JP5505830B2 - Method for controlling powdery mildew control using light rays - Google Patents

Method for controlling powdery mildew control using light rays Download PDF

Info

Publication number
JP5505830B2
JP5505830B2 JP2009165105A JP2009165105A JP5505830B2 JP 5505830 B2 JP5505830 B2 JP 5505830B2 JP 2009165105 A JP2009165105 A JP 2009165105A JP 2009165105 A JP2009165105 A JP 2009165105A JP 5505830 B2 JP5505830 B2 JP 5505830B2
Authority
JP
Japan
Prior art keywords
green
blue
light
strawberry plant
fluorescent lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009165105A
Other languages
Japanese (ja)
Other versions
JP2011000115A (en
JP2011000115A5 (en
Inventor
信之 高橋
Original Assignee
信之 高橋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信之 高橋 filed Critical 信之 高橋
Priority to JP2009165105A priority Critical patent/JP5505830B2/en
Publication of JP2011000115A publication Critical patent/JP2011000115A/en
Publication of JP2011000115A5 publication Critical patent/JP2011000115A5/ja
Application granted granted Critical
Publication of JP5505830B2 publication Critical patent/JP5505830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)

Description

本発明は、育成植物が夜間の呼吸作用の時間帯に青色、緑色光を与え育成植物の体内栄養濃度をつかさどるタンパク質を育成いちご植物,食用植物の体内に増加させて、うどんこ病を制御方法に関する。The present invention relates to a method for controlling powdery mildew by increasing the protein in the growing strawberry plant and the edible plant by giving the growing plant a protein that gives blue and green light during nighttime respiratory action and controls the body nutrient concentration of the growing plant. About.

従来、植物のうどんこ病対策として、育成期間中に肥培管理による窒素コントロール処理を行ないながら、農薬の防除をおこなってきた、しかし農薬中心の防除のみに頼る防除技術であった。Conventionally, as a countermeasure against powdery mildew of plants, it has been pesticide control while performing nitrogen control treatment by fertilizer management during the growing period, but it is a control technique that relies only on pesticide control.

特許公開2009−261311号  Patent Publication No. 2009-26111

課題を解決しようとする課題The challenge to solve the problem

従来、植物の育成期間中における、うどんこ病の防除方法は、大半の生産者は農薬防除に頼っていた、又天候不順が、続くと次から次へと、うどんこ病が発生し、繰り返し、農薬防除のために、植物の生育時の成長を阻害する事が多くなり苦慮している。Traditionally, the method of controlling powdery mildew during plant growth is that most producers have relied on pesticide control, and if bad weather continues, powdery mildew has occurred repeatedly from one to the next. In order to control pesticides, it has been difficult to prevent the growth of plants during growth.

又一部の生産者は太陽光に近い紫外線を利用しうどんこ病の菌を滅菌する方法を利用している、しかしうどんこ病害菌を滅菌するための強い紫外線の照射は、人体には直接照射するなどすると体、特に皮膚に害をもたらすことが医学的に解明されているのは、周知の事実であることに苦慮している。Some producers use a method of sterilizing powdery mildew fungus using ultraviolet rays close to sunlight, but strong UV irradiation to sterilize powdery mildew disease is directly applied to the human body. It is difficult to know that it is well known that it has been medically elucidated to cause harm to the body, especially the skin, when irradiated.

課題を解決するための手段Means for solving the problem

天候不順時期にも影響されずに緑色、青色の単独光線や、青色、緑色の複合させた光線を夜間に照射し、育成いちご植物、食用植物体内の栄養濃度である、タンパク質濃度を増加させ、うどんこ病を制御することを特徴とする。Irradiate green and blue single rays or blue and green combined rays at night without being affected by bad weather, increasing the protein concentration, which is the nutrient concentration in the growing strawberry plants and edible plants, It is characterized by controlling powdery mildew.

発明の効果Effect of the invention

収穫期や、育苗中の植物の同化作用、呼吸作用に無理することなく、育成植物の体内の栄養濃度をつかさどるタンパク質を増加制御出来る。The protein that controls the nutrient concentration in the body of the growing plant can be increased and controlled without being forced into the harvest period, assimilation and respiration of the plant being raised.

