JP5507267B2 - Method and apparatus for calculating thickness of damping material - Google Patents

Method and apparatus for calculating thickness of damping material Download PDF

Info

Publication number
JP5507267B2
JP5507267B2 JP2010003101A JP2010003101A JP5507267B2 JP 5507267 B2 JP5507267 B2 JP 5507267B2 JP 2010003101 A JP2010003101 A JP 2010003101A JP 2010003101 A JP2010003101 A JP 2010003101A JP 5507267 B2 JP5507267 B2 JP 5507267B2
Authority
JP
Japan
Prior art keywords
thickness
signal
attenuation
metal material
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010003101A
Other languages
Japanese (ja)
Other versions
JP2011141236A (en
Inventor
宏明 畠中
敬弘 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Inspection and Instrumentation Co Ltd
Original Assignee
IHI Inspection and Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Inspection and Instrumentation Co Ltd filed Critical IHI Inspection and Instrumentation Co Ltd
Priority to JP2010003101A priority Critical patent/JP5507267B2/en
Publication of JP2011141236A publication Critical patent/JP2011141236A/en
Application granted granted Critical
Publication of JP5507267B2 publication Critical patent/JP5507267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、複合構造体に用いられる減衰材の肉厚算出方法及びその装置に関するものである。   The present invention relates to a method and apparatus for calculating the thickness of an attenuation material used in a composite structure.

一般に、鋼材の肉厚を計測する際には、超音波を発振する探触子と、探触子からのデータを処理する処理装置とを用いており、測定の際には、鋼材等の外面に探触子を配置して数MHzの超音波を発振し、鋼材の底面で反射した底面反射エコーを取得し、種々の解析を行って鋼材の肉厚を測定している(例えば、特許文献1、2参照)。   In general, when measuring the thickness of a steel material, a probe that oscillates ultrasonic waves and a processing device that processes data from the probe are used. A probe is placed on the base plate, an ultrasonic wave of several MHz is oscillated, a bottom reflection echo reflected from the bottom surface of the steel material is obtained, and various analyzes are performed to measure the thickness of the steel material (for example, Patent Documents) 1 and 2).

また特定の機器や装置には、鋼材等の金属材と樹脂等の減衰材とを積層した複合構造体を用いるものがあり、このような機器や装置を使用したり、運転したりする場合には、減衰材に摩耗や焼損を生じ、減衰材の肉厚を適宜測定して減衰材の摩耗等を観察することが求められている。   In addition, there are specific devices and devices that use a composite structure in which a metal material such as steel and a damping material such as resin are laminated. When such devices and devices are used or operated Is required to observe the wear of the damping material by appropriately measuring the thickness of the damping material.

特開平7−198362号公報JP-A-7-198362 特開2004−163250号公報JP 2004-163250 A

しかしながら、金属材と減衰材とを備える複合構造体に対し、数MHzの超音波を発振して減衰材の肉厚を計測する場合には、金属材により反射エコーが多重反射になると共に、低密度の減衰材により超音波が大幅に減衰し、減衰材の反射エコーを適切に取得することができないという問題があった。   However, when measuring the thickness of an attenuation material by oscillating several MHz ultrasonic waves to a composite structure including a metal material and an attenuation material, the reflection echo becomes multiple reflections due to the metal material, and low There is a problem that the ultrasonic wave is greatly attenuated by the density attenuation material, and the reflection echo of the attenuation material cannot be acquired appropriately.

本発明は、上記従来の問題点に鑑みてなしたもので、複合構造体に用いられる減衰材の肉厚を適切に計測し得る減衰材の肉厚算出方法及びその装置を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a damping material thickness calculation method and apparatus capable of appropriately measuring the thickness of the damping material used in the composite structure. And

本発明の減衰材の肉厚算出方法は、金属材と減衰材を備える複合構造体に対して超音波探触子により前記金属材から超音波を発振し、複合構造体からの反射エコーを用いて減衰材の肉厚を測定する減衰材の肉厚算出方法であって、
超音波探触子から発振する超音波の周波数を、金属材からの多重反射が低減する周波数以下にし、
減衰材の肉厚を測定する際には、超音波による反射エコーの信号をウェーブレット解析して特定周波数成分を抽出し、減衰材の複数の肉厚と特定周波数成分での信号との相関関係を示す相関データを予め準備し、前記相関データから、特定周波数成分での信号を減衰材の肉厚に換算して減衰材の肉厚を算出するものである。
According to the attenuation material thickness calculation method of the present invention, ultrasonic waves are oscillated from the metal material by an ultrasonic probe to a composite structure including the metal material and the attenuation material, and a reflection echo from the composite structure is used. A method for calculating the thickness of the damping material by measuring the thickness of the damping material,
The frequency of the ultrasonic wave oscillated from the ultrasonic probe is made lower than the frequency at which multiple reflection from the metal material is reduced,
When measuring the thickness of the damping material, wavelet analysis is performed on the reflected echo signal from the ultrasonic wave to extract the specific frequency component, and the correlation between the multiple thicknesses of the damping material and the signal at the specific frequency component is calculated. Correlation data to be shown is prepared in advance, and a signal at a specific frequency component is converted from the correlation data into the thickness of the attenuation material to calculate the thickness of the attenuation material.

本発明の減衰材の肉厚算出方法は、金属材と減衰材を備える複合構造体に対して超音波探触子により前記金属材から超音波を発振し、複合構造体からの反射エコーを用いて減衰材の肉厚を測定する減衰材の肉厚算出方法であって、
超音波探触子から発振する超音波の周波数を、金属材からの多重反射が低減する周波数以下にし、且つ超音波探触子から発振する超音波の周波数f(Hz)を
f≦v/8T
v:金属材の材料音速(m/s)
T:金属材の厚さ(m)
の条件にし、
減衰材の肉厚を測定する際には、超音波による反射エコーの信号をウェーブレット解析して特定周波数成分を抽出し、該特定周波数成分での信号に基づいて減衰材の肉厚を算出するものである。
According to the attenuation material thickness calculation method of the present invention, ultrasonic waves are oscillated from the metal material by an ultrasonic probe to a composite structure including the metal material and the attenuation material, and a reflection echo from the composite structure is used. A method for calculating the thickness of the damping material by measuring the thickness of the damping material,
The frequency of the ultrasonic wave oscillated from the ultrasonic probe is set to be equal to or lower than the frequency at which the multiple reflection from the metal material is reduced, and the frequency f (Hz) of the ultrasonic wave oscillated from the ultrasonic probe is reduced.
f ≦ v / 8T
v: Sound velocity of metal material (m / s)
T: Metal material thickness (m)
In the condition of
When measuring the thickness of the attenuation material, wavelet analysis is performed on the reflected echo signal from the ultrasonic wave to extract a specific frequency component, and the thickness of the attenuation material is calculated based on the signal at the specific frequency component. It is.

本発明の減衰材の肉厚算出方法において、時間の経過ごとに減衰材の肉厚を測定して減衰材の減肉を監視することが好ましい。   In the damping material thickness calculation method of the present invention, it is preferable to monitor the thickness reduction of the damping material by measuring the thickness of the damping material over time.

