 15.

1 振動発電機
11 筒状部材
13 可動子
14,15 永久磁石
16 締結部材
17 筐体
21,22,23 コイル
31,32 非磁性錘
35,36 弾性部材
40 孔部
183,184 対向面
DESCRIPTION OF SYMBOLS 1 Vibration generator 11 Cylindrical member 13 Movers 14, 15 Permanent magnet 16 Fastening member 17 Housing | casing 21,22,23 Coil 31,32 Nonmagnetic weight 35,36 Elastic member 40 Hole part 183,184 Opposite surface

Claims (4)

軟磁性体から成る筐体と、
前記筐体内に設けられ、側面の少なくとも一部にコイルが巻回され、軸線方向に沿って延びる筒状部材と、
前記筒状部材の内側を前記軸線方向に沿って往復移動可能であり、同極同士が対向されて前記軸線方向に沿って並んで配置された複数の永久磁石と、並んで配置された前記複数の永久磁石の前記軸線方向の少なくとも一端側に設けられた非磁性体の錘である非磁性錘と、前記複数の永久磁石と前記非磁性錘とを締結する締結部材とを備えた可動子と
を備え
前記複数の永久磁石と前記非磁性錘とは、前記軸線方向に沿って貫通する孔部を備え、
前記締結部材は、前記孔部に挿通されており、前記非磁性錘の端部のうち前記永久磁石から遠い側の端部より突出した前記締結部材の端部を前記孔部の径方向外側に向けて折り曲げることで加締められ、前記複数の永久磁石と前記非磁性錘とを締結することを特徴とする振動発電機。
A housing made of soft magnetic material;
A cylindrical member provided in the housing, having a coil wound around at least a part of a side surface thereof, and extending along an axial direction;
Is movable back and forth along the inside of the tubular member in the axial direction, and a plurality of permanent magnets the poles are arranged side by side along the axial direction is opposite, the plurality which are arranged side by side A nonmagnetic weight that is a weight of a nonmagnetic material provided on at least one end side in the axial direction of the permanent magnet, and a mover that includes a fastening member that fastens the plurality of permanent magnets and the nonmagnetic weight; equipped with a,
The plurality of permanent magnets and the non-magnetic weight include a hole penetrating along the axial direction,
The fastening member is inserted through the hole, and an end of the fastening member that protrudes from an end of the non-magnetic weight that is far from the permanent magnet is disposed radially outward of the hole. A vibration generator , wherein the plurality of permanent magnets and the non-magnetic weight are fastened by being bent toward each other .
記コイルは、前記軸線方向に沿って複数並んで前記筒状部材の側面に巻回され、隣接する他の前記コイルとは巻き線方向が異なり、
前記可動子に含まれる前記永久磁石の前記軸線方向の幅は、前記コイルの前記軸線方向の幅と略同一であることを特徴とする請求項1に記載の振動発電機。
Before Symbol coil along the axial direction are wound around the side surface of the plurality lined said tubular member have different winding direction to the adjacent other of said coils,
The vibration generator according to claim 1, wherein a width of the permanent magnet included in the mover in the axial direction is substantially the same as a width of the coil in the axial direction.
前記非磁性錘の単位体積当たりの質量は、前記永久磁石の単位体積当たりの質量以上であることを特徴とする請求項1又は2に記載の振動発電機。   3. The vibration generator according to claim 1, wherein a mass per unit volume of the non-magnetic weight is equal to or greater than a mass per unit volume of the permanent magnet. 前記可動子における前記軸線方向の両端面にそれぞれ対向する対向面を備え、
前記対向面のうち前記可動子の前記非磁性錘に対向する面と前記非磁性錘との間に、前記軸線方向に弾性力を有する軟磁性体の弾性部材を備えたことを特徴とする請求項1からのいずれかに記載の振動発電機。
Comprising a surface facing the respective end surfaces of the axial direction of the mover,
An elastic member of a soft magnetic material having an elastic force in the axial direction is provided between a surface of the opposing surface facing the nonmagnetic weight of the mover and the nonmagnetic weight. Item 5. The vibration generator according to any one of Items 1 to 3 .
JP2011190131A 2011-08-31 2011-08-31 Vibration generator Expired - Fee Related JP5553064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011190131A JP5553064B2 (en) 2011-08-31 2011-08-31 Vibration generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011190131A JP5553064B2 (en) 2011-08-31 2011-08-31 Vibration generator