本発明によれば、緑色、青色の単独光線、青と緑色複合色光線利用処理することにより、無理なく且つ、自然な方法で天候に左右されることなく、タンパク質を増加させることにより、うどんこ病を抑制軽減でき、生産者にとって、多大の利益となる。According to the present invention, by using green, blue single light, blue and green composite light ray treatment, it is possible to increase the protein without increasing the protein in a natural and natural manner. The disease can be suppressed and reduced, which is a great benefit for producers.

は、緑色蛍光灯2の上面に青色蛍光灯1を設置しいちご植物苗13に緑色と青色光線とを照射する模式図。FIG. 3 is a schematic diagram in which the blue fluorescent lamp 1 is installed on the upper surface of the green fluorescent lamp 2 and the strawberry plant seedling 13 is irradiated with green and blue rays. は、緑色蛍光灯2の上面に青色蛍光灯1を設置しいちご植物苗13に緑色と青色光線とを照射する模式図。FIG. 3 is a schematic diagram in which the blue fluorescent lamp 1 is installed on the upper surface of the green fluorescent lamp 2 and the strawberry plant seedling 13 is irradiated with green and blue rays. は、青色蛍光灯1緑色蛍光灯2を一平面上に並べ設置し、いちご植物苗13に緑色と青色光線とを照射する模式図。FIG. 2 is a schematic diagram in which blue fluorescent lamps 1 and green fluorescent lamps 2 are arranged side by side on one plane, and strawberry plant seedlings 13 are irradiated with green and blue light rays. は、青色蛍光灯1をいちご植物苗の上面に設置し、青色光線を照射する模式図。Fig. 2 is a schematic diagram in which a blue fluorescent lamp 1 is installed on the upper surface of a strawberry plant seedling and irradiated with blue light. は、緑色蛍光灯2をいちご植物苗13上面に設置し、緑色光線を照射する模式図。FIG. 2 is a schematic diagram in which a green fluorescent lamp 2 is installed on the top surface of a strawberry plant seedling 13 and irradiated with green light. は、緑色LED4の上面に青色LED3を設置しいちご植物苗15に緑色と青色光線とを照射する模式図。FIG. 3 is a schematic diagram in which a blue LED 3 is installed on the upper surface of the green LED 4 and the strawberry plant seedling 15 is irradiated with green and blue light. は、青色LED3の上面に緑色LED4を設置しいちご植物苗15に緑色と青色光線とを照射する模式図。FIG. 2 is a schematic diagram in which a green LED 4 is installed on the upper surface of the blue LED 3 and the strawberry plant seedling 15 is irradiated with green and blue light. は、青色LED3と緑色LED4を一平面上に並べ設置し、いちご植物苗15に緑色と青色光線とを照射する模式図。FIG. 2 is a schematic view in which blue LEDs 3 and green LEDs 4 are arranged side by side on one plane and the strawberry plant seedling 15 is irradiated with green and blue light rays. は、青色LED3をいちご植物苗15の上面に設置し、青色光線を照射する模式図。FIG. 2 is a schematic diagram in which a blue LED 3 is installed on the upper surface of the strawberry plant seedling 15 and irradiated with blue light. は、緑色LED4をいちご植物苗15上面に設置し、緑色光線を照射する模式図。FIG. 2 is a schematic diagram in which a green LED 4 is installed on the upper surface of the strawberry plant seedling 15 and irradiated with green light. は、パイプハウスの内部両脇に平行に設置した緑色蛍光灯7と中央部に設置した青色の蛍光灯8の配置の立面図。These are the elevation views of arrangement | positioning of the green fluorescent lamp 7 installed in parallel with the both sides inside a pipe house, and the blue fluorescent lamp 8 installed in the center part. は、パイプハウスの内部両脇に平行に設置した緑色蛍光灯7と中央部に設置した青色の蛍光灯8の配置の平面図。These are the top views of arrangement | positioning of the green fluorescent lamp 7 installed in parallel with the both sides inside a pipe house, and the blue fluorescent lamp 8 installed in the center part.