本発明の減衰材の肉厚算出装置は、金属材と減衰材を備える複合構造体に対して前記金属材から超音波を発信する超音波探触子と、該超音波探触子からの信号を処理する信号演算部と、該信号演算部からのデータを処理する肉厚算出部とを備える減衰材の肉厚算出装置であって、
前記超音波探触子は、金属材からの多重反射が低減する周波数以下で超音波を発振し、
前記信号演算部は、減衰材の肉厚を測定する際に、超音波による反射エコーの信号をウェーブレット解析して特定周波数成分を抽出し、
前記肉厚算出部は、減衰材の複数の肉厚と特定周波数成分での信号との相関関係を示す相関データを予め備え、前記相関データから特定周波数成分での信号を減衰材の肉厚に換算して減衰材の肉厚を算出するように構成されたものである。
An attenuation material thickness calculation apparatus according to the present invention includes an ultrasonic probe that transmits ultrasonic waves from a metal material to a composite structure including a metal material and an attenuation material, and a signal from the ultrasonic probe. A damping material thickness calculation device comprising: a signal calculation unit that processes the data; and a thickness calculation unit that processes data from the signal calculation unit,
The ultrasonic probe oscillates an ultrasonic wave at a frequency equal to or lower than a frequency at which multiple reflection from a metal material is reduced,
The signal calculation unit, when measuring the thickness of the attenuation material, wavelet analysis of the reflected echo signal by the ultrasonic wave, to extract a specific frequency component,
The wall thickness calculation unit includes correlation data indicating a correlation between a plurality of wall thicknesses of the attenuation material and a signal at a specific frequency component in advance, and the signal at the specific frequency component is converted from the correlation data to the wall thickness of the attenuation material. The thickness of the damping material is calculated in terms of conversion .

本発明の減衰材の肉厚算出装置は、金属材と減衰材を備える複合構造体に対して前記金属材から超音波を発信する超音波探触子と、該超音波探触子からの信号を処理する信号演算部と、該信号演算部からのデータを処理する肉厚算出部とを備える減衰材の肉厚算出装置であって、
前記超音波探触子は、金属材からの多重反射が低減する周波数以下で超音波を発振し、且つ発振する超音波の周波数f(Hz)を
f≦v/8T
v:金属材の材料音速(m/s)
T:金属材の厚さ(m)
の条件にし、
前記信号演算部は、減衰材の肉厚を測定する際に、超音波による反射エコーの信号をウェーブレット解析して特定周波数成分を抽出し、
前記肉厚算出部は、特定周波数成分での信号に基づいて減衰材の肉厚を算出するように構成されたものである。
An attenuation material thickness calculation apparatus according to the present invention includes an ultrasonic probe that transmits ultrasonic waves from a metal material to a composite structure including a metal material and an attenuation material, and a signal from the ultrasonic probe. A damping material thickness calculation device comprising: a signal calculation unit that processes the data; and a thickness calculation unit that processes data from the signal calculation unit,
The ultrasonic probe oscillates an ultrasonic wave at a frequency equal to or lower than a frequency at which multiple reflection from a metal material is reduced, and sets a frequency f (Hz) of the oscillating ultrasonic wave.
f ≦ v / 8T
v: Sound velocity of metal material (m / s)
T: Metal material thickness (m)
In the condition of
The signal calculation unit, when measuring the thickness of the attenuation material, wavelet analysis of the reflected echo signal by the ultrasonic wave, to extract a specific frequency component,
The wall thickness calculation unit is configured to calculate the wall thickness of the damping material based on a signal with a specific frequency component.

本発明の減衰材の肉厚算出装置において、前記肉厚算出部は、時間の経過ごとに減衰材の肉厚を測定して減衰材の減肉を監視するように構成されることが好ましい。   In the damping material thickness calculation apparatus according to the present invention, it is preferable that the thickness calculation unit is configured to monitor the thickness reduction of the damping material by measuring the thickness of the damping material over time.

本発明の減衰材の肉厚算出方法及びその装置によれば、超音波探触子から発振する超音波の周波数を制御して金属材からの多重反射を低減し、且つ低密度の減衰材よる超音波の減衰を抑制して減衰材の反射エコーを取得し、更に反射エコーの信号をウェーブレット解析して特定周波数成分を抽出するので、複合構造体に用いられる減衰材の肉厚を適切に計測することができる。また超音波の周波数を、金属材からの多重反射が低減する周波数以下にしたことに伴ってSN比が低下する場合でも、ウェーブレット解析して周波数成分の強い特定周波数成分を抽出し得るので、SN比を向上させて減衰材の肉厚を適切に計測することができるという優れた効果を奏し得る。   According to the attenuation thickness calculation method and apparatus of the present invention, the frequency of the ultrasonic wave oscillated from the ultrasonic probe is controlled to reduce multiple reflections from the metal material, and the attenuation material has a low density. Since the reflection echo of the attenuation material is acquired by suppressing the attenuation of the ultrasonic wave, and the specific echo component is extracted by wavelet analysis of the reflected echo signal, the thickness of the attenuation material used in the composite structure is measured appropriately. can do. Further, even when the S / N ratio decreases due to the frequency of the ultrasonic wave being reduced to a frequency that reduces the multiple reflection from the metal material, a specific frequency component having a strong frequency component can be extracted by wavelet analysis. It is possible to obtain an excellent effect that the thickness of the damping material can be appropriately measured by improving the ratio.

本発明の形態例を示すブロック概念図である。It is a block conceptual diagram which shows the example of a form of this invention. 鋼板とゴム板の複合構造体における超音波原信号、ウェーブレット変換結果、特定周波数成分の抽出結果を示すものである。It shows the ultrasonic original signal, the wavelet transform result, and the extraction result of the specific frequency component in the composite structure of the steel plate and the rubber plate. ゴム材の減衰材の肉厚とピーク時刻との相関関係を示す相関データのグラフである。It is a graph of the correlation data which shows the correlation with the thickness of the damping material of a rubber material, and peak time. 減衰材の減肉を監視した場合の実施のデータ出力を示すグラフである。It is a graph which shows the data output of implementation at the time of monitoring the thinning of a damping material. 超音波の周波数の上限値を選定するためのグラフである。It is a graph for selecting the upper limit of the frequency of an ultrasonic wave. 超音波の周波数の上限値を選定するための他のグラフである。It is another graph for selecting the upper limit of the frequency of an ultrasonic wave. 超音波の周波数の下限値を選定するためのグラフである。It is a graph for selecting the lower limit of the frequency of an ultrasonic wave. 超音波の周波数の下限値を選定するための他のグラフである。It is another graph for selecting the lower limit of the frequency of an ultrasonic wave.

以下、本発明の減衰材の肉厚算出方法及びその装置を実施する形態例を図1〜図8を参照して説明する。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a damping material thickness calculation method and apparatus according to the present invention will be described below with reference to FIGS.