Publications (2)

Publication Number Publication Date
JP2013055717A JP2013055717A (en) 2013-03-21
JP5553064B2 true JP5553064B2 (en) 2014-07-16

Family

ID=48132255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011190131A Expired - Fee Related JP5553064B2 (en) 2011-08-31 2011-08-31 Vibration generator

Country Status (1)

Country Link
JP (1) JP5553064B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5989867B1 (en) * 2015-07-23 2016-09-07 ヤマウチ株式会社 Vibration dynamo equipment
JP6517625B2 (en) * 2015-08-07 2019-05-22 日本電産コパル株式会社 Linear vibration motor and portable electronic device comprising the linear vibration motor
WO2021004609A1 (en) * 2019-07-05 2021-01-14 Powerdroit Pty Ltd Portable generator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10147720A1 (en) * 2001-09-27 2003-04-10 Daimler Chrysler Ag Autonomous energy generation system e.g. for motor vehicle, has mechanical vibration system that can be stimulated to produce translational mechanical vibrations without direct mechanical force input
TWM306423U (en) * 2006-04-26 2007-02-11 Liung Feng Ind Co Ltd Multi-magnetic-poles power generating apparatus
JP2009100523A (en) * 2007-10-16 2009-05-07 Iichi Okuno Permanent magnet element and oscillating generator, and acceleration sensor
WO2009057348A1 (en) * 2007-11-02 2009-05-07 Sumida Corporation Vibration electromagnetic generator
TWI351158B (en) * 2007-12-11 2011-10-21 Ind Tech Res Inst Reciprocating power generating module
JP5417719B2 (en) * 2008-02-29 2014-02-19 スミダコーポレーション株式会社 Vibration type electromagnetic generator
JP5251438B2 (en) * 2008-11-10 2013-07-31 ソニー株式会社 Power generator
JP5478221B2 (en) * 2009-12-02 2014-04-23 株式会社竹中工務店 Power generator
WO2011085093A2 (en) * 2010-01-06 2011-07-14 Tremont Electric, Llc Electrical energy generator
JP5760316B2 (en) * 2010-01-14 2015-08-05 スミダコーポレーション株式会社 Vibration type electromagnetic generator
JP5418485B2 (en) * 2010-12-08 2014-02-19 スミダコーポレーション株式会社 Vibration generator

Also Published As

Publication number Publication date
JP2013055717A (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP4704093B2 (en) Vibration generator
KR20060039895A (en) Linear electrical machine for electric power generation or motive drive
CN104702078B (en) Permanent magnet linear vibration motor and electrical equipment
JP2012039824A (en) Vibration generator
JP5553064B2 (en) Vibration generator
JP6104890B2 (en) Current generating turbine
JP2004088884A (en) Linear vibration electric machine
JP5327110B2 (en) Vibration generator
JP2009065755A (en) Vibrating-type motor and vibrating-type compressor using the same
JP5525416B2 (en) Linear actuator
JPH08130862A (en) Moving magnet linear actuator
JP5589507B2 (en) Mover and stator of linear drive unit
JP2012151985A (en) Vibration power generator
JP5596646B2 (en) Rotating electric machine
JP2014050204A (en) Oscillating generator
CN217159522U (en) Linear motor and linear compressor
JP2012205450A (en) Vibration power generator
JP2009239988A (en) Permanent magnet type motor
EP3309942B1 (en) Non-contact power generator
KR102246697B1 (en) Axial Flux Permanent Magnet generator
JP2011172391A (en) Vibration generator
WO2011105190A1 (en) Method for producing homopolar opposing magnets, and oscillation generator
JP5428938B2 (en) Vibration generator
JP2013055715A (en) Oscillating generator
US20100061867A1 (en) Electromagnetic Transducer Apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5553064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees