JP5526673B2 - Solid-state imaging device and electronic device - Google Patents

Solid-state imaging device and electronic device Download PDF

Info

Publication number
JP5526673B2
JP5526673B2 JP2009214819A JP2009214819A JP5526673B2 JP 5526673 B2 JP5526673 B2 JP 5526673B2 JP 2009214819 A JP2009214819 A JP 2009214819A JP 2009214819 A JP2009214819 A JP 2009214819A JP 5526673 B2 JP5526673 B2 JP 5526673B2
Authority
JP
Japan
Prior art keywords
signal
pixel
sensitivity
filter
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009214819A
Other languages
Japanese (ja)
Other versions
JP2011066637A (en
Inventor
太知 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009214819A priority Critical patent/JP5526673B2/en
Priority to US12/850,347 priority patent/US8848073B2/en
Priority to TW99126811A priority patent/TWI469635B/en
Priority to KR1020100087918A priority patent/KR20110030328A/en
Priority to CN201010281091.2A priority patent/CN102025927B/en
Publication of JP2011066637A publication Critical patent/JP2011066637A/en
Application granted granted Critical
Publication of JP5526673B2 publication Critical patent/JP5526673B2/en
Priority to US14/480,138 priority patent/US9288410B2/en
Priority to US14/995,020 priority patent/US9661241B2/en
Priority to US15/489,865 priority patent/US9918027B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • H04N25/585Control of the dynamic range involving two or more exposures acquired simultaneously with pixels having different sensitivities within the sensor, e.g. fast or slow pixels or pixels having different sizes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4015Image demosaicing, e.g. colour filter arrays [CFA] or Bayer patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/44Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array
    • H04N25/447Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array by preserving the colour pattern with or without loss of information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/587Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields
    • H04N25/589Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields with different integration times, e.g. short and long exposures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2209/00Details of colour television systems
    • H04N2209/04Picture signal generators
    • H04N2209/041Picture signal generators using solid-state devices
    • H04N2209/042Picture signal generators using solid-state devices having a single pick-up sensor
    • H04N2209/045Picture signal generators using solid-state devices having a single pick-up sensor using mosaic colour filter

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Color Television Image Signal Generators (AREA)

Description

本発明は、デジタルスチルカメラ、ビデオカメラ等のカラーフィルタを備える固体撮像装置及びこの固体撮像装置を用いた電子機器に係る。   The present invention relates to a solid-state imaging device including a color filter such as a digital still camera and a video camera, and an electronic apparatus using the solid-state imaging device.

近年、画素数増大に伴い画素サイズの微細化が進んでいる。画素サイズ縮小にともない、画素面積が縮小して入射光量が減少するため、感度の低下が生じる。また、これに合わせてフォトダイオード領域も狭くなるため、蓄積される光子数も減少し、画素が飽和する信号量も少なくなってきている。このように、固体撮像装置の感度に対する飽和信号量の比率が低下は、ダイナミックレンジの低下を引き起こす。   In recent years, the pixel size has been miniaturized as the number of pixels has increased. As the pixel size is reduced, the pixel area is reduced and the amount of incident light is reduced, resulting in a reduction in sensitivity. In accordance with this, the photodiode region is also narrowed, so that the number of accumulated photons is reduced, and the amount of signal at which the pixel is saturated is also reduced. Thus, a decrease in the ratio of the saturation signal amount to the sensitivity of the solid-state imaging device causes a decrease in the dynamic range.

一般的に固体撮像装置を用いたデジタルスチルカメラやビデオカメラは、銀塩フイルムを使用したカメラと比較して白とびや黒つぶれなく撮像できる明るさの範囲であるダイナミックレンジが狭い。しかし、監視カメラなどにおいては、暗いところから明るいところまで撮像できることが要求され、更に、暗い場面においてもつぶれてしまうことなく撮像できることが合わせて要求されている。   In general, a digital still camera or a video camera using a solid-state imaging device has a narrow dynamic range that is a range of brightness that can be captured without overexposure or blackout compared with a camera using a silver salt film. However, surveillance cameras and the like are required to be able to take an image from a dark place to a bright place, and are further required to be able to take an image without being crushed even in a dark scene.

固体撮像装置を用いたカメラのダイナミックレンジは、通常、一番感度の高い画素で決まる。例えば、Green、Red、Blueの原色カラーフィルタを搭載した固体撮像装置を用いたカメラでは、通常一番感度が高いGreenの画素ダイナミックレンジが、このカメラのダイナミックレンジとなる。全画素一定の飽和信号量である固体撮像装置の場合、感度が高い画素、即ちカラーフィルタの透過量が多い画素は、フォトダイオードに蓄積される光子数が多くなるために、最初に飽和信号量に到達する。   The dynamic range of a camera using a solid-state imaging device is usually determined by the pixel with the highest sensitivity. For example, in a camera using a solid-state imaging device equipped with green, red, and blue primary color filters, the green pixel dynamic range, which is usually the most sensitive, is the dynamic range of this camera. In the case of a solid-state imaging device that has a constant saturation signal amount for all pixels, a pixel with high sensitivity, that is, a pixel with a large amount of transmission through the color filter, first has a saturation signal amount because the number of photons accumulated in the photodiode increases. To reach.

従来、固体撮像装置の高感度化の技術としては、GRBの原色系カラーフィルタを配置したベイヤー配列のGRB画素を、可視光波長において吸収を持たないフィルタを配置したY画素を用いて、YRB配列とすることが提案されている。また、ベイヤー配列で市松状に配置されているGの一つを、上記Yに置き換えることで感度を向上させる技術が提案されている(例えば、特許文献1参照)。   Conventionally, as a technique for increasing the sensitivity of a solid-state imaging device, a GRB pixel in a Bayer array in which a GRB primary color filter is disposed is replaced with a YRB array in which a Y pixel in which a filter having no absorption at a visible light wavelength is disposed. Has been proposed. In addition, a technique for improving sensitivity by replacing one of Gs arranged in a checkered pattern in a Bayer array with the above Y has been proposed (for example, see Patent Document 1).

一方、ダイナミックレンジを拡大する技術としては、明るさの違う低感度画像と高感度画像の2枚の画像を合成するという手法が提案されている(例えば、特許文献2参照)。   On the other hand, as a technique for expanding the dynamic range, a method of combining two images, a low-sensitivity image and a high-sensitivity image with different brightness, has been proposed (see, for example, Patent Document 2).

特開2008−205940号公報JP 2008-205940 A 特開2004−56568号公報JP 2004-56568 A

しかしながら、上述の可視光波長において吸収を持たないフィルタを配置したY画素は、フォトダイオードに入射する光量がGRB画素よりも多い。
例えば、図9に示すように、横軸に入射光量、縦軸に画素の信号出力をとると、Y画素は、GRB画素よりも小さい入射光量で飽和点に達してしまう。従って、通常のGRBフィルタを用いた固体撮像装置のダイナミックレンジDよりも、Y画素を用いた固体撮像装置のダイナミックレンジD(Y)が狭くなってしまう。
Y画素を用いた固体撮像装置においても、画素に入射する光の量を抑制すればダイナミックレンジを広くすることができるが、固体撮像装置の感度は低くなってしまう。
However, the Y pixel in which the filter having no absorption at the visible light wavelength described above has a larger amount of light incident on the photodiode than the GRB pixel.
For example, as shown in FIG. 9, when the incident light quantity is taken on the horizontal axis and the pixel signal output is taken on the vertical axis, the Y pixel reaches the saturation point with an incident light quantity smaller than that of the GRB pixel. Therefore, the dynamic range D (Y) of the solid-state imaging device using Y pixels becomes narrower than the dynamic range D of the solid-state imaging device using a normal GRB filter.
Even in the solid-state imaging device using Y pixels, the dynamic range can be widened by suppressing the amount of light incident on the pixels, but the sensitivity of the solid-state imaging device is lowered.

また、ダイナミックレンジを拡大する技術として提案されている、明るさの違う低感度画像と高感度画像の2枚の画像を合成するという手法では、合成に用いる明るさの異なる2枚の画像の取得する必要がある。この明るさの異なる2枚の画像枝得る手法としては、感度の違う2台のカメラを用いる方法や、露光時間を変えて2回露光する等の方法がある。   Also, in the technique of combining two images, a low-sensitivity image and a high-sensitivity image with different brightness, which has been proposed as a technique for expanding the dynamic range, acquisition of two images with different brightness used for composition There is a need to. As a method of obtaining two image branches having different brightness, there are a method using two cameras having different sensitivities and a method of performing exposure twice with different exposure times.

しかし、感度の違う2台のカメラを用いる場合には、2台のカメラを並べて撮像するため、撮像する2枚の画像に位置的なずれが発生してしまう。また、露光時間を変えて2回露光する等の方法では、2回の露光を行うため、2枚の画像に時間的な差が発生する。   However, when two cameras having different sensitivities are used, the two cameras are imaged side by side, so that positional deviation occurs between the two images to be captured. Further, in the method of performing exposure twice while changing the exposure time, a time difference occurs between the two images because the exposure is performed twice.

また、感度の異なる画素を持つ固体撮像装置や1画素中に高感度センサと低感度センサを埋込んだ固体撮像装置等も提案されている。しかし、これらの固体撮像装置は、高感度画素と低感度画素の安定した作りこみが難しく、また、構造が複雑なため画素サイズの微細化への対応が難しい。   In addition, a solid-state imaging device having pixels with different sensitivities and a solid-state imaging device in which a high sensitivity sensor and a low sensitivity sensor are embedded in one pixel have been proposed. However, in these solid-state imaging devices, it is difficult to stably produce high-sensitivity pixels and low-sensitivity pixels, and it is difficult to cope with the reduction in pixel size due to the complicated structure.

上述した問題の解決のため、本発明においては、微細化への対応などが可能であり、高感度且つダイナミックレンジの拡大が可能な固体撮像装置を提供するものである。   In order to solve the above-described problems, the present invention provides a solid-state imaging device that can cope with miniaturization and can increase the dynamic range with high sensitivity.

本発明の固体撮像装置は、赤色光を透過するRフィルタを備えるR画素と、青色光を透過するBフィルタを備えるB画素とを有する。そして、可視光領域において透過率の波長依存性がないS1フィルタを備え、R画素よりも感度が高いS1画素を有する。さらに、フィルタを配置しない画素の感度を100としたとき、S1画素の感度が40から100、S2画素の感度が60以下であります。そして、R画素、B画素、S1画素及びS2画素から出力されるR信号、B信号、S1信号及びS2信号の出力信号から、高感度ニュートラル信号S1、低感度ニュートラル信号S2、Red信号R、及び、Blue信号Bを生成し、S1画素から出力されたS1信号から、S1画素への入射光量が飽和点である光量L1を超えているか判断し、S1画素が飽和するまでの照度範囲では高感度ニュートラル信号S1と、Red信号Rと、Blue信号Bとから、Green信号G1、Red信号R1及びBlue信号B1を生成し、S1画素が飽和した後の照度範囲では低感度ニュートラル信号S2と、Red信号Rと、Blue信号Bとから、Green信号G2、Red信号R2及びBlue信号B2を生成し、Green信号G1、Red信号R1及びBlue信号B1、並びに、Green信号G2、Red信号R2及びBlue信号B2から、1つの画像を合成により生成する。 The solid-state imaging device of the present invention includes an R pixel including an R filter that transmits red light and a B pixel including a B filter that transmits blue light. In addition, an S1 filter having a wavelength dependency of transmittance in the visible light region is provided, and an S1 pixel having higher sensitivity than the R pixel is provided. Furthermore, when the sensitivity of the pixel without the filter is 100, the sensitivity of the S1 pixel is 40 to 100, and the sensitivity of the S2 pixel is 60 or less. Then, from the output signals of the R signal, B signal, S1 signal, and S2 signal output from the R pixel, B pixel, S1 pixel, and S2 pixel, the high sensitivity neutral signal S1, the low sensitivity neutral signal S2, the Red signal R, and The Blue signal B is generated, and it is determined from the S1 signal output from the S1 pixel whether the incident light amount to the S1 pixel exceeds the light amount L1 that is the saturation point, and high sensitivity in the illuminance range until the S1 pixel is saturated. The green signal G1, the red signal R1, and the blue signal B1 are generated from the neutral signal S1, the red signal R, and the blue signal B. In the illuminance range after the S1 pixel is saturated, the low-sensitivity neutral signal S2 and the red signal Green signal G2, Red signal R2, and Blue signal B2 are generated from R and Blue signal B, and Green signal G1, R d signals R1 and Blue signals B1, and, Green signal G2, the Red signal R2 and Blue signals B2, produced by combining the single image.

また、本発明の電子機器は、上述の構成を有する固体撮像装置と、固体撮像装置の撮像部に入射光を導く光学系と、固体撮像装置の出力信号を処理する信号処理回路とを備える。   The electronic apparatus of the present invention includes a solid-state imaging device having the above-described configuration, an optical system that guides incident light to an imaging unit of the solid-state imaging device, and a signal processing circuit that processes an output signal of the solid-state imaging device.

本発明の固体撮像装置によれば、可視光領域において透過率に波長依存性がないフィルタ備え、R画素よりも感度が高いS1画素を有し、さらにS1画素よりも感度が低いS2画素を有する。S1画素を有することにより、高感度な固体撮像装置を得ることができる。さらに、1つの固体撮像装置において、RBS1画素と、RBS2画素とにより、明るさの異なる低感度画像と高感度画像の2枚の画像を同時に得ることができる。そして、明るさの異なる低感度画像と高感度画像の2枚の画像を合成することにより、ダイナミックレンジの広い画像を得ることができる。
また、カラーフィルタの配置を、従来のベイヤー配列から変更すればよいため、固体撮像装置の微細化の障害とならない。
また、本発明の電子機器によれば、上述の固体撮像装置を備えることにより、感度が高く、ダイナミックレンジの広い画像を得ることができる。
According to the solid-state imaging device of the present invention, a filter having no wavelength dependency in transmittance in the visible light region is provided, the S1 pixel having higher sensitivity than the R pixel, and the S2 pixel having lower sensitivity than the S1 pixel are provided. . By having the S1 pixel, a highly sensitive solid-state imaging device can be obtained. Further, in one solid-state imaging device, two images of a low-sensitivity image and a high-sensitivity image having different brightness can be obtained simultaneously by the RBS1 pixel and the RBS2 pixel. An image with a wide dynamic range can be obtained by synthesizing two images of a low-sensitivity image and a high-sensitivity image with different brightness.
In addition, since the arrangement of the color filters may be changed from the conventional Bayer arrangement, it does not hinder the miniaturization of the solid-state imaging device.
According to the electronic apparatus of the present invention, it is possible to obtain an image with high sensitivity and a wide dynamic range by including the above-described solid-state imaging device.

本発明によれば、微細化への対応などが可能であり、高感度且つダイナミックレンジの拡大が可能な固体撮像装置を提供することができる。   According to the present invention, it is possible to provide a solid-state imaging device capable of dealing with miniaturization and the like and capable of expanding the dynamic range with high sensitivity.

本発明の固体撮像装置の実施の形態の概略構成を示す図である。It is a figure which shows schematic structure of embodiment of the solid-state imaging device of this invention. 本発明の固体撮像装置の画素部のカラー配列の実施の形態を示す図である。It is a figure which shows embodiment of the color arrangement | sequence of the pixel part of the solid-state imaging device of this invention. 本発明の固体撮像装置のS1フィルタ及びS2フィルタの入射光の波長と透過率及び画素感度との関係を示す図である。It is a figure which shows the relationship between the wavelength of the incident light of the S1 filter of the solid-state imaging device of this invention, and S2 filter, the transmittance | permeability, and pixel sensitivity. 本発明の固体撮像装置の画素毎の入射光量と信号出力、及び、飽和点とダイナミックレンジとの関係を示す図である。It is a figure which shows the relationship between the incident light quantity and signal output for every pixel of the solid-state imaging device of this invention, and a saturation point and a dynamic range. 本発明の固体撮像装置の画素毎の入射光量と信号出力、及び、飽和点とダイナミックレンジとの関係を示す図である。It is a figure which shows the relationship between the incident light quantity and signal output for every pixel of the solid-state imaging device of this invention, and a saturation point and a dynamic range. 本発明の固体撮像装置の信号処理回路のブロック図である。It is a block diagram of the signal processing circuit of the solid-state imaging device of the present invention. 本発明の固体撮像装置の信号処理回路のブロック図である。It is a block diagram of the signal processing circuit of the solid-state imaging device of the present invention. 本発明に係る電子機器の概略構成図である。It is a schematic block diagram of the electronic device which concerns on this invention. 従来の固体撮像装置の画素毎の画素毎の入射光量と信号出力、及び、飽和点とダイナミックレンジとの関係を示す図である。It is a figure which shows the relationship between the incident light quantity and signal output for every pixel of the pixel of the conventional solid-state imaging device, and a saturation point and a dynamic range.

以下、本発明の実施の形態を説明するが、本発明は以下の例に限定されるものではない。
なお、説明は以下の順序で行う。
1.固体撮像装置の実施の形態
2.固体撮像装置の画素配列及びカラー配列の実施の形態
3.固体撮像装置からの出力信号の信号処理の実施の形態
4.半導体装置の他の実施の形態
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following examples.
The description will be given in the following order.
1. Embodiment 2 of solid-state imaging device 2. Embodiment of pixel array and color array of solid-state imaging device Embodiment 4 of signal processing of output signal from solid-state imaging device Other embodiments of semiconductor device

〈1.固体撮像装置の実施の形態〉
[固体撮像装置の構成例:概略構成図]
以下、本発明の固体撮像装置の具体的な実施の形態について説明する。
図1に、本発明の固体撮像装置の一例として、MOS(Metal Oxide Semiconductor)型の固体撮像装置の概略構成を示す。
<1. Embodiment of Solid-State Imaging Device>
[Configuration example of solid-state imaging device: schematic configuration diagram]
Hereinafter, specific embodiments of the solid-state imaging device of the present invention will be described.
FIG. 1 shows a schematic configuration of a MOS (Metal Oxide Semiconductor) type solid-state imaging device as an example of the solid-state imaging device of the present invention.

図1Aに示す固体撮像装置10は、半導体基体、例えば、シリコン基板に複数の光電変換部となるフォトダイオードを含む画素12が規則的に2次元的に配列された画素部(いわゆる撮像領域)13と、周辺回路部とから構成される。画素12は、フォトダイオードと、複数の画素トランジスタ(いわゆるMOSトランジスタ)を有する。   A solid-state imaging device 10 shown in FIG. 1A includes a pixel unit (so-called imaging region) 13 in which pixels 12 including photodiodes serving as a plurality of photoelectric conversion units are regularly arranged in a semiconductor substrate, for example, a silicon substrate. And a peripheral circuit section. The pixel 12 includes a photodiode and a plurality of pixel transistors (so-called MOS transistors).

複数の画素トランジスタは、例えば転送トランジスタ、リセットトランジスタ、増幅トランジスタの3つのトランジスタで構成することができる。その他、選択トランジスタを追加して4つのトランジスタで構成することもできる。   The plurality of pixel transistors can be constituted by three transistors, for example, a transfer transistor, a reset transistor, and an amplification transistor. In addition, a selection transistor may be added to configure the transistor with four transistors.

周辺回路部は、垂直駆動回路14と、カラム信号処理回路15と、水平駆動回路16と、出力回路17と、制御回路18等から構成されている。   The peripheral circuit section includes a vertical drive circuit 14, a column signal processing circuit 15, a horizontal drive circuit 16, an output circuit 17, a control circuit 18, and the like.

制御回路18は、垂直同期信号、水平同期信号及びマスタクロックに基づいて、垂直駆動回路14、カラム信号処理回路15及び水平駆動回路16等の動作の基準となるクロック信号や制御信号を生成する。制御回路18は、これらの信号を垂直駆動回路14、カラム信号処理回路15及び水平駆動回路16等に入力する。   The control circuit 18 generates a clock signal and a control signal that serve as a reference for operations of the vertical drive circuit 14, the column signal processing circuit 15, the horizontal drive circuit 16, and the like based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock. The control circuit 18 inputs these signals to the vertical drive circuit 14, the column signal processing circuit 15, the horizontal drive circuit 16, and the like.