実施の形態例の減衰材の肉厚算出方法及びその装置は、金属材1と減衰材2とを積層した複合構造体3に適用するものであり、金属材1は鋼材、アルミ材等の素材で、密度2.0[g/cm]以上22.0[g/cm]以下のもので構成されている。また減衰材2は、ゴム、プラスチック、その他の非金属の素材で、密度が0.1[g/cm]以上3.0[g/cm]以下のもので構成されており、金属材1に比べて低密度で探傷用の超音波の減衰率が高くなっている。 The method and apparatus for calculating the thickness of the damping material according to the embodiment is applied to the composite structure 3 in which the metal material 1 and the damping material 2 are laminated. The metal material 1 is a material such as a steel material or an aluminum material. And a density of 2.0 [g / cm 3 ] or more and 22.0 [g / cm 3 ] or less. The damping material 2 is made of rubber, plastic, or other non-metallic material having a density of 0.1 [g / cm 3 ] or more and 3.0 [g / cm 3 ] or less. Compared to 1, the attenuation rate of the ultrasonic waves for flaw detection is high.

減衰材の肉厚算出装置は、超音波を発振する送信側の超音波探触子4aと、反射エコーを受信する受信側の超音波探触子4bと、送信側の超音波探触子4a及び受信側の超音波探触子4bに接続される超音波送受信器5と、超音波送受信器5に接続される信号採取部6と、信号採取部6に接続されて信号を処理する信号演算部7と、信号演算部7に接続されてデータを処理する肉厚算出部(減肉量算出部)8と、肉厚算出部8に接続されてデータ等の信号を保存する信号保存部9とを備えている。ここで送信側の超音波探触子4aと受信側の超音波探触子4bとは1つの超音波探触子で構成されても良い。また超音波送受信器5は、パルサーレシーバまたはバースト波発生器等で構成されても良い。更に超音波送受信器5、信号採取部6、信号演算部7、肉厚算出部8、信号保存部9は、PC等の処理手段により一体的に構成されても良いし、夫々、別個に構成されても良いし、種々の部分でまとめて構成されても良い。更に減衰材の肉厚算出装置は、各データを表示する表示部を備えても良い。   The attenuation-material thickness calculation apparatus includes a transmitting-side ultrasonic probe 4a that oscillates ultrasonic waves, a receiving-side ultrasonic probe 4b that receives reflected echoes, and a transmitting-side ultrasonic probe 4a. And the ultrasonic transmitter / receiver 5 connected to the ultrasonic probe 4b on the receiving side, the signal sampling unit 6 connected to the ultrasonic transmitter / receiver 5, and the signal calculation connected to the signal sampling unit 6 to process signals A thickness calculating unit (thinning amount calculating unit) 8 connected to the signal calculating unit 7 for processing data, and a signal storing unit 9 connected to the thickness calculating unit 8 for storing signals such as data. And. Here, the ultrasonic probe 4a on the transmission side and the ultrasonic probe 4b on the reception side may be constituted by one ultrasonic probe. The ultrasonic transmitter / receiver 5 may be configured by a pulsar receiver or a burst wave generator. Furthermore, the ultrasonic transmitter / receiver 5, the signal sampling unit 6, the signal calculation unit 7, the thickness calculation unit 8, and the signal storage unit 9 may be integrally configured by a processing unit such as a PC, or may be configured separately. It may also be configured in various parts. Further, the attenuation-material thickness calculation device may include a display unit for displaying each data.

送信側の超音波探触子4a及び受信側の超音波探触子4bは、所定の間隔を配して鋼材等の金属材1の表面に配置されるようになっている。ここで送信側の超音波探触子4aは、発振する超音波の周波数f(Hz)を
f≦(v/8T)
v:金属材の材料音速(m/s)
T:金属材の厚さ(m)
の条件にしており、更に具体的には、発振する超音波の周波数を20kHz以上500kHz以下、好ましくは40kHz以上200kHz以下にしている。また金属材1の材料音速や厚さは上式に従うならば特に制限されるものではないが、金属材1の材料音速は 3000m/sから8000m/sの範囲、厚さは2mmから10mmの範囲が好ましい。また減衰材2の材料音速は1000m/sから3000m/sの範囲、厚さは5mmから100mmの範囲が好ましい。
The ultrasonic probe 4a on the transmission side and the ultrasonic probe 4b on the reception side are arranged on the surface of the metal material 1 such as a steel material at a predetermined interval. Here, the ultrasonic probe 4a on the transmission side sets the frequency f (Hz) of the oscillating ultrasonic wave to f ≦ (v / 8T)
v: Sound velocity of metal material (m / s)
T: Metal material thickness (m)
More specifically, the frequency of the oscillating ultrasonic wave is 20 kHz to 500 kHz, preferably 40 kHz to 200 kHz. Further, the material sound speed and thickness of the metal material 1 are not particularly limited as long as the above equation is followed. A range of 3000 m / s to 8000 m / s and a thickness of 2 mm to 10 mm are preferable. Moreover, the material sound velocity of the damping material 2 is preferably in the range of 1000 m / s to 3000 m / s, and the thickness is preferably in the range of 5 mm to 100 mm.

超音波送受信器5は、受信側の超音波探触子4bにより反射エコーを波形として受信するように構成されており、また信号採取部6は、超音波送受信器5からの波形をデジタル信号に変換するようになっている。   The ultrasonic transmitter / receiver 5 is configured to receive a reflected echo as a waveform by the ultrasonic probe 4b on the receiving side, and the signal sampling unit 6 converts the waveform from the ultrasonic transmitter / receiver 5 into a digital signal. It is supposed to convert.

信号演算部7は、時間周波数解析部と特定周波数抽出部を備え、信号採取部6からの信号に対して信号の抽出、ウェーブレット解析をして特定周波数成分を取得するようになっている。   The signal calculation unit 7 includes a time frequency analysis unit and a specific frequency extraction unit, and acquires a specific frequency component by performing signal extraction and wavelet analysis on the signal from the signal sampling unit 6.

肉厚算出部8は、内部に、減衰材2の複数の肉厚と特定周波数成分での信号との相関関係を示す相関データを予め備え、相関データから特定周波数成分での信号を減衰材2の肉厚に換算するようになっている。また複合構造体3の減衰材2の減肉を観測する場合には、時間の経過ごとに減衰材2の肉厚を測定するようになっている。   The wall thickness calculation unit 8 includes in advance correlation data indicating a correlation between a plurality of wall thicknesses of the attenuation member 2 and a signal at a specific frequency component, and the signal at the specific frequency component is supplied from the correlation data to the attenuation member 2. It is to be converted to the wall thickness. Moreover, when observing the thinning of the damping material 2 of the composite structure 3, the thickness of the damping material 2 is measured every time.

信号保存部9は、肉厚算出部8で用いたデータを全て保管するようになっている。ここで保管するデータは、減衰材2の肉厚、減衰材2の減肉等の所望のデータのみを保管するようにしても良いし、夫々の処理のデータ値を保管するようにしても良い。   The signal storage unit 9 stores all data used in the wall thickness calculation unit 8. As the data stored here, only desired data such as the thickness of the damping material 2 and the thickness reduction of the damping material 2 may be stored, or the data values of the respective processes may be stored. .

以下、本発明の減衰材の肉厚算出方法及びその装置を実施する形態例の作用を説明する。   Hereinafter, the operation of the embodiment for carrying out the damping thickness calculation method and apparatus according to the present invention will be described.

複合構造体3の減衰材2の肉厚を測定する際には、金属材1の表面に送信側の超音波探触子4a及び受信側の超音波探触子4bを配し、送信側の超音波探触子4aから超音波を発振し、受信側の超音波探触子4bにより反射エコーを受信する。   When measuring the thickness of the attenuation member 2 of the composite structure 3, the transmitting-side ultrasonic probe 4a and the receiving-side ultrasonic probe 4b are arranged on the surface of the metal material 1, and the transmitting-side ultrasonic probe 4b is arranged. An ultrasonic wave is oscillated from the ultrasonic probe 4a, and a reflected echo is received by the ultrasonic probe 4b on the receiving side.

次に受信側の超音波探触子4bからの反射エコーを超音波送受信器5により波形として受信し、信号採取部6を介してデジタル信号に変換して信号演算部7に送信する。   Next, the reflected echo from the ultrasonic probe 4 b on the receiving side is received as a waveform by the ultrasonic transmitter / receiver 5, converted into a digital signal via the signal sampling unit 6, and transmitted to the signal calculation unit 7.

続いて信号演算部7では、信号採取部6からの信号に対して信号の抽出、ウェーブレット解析をして特定周波数成分を取得する。ここでウェーブレット解析は、ウェーブレット関数により、広い周波数領域において時間領域の情報を失うことなく、特定周波数成分を求めるものである。   Subsequently, the signal calculation unit 7 performs signal extraction and wavelet analysis on the signal from the signal sampling unit 6 to acquire a specific frequency component. Here, the wavelet analysis is to obtain a specific frequency component by a wavelet function without losing time domain information in a wide frequency domain.

そして肉厚算出部8では、内部に、予め備えられた相関データから特定周波数成分での信号を減衰材2の肉厚に換算して減衰材2の肉厚を算出する。また複合構造体3の減衰材2の減肉を観察する場合には、時間の経過ごとに減衰材2の肉厚を測定して減衰材2の減肉データを観察する。   The thickness calculator 8 calculates the thickness of the damping material 2 by converting the signal at the specific frequency component into the thickness of the damping material 2 from the correlation data prepared in advance. Further, when observing the thinning of the damping material 2 of the composite structure 3, the thickness of the damping material 2 is measured every time and the thinning data of the damping material 2 is observed.

[試験1]
以下、減衰材の肉厚や減肉を測定する具体的な一例を示す。一例では、鋼板とゴム板とからなる複合構造体を用いており、複合構造体は、鋼板の厚さを4mmにすると共にゴム板の厚さを50mm、30mm、15mmの3種類にして複数のものを準備した。また送信側の超音波探触子4aと受信側の超音波探触子4bとにおける励起を周波数110KHz、80V、1サイクルの矩形波とした。
[Test 1]
Hereinafter, a specific example of measuring the thickness and thickness reduction of the damping material will be shown. In one example, a composite structure made of a steel plate and a rubber plate is used, and the composite structure has a thickness of 4 mm and a thickness of three types of rubber plates of 50 mm, 30 mm, and 15 mm. I prepared something. The excitation on the transmitting-side ultrasonic probe 4a and the receiving-side ultrasonic probe 4b was a rectangular wave having a frequency of 110 KHz, 80 V, and one cycle.

その結果として、図2の上段には、ゴム厚50mm、ゴム厚30mm、ゴム厚15mmの夫々の超音波原信号を示す。ここで超音波原信号では、矢印に示す信号が、鋼板を介したゴム板裏面からの反射信号であり、当該反射信号(エコー信号)は、他の部位の信号に比べて波の幅が広く周波数が低いことが明らかである。次に連続ウェーブレット変換(CWT)を行う際には、Gauss関数の4階微分した信号をマザーウェーブレットとして処理し、図2の中段には、横軸に時間、縦軸に周波数、周波数成分の強度を明度(色)で示すウェーブレット変換結果を示す。ここでウェーブレット変換結果では、ゴム板裏面からの反射信号に対応して所定の範囲で強い周波数の成分を持っていることが明らかである。続いてウェーブレット変換結果から特定周波数成分を抽出する際には、強い周波数成分を有する所定の範囲の中から所望の周波数(図2では50kHz)を抽出し、図2の下段には、抽出した特定周波数成分の結果を示す。この結果から超音波原信号と特定周波数成分の矢印部分同士を比較すると、ウェーブレット変換処理をしたものは、超音波原信号に比べてSN比が向上していることが明らかである。   As a result, the upper part of FIG. 2 shows the respective ultrasonic original signals having a rubber thickness of 50 mm, a rubber thickness of 30 mm, and a rubber thickness of 15 mm. Here, in the original ultrasonic signal, the signal indicated by the arrow is a reflected signal from the back surface of the rubber plate via the steel plate, and the reflected signal (echo signal) has a wider wave width than the signals of other parts. It is clear that the frequency is low. Next, when performing continuous wavelet transform (CWT), the fourth-order signal of the Gauss function is processed as a mother wavelet. In the middle of FIG. 2, the horizontal axis represents time, the vertical axis represents frequency, and the intensity of frequency components. Shows the wavelet transform result with the brightness (color). Here, it is clear from the wavelet transform result that there is a strong frequency component in a predetermined range corresponding to the reflection signal from the back surface of the rubber plate. Subsequently, when extracting a specific frequency component from the wavelet transform result, a desired frequency (50 kHz in FIG. 2) is extracted from a predetermined range having a strong frequency component. The result of a frequency component is shown. From this result, when the ultrasonic original signal and the arrow portions of the specific frequency component are compared with each other, it is clear that the signal-to-noise ratio is improved in the wavelet transform processed signal compared with the ultrasonic original signal.

次に図2の特定周波数成分から得られたゴム板の厚さと、ピーク時刻とをプロットすると、図3に示す如くゴム板(減衰材)の複数の肉厚と特定周波数成分での信号との相関関係が直線上に位置する相関データを得ることができる。ここで相関データは、減衰材の厚さとピーク時刻とをプロットするものでなく、減衰材の厚さとピークの立ち上がり時刻とをプロットして作成しても良いし、初期の反射エコーと時間経過後のエコーとの相互相関を演算して時間差を求め、減衰材の厚さと時間差とをプロットして作成しても良い。また図1の肉厚算出部(減肉量算出部)8では、減衰材の肉厚や減肉を測定する前に、減衰材の種々の相関データが予め入力されており、減衰材の変更等に応じて相関データを変更しても良い。   Next, when the thickness of the rubber plate obtained from the specific frequency component of FIG. 2 and the peak time are plotted, as shown in FIG. 3, the thickness of the rubber plate (attenuating material) and the signal at the specific frequency component are plotted. Correlation data in which the correlation is located on a straight line can be obtained. Here, the correlation data is not created by plotting the thickness of the attenuation material and the peak time, but may be created by plotting the thickness of the attenuation material and the rise time of the peak. Alternatively, the time difference may be obtained by calculating the cross-correlation with the echo and the thickness of the damping material and the time difference may be plotted. Further, in the wall thickness calculation unit (thickness reduction calculation unit) 8 in FIG. 1, various correlation data of the damping material are input in advance before measuring the thickness and thickness reduction of the damping material. Correlation data may be changed according to the above.