本発明の実施形態を、タンパク質の定量法としては、精度の高い方法として燃焼後に窒素量を測定するデルマ法と、硫酸分解後にアンモニア量を測定するケルダール法等があります。当発明の基準になった測定法は、後者の方法でいちごの葉柄、葉体をHACH社製ダイジェスタール23130−20型で強酸の硫酸にて440度Cにて煮沸させながら強酸化剤過酸化水素水を点滴し、2段階分解後にサンプルを取り出し、HACH社製分光光度計3000Rにてアンモニア量を測定するゲルタール法に基ずくものであり,精度の高いタンパク質の定量法にて測定を行なっています。  In the embodiment of the present invention, protein quantification methods include a derma method for measuring the amount of nitrogen after combustion and a Kjeldahl method for measuring the amount of ammonia after sulfuric acid decomposition as a highly accurate method. The measurement method used as the standard of the present invention is the strong oxidizing agent peroxidation while boiling the strawberry petiole and leaf body with HACH's Digestal 23130-20 in strong acid sulfuric acid at 440 ° C. It is based on the gel tar method, which measures the amount of ammonia with HACH spectrophotometer 3000R, and is measured by a highly accurate protein quantification method. The

いちご植物の育成中の葉柄、葉体内のケルダール窒素の量すなわち、タンパク質の量が、無照射、緑色のみの光線の照射、青色のみの光線の照射、緑色の光線と青色の光線の組み合わせによる光線の照射等の組み合わせの違いにより、いちご植物の体内にタンパク質の増加する効果が、育成中のいちご植物に発生するうどんこ病発生の多い、少いの違いの比較を調べた。The amount of Kjeldahl nitrogen in the growth of strawberry plants, the amount of Kjeldahl in the leaf body, that is, the amount of protein is no irradiation, irradiation of only green light, irradiation of only blue light, light by combination of green light and blue light The effect of increasing the protein in the strawberry plant due to the difference in the combination of irradiation, etc. was compared with the small difference in the occurrence of powdery mildew in the growing strawberry plant.

下記別表1は、緑色蛍光灯の緑色光線のみの光線をいちご植物のサンプル苗50本に照射をし、測定したデータを別表1に表示。Attached Table 1 below shows the data obtained by irradiating 50 sample seedlings of strawberry plants with only the green light from the green fluorescent lamp, and shows the measured data in Attached Table 1.

青色蛍光灯の青色光線のみ光線をいちご植物のサンプル苗50本に照射をし、測定したデータを別表1に表示。50 samples of strawberry plants are irradiated with only blue light from a blue fluorescent lamp, and the measured data are displayed in Appendix 1.

緑色蛍光灯の上面に青色蛍光灯設置し、緑色蛍光灯の緑色光線と青色蛍光灯の青色光線とを、同時に育成いちご植物のサンプル苗50本に照射をし、測定したデータを別表1に表示。A blue fluorescent lamp is installed on the upper surface of the green fluorescent lamp, and the green light of the green fluorescent lamp and the blue light of the blue fluorescent lamp are simultaneously irradiated to 50 sample seedlings of the cultivated strawberry plant, and the measured data is displayed in Table 1. .

青色蛍光灯の上面に緑色蛍光灯を設置し、青色蛍光灯の青色光線と緑色蛍光灯の緑色光線とを、同時に育成いちご植物のサンプル苗50本に照射をし、測定したデータを別表1に表示。A green fluorescent lamp is installed on the upper surface of the blue fluorescent lamp, and the blue ray of the blue fluorescent lamp and the green ray of the green fluorescent lamp are simultaneously irradiated to 50 sample seedlings of the cultivated strawberry plant. display.

蛍光灯無しは、光線照射なしにて、いちご植物サンプル苗50本を用意し、測定したデータを別表1に表示。Without fluorescent light, 50 strawberry plant sample seedlings were prepared without light irradiation, and the measured data is shown in Appendix 1.

いちご植物50本当たりの、緑色蛍光灯の緑色光線のみを照射、青色蛍光灯の青色光線のみの照射、緑色蛍光灯の緑色光線、青色蛍光灯の青色光線の組み合わせ別による、育成いちご植物に照射の違いよる、ケルダール窒素量と、うどんこ病発生数の比較を別表1にて表示した。尚、ケルダール窒素量は、各サンプル50本の平均値を別表1にて表示した。Irradiate the growing strawberry plants by irradiating only green light from green fluorescent light, only blue light from blue fluorescent light, green light from green fluorescent light, blue light from blue fluorescent light per 50 strawberry plants Table 1 shows the comparison between the Kjeldahl nitrogen amount and the number of powdery mildew occurrences, depending on the difference. As for Kjeldahl nitrogen amount, an average value of 50 samples is shown in Table 1.

別表2には、緑色LEDの緑色光線のみの光線を、いちご植物のサンプル苗50本に照射をし、測定したデータを別表2に表示。Attached Table 2 displays the measured data by irradiating 50 sample seedlings of strawberry plants with only the green light from the green LED.

青色LEDの青色光線のみ光線をいちご植物のサンプル苗50本に照射をし、測定したデータを別表2に表示。Only the blue light from the blue LED is irradiated to 50 sample seedlings of strawberry plants, and the measured data is displayed in Appendix 2.

緑色LEDの緑色光線の上面に青色LED設置し、青色光線と緑色光線とを、同時に光線をいちご植物のサンプル苗50本に照射をし、測定したデータを別表2に表示。A blue LED is placed on the upper surface of the green light of the green LED, and the blue and green rays are simultaneously irradiated to 50 sample seedlings of strawberry plants, and the measured data is displayed in Appendix 2.

青色LEDの青色光線の上面に緑色LEDを設置し、緑色光線と青色光線とを、同時に、いちご植物のサンプル苗50本に照射をし、測定したデータを別表2に表示。A green LED is installed on the upper surface of the blue light of the blue LED, and the green light and blue light are simultaneously irradiated to 50 sample seedlings of strawberry plants, and the measured data is displayed in Appendix 2.

LED無しは、光線照射なしにて、いちご植物サンプル苗50本を用意し、測定したデータを別表2に表示。Without LED, 50 strawberry plant sample seedlings are prepared without light irradiation, and the measured data is displayed in Appendix 2.

育成いちご植物50本当たりの、緑色LEDの緑色光線、青色LEDの青色光線の組み合わせ別に、育成いちご植物に照射し、ケルダール窒素量違いと、うどんこ病発生数の発生の違いの比較を別表2にて表示した。尚、ケルダール窒素量は、各サンプル50本の平均値を別表2にて表示した。Table 2 compares the difference in the amount of Kjeldahl nitrogen and the occurrence of powdery mildew by irradiating the grown strawberry plants according to the combination of green light from green LED and blue light from blue LED per 50 grown strawberry plants. Is displayed. The Kjeldahl nitrogen amount is shown in Table 2 as an average value of 50 samples.

別表3は、いちご生産農家の育苗パイプハウス内の実施に基ずき、緑色、青色蛍光灯を育苗ハウス内にて、苗より1mの高さに設置し、日没から日の出前までの30日間による照射の効果が、ケルダール窒素の量すなわちタンパク質の多い、少ないが本圃に定植後の当該いちご植物苗の、うどんこ病発生数を比較を別表3に表示した。Attached Table 3 is based on the implementation of the strawberry-producing farmer's nursery pipe house, and green and blue fluorescent lamps are installed 1m above the seedling in the nursery house, and it takes 30 days from sunset to sunrise. Table 3 shows a comparison of the number of powdery mildew occurrences of the strawberry plant seedlings after planting in the main field, although the effect of irradiation is Keldar nitrogen, that is, protein is high but low.

以上、前記説明した上記「[0012]」、「[0013]」、「[0014]」、「[0015]」、「[0016]」、「[0017]」、「[0018]」、「[0019]」、「[0020]」、「[0021]」、「[0022]」、「[0023]」、「[0024]」、項目を図面及び実施例、表1、表2、表3に基ずき詳細に説明する。The above-described “[0012]”, “[0013]”, “[0014]”, “[0015]”, “[0016]”, “[0017]”, “[0018]”, “[ [0019] "," [0020] "," [0021] "," [0022] "," [0023] "," [0024] ", items in drawings and examples, Table 1, Table 2, Table 3. This will be described in detail.

図5は、ビニールハウス内にて、育成中のいちご植物苗13に、1m高さの位置に日没後から日の出までの夜間に緑色の蛍光灯20W、2の緑色光線を照射した模式図である。
連続30日夜間いちご植物苗に照射した後に、測定したケルダール窒素量の測定値147ppmを別表1に表示した。
FIG. 5 is a schematic diagram in which a green fluorescent lamp 20W and 2 green light rays are irradiated on a growing strawberry plant seedling 13 at a position 1 m high at night from sunset to sunrise in a greenhouse. .
After irradiating the strawberry plant seedlings for 30 days at night, the measured value of 147 ppm of Kjeldahl nitrogen amount is displayed in Table 1.

図4は、ビニールハウス内にて、育成中の植物いちごの苗13に1m高さの位置に日没後から日の出までの夜間いちご植物苗に青色蛍光灯20W、1の青色光線を照射した模式図である。
連続30日夜間照射した後に、測定したケルダール窒素量の測定値を135ppmを別表1に表示した。
FIG. 4 is a schematic diagram in which a blue florescent light 20W and 1 blue light are irradiated on a nightly strawberry plant seedling from sunset to sunrise at a position of 1 m height on a growing plant strawberry seedling 13 in a greenhouse. It is.
Table 30 shows the measured value of the Kjeldahl nitrogen amount after irradiation for 30 consecutive days at night.

図1は、ビニールハウス内にて、育成中のいちご植物苗13に、1m高さの位置に日没後から日の出までの夜間に緑色の蛍光灯20W、2の緑色光線を照射し、当該緑色蛍光灯の上面部より0.5mの高さより青色蛍光灯20W、1を設置し、上部の青色光線と下部の緑色光線を同時に照射した模式図である。
連続30日夜間いちご植物苗13を照射した後に、測定したケルダール窒素量の測定値159ppmを別表1に表示した。
FIG. 1 shows a green fluorescent lamp 20W and green light from a green fluorescent lamp 20W irradiated at a night from the time of sunset to the sunrise at a position of 1m height on a growing strawberry plant seedling 13 in a greenhouse. It is the schematic diagram which installed the blue fluorescent lamp 20W and 1 from the height of 0.5 m from the upper surface part of the lamp | ramp, and irradiated the blue light of the upper part and the green light of the lower part simultaneously.
After irradiating the strawberry plant seedling 13 at night for 30 consecutive days, the measured value 159 ppm of the Kjeldahl nitrogen amount is displayed in Table 1.

図2は、ビニールハウス内にて、育成中のいちご植物苗13に1m高さの位置に日没後から日の出までの夜間に青色蛍光灯20W、1の青色光を照射し、当該青色蛍光灯の上面部より0.5mの高さより緑色蛍光灯20W、2を設置し、上部の緑色光線と下部の青色光線を同時に照射した模式図である。
連続30日間夜間いちご植物苗13を照射した後に、測定したケルダール窒素量の測定値を140ppmを別表1に表示した。
FIG. 2 shows that a blue fluorescent lamp 20W and 1 blue light are irradiated on a growing strawberry plant seedling 13 at a height of 1 m at night from sunset to sunrise in a greenhouse. It is the schematic diagram which installed the green fluorescent lamp 20W and 2 from the height of 0.5 m from the upper surface part, and irradiated the green light of the upper part and the blue light of the lower part simultaneously.
After irradiating the strawberry plant seedling 13 at night for 30 consecutive days, the measured value of the measured Kjeldahl nitrogen amount is displayed in Appendix 1 as 140 ppm.

図3は、ビニールハウス内にて、育成中のいちご植物苗13に1m高さの位置に日没後から日の出までの夜間に緑色蛍光灯20W、2と青色蛍光灯20W、1とを一平面状に並べ緑色光線と青色光線を照射した模式図である。
連続30日夜間いちご植物苗13を照射した後に、測定したケルダール窒素量の測定値175ppmを別表1に表示した。
FIG. 3 is a plan view of green fluorescent lamps 20W, 2 and blue fluorescent lamps 20W, 1 at night from sunset to sunrise at a height of 1 m on a growing strawberry plant seedling 13 in a greenhouse. It is the schematic diagram which lined up and irradiated the green light and the blue light.
After irradiating the strawberry plant seedling 13 at night for 30 consecutive days, the measured value 175 ppm of the Kjeldahl nitrogen amount is displayed in Table 1.

育成植物いちご植物苗13の、育成中のビニールハウス内にて、蛍光灯による光線を照射せずに30日後に、測定したケルダール窒素量の測定値81ppmを別表1に表示した。The measured value 81 ppm of the Kjeldahl nitrogen amount after 30 days without irradiating with a fluorescent light in the growing greenhouse of the cultivated strawberry plant seedling 13 is shown in Table 1.

次に、蛍光灯光線照射無しの条件にて測定したケルダール窒素81ppmと比較すると、緑色のみの光線照射によるケルダール窒素量147ppm、次に当該緑色蛍光灯の上面部に青色蛍光灯を設置し、上部の青色光線と下部の緑色光線を同時照射したケルダール窒素量159ppm、当該青色蛍光灯の上面部より緑色蛍光灯を設置し、上部の緑色光線と下部の青色光線を同時照射した後ケルダール窒素量140ppm、緑色蛍光灯と青色蛍光灯とを一平面状に並べ緑色光線と青色光線を同時照射した後ケルダール窒素量175ppm表示した。緑色蛍光灯の緑色光線の照射と同時に緑色蛍光灯の上面又は、同一平面状に青色蛍光灯の青色光線を同時に、照射すると、緑色光線効果に、青色光線を含ませる事により、より多くケルダール窒素量、すなわちタンパク質が増加する事ことの証明が立証された。Next, when compared with 81 ppm of Kjeldahl nitrogen measured with no fluorescent lamp light irradiation, the amount of Kjeldahl nitrogen by light irradiation of only green is 147 ppm, then a blue fluorescent lamp is installed on the upper surface of the green fluorescent lamp, The Kjeldahl nitrogen amount 159 ppm irradiated simultaneously with the blue light beam and the lower green light beam, the green fluorescent lamp was installed from the upper surface of the blue fluorescent lamp, and the Keldar nitrogen amount 140 ppm after simultaneously irradiating the upper green light beam and the lower blue light beam The green fluorescent lamp and the blue fluorescent lamp were arranged in one plane and irradiated with green light and blue light at the same time, and the Kjeldahl nitrogen content was displayed at 175 ppm. Simultaneously irradiating the green fluorescent lamp with the blue light simultaneously with the blue fluorescent light on the upper surface of the green fluorescent lamp or in the same plane, the blue light is included in the green light effect, thereby increasing more Kjeldahl nitrogen. A proof that the amount, ie protein, is increased was established.

図10は、ビニールハウス内にて、育成中のいちご植物苗15に、1m高さの位置に日没後から日の出までの夜間に緑色のLED4にて緑色光線を照射した模式図である。
連続して30日間いちご植物苗15に夜間照射後に測定したケルダール窒素量の測定値108ppmを別表2に表示した。
FIG. 10 is a schematic view in which the strawberry plant seedling 15 that is being grown in the greenhouse is irradiated with green light from the green LED 4 at night from sunset to sunrise at a height of 1 m.
The measured value 108 ppm of Kjeldahl nitrogen measured after irradiating the strawberry plant seedling 15 for 30 days continuously at night is shown in Table 2.

図9は、ビニールハウス内にて、育成中のいちご植物苗15に、1m高さの位置に日没後から日の出までの夜間青色LED3の青色光線を照射した模式図である。
連続して30日間いちご植物苗15に夜間照射後に測定したケルダール窒素量の測定値98ppmを別表2に表示した。
FIG. 9 is a schematic view in which the strawberry plant seedlings 15 that are being grown are irradiated with blue light from the nighttime blue LED 3 from sunset to sunrise at a position 1 m high in the greenhouse.
The measured value 98 ppm of Kjeldahl nitrogen amount measured after 30 night irradiation on the strawberry plant seedling 15 for 30 days continuously is shown in Table 2.

図6は、ビニールハウス内にて、育成中のいちご植物苗15に1m高さの位置に日没後から日の出までの夜間緑色LED4の緑色光線を照射し、緑色LED4上面部より0.1mの高さから、青色LED3にて青色光を同時照射した模式図である。
連続して30日間いちご植物苗15に夜間照射後に測定したケルダール窒素量の測定値112ppmを別表2に表示した。
FIG. 6 shows that the green strawberry plant seedling 15 in the greenhouse is irradiated with green light of the green LED 4 at night from sunset to sunrise at a height of 1 m, and is 0.1 m higher than the upper surface of the green LED 4. It is a schematic diagram in which blue light is simultaneously irradiated by the blue LED 3.
The measured value 112 ppm of Kjeldahl nitrogen measured after 30 days of irradiating the strawberry plant seedling 15 for 30 days continuously is shown in Table 2.

図7は、ビニールハウス内にて、育成中いちご植物苗15に1m高さの位置に日没後から日の出までの夜間に、青色LED1の青色光を照射し、当該青色光線の青色LEDの上面部より0,1m高さより、緑色LED4にて緑色光を同時照射した模式図である。
連続して30日いちご植物苗15に夜間照射後に測定したケルダール窒素量の測定値109ppmを別表2に表示した。
FIG. 7 shows that the blue LED 1 is irradiated with blue light at night from sunset to sunrise at a position of 1 m height on the growing strawberry plant seedling 15 in the greenhouse, and the upper surface of the blue LED of the blue light It is the schematic diagram which irradiated green light simultaneously with the green LED 4 from 0,1m height.
The measured value of 109 ppm of Kjeldahl nitrogen measured after 30 night irradiation of the strawberry plant seedling 15 for 30 days is shown in Table 2.

図8は、ビニールハウス内にて、育成中のいちご植物苗15に1m高さの位置に日没後から日の出までの夜間に、緑色LEDと青色LEDとを、一平面状に並べ緑色光線と青色光線との光線を複合させて同時照射した模式図である。
連続して30日いちご植物苗15に夜間照射後に測定したケルダール窒素量の測定値125ppmを別表2に表示した。
FIG. 8 shows that green LEDs and blue LEDs are arranged in a single plane at a position 1 m high at a strawberry plant seedling 15 being grown in a greenhouse at night from sunset to sunrise. It is the schematic diagram which combined the light ray and the light and irradiated simultaneously.
The measured value of 125 ppm of Kjeldahl nitrogen measured after 30 night irradiation on the strawberry plant seedling 15 for 30 days is shown in Table 2.

ビニールハウス内にて、LEDによる育成中の植物いちご植物苗15に青色、緑色LEDによる光線を照射せずに、30日後ケルダール窒素量を測定値81ppmを別表2に表示した。In a greenhouse, the strawberry plant seedlings 15 that are being nurtured by LEDs were not irradiated with light rays by blue and green LEDs, and after 30 days, the measured value of Kjeldahl nitrogen was 81 ppm.

日没後から日の出までの夜間に、緑色、青色LEDの光線照射無しの条件にて30日後ケルダール窒素量を測定81ppmを表示した、ケルダール窒素量との比較をすると、緑色LED4の緑色光線をいちご植物苗に照射し、30日後ケルダール窒素量108ppm、次に緑色LED4の緑色光線の上面部から青色LED3の青色光線を同時にいちご植物苗に照射し、30日後ケルダール窒素量112ppm、緑色LED光線と青色LED光線を一平面状に設置し、緑色光線と青色光線を同時にいちご植物苗に照射し、30日後ケルダール窒素量125ppmを表示した。  Measurement of Kjeldahl nitrogen amount after 30 days under the condition of no light irradiation of green and blue LEDs from sunset to sunrise. Compared with Kjeldahl nitrogen amount, which displays 81 ppm, green light of green LED4 is a strawberry plant Irradiate the seedlings, 30 days later, Kjeldahl nitrogen amount 108 ppm, and then irradiate the strawberry plant seedlings simultaneously with the blue LED3 blue light from the upper surface of the green LED4, and 30 days later, Kjeldahl nitrogen amount 112 ppm, green LED light and blue LED A light beam was installed on a flat surface, and a strawberry plant seedling was irradiated with green light and blue light simultaneously, and after 30 days, a Kjeldahl nitrogen content of 125 ppm was displayed.