垂直駆動回路14は、例えばシフトレジスタによって構成される。垂直駆動回路14は、画素部13の各画素12を行単位で順次垂直方向に選択走査し、垂直信号線19を通して各画素12の光電変換素子において受光量に応じて生成した信号電荷に基く画素信号をカラム信号処理回路15に供給する。   The vertical drive circuit 14 is configured by, for example, a shift register. The vertical drive circuit 14 sequentially selects and scans each pixel 12 of the pixel unit 13 in the vertical direction in units of rows, and a pixel based on a signal charge generated according to the amount of received light in the photoelectric conversion element of each pixel 12 through the vertical signal line 19. The signal is supplied to the column signal processing circuit 15.

カラム信号処理回路15は、画素12の例えば列ごとに配置され、1行分の画素12から出力される信号を画素列ごとに黒基準画素(有効画素領域の周囲に形成される)からの信号によってノイズ除去などの信号処理を行う。即ち、カラム信号処理回路15は、画素12固有の固定パターンノイズを除去するためのCDS(correlated double sampling)や、信号増幅等の信号処理を行う。カラム信号処理回路15の出力段には水平選択スイッチ(図示せず)が水平信号線11との間に接続されて設けられている。   The column signal processing circuit 15 is arranged for each column of the pixels 12, for example, and outputs a signal output from the pixel 12 for one row from the black reference pixel (formed around the effective pixel region) for each pixel column. To perform signal processing such as noise removal. That is, the column signal processing circuit 15 performs signal processing such as CDS (correlated double sampling) for removing fixed pattern noise unique to the pixel 12 and signal amplification. A horizontal selection switch (not shown) is connected to the horizontal signal line 11 at the output stage of the column signal processing circuit 15.

水平駆動回路16は、例えばシフトレジスタによって構成され、水平走査パルスを順次出力することによって、カラム信号処理回路15の各々を順番に選択し、カラム信号処理回路15の各々から画素信号を水平信号線11に出力する。
出力回路17は、カラム信号処理回路15の各々から水平信号線11を通して順次に供給される信号に対し、信号処理を行って出力する。
The horizontal drive circuit 16 is configured by, for example, a shift register, and sequentially outputs horizontal scanning pulses to select each of the column signal processing circuits 15 in order, and receives a pixel signal from each of the column signal processing circuits 15 as a horizontal signal line. 11 is output.
The output circuit 17 performs signal processing and outputs the signals sequentially supplied from each of the column signal processing circuits 15 through the horizontal signal line 11.

上記の固体撮像装置10を、裏面照射型の固体撮像装置に適用する場合は、光入射面(いわゆる受光面)側の裏面上には複数配線層が形成されず、複数配線層は受光面と反対側の表面側に形成される。   When the solid-state imaging device 10 is applied to a back-illuminated solid-state imaging device, a plurality of wiring layers are not formed on the back surface on the light incident surface (so-called light receiving surface) side. It is formed on the opposite surface side.

[カラーフィルタ配列及び画素配列の構成例]
次に、上述の固体撮像装置の画素部における画素のカラー配列について説明する。
図2は、固体撮像装置の画素のカラー配列を示す図である。
図2に示すように、本実施の形態の固体撮像装置の画素部のカラー配列は、2行2列の4画素の繰り返しからなる。この4画素は、S1画素21、S2画素22、R画素23、及び、B画素24からなる。
R画素23は、赤色光を透過するRフィルタを備える。また、B画素24は、青を備える。
S1画素21は、透過率が入射光の波長に依存せずに一定の透過率を有するS1フィルタを備えている。また、S2画素22は、透過率が入射光の波長に依存せずに一定の透過率を有し、S1フィルタよりも透過率が低いS2フィルタを備えている。
図2に示す配列は、ベイヤー配列のG、R、B(緑、赤、青)のカラー配列のG画素にかえて、S1画素21及びS2画素22を用いている。
[Configuration example of color filter array and pixel array]
Next, the color arrangement of pixels in the pixel portion of the above-described solid-state imaging device will be described.
FIG. 2 is a diagram illustrating a color arrangement of pixels of the solid-state imaging device.
As shown in FIG. 2, the color arrangement of the pixel portion of the solid-state imaging device according to the present embodiment is composed of repetition of 4 pixels in 2 rows and 2 columns. These four pixels include an S1 pixel 21, an S2 pixel 22, an R pixel 23, and a B pixel 24.
The R pixel 23 includes an R filter that transmits red light. Further, the B pixel 24 has blue.
The S1 pixel 21 includes an S1 filter having a constant transmittance regardless of the transmittance of the incident light. In addition, the S2 pixel 22 includes an S2 filter having a constant transmittance regardless of the wavelength of incident light and having a transmittance lower than that of the S1 filter.
The array shown in FIG. 2 uses S1 pixels 21 and S2 pixels 22 in place of G pixels in the G, R, B (green, red, blue) color array in the Bayer array.

S1画素21及びS2画素22に設けられているカラーフィルタである、S1フィルタ及びS2フィルタの特性について図3を用いて説明する。図3は、横軸は画素に入射する光の波長(nm)を示し、縦軸はS1画素21及びS2画素のカラーフィルタの透過率を示す。また、図3では、S1フィルタ及びS2フィルタの透過率毎に、S1画素21及びS2画素22に入射する光の波長と画素感度との関係を示している。つまり、S1又はS2フィルタの透過率と波長との関係を、画素の入射光量毎に表している。   The characteristics of the S1 filter and the S2 filter, which are color filters provided in the S1 pixel 21 and the S2 pixel 22, will be described with reference to FIG. In FIG. 3, the horizontal axis indicates the wavelength (nm) of light incident on the pixel, and the vertical axis indicates the transmittance of the color filters of the S1 pixel 21 and the S2 pixel. FIG. 3 shows the relationship between the wavelength of light incident on the S1 pixel 21 and the S2 pixel 22 and the pixel sensitivity for each transmittance of the S1 filter and the S2 filter. That is, the relationship between the transmittance of the S1 or S2 filter and the wavelength is shown for each incident light quantity of the pixel.

ここで、簡略化のため固体撮像素子自身が有する分光感度特性は考慮せずに説明すると、S1フィルタ及びS2フィルタは、入射する全波長を透過するため、S1画素21及びS2画素22の感度と、S1フィルタ及びS2フィルタの透過率(%)は同じとすることができる。このため、S1及びS2フィルタの透過率が100%の場合は、この透過率100%のフィルタを有する画素の感度は100%である。また、S1画素21及びS2画素22では、S1フィルタ又はS2フィルタの透過率に応じて画素の感度が一定であり、入射光の波長領域の全てにおいて一定の感度を有する。   Here, for simplification, the spectral sensitivity characteristic of the solid-state imaging device itself will be described. Since the S1 filter and the S2 filter transmit all incident wavelengths, the sensitivity of the S1 pixel 21 and the S2 pixel 22 The transmittance (%) of the S1 filter and the S2 filter can be the same. For this reason, when the transmittances of the S1 and S2 filters are 100%, the sensitivity of a pixel having a filter with this transmittance of 100% is 100%. Further, in the S1 pixel 21 and the S2 pixel 22, the sensitivity of the pixel is constant according to the transmittance of the S1 filter or the S2 filter, and the sensitivity is constant in the entire wavelength range of incident light.

また、S1及びS2フィルタの透過率が75%の場合には、この透過率75%のS1又はS2フィルタを有する画素の感度は75%である。同様に、S1及びS2フィルタの透過率が50%の場合に画素の感度が50%であり、S1及びS2フィルタの透過率が25%の場合に画素の感度が25%である。
このように、S1フィルタ及びS2フィルタの透過率を調整することにより、S1画素及びS2画素の感度を所望の値に設定することができる。また、固体撮像素子自身が有する分光感度特性を考慮した場合も、感度出力値が波長依存性を持つだけで、同様に扱うことが可能である。
When the transmittance of the S1 and S2 filters is 75%, the sensitivity of the pixel having the S1 or S2 filter with the transmittance of 75% is 75%. Similarly, when the transmittance of the S1 and S2 filters is 50%, the sensitivity of the pixel is 50%, and when the transmittance of the S1 and S2 filters is 25%, the sensitivity of the pixel is 25%.
Thus, by adjusting the transmittance of the S1 filter and the S2 filter, the sensitivity of the S1 pixel and the S2 pixel can be set to a desired value. In addition, when the spectral sensitivity characteristic of the solid-state imaging device itself is taken into consideration, the sensitivity output value can be handled in the same manner only by having wavelength dependency.

可視光領域の全波長を透過するS1フィルタ、及び、S2フィルタは、所望の分光となるような膜厚のアルミ、銀、ロジウムなどの金属を蒸着などによりS1画素21及びS2画素22上に成膜する。または、カーボンブラックを樹脂中に所望の分光となる濃度を分散した材料をS1画素21及びS2画素22上に形成する。また、Rフィルタ及びBフィルタは、公知の方法、材料等により形成することができる。
カーボンブラックを含有した樹脂を用いた場合、感光性を持たせることにより、S1及びS2フィルタをそれぞれリソグラフィの手法により形成することが可能となり、従来技術を応用することで簡便に上述の構造の画素部を構成することができる。
The S1 filter and the S2 filter that transmit all wavelengths in the visible light region are formed on the S1 pixel 21 and the S2 pixel 22 by vapor-depositing a metal such as aluminum, silver, or rhodium having a film thickness that provides a desired spectrum. Film. Alternatively, a material in which carbon black is dispersed in a resin at a concentration that provides a desired spectrum is formed on the S1 pixel 21 and the S2 pixel 22. The R filter and the B filter can be formed by a known method, material, or the like.
When a resin containing carbon black is used, it is possible to form the S1 and S2 filters by lithography techniques by providing photosensitivity, and the pixel having the above-described structure can be simply applied by applying the conventional technique. Can be configured.

[画素への入射光量と信号出力との関係の説明]
次に、R、B、S1、S2画素の入射光量に対する信号出力を図4に示す。図4は、縦軸が各画素からの信号出力、横軸が各画素への入射光量を示し、各画素への入射光量に対する画素からの信号出力を表している。
[Explanation of relationship between amount of light incident on pixel and signal output]
Next, FIG. 4 shows signal outputs with respect to the incident light amounts of the R, B, S1, and S2 pixels. In FIG. 4, the vertical axis indicates the signal output from each pixel, the horizontal axis indicates the amount of incident light on each pixel, and the signal output from the pixel with respect to the amount of incident light on each pixel.

上述のように、固体撮像装置に用いるカラーフィルタは、R画素用のRフィルタと、B画素用のBフィルタと、S1画素用のS1フィルタ、S2画素用のS2フィルタの4種類のフィルタを備える。
このとき、S1フィルタは、S1画素の感度がR画素の感度よりもが高くなるように、透過率が設定されている。また、S2フィルタは、S2画素の感度がS1画素の感度よりもが低くなるように、透過率が設定されている。
As described above, the color filter used in the solid-state imaging device includes four types of filters: an R filter for R pixels, a B filter for B pixels, an S1 filter for S1 pixels, and an S2 filter for S2 pixels. .
At this time, the transmittance of the S1 filter is set so that the sensitivity of the S1 pixel is higher than the sensitivity of the R pixel. Further, the transmittance of the S2 filter is set so that the sensitivity of the S2 pixel is lower than the sensitivity of the S1 pixel.

例えば、一般的なベイヤー配列におけるGreenフィルタを有する画素(G画素)の感度を図4に破線Gで示す。
S1画素は、G画素よりも感度が高く、S2画素は、G画素よりも感度が低くなるように、S1フィルタ及びS2フィルタの透過率を設定することが好ましい。
一般的なベイヤー配列の画素部において、Greenフィルタを有する画素の感度は、可視光領域で吸収の無いフィルタを配置、又は、カラーフィルタを配置しない画素の感度を100としたとき、40から60となる。
すなわち、上述のR、B、S1、S2画素において、S1フィルタの透過率を、可視光領域で吸収の無いフィルタを配置する、あるいは、カラーフィルタを配置しない画素の感度を100としたときに、S1画素の感度が40から100となるように設定する。
さらに、S2フィルタの透過率を、カラーフィルタを配置しない画素を100としたときに、S2画素の感度が60以下となるように設定する。
For example, the sensitivity of a pixel (G pixel) having a Green filter in a general Bayer array is indicated by a broken line G in FIG.
It is preferable to set the transmittance of the S1 filter and the S2 filter so that the S1 pixel has higher sensitivity than the G pixel and the S2 pixel has lower sensitivity than the G pixel.
In a pixel portion having a general Bayer arrangement, the sensitivity of a pixel having a Green filter is 40 to 60 when a filter having no absorption in the visible light region or a pixel sensitivity without a color filter is defined as 100. Become.
That is, in the R, B, S1, and S2 pixels described above, when the transmittance of the S1 filter is set to a filter that does not absorb in the visible light region, or the sensitivity of a pixel that does not have a color filter is set to 100, The sensitivity of the S1 pixel is set to be 40 to 100.
Further, the transmittance of the S2 filter is set so that the sensitivity of the S2 pixel is 60 or less, where 100 is a pixel where no color filter is arranged.

このように、S1フィルタの透過率を調整し、S1画素の感度をG画素よりも高くすることにより、G画素を備える固体撮像装置よりも、感度を高くすることができる。このため、S1画素は飽和出力となる入射光量L1までの範囲で、通常のG画素よりも出力が高くなる。このとき、図4に示すように、S1画素のダイナミックレンジD1は、G画素のダイナミックレンジDよりも狭くなる。しかしながら、S1フィルタを図3に示すように入射光の波長に対して吸収の無い分光を有するフィルタを用いることで、固体撮像装置の感度を全て活用することができ、固体撮像装置の感度を向上させることができる。   Thus, by adjusting the transmittance of the S1 filter and making the sensitivity of the S1 pixel higher than that of the G pixel, the sensitivity can be made higher than that of the solid-state imaging device including the G pixel. For this reason, the output of the S1 pixel is higher than that of the normal G pixel in the range up to the incident light amount L1 at which saturation output is obtained. At this time, as shown in FIG. 4, the dynamic range D1 of the S1 pixel is narrower than the dynamic range D of the G pixel. However, as shown in FIG. 3, by using a filter having a spectrum having no absorption with respect to the wavelength of the incident light as shown in FIG. 3, all the sensitivity of the solid-state imaging device can be utilized, and the sensitivity of the solid-state imaging device is improved. Can be made.

一方、S2画素は通常のG画素に対して、飽和信号に達する光量をLからL2に大きくすることができ、ダイナミックレンジをDからD2へと拡大することができる。S2画素は、G画素よりも感度が低いが、G画素が飽和点に達する光量Lよりも、S2画素が飽和点に達するまでの光量L2が大きい。このため、S2画素のダイナミックレンジD2を、G画素のダイナミックレンジDよりも拡大することができる。   On the other hand, the S2 pixel can increase the amount of light reaching the saturation signal from L to L2, and can expand the dynamic range from D to D2, compared to the normal G pixel. The S2 pixel has a lower sensitivity than the G pixel, but the light amount L2 until the S2 pixel reaches the saturation point is larger than the light amount L at which the G pixel reaches the saturation point. For this reason, the dynamic range D2 of the S2 pixel can be expanded more than the dynamic range D of the G pixel.

このとき、S2画素の感度をR画素またはB画素の感度の高い画素よりも低くすることにより、更にダイナミックレンジを拡大することが可能である。例えば、図5に示すように、R画素がS2画素よりも感度が高く、更にB画素よりも感度が高い場合には、R画素が飽和点に達する光量L2までを、R、G、S2画素のダイナミックレンジD2とすることができる。このため、図4に示すS2画素がR画素及びB画素よりも感度が高い構成よりも、図5に示すR画素がS2画素及びB画素よりも感度が高い構成の方が、ダイナミックレンジD2を拡大することができる。   At this time, it is possible to further expand the dynamic range by making the sensitivity of the S2 pixel lower than that of the R pixel or the B pixel having high sensitivity. For example, as shown in FIG. 5, when the R pixel has higher sensitivity than the S2 pixel and further has higher sensitivity than the B pixel, the R, G, and S2 pixels up to the light amount L2 at which the R pixel reaches the saturation point. The dynamic range D2 can be obtained. For this reason, the configuration in which the R pixel shown in FIG. 5 has higher sensitivity than the S2 pixel and the B pixel has a higher dynamic range D2 than the configuration in which the S2 pixel shown in FIG. 4 has higher sensitivity than the R and B pixels. Can be enlarged.

上述のように、S2画素の感度が、R画素又はB画素の感度の高い方の画素よりも低い場合は、図5のように飽和信号に達する入射光量L2とダイナミックレンジD2が、R画素又はB画素の感度の高い方の画素によって決まる。
なお、R画素とB画素の感度の大小関係は、搭載されるカラーフィルタの分光及びイメージセンサのカラーフィルタ以外の分光感度特性によって任意に決まるものであり、図4や図5に示す構成に特に限定されるものではない。
As described above, when the sensitivity of the S2 pixel is lower than the higher sensitivity pixel of the R pixel or the B pixel, the incident light amount L2 and the dynamic range D2 reaching the saturation signal as shown in FIG. It depends on the pixel with the higher sensitivity of the B pixel.
The magnitude relationship between the sensitivity of the R pixel and the B pixel is arbitrarily determined depending on the spectral sensitivity characteristics other than the color filter of the mounted color filter and the color filter of the image sensor, and particularly in the configurations shown in FIGS. It is not limited.

また、S2画素の感度は、S1画素よりも感度が低ければ、その感度自体は特に限定されない。S2画素が、R画素及びB画素よりも感度が高い場合は、図4のように飽和信号に達する入射光量L2とダイナミックレンジD2は、S2画素の感度で決まる。また、S2画素の感度が、R画素又はB画素の感度の高い画素よりも低い場合は、図5のように飽和信号に達する入射光量L2とダイナミックレンジD2はR画素又はB画素の感度で決まる。このように、S2画素の感度がR画素又はB画素の感度の低い方の画素よりも高いか低いかについては限定されない。   The sensitivity of the S2 pixel is not particularly limited as long as the sensitivity is lower than that of the S1 pixel. When the sensitivity of the S2 pixel is higher than that of the R pixel and the B pixel, the incident light amount L2 and the dynamic range D2 that reach the saturation signal as shown in FIG. 4 are determined by the sensitivity of the S2 pixel. If the sensitivity of the S2 pixel is lower than that of the R or B pixel having a high sensitivity, the incident light amount L2 and the dynamic range D2 reaching the saturation signal are determined by the sensitivity of the R or B pixel as shown in FIG. . As described above, it is not limited whether the sensitivity of the S2 pixel is higher or lower than the lower pixel of the R pixel or the B pixel.

従って、上述の構成のR、B、S1、S2画素配列の画素部を有する固体撮像装置では、S1画素が飽和点に達するL1までの入射光量において、S1画素、R画素及びB画素により、感度の高い画像を合成することができる。また、S1画素が飽和点に達するL1以上の入射光量では、S2画素、R画素及びB画素により、ダイナミックレンジの広い画像を合成することができる。   Therefore, in the solid-state imaging device having the pixel portion of the R, B, S1, and S2 pixel arrangement having the above-described configuration, the sensitivity is increased by the S1 pixel, the R pixel, and the B pixel in the incident light amount up to L1 where the S1 pixel reaches the saturation point. High-quality images can be synthesized. In addition, an image having a wide dynamic range can be synthesized by the S2 pixel, the R pixel, and the B pixel at an incident light amount equal to or more than L1 at which the S1 pixel reaches the saturation point.

[出力信号から画像を生成する信号処理の例:構成例1]
次に、上述の信号処理に用いて画素出力から輝度信号Y及び色差信号Cを生成するための信号処理回路の第1の例について説明する。図6に、この第1の例の信号処理回路30のブロック図を示す。
[Example of Signal Processing for Generating Image from Output Signal: Configuration Example 1]
Next, a first example of a signal processing circuit for generating the luminance signal Y and the color difference signal C from the pixel output used for the above signal processing will be described. FIG. 6 shows a block diagram of the signal processing circuit 30 of the first example.

まず、画素補間演算部31において、固体撮像装置のR画素、B画素、S1画素及びS2画素から出力されるR信号、B信号、S1信号及びS2信号を受ける。そして、公知の画素補間処理により上記の出力信号から、各画素に対して高感度ニュートラル信号S1、低感度ニュートラル信号S2、Red信号R、及び、Blue信号Bを生成する。   First, the pixel interpolation calculation unit 31 receives the R signal, B signal, S1 signal, and S2 signal output from the R pixel, B pixel, S1 pixel, and S2 pixel of the solid-state imaging device. Then, a high-sensitivity neutral signal S1, a low-sensitivity neutral signal S2, a Red signal R, and a Blue signal B are generated for each pixel from the output signal by a known pixel interpolation process.

上述のR、B、S1、S2配列の画素において、S1画素とS2画素のフィルタはニュートラルな(可視光波長領域で透過率に偏りがない)分光であるため、お互いに係数をかけることにより同じ分光の画素からの信号と同等に扱うことが可能である。
つまり、S1フィルタとS2フィルタの透過率は、図3に示すグラフのように、可視光の吸収に波長依存性が無く、一定の透過率を有する。ここで、S1画素の感度と可視光に全く吸収の無いフィルタを搭載した画素の感度との比率をa1とする。また、S2画素の感度と可視光に全く吸収の無いフィルタを搭載した画素の感度との比率をa2とする。このとき、下記式(1)により、低感度ニュートラル信号S2と同等に扱うことが可能な信号を、高感度ニュートラル信号S1から生成することができる。また、下記式(2)より、高感度ニュートラル信号S1と同等に扱うことが可能な信号を、低感度ニュートラル信号S2から生成することができる。
S1=(S2/a2)×a1 ・・・(1)
S2=(S1/a1)×a2 ・・・(2)
In the pixels of the above-described R, B, S1, and S2 arrangement, the filters of the S1 pixel and the S2 pixel are neutral (the transmittance is not biased in the visible light wavelength region), and therefore the same by multiplying each other by a coefficient. It can be handled in the same way as a signal from a spectral pixel.
That is, the transmittances of the S1 filter and the S2 filter have a constant transmittance without absorption of visible light, as shown in the graph of FIG. Here, the ratio between the sensitivity of the S1 pixel and the sensitivity of the pixel equipped with a filter that does not absorb visible light at all is a1. Further, the ratio between the sensitivity of the S2 pixel and the sensitivity of the pixel equipped with a filter that does not absorb visible light at all is a2. At this time, a signal that can be handled in the same manner as the low-sensitivity neutral signal S2 can be generated from the high-sensitivity neutral signal S1 by the following equation (1). Further, from the following equation (2), a signal that can be handled in the same manner as the high-sensitivity neutral signal S1 can be generated from the low-sensitivity neutral signal S2.
S1 = (S2 / a2) × a1 (1)
S2 = (S1 / a1) × a2 (2)

従って、例えば図2に示すように、ベイヤー配列のG画素の位置に、S1画素とS2画素とを交互に配列する構成とする。この構成により、分光特性の違う4種類の画素を持ちながら、L1までの入射光量の範囲ではベイヤー配列の固体撮像装置を用いた場合と同等の解像度を得ることが可能である。   Therefore, for example, as shown in FIG. 2, the S1 pixel and the S2 pixel are alternately arranged at the position of the G pixel in the Bayer array. With this configuration, while having four types of pixels having different spectral characteristics, it is possible to obtain the same resolution as when a Bayer array solid-state imaging device is used in the range of incident light amounts up to L1.

また、入射光量L1を超える範囲では、S1画素が飽和しているためS1画素位置に低感度ニュートラル信号S2を生成する必要がある。S1画素位置の低感度ニュートラル信号S2は、上記式(2)を用いてS2画素の信号を用いた補間処理により生成する。   Further, since the S1 pixel is saturated in the range exceeding the incident light amount L1, it is necessary to generate the low sensitivity neutral signal S2 at the S1 pixel position. The low-sensitivity neutral signal S2 at the S1 pixel position is generated by interpolation processing using the signal of the S2 pixel using the above equation (2).

また、入射光量がL1を超えているかどうかは、S1画素飽和判断部35によって判断する。
S1画素飽和判断部35には、上述の画素補間演算部31とは別に、S1画素からの出力信号が送られる。そして、S1画素飽和判断部35では、S1画素から送られた出力信号から、S1画素への入射光量が飽和点である光量L1を超えているか判断し、S1画素が飽和しているかを判断する。
Further, the S1 pixel saturation determination unit 35 determines whether the incident light amount exceeds L1.
In addition to the pixel interpolation calculation unit 31 described above, an output signal from the S1 pixel is sent to the S1 pixel saturation determination unit 35. Then, the S1 pixel saturation determination unit 35 determines from the output signal sent from the S1 pixel whether the incident light amount to the S1 pixel exceeds the light amount L1, which is the saturation point, and determines whether the S1 pixel is saturated. .

入射光量がL1を超えない場合には、S2画素位置にS1信号を用いて高感度ニュートラル信号S1を生成するように画素補間演算部31に指示する。また、入射光量がL1を超えている場合には、S1画素位置にS2信号を用いて低感度ニュートラル信号S2を生成するように画素補間演算部31に指示する。   If the amount of incident light does not exceed L1, the pixel interpolation calculation unit 31 is instructed to generate the high sensitivity neutral signal S1 using the S1 signal at the S2 pixel position. Further, when the incident light quantity exceeds L1, the pixel interpolation calculation unit 31 is instructed to generate the low sensitivity neutral signal S2 using the S2 signal at the S1 pixel position.

次に、G演算部32により、高感度ニュートラル信号S1と、Red信号Rと、Blue信号Bとから、Green信号G1、Red信号R1及びBlue信号B1を生成する。また、低感度ニュートラル信号S2と、Red信号Rと、Blue信号Bとから、Green信号G2、Red信号R2、Blue信号B2を生成する。   Next, the G calculation unit 32 generates a green signal G1, a red signal R1, and a blue signal B1 from the high sensitivity neutral signal S1, the red signal R, and the blue signal B. Further, a green signal G2, a red signal R2, and a blue signal B2 are generated from the low sensitivity neutral signal S2, the red signal R, and the blue signal B.

ここで上述のように、S1画素とS2画素の感度と可視光に全く吸収の無いフィルタを搭載した画素の感度との比率をそれぞれa1、a2とする。
このとき、高感度画像生成用の信号であるGreen信号G1、Red信号R1、Blue信号B1は、高感度ニュートラル信号S1、Red信号R、及び、Blue信号Bを用いて、下記式(3)により得ることができる。そして、低感度画像生成用の信号であるGreen信号G2、Red信号R2、Blue信号B2は、低感度ニュートラル信号S2、Red信号R、及び、Blue信号Bを用いて下記式(4)により得ることができる。
G1=S1−a1(R+B)、 R1=R、 B1=B ・・・(3)
G2=S2−a2(R+B)、 R2=R、 B2=B ・・・(4)
Here, as described above, the ratio between the sensitivity of the S1 pixel and the S2 pixel and the sensitivity of the pixel on which a filter having no visible light absorption is mounted is a1 and a2, respectively.
At this time, the Green signal G1, the Red signal R1, and the Blue signal B1, which are signals for generating a high-sensitivity image, are expressed by the following equation (3) using the high-sensitivity neutral signal S1, the Red signal R, and the Blue signal B. Can be obtained. Then, the green signal G2, the red signal R2, and the blue signal B2, which are signals for generating a low-sensitivity image, are obtained by the following equation (4) using the low-sensitivity neutral signal S2, the red signal R, and the blue signal B. Can do.
G1 = S1-a1 (R + B), R1 = R, B1 = B (3)
G2 = S2-a2 (R + B), R2 = R, B2 = B (4)

また、高感度画像生成用の信号であるGreen信号G1、Red信号R1、Blue信号B1は、高感度ニュートラル信号S1、Red信号R、及び、Blue信号Bを用いて、下記式(5)により得ることもできる。そして、低感度画像生成用の信号であるGreen信号G2、Red信号R2、Blue信号B2は、低感度ニュートラル信号S2、Red信号R、及び、Blue信号Bを用いて下記式(6)により得ることもできる。
G1=(S1/a1)−(R+B)、 R1=R、 B1=B ・・・(5)
G2=(S2/a2)−(R+B)、 R2=R、 B2=B ・・・(6)
Further, the green signal G1, the red signal R1, and the blue signal B1, which are signals for generating a high-sensitivity image, are obtained by the following equation (5) using the high-sensitivity neutral signal S1, the red signal R, and the blue signal B. You can also Then, the green signal G2, the red signal R2, and the blue signal B2, which are signals for generating a low-sensitivity image, are obtained by the following equation (6) using the low-sensitivity neutral signal S2, the red signal R, and the blue signal B. You can also.
G1 = (S1 / a1) − (R + B), R1 = R, B1 = B (5)
G2 = (S2 / a2)-(R + B), R2 = R, B2 = B (6)

G演算部32において上記式(3)〜(6)を用いて高感度画像を生成するためのGreen信号G1、Red信号R1及びBlue信号B1と、低感度画像を生成するためのGreen信号G2、Red信号R2及びBlue信号B2をそれぞれ生成する。   A green signal G1, a red signal R1, and a blue signal B1 for generating a high-sensitivity image using the equations (3) to (6) in the G calculation unit 32, and a green signal G2, for generating a low-sensitivity image, A Red signal R2 and a Blue signal B2 are generated.

続いて、第1MTX演算部33において、G1、R1、B1をホワイトバランス、リニアマトリクス処理、色差マトリクス処理等のマトリクス演算処理を行い、高感度画像輝度信号Y1と高感度画像色差信号C1を生成する。この高感度画像輝度信号Y1と色差信号C1とは、S1画素が飽和する入射光量L1(図4)までの高照度側に対応する高感度画像である。   Subsequently, the first MTX calculation unit 33 performs matrix calculation processing such as white balance, linear matrix processing, and color difference matrix processing on G1, R1, and B1 to generate a high sensitivity image luminance signal Y1 and a high sensitivity image color difference signal C1. . The high-sensitivity image luminance signal Y1 and the color difference signal C1 are high-sensitivity images corresponding to the high illuminance side up to the incident light amount L1 (FIG. 4) where the S1 pixel is saturated.

同様に、第2MTX演算部34においてG2、R2、B2をホワイトバランス、リニアマトリクス処理、色差マトリクス処理等のマトリクス演算処理を行い、低感度画像輝度信号Y2と低感度画像色差信号C2を生成する。この低感度画像輝度信号Y2と色差信号C2は、S1画素が飽和する入射光量L1(図4)を超える入射光量に対応する低感度画像である。   Similarly, the second MTX calculation unit 34 performs matrix calculation processing such as white balance, linear matrix processing, and color difference matrix processing on G2, R2, and B2 to generate a low sensitivity image luminance signal Y2 and a low sensitivity image color difference signal C2. The low-sensitivity image luminance signal Y2 and the color difference signal C2 are low-sensitivity images corresponding to the incident light amount exceeding the incident light amount L1 (FIG. 4) at which the S1 pixel is saturated.

そして、上述の高感度画像輝度信号Y1と高感度画像色差信号C1とによる高感度画像、及び、低感度画像輝度信号Y2と低感度画像色差信号C2とによる低感度画像を、画像合成部36において合成する。このとき、S1画素飽和判断部35によりS1画素の飽和が検出されなければ、高感度画像のみから画像を生成する。
S1画素の飽和が検出された場合、これら2枚の画像のから、入射光量がL1までの画素では高感度画像の輝度信号Y1と色差信号C1とを用いる。そして、入射光量がL1を超えた画素では、低感度画像の輝度信号Y2と色差信号C2とを用いる。このように、入射光量L1までの画素と、入射光量L1を超えた画素とにおいて、高感度画像の信号と低感度画像の信号とをそれぞれ用いることにより、1つの画像を合成により生成する。
このとき、入射光量L1で使用する画素信号を切り替えてしまうと、合成した画像が不自然になってしまう。このため、それぞれの画像の信号の合成比率を入射光量により変化させる等の公知の種々の方法により自然な画像を生成することが可能である。
Then, the high-sensitivity image based on the high-sensitivity image luminance signal Y1 and the high-sensitivity image color difference signal C1 and the low-sensitivity image based on the low-sensitivity image luminance signal Y2 and the low-sensitivity image color difference signal C2 are processed in the image composition unit 36. Synthesize. At this time, if the saturation of the S1 pixel is not detected by the S1 pixel saturation determination unit 35, an image is generated only from the high-sensitivity image.
When the saturation of the S1 pixel is detected, the luminance signal Y1 and the color difference signal C1 of the high-sensitivity image are used for the pixels with the incident light quantity up to L1 from these two images. And in the pixel whose incident light quantity exceeded L1, the luminance signal Y2 and color difference signal C2 of a low sensitivity image are used. In this way, one image is generated by synthesis by using the high-sensitivity image signal and the low-sensitivity image signal in the pixels up to the incident light amount L1 and the pixels exceeding the incident light amount L1, respectively.
At this time, if the pixel signal used in the incident light amount L1 is switched, the synthesized image becomes unnatural. For this reason, it is possible to generate a natural image by various known methods such as changing the synthesis ratio of the signals of the respective images depending on the amount of incident light.

[出力信号から画像を生成する信号処理の例:構成例2]
次に、上述の信号処理に用いて画素出力から輝度信号Y及び色差信号をC生成するための信号処理回路の第2の例について説明する。図7に、この第2の例の信号処理回路40のブロック図を示す。なお、以下の説明においては、図5に示す第1の例の信号処理回路30と同様の構成については詳細な説明を省いて概要部分のみを説明する。
[Example of Signal Processing for Generating Image from Output Signal: Configuration Example 2]
Next, a second example of the signal processing circuit for generating the luminance signal Y and the color difference signal from the pixel output using the above-described signal processing will be described. FIG. 7 shows a block diagram of the signal processing circuit 40 of the second example. In the following description, the same configuration as that of the signal processing circuit 30 of the first example shown in FIG.

まず、上述の信号処理回路の第1の例と同様に、画素補間演算部41において、固体撮像装置のR画素、B画素、S1画素及びS2画素から出力されるR信号、B信号、S1信号及びS2信号を受ける。そして、公知の画素補間処理により上記の出力信号から、各画素に対して高感度ニュートラル信号S1、低感度ニュートラル信号S2、Red信号R、Blue信号Bを生成する。第2の例の信号処理回路の画素補間演算部41における、高感度ニュートラル信号S1、低感度ニュートラル信号S2、Red信号R及びBlue信号Bの生成は、上述の第1の例の信号処理回路の画素補間演算部と同様に行うことができる。また、第1の例の信号処理回路と同様に、S1画素飽和判断部42において、入射光量がL1を超えているかを判断する。そして、入射光量L1を超える範囲では、S1画素位置に低感度ニュートラル信号S2を、S2画素の信号を用いた補間処理により生成する。   First, similarly to the first example of the signal processing circuit described above, in the pixel interpolation calculation unit 41, the R signal, the B signal, and the S1 signal output from the R pixel, the B pixel, the S1 pixel, and the S2 pixel of the solid-state imaging device. And S2 signal. Then, a high-sensitivity neutral signal S1, a low-sensitivity neutral signal S2, a Red signal R, and a Blue signal B are generated for each pixel from the output signal by a known pixel interpolation process. The generation of the high-sensitivity neutral signal S1, the low-sensitivity neutral signal S2, the Red signal R, and the Blue signal B in the pixel interpolation calculation unit 41 of the signal processing circuit of the second example is performed by the signal processing circuit of the first example described above. This can be performed in the same manner as the pixel interpolation calculation unit. Similarly to the signal processing circuit of the first example, the S1 pixel saturation determination unit 42 determines whether the incident light amount exceeds L1. And in the range exceeding the incident light quantity L1, the low sensitivity neutral signal S2 is produced | generated by the interpolation process using the signal of S2 pixel in S1 pixel position.

次に、S演算部43において、画素補間演算部41で生成した高感度ニュートラル信号S1と、低感度ニュートラル信号S2とを合成し、ニュートラル信号Sを生成する。
このとき、各画素において、高感度ニュートラル信号S1と低感度ニュートラル信号S2のどちらを用いるかは、S1画素飽和判断部42により判断する。
入射光量L1までの範囲、つまりS1画素が飽和しない範囲の入射光量の画素では高感度ニュートラル信号S1を用いる。そして、入射光量L1を超える、つまりS1画素画飽和する範囲の入射光量の画素では、低感度ニュートラル信号S2を用いる。このとき、入射光量L1付近においては、高感度ニュートラル信号S1と低感度ニュートラル信号S2を入射光量に対して合成比率を変更するとより自然な画像を生成することが可能である。
Next, the S calculation unit 43 combines the high sensitivity neutral signal S1 generated by the pixel interpolation calculation unit 41 and the low sensitivity neutral signal S2 to generate the neutral signal S.
At this time, the S1 pixel saturation determination unit 42 determines which of the high sensitivity neutral signal S1 and the low sensitivity neutral signal S2 is used in each pixel.
The high sensitivity neutral signal S1 is used in the range up to the incident light amount L1, that is, the pixel having the incident light amount in the range where the S1 pixel is not saturated. The low-sensitivity neutral signal S2 is used for pixels having an incident light amount exceeding the incident light amount L1, that is, in a range where the S1 pixel image is saturated. At this time, in the vicinity of the incident light quantity L1, it is possible to generate a more natural image by changing the composition ratio of the high sensitivity neutral signal S1 and the low sensitivity neutral signal S2 with respect to the incident light quantity.

次に、G演算部44において、S演算部43で生成したニュートラル信号S、並びに、画素補間演算部41で生成したRed信号R及びBlue信号Bから、Green信号G3、Red信号R3、Blue信号B3を生成する。
このとき、S1画素の感度と可視光に全く吸収の無いフィルタを搭載した画素の感度との比率をそれぞれa1とすると、Green信号G3、Red信号R3、Blue信号B3は式(7)または、式(8)により得られる。
G3=S−a1(R+B)、 R3=R、 B3=B ・・・(7)
G3=S3/a1−(R+B)、 R3=R、 B3=B ・・・(8)
Next, in the G calculation unit 44, the green signal G3, the red signal R3, and the blue signal B3 from the neutral signal S generated by the S calculation unit 43 and the red signal R and the blue signal B generated by the pixel interpolation calculation unit 41. Is generated.
At this time, if the ratio between the sensitivity of the S1 pixel and the sensitivity of the pixel equipped with a filter that does not absorb visible light at all is a1, the Green signal G3, the Red signal R3, and the Blue signal B3 can be expressed by Equation (7) or It is obtained by (8).
G3 = S−a1 (R + B), R3 = R, B3 = B (7)
G3 = S3 / a1- (R + B), R3 = R, B3 = B (8)

続いて、MTX演算部45において、G演算部44で生成したGreen信号G3、Red信号R3、Blue信号B3をホワイトバランス、リニアマトリクス処理、色差マトリクス処理等のマトリクス演算処理を行い、輝度信号Yと色差信号Cを生成する。   Subsequently, in the MTX calculation unit 45, the green signal G3, the Red signal R3, and the Blue signal B3 generated by the G calculation unit 44 are subjected to matrix calculation processing such as white balance, linear matrix processing, color difference matrix processing, etc. A color difference signal C is generated.

入射光量が小さい場合には、S1画素により高感度な画像が得られる。さらに、低感度のS2画素を用いて、S2画素の飽和点となる入射光量L2までダイナミックレンジを広げることが可能となる。このように、S1画素が飽和する入射光量でも、S1画素よりも感度が低くなるS2フィルタが設けられているS2画素は飽和していない。このS1画素とS2画素の出力信号を上述の方法で合成することにより、輝度信号Yと色差信号Cを求めて1つの画像を合成することができる。
S1画素とS2画素のフィルタはともに全波長を透過するため、係数a1,a2をかけることにより、同じ分光の画素からの信号と同等に扱うことが可能である。
そのため、S1画素とS2画素の配列を例えば上述の図2に示すようにベイヤー配列のG画素の位置に交互に配列すれば、4種類の分光特性の違う画素を持ちながらベイヤー配列の固体撮像装置を用いた場合と同等の解像度を得ることが可能である。
また、S1画素とS2画素を備えることにより、従来のベイヤー配列を備える固体撮像装置に対して、解像度を低下させずに、高感度画像と低感度画像とを得ることができる。そして、高感度と広ダイナミックレンジを両立した固体撮像装置やカメラシステムを提供することができる。
When the amount of incident light is small, a highly sensitive image can be obtained by the S1 pixel. Furthermore, the dynamic range can be expanded to the incident light amount L2 that becomes the saturation point of the S2 pixel by using the low-sensitivity S2 pixel. Thus, even with the incident light quantity at which the S1 pixel is saturated, the S2 pixel provided with the S2 filter whose sensitivity is lower than that of the S1 pixel is not saturated. By synthesizing the output signals of the S1 pixel and S2 pixel by the above-described method, the luminance signal Y and the color difference signal C can be obtained to synthesize one image.
Since both the S1 pixel filter and the S2 pixel filter transmit all wavelengths, by applying the coefficients a1 and a2, it is possible to treat the same signal as the signal from the same spectral pixel.
Therefore, if the arrangement of the S1 pixel and the S2 pixel is alternately arranged at the position of the G pixel in the Bayer arrangement, for example, as shown in FIG. 2, the Bayer arrangement solid-state imaging device having four types of pixels having different spectral characteristics. It is possible to obtain the same resolution as when using.
In addition, by providing the S1 pixel and the S2 pixel, it is possible to obtain a high-sensitivity image and a low-sensitivity image without reducing the resolution of a solid-state imaging device having a conventional Bayer array. Then, it is possible to provide a solid-state imaging device and a camera system that achieve both high sensitivity and a wide dynamic range.

〈3.電子機器の構成例〉
本発明に係る固体撮像装置は、固体撮像装置を備えたカメラ、カメラ付き携帯機器、固体撮像装置を備えたその他の機器等の電子機器に適用することができる。
図8に、本発明の電子機器の一例として、固体撮像装置を静止画撮影が可能なデジタルスチルカメラに適用した場合の概略構成を示す。
<3. Example of electronic device configuration>
The solid-state imaging device according to the present invention can be applied to electronic devices such as a camera equipped with a solid-state imaging device, a portable device with a camera, and other devices equipped with a solid-state imaging device.
FIG. 8 shows a schematic configuration when a solid-state imaging device is applied to a digital still camera capable of taking a still image as an example of the electronic apparatus of the present invention.

本実施の形態に係るカメラ50は、光学系(光学レンズ)51と、固体撮像装置52と、信号処理回路53、駆動回路54とを備える。   The camera 50 according to the present embodiment includes an optical system (optical lens) 51, a solid-state imaging device 52, a signal processing circuit 53, and a drive circuit 54.

固体撮像装置52は、上述の固体撮像装置が適用される。光学レンズ51は、被写体からの像光(入射光)を固体撮像装置52の撮像面上に結像させる。これにより、固体撮像装置52の光電変換素子において一定期間信号電荷が蓄積される。駆動回路54は、固体撮像装置52の転送動作信号を供給する。駆動回路54から供給される駆動信号(タイミング信号)により、固体撮像装置52の信号転送が行われる。信号処理回路53は、固体撮像装置52の出力信号に対して種々の信号処理を行う。信号処理回路53としては、上述の固体撮像装置の出力信号の信号処理回路図6に示す信号処理回路30又は図7に示す信号処理回路40を使用することができる。信号処理が行われた映像信号は、メモリなどの記憶媒体に記憶され、又はモニタ等に出力される。本実施の形態のカメラ50は、光学レンズ51、固体撮像装置52、信号処理回路53、及び、駆動回路54がモジュール化したカメラモジュールの形態を含む。   As the solid-state imaging device 52, the above-described solid-state imaging device is applied. The optical lens 51 forms image light (incident light) from the subject on the imaging surface of the solid-state imaging device 52. As a result, signal charges are accumulated in the photoelectric conversion element of the solid-state imaging device 52 for a certain period. The drive circuit 54 supplies a transfer operation signal for the solid-state imaging device 52. Signal transfer of the solid-state imaging device 52 is performed by a drive signal (timing signal) supplied from the drive circuit 54. The signal processing circuit 53 performs various signal processing on the output signal of the solid-state imaging device 52. As the signal processing circuit 53, the signal processing circuit 30 shown in FIG. 6 or the signal processing circuit 40 shown in FIG. 7 can be used. The video signal subjected to the signal processing is stored in a storage medium such as a memory or output to a monitor or the like. The camera 50 according to the present embodiment includes a camera module in which an optical lens 51, a solid-state imaging device 52, a signal processing circuit 53, and a drive circuit 54 are modularized.

本発明は、図8のカメラ、あるいはカメラモジュールを備えた例えば携帯電話に代表されるカメラ付き携帯機器などを構成することができる。
さらに、図8の構成は、光学レンズ51、固体撮像装置52、信号処理回路53、及び、駆動回路54がモジュール化した撮像機能を有するモジュール、いわゆる撮像機能モジュ−ルとして構成することができる。本発明は、このような撮像機能モジュールを備えた電子機器を構成することができる。
The present invention can constitute a camera-equipped portable device such as a mobile phone provided with the camera of FIG. 8 or a camera module.
Furthermore, the configuration of FIG. 8 can be configured as a module having an imaging function in which the optical lens 51, the solid-state imaging device 52, the signal processing circuit 53, and the drive circuit 54 are modularized, a so-called imaging function module. The present invention can constitute an electronic apparatus provided with such an imaging function module.

なお、上述の本実施の形態では、固体撮像装置の例としてCMOSイメージセンサについて説明したが、本発明はCMOSイメージセンサ以外の固体撮像装置にも適用することができる。本発明は、汎用の固体撮像装置のカラーフィルタ配列を変更することにより実現することができるが、固体撮像装置の種類は、CCD(Charge Coupled Device)イメージセンサ、CMD(Charge Modulation Device)イメージセンサなど種類、方式を問わない。また、本発明におけるシステムの適用範囲は、静止画、動画などカメラシステムによる制限を受け図に適用することができる。   In the above-described embodiment, a CMOS image sensor has been described as an example of a solid-state imaging device. However, the present invention can also be applied to a solid-state imaging device other than a CMOS image sensor. The present invention can be realized by changing the color filter arrangement of a general-purpose solid-state imaging device. The type of the solid-state imaging device is a CCD (Charge Coupled Device) image sensor, a CMD (Charge Modulation Device) image sensor, or the like. Regardless of type and method. In addition, the application range of the system according to the present invention can be applied to a figure due to limitations imposed by the camera system such as still images and moving images.

なお、本発明は上述の実施形態例において説明した構成に限定されるものではなく、その他本発明構成を逸脱しない範囲において種々の変形、変更が可能である。   The present invention is not limited to the configuration described in the above-described embodiment, and various modifications and changes can be made without departing from the configuration of the present invention.

10 固体撮像装置、11 水平信号線、12 画素、13 画素部、14 垂直駆動回路、15 カラム信号処理回路、16 水平駆動回路、17 出力回路、18 制御回路、19 垂直信号線、21 S1画素、22 S2画素、23 R画素、24 B画素、30,40 信号処理回路、31,41 画素補間演算部、32,44 G演算部、33 第1MTX演算部、34 第2MTX演算部、35,42 S画素飽和判断部、36 画像合成部、43 S演算部、45 MTX演算部、50 カメラ、51 光学系、52 固体撮像装置、53 信号処理回路、54 駆動回路   DESCRIPTION OF SYMBOLS 10 Solid-state imaging device, 11 Horizontal signal line, 12 pixels, 13 pixel part, 14 Vertical drive circuit, 15 Column signal processing circuit, 16 Horizontal drive circuit, 17 Output circuit, 18 Control circuit, 19 Vertical signal line, 21 S1 pixel, 22 S2 pixel, 23 R pixel, 24 B pixel, 30, 40 signal processing circuit, 31, 41 pixel interpolation calculation unit, 32, 44 G calculation unit, 33 first MTX calculation unit, 34 second MTX calculation unit, 35, 42 S Pixel saturation determination unit, 36 image composition unit, 43 S calculation unit, 45 MTX calculation unit, 50 camera, 51 optical system, 52 solid-state imaging device, 53 signal processing circuit, 54 drive circuit

Claims (3)

赤色光を透過するRフィルタを備えるR画素と、
青色光を透過するBフィルタを備えるB画素と、
可視光領域において透過率の波長依存性がないS1フィルタを備え、前記R画素よりも感度が高いS1画素と、
可視光領域において透過率の波長依存性がなく、前記S1フィルタよりも可視光の透過率が低いS2フィルタを備え、前記S1画素よりも低い感度のS2画素と、を備え、
フィルタを配置しない画素の感度を100としたとき、前記S1画素の感度が40から100、前記S2画素の感度が60以下であり、
前記R画素、前記B画素、前記S1画素及びS前記2画素から出力されるR信号、B信号、S1信号及びS2信号の出力信号から、高感度ニュートラル信号S1、低感度ニュートラル信号S2、Red信号R、及び、Blue信号Bを生成し、
前記S1画素から出力された前記S1信号から、前記S1画素への入射光量が飽和点である光量L1を超えているか判断し、
前記S1画素が飽和するまでの照度範囲では前記高感度ニュートラル信号S1と、前記Red信号Rと、前記Blue信号Bとから、Green信号G1、Red信号R1及びBlue信号B1を生成し、
前記S1画素が飽和した後の照度範囲では前記低感度ニュートラル信号S2と、前記Red信号Rと、前記Blue信号Bとから、Green信号G2、Red信号R2及びBlue信号B2を生成し、
前記Green信号G1、前記Red信号R1及び前記Blue信号B1、並びに、前記Green信号G2、前記Red信号R2及び前記Blue信号B2から、1つの画像を合成により生成する
を備える固体撮像装置。
An R pixel including an R filter that transmits red light;
A B pixel including a B filter that transmits blue light;
An S1 filter having a wavelength dependency of transmittance in the visible light region, and having a higher sensitivity than the R pixel;
Whereby the wavelength dependence of transmittance in the visible light region, comprising a step S1 a low transmittance S2 filter of visible light than the filter, Bei give a, S2 with a pixel of lower sensitivity than step S1 pixel,
When the sensitivity of a pixel without a filter is 100, the sensitivity of the S1 pixel is 40 to 100, and the sensitivity of the S2 pixel is 60 or less,
From the R signal, the B signal, the S1 signal, and the S2 signal output signals output from the R pixel, the B pixel, the S1 pixel, and the S two pixel, a high sensitivity neutral signal S1, a low sensitivity neutral signal S2, and a Red signal. R and Blue signal B are generated,
From the S1 signal output from the S1 pixel, determine whether the incident light amount to the S1 pixel exceeds a light amount L1 that is a saturation point,
In the illuminance range until the S1 pixel is saturated, the green signal G1, the red signal R1, and the blue signal B1 are generated from the high sensitivity neutral signal S1, the red signal R, and the blue signal B.
In the illuminance range after the S1 pixel is saturated, the Green signal G2, the Red signal R2, and the Blue signal B2 are generated from the low sensitivity neutral signal S2, the Red signal R, and the Blue signal B.
A solid-state imaging device comprising: generating one image from the green signal G1, the red signal R1, and the blue signal B1, and the green signal G2, the red signal R2, and the blue signal B2 by synthesis .
前記S2画素が、前記R画素又は前記B画素の感度の高い画素よりも感度が低い請求項1に記載の固体撮像装置。   The solid-state imaging device according to claim 1, wherein the S2 pixel has lower sensitivity than a pixel having higher sensitivity of the R pixel or the B pixel. 体撮像装置と、
前記固体撮像装置の撮像部に入射光を導く光学系と、
前記固体撮像装置の出力信号を処理する信号処理回路と
備え、
前記固体撮像装置が、
赤色光を透過するRフィルタを備えるR画素と、
青色光を透過するBフィルタを備えるB画素と、
可視光領域において透過率の波長依存性がないS1フィルタを備え、前記R画素よりも感度が高いS1画素と、
可視光領域において透過率の波長依存性がなく、前記S1フィルタよりも可視光の透過率が低いS2フィルタを備え、前記S1画素よりも低い感度のS2画素と、を備え、
フィルタを配置しない画素の感度を100としたとき、前記S1画素の感度が40から100、前記S2画素の感度が60以下であり、
前記R画素、前記B画素、前記S1画素及びS前記2画素から出力されるR信号、B信号、S1信号及びS2信号の出力信号から、高感度ニュートラル信号S1、低感度ニュートラル信号S2、Red信号R、及び、Blue信号Bを生成し、
前記S1画素から出力された前記S1信号から、前記S1画素への入射光量が飽和点である光量L1を超えているか判断し、
前記S1画素が飽和するまでの照度範囲では前記高感度ニュートラル信号S1と、前記Red信号Rと、前記Blue信号Bとから、Green信号G1、Red信号R1及びBlue信号B1を生成し、
前記S1画素が飽和した後の照度範囲では前記低感度ニュートラル信号S2と、前記Red信号Rと、前記Blue信号Bとから、Green信号G2、Red信号R2及びBlue信号B2を生成し、
前記Green信号G1、前記Red信号R1及び前記Blue信号B1、並びに、前記Green信号G2、前記Red信号R2及び前記Blue信号B2から、1つの画像を合成により生成する
電子機器。
A solid-state image sensor,
An optical system for guiding incident light to the imaging unit of the solid-state imaging device;
A signal processing circuit for processing an output signal of the solid-state imaging device ,
The solid-state imaging device is
An R pixel including an R filter that transmits red light;
A B pixel including a B filter that transmits blue light;
An S1 filter having a wavelength dependency of transmittance in the visible light region, and having a higher sensitivity than the R pixel;
An S2 filter having no wavelength dependency of transmittance in the visible light region and having a visible light transmittance lower than that of the S1 filter, and an S2 pixel having a sensitivity lower than that of the S1 pixel;
When the sensitivity of a pixel without a filter is 100, the sensitivity of the S1 pixel is 40 to 100, and the sensitivity of the S2 pixel is 60 or less,
From the R signal, the B signal, the S1 signal, and the S2 signal output signals output from the R pixel, the B pixel, the S1 pixel, and the S two pixel, a high sensitivity neutral signal S1, a low sensitivity neutral signal S2, and a Red signal. R and Blue signal B are generated,
From the S1 signal output from the S1 pixel, determine whether the incident light amount to the S1 pixel exceeds a light amount L1 that is a saturation point,
In the illuminance range until the S1 pixel is saturated, the green signal G1, the red signal R1, and the blue signal B1 are generated from the high sensitivity neutral signal S1, the red signal R, and the blue signal B.
In the illuminance range after the S1 pixel is saturated, the Green signal G2, the Red signal R2, and the Blue signal B2 are generated from the low sensitivity neutral signal S2, the Red signal R, and the Blue signal B.
An electronic device that generates one image from the green signal G1, the red signal R1, and the blue signal B1, and the green signal G2, the red signal R2, and the blue signal B2 by synthesis .
JP2009214819A 2009-09-16 2009-09-16 Solid-state imaging device and electronic device Expired - Fee Related JP5526673B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2009214819A JP5526673B2 (en) 2009-09-16 2009-09-16 Solid-state imaging device and electronic device
US12/850,347 US8848073B2 (en) 2009-09-16 2010-08-04 Solid-state imaging device and electronic apparatus
TW99126811A TWI469635B (en) 2009-09-16 2010-08-11 Solid-state imaging device and electronic apparatus
KR1020100087918A KR20110030328A (en) 2009-09-16 2010-09-08 Solid-state imaging device and electronic apparatus
CN201010281091.2A CN102025927B (en) 2009-09-16 2010-09-09 Solid-state imaging device and electronic apparatus
US14/480,138 US9288410B2 (en) 2009-09-16 2014-09-08 Solid-state imaging device and electronic apparatus
US14/995,020 US9661241B2 (en) 2009-09-16 2016-01-13 Solid-state imaging device and electronic apparatus
US15/489,865 US9918027B2 (en) 2009-09-16 2017-04-18 Solid-state imaging device and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009214819A JP5526673B2 (en) 2009-09-16 2009-09-16 Solid-state imaging device and electronic device

Publications (2)

Publication Number Publication Date
JP2011066637A JP2011066637A (en) 2011-03-31
JP5526673B2 true JP5526673B2 (en) 2014-06-18

Family

ID=43730178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009214819A Expired - Fee Related JP5526673B2 (en) 2009-09-16 2009-09-16 Solid-state imaging device and electronic device

Country Status (5)

Country Link
US (4) US8848073B2 (en)
JP (1) JP5526673B2 (en)
KR (1) KR20110030328A (en)
CN (1) CN102025927B (en)
TW (1) TWI469635B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5442571B2 (en) * 2010-09-27 2014-03-12 パナソニック株式会社 Solid-state imaging device and imaging device
EP2760207A4 (en) * 2012-01-17 2015-07-29 Honda Motor Co Ltd Image processing device
KR101965175B1 (en) 2012-11-01 2019-04-03 후지필름 가부시키가이샤 Photosensitive composition, grey cured film using same, grey pixel, and solid state imaging element
KR20150039019A (en) * 2013-10-01 2015-04-09 엘지전자 주식회사 Mobile terminal and control method thereof
CN108293093B (en) * 2015-11-19 2020-11-03 索尼公司 Image processing apparatus and image processing method
JP7310098B2 (en) * 2018-07-10 2023-07-19 富士通株式会社 CONTROL CIRCUIT AND CONTROL METHOD OF INFRARED DETECTOR, IMAGING DEVICE
US11742365B2 (en) * 2021-07-12 2023-08-29 Omnivision Technologies, Inc. High dynamic range image sensor having reduced crosstalk and jaggy

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4356134B2 (en) * 1999-04-16 2009-11-04 ソニー株式会社 Image processing apparatus and image processing method
JP3988457B2 (en) * 2001-12-25 2007-10-10 ソニー株式会社 Imaging apparatus and signal processing method for solid-state imaging device
JP4015492B2 (en) 2002-07-22 2007-11-28 富士フイルム株式会社 Image composition method and imaging apparatus
US7508421B2 (en) * 2002-06-24 2009-03-24 Fujifilm Corporation Image pickup apparatus and image processing method
US7633537B2 (en) * 2002-12-18 2009-12-15 Nikon Corporation Color image sensor, color filter array and color imaging device
JP4500574B2 (en) * 2004-03-30 2010-07-14 富士フイルム株式会社 Wide dynamic range color solid-state imaging device and digital camera equipped with the solid-state imaging device
JP2007329721A (en) * 2006-06-08 2007-12-20 Matsushita Electric Ind Co Ltd Solid-state imaging device
JP2008020594A (en) 2006-07-12 2008-01-31 Toppan Printing Co Ltd Fresnel lens sheet and transmission type screen
JP2008078922A (en) * 2006-09-20 2008-04-03 Toshiba Corp Solid-state imaging device
JP5018125B2 (en) * 2007-02-21 2012-09-05 ソニー株式会社 Solid-state imaging device and imaging device
JP5082528B2 (en) * 2007-03-23 2012-11-28 ソニー株式会社 Solid-state imaging device and imaging device
JP2009158689A (en) * 2007-12-26 2009-07-16 Fujifilm Corp Solid-state imaging element
KR101639382B1 (en) * 2008-08-27 2016-07-13 삼성전자주식회사 Apparatus and method for generating HDR image

Also Published As

Publication number Publication date
KR20110030328A (en) 2011-03-23
CN102025927B (en) 2014-09-24
JP2011066637A (en) 2011-03-31
US20170223290A1 (en) 2017-08-03
US20110063481A1 (en) 2011-03-17
CN102025927A (en) 2011-04-20
US9288410B2 (en) 2016-03-15
TWI469635B (en) 2015-01-11
US20140375857A1 (en) 2014-12-25
US9661241B2 (en) 2017-05-23
US20160127663A1 (en) 2016-05-05
US8848073B2 (en) 2014-09-30
US9918027B2 (en) 2018-03-13
TW201127037A (en) 2011-08-01

Similar Documents

Publication Publication Date Title
US11425349B2 (en) Digital cameras with direct luminance and chrominance detection
US10200639B2 (en) Image pickup device and method enabling control of spectral sensitivity and exposure time
US8164651B2 (en) Concentric exposure sequence for image sensor
KR100827238B1 (en) Apparatus and method for supporting high quality image
JP5526673B2 (en) Solid-state imaging device and electronic device
WO2013089036A1 (en) Image pickup device
TW201545556A (en) Exposing pixel groups in producing digital images
JP4253634B2 (en) Digital camera
JP2007329721A (en) Solid-state imaging device
JP2009194604A (en) Imaging apparatus and method of driving the same
WO2020049867A1 (en) Image capture device and image capture element
JP2004222158A (en) Method for controlling solid-state image pickup device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

LAPS Cancellation because of no payment of annual fees