続いてゴム板等の減衰材の肉厚を計測する際には、超音波原信号をウェーブレット変換して特定周波数成分でのピーク時刻等の信号を取得し、相関データから、特定周波数成分でのピーク時刻等の信号を減衰材の肉厚に換算して減衰材の肉厚を算出する。一方、複合構造体の減衰材に摩耗や焼損等を生じて減衰材の減肉を計測する際には、同様に処理して時間の経過ごとに減衰材の肉厚を測定し、図4に示す如く減衰材の減肉量を監視することが可能となる。   Subsequently, when measuring the thickness of an attenuation material such as a rubber plate, the ultrasonic original signal is wavelet transformed to obtain a signal such as a peak time at a specific frequency component, and from the correlation data, A signal such as a peak time is converted into a thickness of the attenuation material to calculate the thickness of the attenuation material. On the other hand, when measuring the thickness reduction of the damping material due to wear or burnout in the damping material of the composite structure, the thickness of the damping material is measured over time by performing the same processing, and FIG. As shown, it is possible to monitor the amount of thinning of the damping material.

[選定例1]
以下、超音波探触子から発振する周波数を特定し得るように周波数の選定の第一例を示す。超音波信号のサンプリングの周波数をFs(Hz)としたときの信号採取ピッチΔt(s)は
Δt=1/Fs
であり、このときの減肉計測の分解能Δd(m)は、材料音速をv(m/s)として、
Δd=vΔt/2=v/(2Fs)
Fs=v/(2Δd)
となる。信号処理を行う場合のサンプリング周波数は一般に解析したい周波数の10倍以上が望ましいため、
f<v/(20Δdr)
の周波数で計測する必要がある。(Δdr:要求分解能(m))
よって一例としては、f<v/(20Δdr)を基準にサンプリングの周波数を選定することができる。
[Selection example 1]
Hereinafter, a first example of frequency selection is shown so that the frequency oscillated from the ultrasonic probe can be specified. The signal sampling pitch Δt (s) when the sampling frequency of the ultrasonic signal is Fs (Hz) is Δt = 1 / Fs.
The resolution Δd (m) of the thinning measurement at this time is defined as v (m / s) as the sound velocity of the material.
Δd = vΔt / 2 = v / (2Fs)
Fs = v / (2Δd)
It becomes. Since the sampling frequency for signal processing is generally 10 times or more the frequency to be analyzed,
f <v / (20Δdr)
It is necessary to measure at a frequency of. (Δdr: required resolution (m))
Therefore, as an example, the sampling frequency can be selected based on f <v / (20Δdr).

[選定例2]
以下、超音波探触子から発振する周波数の上限値を特定し得るように周波数の選定の第二例を示す。第二例では、鋼板とゴム板とからなる複合構造体を用いており、複合構造体は、鋼板の厚さを4mmにしたものを用いた。また鋼板とゴム板の境界面の音圧反射率を0.87として周波数を変えて計測した。なお本選択例や実施の形態例では、金属材と減衰材の音響インピーダンスのみを考慮しており、減衰材の厚さに依存していない。
その結果、図5に示す如く周波数500kHz以上では、鋼板での多重反射が観測され、減衰材の肉厚計測、減肉の監視に適用することが困難となった。一方、周波数200kHz以下では、鋼板内の超音波の波長を29.6mm以上、波長(λ)/金属材の厚さ(T)を7.4以上にした条件下で、鋼板での多重反射が低減された。このことから周波数の上限値を200kHzにした場合に減衰材の肉厚計測、減肉の監視に適用できることが明らかである。
[Selection example 2]
Hereinafter, a second example of frequency selection is shown so that the upper limit value of the frequency oscillated from the ultrasonic probe can be specified. In the second example, a composite structure made of a steel plate and a rubber plate is used, and the composite structure is a steel plate having a thickness of 4 mm. Further, the sound pressure reflectance at the boundary surface between the steel plate and the rubber plate was set to 0.87, and the frequency was changed and measured. In this selection example and the embodiment, only the acoustic impedance of the metal material and the attenuation material is considered, and it does not depend on the thickness of the attenuation material.
As a result, as shown in FIG. 5, at a frequency of 500 kHz or higher, multiple reflections on the steel sheet were observed, making it difficult to apply to thickness measurement of the damping material and monitoring of thinning. On the other hand, at a frequency of 200 kHz or less, multiple reflection on the steel sheet occurs under the condition that the wavelength of the ultrasonic wave in the steel sheet is 29.6 mm or more and the wavelength (λ) / metal material thickness (T) is 7.4 or more. Reduced. From this, it is clear that when the upper limit value of the frequency is 200 kHz, it can be applied to the measurement of the thickness of the damping material and the monitoring of the thinning.

[選定例3]
以下、超音波探触子から発振する周波数の上限値を特定し得るように周波数の選定の第三例を示す。第三例では、鋼板とゴム板とからなる複合構造体を用いており、複合構造体は、鋼板の厚さを3.7mmにしたものを用いた。また鋼板とゴム板の境界面の音圧反射率を0.87として周波数を変えて計測した。なお同様に本選択例では、金属材と減衰材の音響インピーダンスのみを考慮しており、減衰材の厚さに依存していない。
その結果、図6に示す如く周波数500kHz以上では、第二例と同様に鋼板での多重反射が観測され、減衰材の肉厚計測、減肉の監視に適用することが困難となった。一方、周波数200kHz以下では、鋼板内の超音波の波長を29.6mm以上、波長(λ)/金属材の厚さ(T)を8以上にした条件下で、鋼板での多重反射が低減された。このことから周波数の上限値を200kHzにした場合に減衰材の肉厚計測、減肉の監視に適用できることが明らかである。
[Selection Example 3]
Hereinafter, a third example of frequency selection will be shown so that the upper limit value of the frequency oscillated from the ultrasonic probe can be specified. In the third example, a composite structure composed of a steel plate and a rubber plate is used, and the composite structure having a thickness of 3.7 mm is used. Further, the sound pressure reflectance at the boundary surface between the steel plate and the rubber plate was set to 0.87, and the frequency was changed and measured. Similarly, in this selection example, only the acoustic impedance of the metal material and the attenuation material is considered, and it does not depend on the thickness of the attenuation material.
As a result, at a frequency of 500 kHz or more as shown in FIG. 6, multiple reflections on the steel plate were observed as in the second example, making it difficult to apply to thickness measurement of the damping material and monitoring of thinning. On the other hand, at a frequency of 200 kHz or less, multiple reflection on the steel sheet is reduced under the condition that the wavelength of the ultrasonic wave in the steel sheet is 29.6 mm or more and the wavelength (λ) / metal material thickness (T) is 8 or more. It was. From this, it is clear that when the upper limit value of the frequency is 200 kHz, it can be applied to the measurement of the thickness of the damping material and the monitoring of the thinning.

また200kHzではλ/Tが8となることからλ/Tが8以上となる周波数を選定する必要がある。
λ/T≧8
ここでλは金属材料中での超音波の波長(=音速(v(m/s))/周波数(f(Hz)))、Tは金属材料の厚さ(m)である。
すなわち、
v/(fT)≧8
f≦v/(8T)
の周波数で計測することが好ましい。
Further, since λ / T is 8 at 200 kHz, it is necessary to select a frequency at which λ / T is 8 or more.
λ / T ≧ 8
Here, λ is the wavelength of ultrasonic waves in the metal material (= sound velocity (v (m / s)) / frequency (f (Hz))), and T is the thickness (m) of the metal material.
That is,
v / (fT) ≧ 8
f ≦ v / (8T)
It is preferable to measure at a frequency of.

[選定例4]
以下、発振する周波数の下限値を特定し得るように周波数の選定の第四例を示す。第四例では、周波数200kHzと40kHzにおいて、互いに55μs離れたエコー(材料の音速1800m/sとして約50mmの標準値に相当する)のたたみ込み処理(convolution)を計算する。その結果、周波数200kHzの場合、周波数40kHzの場合には、いずれもピークは55μsの位置に存在する。そして周波数200kHzの場合には、誤差をピークの99%の高さ範囲とすると図7に示す如く±0.1μsの幅となり、0.2%の誤差となる。また周波数40kHzの場合には、誤差をピークの99%の高さ範囲とすると、同様に図8に示す如く±0.5μsの幅となり、0.9%の誤差となる。このことから誤差を2%に抑えるためには、20kHz以上の周波数成分を解析する必要があることが好ましい。
[Selection Example 4]
Hereinafter, a fourth example of frequency selection is shown so that the lower limit value of the oscillating frequency can be specified. In the fourth example, a convolution of echoes (corresponding to a standard value of about 50 mm as the sound speed of the material 1800 m / s) at a frequency of 200 kHz and 40 kHz is calculated. As a result, when the frequency is 200 kHz and the frequency is 40 kHz, the peak exists at the position of 55 μs. In the case of a frequency of 200 kHz, if the error is in the range of 99% of the peak, the width is ± 0.1 μs as shown in FIG. 7, resulting in an error of 0.2%. Further, in the case of a frequency of 40 kHz, if the error is set to a height range of 99% of the peak, the width is similarly ± 0.5 μs as shown in FIG. 8, resulting in an error of 0.9%. Therefore, in order to suppress the error to 2%, it is preferable to analyze a frequency component of 20 kHz or more.

このように、実施の形態例の減衰材の肉厚算出方法及びその装置によれば、送信側の超音波探触子4aから発振する超音波の周波数を制御して金属材1からの多重反射を低減し、且つ低密度の減衰材2よる超音波の減衰を抑制して減衰材2の反射エコーを取得し、更に反射エコーの信号をウェーブレット解析して特定周波数成分を抽出するので、複合構造体3に用いられる減衰材2の肉厚を適切に計測することができる。   As described above, according to the attenuation material thickness calculation method and apparatus of the embodiment, multiple reflections from the metal material 1 by controlling the frequency of the ultrasonic wave oscillated from the ultrasonic probe 4a on the transmission side. In addition, the attenuation of ultrasonic waves by the low-density attenuation material 2 is suppressed, the reflection echo of the attenuation material 2 is acquired, and the signal of the reflection echo is further wavelet analyzed to extract a specific frequency component. The thickness of the damping material 2 used for the body 3 can be appropriately measured.

また超音波の周波数を、金属材1からの多重反射が低減する周波数以下にしたことに伴ってSN比が低下する場合でも、ウェーブレット解析して周波数成分の強い特定周波数成分を抽出し得るので、SN比を向上させて減衰材2の肉厚を一層適切に計測することができる。   In addition, even when the SN ratio is reduced due to the frequency of the ultrasonic wave being reduced to a frequency that reduces multiple reflections from the metal material 1, a specific frequency component having a strong frequency component can be extracted by wavelet analysis. The SN ratio can be improved and the thickness of the damping material 2 can be measured more appropriately.

実施の形態例の減衰材の肉厚算出方法及びその装置において、減衰材2の複数の肉厚と特定周波数成分での信号との相関関係を示す相関データを予め準備し、相関データから、特定周波数成分での信号を減衰材2の肉厚に換算して減衰材2の肉厚を算出するので、特定周波数成の信号から減衰材2の肉厚を好適に計測することができる。   In the damping material thickness calculation method and apparatus according to the embodiment, correlation data indicating a correlation between a plurality of thicknesses of the damping material 2 and a signal at a specific frequency component is prepared in advance and specified from the correlation data. Since the signal of the frequency component is converted into the thickness of the attenuation member 2 and the thickness of the attenuation member 2 is calculated, the thickness of the attenuation member 2 can be suitably measured from the signal of the specific frequency component.

実施の形態例の減衰材の肉厚算出方法及びその装置において、時間の経過ごとに減衰材2の肉厚を測定して減衰材2の減肉を監視するので、減衰材2が摩耗や焼損により減肉する場合には、減衰材2の肉厚のみならず、減衰材2の減肉を適切に監視することができる。また減衰材に固体燃料を用いた場合には、固定燃料の消費を連続的に監視することができる。   In the method and apparatus for calculating the thickness of the damping material according to the embodiment, the thickness of the damping material 2 is measured every time and the thinning of the damping material 2 is monitored. Therefore, not only the thickness of the damping material 2 but also the thickness reduction of the damping material 2 can be monitored appropriately. When solid fuel is used as the damping material, the consumption of fixed fuel can be continuously monitored.

実施の形態例の減衰材の肉厚算出方法及びその装置において、送信側の超音波探触子4aから発振する超音波の周波数f(Hz)を
f≦v/8T
v:金属材の材料音速(m/s)
T:金属材の厚さ(m)
の条件にすると、金属材1での重複反射を抑制して減衰材2の反射エコーを適切に取得するので、減衰材2の肉厚を好適に計測することができる。
In the attenuation member thickness calculation method and apparatus according to the embodiment, the frequency f (Hz) of the ultrasonic wave oscillated from the ultrasonic probe 4a on the transmission side is expressed as f ≦ v / 8T.
v: Sound velocity of metal material (m / s)
T: Metal material thickness (m)
With this condition, the reflection echo of the attenuation material 2 is appropriately acquired while suppressing the double reflection on the metal material 1, so that the thickness of the attenuation material 2 can be measured appropriately.

実施の形態例の減衰材2の肉厚算出方法及びその装置において、受信側の超音波探触子4aから発振する超音波の周波数を20kHz以上500kHz以下にすると、金属材1での重複反射を抑制して減衰材2の反射エコーを適切に取得するので、減衰材2の肉厚を好適に計測することができる。また受信側の超音波探触子4aから発振する超音波の周波数を40kHz以上200kHz以下にすると、減衰材2の反射エコーを一層適切に取得するので、減衰材2の肉厚を極めて好適に計測することができる   In the thickness calculation method and apparatus of the attenuation member 2 of the embodiment, when the frequency of the ultrasonic wave oscillated from the ultrasonic probe 4a on the reception side is set to 20 kHz or more and 500 kHz or less, overlapping reflection on the metal material 1 is caused. Since the reflection echo of the attenuation material 2 is appropriately acquired by suppressing the thickness, the thickness of the attenuation material 2 can be suitably measured. In addition, when the frequency of the ultrasonic wave oscillated from the ultrasonic probe 4a on the receiving side is set to 40 kHz or more and 200 kHz or less, the reflection echo of the attenuation material 2 is acquired more appropriately, so that the thickness of the attenuation material 2 is measured extremely suitably. can do

なお、本発明の減衰材の肉厚算出方法及びその装置は、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   It is needless to say that the damping material thickness calculation method and apparatus according to the present invention can be variously modified without departing from the gist of the present invention.

1 金属材
2 減衰材
3 複合構造体
4a 超音波探触子
4b 超音波探触子
7 信号演算部
8 肉厚算出部(減肉量算出部)
DESCRIPTION OF SYMBOLS 1 Metal material 2 Attenuating material 3 Composite structure 4a Ultrasonic probe 4b Ultrasonic probe 7 Signal calculation part 8 Thickness calculation part (thickness reduction calculation part)

Claims (6)

金属材と減衰材を備える複合構造体に対して超音波探触子により前記金属材から超音波を発振し、複合構造体からの反射エコーを用いて減衰材の肉厚を測定する減衰材の肉厚算出方法であって、
超音波探触子から発振する超音波の周波数を、金属材からの多重反射が低減する周波数以下にし、
減衰材の肉厚を測定する際には、超音波による反射エコーの信号をウェーブレット解析して特定周波数成分を抽出し、減衰材の複数の肉厚と特定周波数成分での信号との相関関係を示す相関データを予め準備し、前記相関データから、特定周波数成分での信号を減衰材の肉厚に換算して減衰材の肉厚を算出することを特徴とする減衰材の肉厚算出方法。
An attenuating material that oscillates ultrasonic waves from the metal material with a ultrasonic probe to a composite structure including a metal material and an attenuation material, and measures the thickness of the attenuation material using a reflection echo from the composite structure. A thickness calculation method,
The frequency of the ultrasonic wave oscillated from the ultrasonic probe is made lower than the frequency at which multiple reflection from the metal material is reduced,
When measuring the thickness of the damping material, wavelet analysis is performed on the reflected echo signal from the ultrasonic wave to extract the specific frequency component, and the correlation between the multiple thicknesses of the damping material and the signal at the specific frequency component is calculated. Correlation data to be shown is prepared in advance, and from the correlation data, a signal at a specific frequency component is converted to the thickness of the attenuation material to calculate the thickness of the attenuation material.
金属材と減衰材を備える複合構造体に対して超音波探触子により前記金属材から超音波を発振し、複合構造体からの反射エコーを用いて減衰材の肉厚を測定する減衰材の肉厚算出方法であって、
超音波探触子から発振する超音波の周波数を、金属材からの多重反射が低減する周波数以下にし、且つ超音波探触子から発振する超音波の周波数f(Hz)を
f≦v/8T
v:金属材の材料音速(m/s)
T:金属材の厚さ(m)
の条件にし、
減衰材の肉厚を測定する際には、超音波による反射エコーの信号をウェーブレット解析して特定周波数成分を抽出し、該特定周波数成分での信号に基づいて減衰材の肉厚を算出することを特徴とする減衰材の肉厚算出方法。
An attenuating material that oscillates ultrasonic waves from the metal material with a ultrasonic probe to a composite structure including a metal material and an attenuation material, and measures the thickness of the attenuation material using a reflection echo from the composite structure. A thickness calculation method,
The frequency of the ultrasonic wave oscillated from the ultrasonic probe is set to be equal to or lower than the frequency at which the multiple reflection from the metal material is reduced, and the frequency f (Hz) of the ultrasonic wave oscillated from the ultrasonic probe is reduced.
f ≦ v / 8T
v: Sound velocity of metal material (m / s)
T: Metal material thickness (m)
In the condition of
When measuring the thickness of the attenuation material, wavelet analysis is performed on the reflected echo signal from the ultrasonic wave to extract a specific frequency component, and the thickness of the attenuation material is calculated based on the signal at the specific frequency component. A method for calculating the thickness of a damping material characterized by the following.
時間の経過ごとに減衰材の肉厚を測定して減衰材の減肉を監視することを特徴とする請求項1又は2に記載の減衰材の肉厚算出方法。   3. The attenuation material thickness calculation method according to claim 1, wherein the thickness of the attenuation material is measured over time to monitor the thickness reduction of the attenuation material. 金属材と減衰材を備える複合構造体に対して前記金属材から超音波を発信する超音波探触子と、該超音波探触子からの信号を処理する信号演算部と、該信号演算部からのデータを処理する肉厚算出部とを備える減衰材の肉厚算出装置であって、
前記超音波探触子は、金属材からの多重反射が低減する周波数以下で超音波を発振し、
前記信号演算部は、減衰材の肉厚を測定する際に、超音波による反射エコーの信号をウェーブレット解析して特定周波数成分を抽出し、
前記肉厚算出部は、減衰材の複数の肉厚と特定周波数成分での信号との相関関係を示す相関データを予め備え、前記相関データから特定周波数成分での信号を減衰材の肉厚に換算して減衰材の肉厚を算出するように構成されたことを特徴とする減衰材の肉厚算出装置。
An ultrasonic probe that transmits ultrasonic waves from the metal material to a composite structure including a metal material and an attenuation material, a signal calculation unit that processes a signal from the ultrasonic probe, and the signal calculation unit A thickness calculating device for a damping material, comprising a thickness calculating unit for processing data from
The ultrasonic probe oscillates an ultrasonic wave at a frequency equal to or lower than a frequency at which multiple reflection from a metal material is reduced,
The signal calculation unit, when measuring the thickness of the attenuation material, wavelet analysis of the reflected echo signal by the ultrasonic wave, to extract a specific frequency component,
The wall thickness calculation unit includes correlation data indicating a correlation between a plurality of wall thicknesses of the attenuation material and a signal at a specific frequency component in advance, and the signal at the specific frequency component is converted from the correlation data to the wall thickness of the attenuation material. A damping material thickness calculating apparatus characterized in that the thickness of the damping material is calculated by conversion .
金属材と減衰材を備える複合構造体に対して前記金属材から超音波を発信する超音波探触子と、該超音波探触子からの信号を処理する信号演算部と、該信号演算部からのデータを処理する肉厚算出部とを備える減衰材の肉厚算出装置であって、
前記超音波探触子は、金属材からの多重反射が低減する周波数以下で超音波を発振し、且つ発振する超音波の周波数f(Hz)を
f≦v/8T
v:金属材の材料音速(m/s)
T:金属材の厚さ(m)
の条件にし、
前記信号演算部は、減衰材の肉厚を測定する際に、超音波による反射エコーの信号をウェーブレット解析して特定周波数成分を抽出し、
前記肉厚算出部は、特定周波数成分での信号に基づいて減衰材の肉厚を算出するように構成されたことを特徴とする減衰材の肉厚算出装置。
An ultrasonic probe that transmits ultrasonic waves from the metal material to a composite structure including a metal material and an attenuation material, a signal calculation unit that processes a signal from the ultrasonic probe, and the signal calculation unit A thickness calculating device for a damping material, comprising a thickness calculating unit for processing data from
The ultrasonic probe oscillates an ultrasonic wave at a frequency equal to or lower than a frequency at which multiple reflection from a metal material is reduced, and sets a frequency f (Hz) of the oscillating ultrasonic wave.
f ≦ v / 8T
v: Sound velocity of metal material (m / s)
T: Metal material thickness (m)
In the condition of
The signal calculation unit, when measuring the thickness of the attenuation material, wavelet analysis of the reflected echo signal by the ultrasonic wave, to extract a specific frequency component,
The thickness calculating unit of the attenuation material is configured to calculate the thickness of the attenuation material based on a signal with a specific frequency component.
前記肉厚算出部は、時間の経過ごとに減衰材の肉厚を測定して減衰材の減肉を監視するように構成されたことを特徴とする請求項4又は5に記載の減衰材の肉厚算出装置。 6. The damping material according to claim 4, wherein the thickness calculation unit is configured to monitor the thickness reduction of the damping material by measuring the thickness of the damping material over time. Thickness calculation device.
JP2010003101A 2010-01-08 2010-01-08 Method and apparatus for calculating thickness of damping material Active JP5507267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010003101A JP5507267B2 (en) 2010-01-08 2010-01-08 Method and apparatus for calculating thickness of damping material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010003101A JP5507267B2 (en) 2010-01-08 2010-01-08 Method and apparatus for calculating thickness of damping material

Publications (2)

Publication Number Publication Date
JP2011141236A JP2011141236A (en) 2011-07-21
JP5507267B2 true JP5507267B2 (en) 2014-05-28

Family

ID=44457179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010003101A Active JP5507267B2 (en) 2010-01-08 2010-01-08 Method and apparatus for calculating thickness of damping material

Country Status (1)

Country Link
JP (1) JP5507267B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5984208B2 (en) * 2012-07-06 2016-09-06 株式会社Ihiエアロスペース Method for measuring the amount of combustion reduction
GB2512835A (en) 2013-04-08 2014-10-15 Permasense Ltd Ultrasonic detection of a change in a surface of a wall
CN106382898A (en) * 2016-08-29 2017-02-08 西安科技大学 Thickness measuring method and system for icing layer outside tunnel lining of cold region
KR101829384B1 (en) * 2017-07-04 2018-02-14 엘아이지넥스원 주식회사 Target Signal Detection Apparatus Using Correlation based Wavelet Signal
KR101817173B1 (en) * 2017-07-04 2018-01-11 엘아이지넥스원 주식회사 Target Signal Detection Method Using Correlation based Wavelet Signal and Recording Medium Storing Computer Program thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228307A (en) * 1985-04-02 1986-10-11 Toa Nenryo Kogyo Kk Apparatus for ultrasonic thickness measurement of material to be inspected with coating
JPS62284283A (en) * 1986-05-31 1987-12-10 Tokyo Keiki Co Ltd Ultrasonic distance measuring instrument
JPH03114452A (en) * 1989-09-29 1991-05-15 Terumo Corp Ultrasonic diagnostic apparatus
JP3019510B2 (en) * 1990-08-17 2000-03-13 日本鋼管株式会社 Method and apparatus for measuring thickness of subject by ultrasonic wave
JPH05188043A (en) * 1992-01-14 1993-07-27 Tokimec Inc Ultrasonic flaw detecting device
JP2697508B2 (en) * 1992-09-03 1998-01-14 日本鋼管株式会社 Ultrasonic thickness measurement method of furnace wall
JP3421412B2 (en) * 1993-12-28 2003-06-30 株式会社東芝 Pipe thinning measurement method and equipment
JPH09264735A (en) * 1996-03-29 1997-10-07 Sumitomo Metal Ind Ltd Method for measurement of thickness of refractory and apparatus therefor
JP3956486B2 (en) * 1998-06-17 2007-08-08 石川島播磨重工業株式会社 Method and apparatus for detecting thermal spray coating peeling on structure surface
JP4161435B2 (en) * 1998-12-03 2008-10-08 株式会社Ihi Thermal spray coating thickness measurement method
JP2000310522A (en) * 1999-04-28 2000-11-07 Tosoh Corp Method for measuring thickness of double-layered metallic body
JP4126817B2 (en) * 1999-08-26 2008-07-30 株式会社Ihi Film thickness measuring method and apparatus
JP2001294918A (en) * 2000-04-13 2001-10-26 Nippon Steel Corp Method for measuring thickness of refractories in furnace
JP4552309B2 (en) * 2000-11-02 2010-09-29 株式会社Ihi Ultrasonic flaw detection method and apparatus
JP3799552B2 (en) * 2002-11-13 2006-07-19 新菱冷熱工業株式会社 Pipe deterioration diagnosis method using ultrasonic waves
US8679019B2 (en) * 2007-12-03 2014-03-25 Bone Index Finland Oy Method for measuring of thicknesses of materials using an ultrasound technique

Also Published As

Publication number Publication date
JP2011141236A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
US9557208B2 (en) Liquid level measuring apparatus, method, and program
US6458084B2 (en) Ultrasonic diagnosis apparatus
EP3153884B1 (en) Detection apparatus, fish finder, and radar
US8864671B2 (en) Methods and systems for color flow imaging
JP5507267B2 (en) Method and apparatus for calculating thickness of damping material
Zedel et al. Resolving velocity ambiguity in multifrequency, pulse-to-pulse coherent Doppler sonar
AU2008297648B2 (en) Acoustic thickness measurements using gas as a coupling medium
KR101922522B1 (en) Sound speed imaging using shear waves
EP3086137B1 (en) Underwater detection apparatus
US8884793B2 (en) Method for reducing ultrasound data
CN104897779B (en) Utilize the method for linear FM signal Measuring Propagation Time of Ultrasonic Wave
AU2007241636B2 (en) Acoustic method and apparatus for detection and characterization of a medium
JP2019070627A (en) Nondestructive inspection system
JP2007064904A (en) Thickness measuring method by ultrasonic wave, and instrument therefor
JP6361062B2 (en) Bubble detection device
JP5940350B2 (en) Vibration measuring apparatus and vibration measuring method
JP2011047763A (en) Ultrasonic diagnostic device
JP2005043164A (en) Apparatus for measuring propagation time of sound wave
JP5600980B2 (en) Ultrasonic measurement method and ultrasonic measurement apparatus
JP2009014345A (en) Non-destructive diagnosing method of structure
JP4405821B2 (en) Ultrasonic signal detection method and apparatus
JP2007309794A (en) Apparatus and method for measuring plate thickness
JPH08233788A (en) Ultrasonic test equipment and test method
JP5708018B2 (en) Active sonar device
JP2010038710A (en) Method and device for calculating thickness with ultrasonic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140319

R150 Certificate of patent or registration of utility model

Ref document number: 5507267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250