又、LED緑色光線効果が植物いちご植物苗にとってビニールハウス内にて、育成中の当該いちご植物苗に1m高さの位置に日没後から日の出までの夜間にLED緑色光線の照射により、ケルダール窒素量が増加した。尚、緑色LED効果に青色LED光線を含ませると、より多くのケルダール窒素量が増加する事が証明された。In addition, the LED green light effect is applied to the plant strawberry plant seedlings in the greenhouse, and the strawberry plant seedling being grown is irradiated with LED green light at night from sunset to sunrise at a position 1m high. increased. In addition, when blue LED light was included in the green LED effect, it was proved that more Kjeldahl nitrogen amount increased.

上記記載の蛍光灯の光量と、LEDの光量との光量差がケルダール窒素量の比較による差が別表1、別表2、にて表示の如くケルダール窒素量の差すなわち、いちご植物の体内のタンパク質量が、うどんこ病の発生の多い少ないの差として表示された。しかし「[0032]」、「[0040]」項にての考察にても明らかな如く、「[0026]」「[0027]」「[0028]」「[0029]」「[0030]」項にて表示の如く、緑色蛍光灯の緑色光線、青色蛍光灯の青色光線により、育成いちご植物に照射よるケルダール窒素量の増加と、「[0033]」「[0034]」「[0035]」「[0036]」「[0037]」項にて表示の如く、緑色LEDの緑色光線、青色LEDの青色光線にても、優れた効果が出た。
育成いちご植物に当該緑色蛍光灯、青色蛍光灯、緑色LED,青色LEDによる光線の照射より、ケルダール窒素量すなわちタンパク質が、育成いちご植物に体内に多く増加し、うどんこ病発生の抑制が出来ることが、はっきりとした証明が立証された。
The difference in light quantity between the light quantity of the fluorescent lamp and the light quantity of the LED described above is the difference in the Kjeldahl nitrogen quantity as shown in Attached Table 1 and Attached Table 2, that is, the protein quantity in the body of the strawberry plant. There was a small difference in the incidence of powdery mildew. However, as apparent from the discussion in the “[0032]” and “[0040]” items, the “[0026]”, “[0027]”, “[0028]”, “[0029]”, and “[0030]” items. As shown in, the increase in the amount of Kjeldahl nitrogen caused by irradiation of the growing strawberry plant with the green light from the green fluorescent light and the blue light from the blue fluorescent light, and “[0033]” “[0034]” “[0035]” “ As indicated in the paragraphs [0036] and [0037], excellent effects were obtained even with green light from a green LED and blue light from a blue LED.
The amount of Kjeldahl nitrogen, that is, protein, increases in the body of the grown strawberry plant by irradiation with the green fluorescent light, the blue fluorescent light, the green LED, and the blue LED to the grown strawberry plant, and the occurrence of powdery mildew can be suppressed. But a clear proof was proved.

いちごの育苗ハウスにて、実施例に基ずき説明する。
間口5.4m長さ40mの育苗パイプハウスにて、図11は、パイプハウスの立面図であり、図12は、パイプハウスの平面図である。
At the Strawberry Nursery House, explanation will be given based on examples.
FIG. 11 is an elevation view of the pipe house and FIG. 12 is a plan view of the pipe house in the nursery pipe house having a length of 5.4 m and a length of 40 m.

ハウス内に置かれたいちご植物苗16の上面より1mの高さに緑色の20Wの蛍光灯7をパイプハウスに対し平行に2列設置し、又2列設置した中央に青色の20Wの蛍光灯8をハウスの長手方向に、1列設置した。両側2列に設置した蛍光灯7の緑色の光線と、中央1列に設置した蛍光灯8の青色の光線が、出来るだけ均一にいちご植物苗に緑色光線と青色光線との複合した緑と青の光線をいちご植物苗16に照射させる為に、平面図12にて表示のごとく、両側2列に設置した緑色20W蛍光灯の間隔を4mに設置し、中央1列に設置した青色20W蛍光灯8の間隔を8m間隔に設置し、当該いちご植物苗16の上面より1mの高さに、青色、緑色の蛍光灯を設置した。Two rows of green 20 W fluorescent lamps 7 are installed in parallel to the pipe house at a height of 1 m above the upper surface of the strawberry plant seedling 16 placed in the house, and a blue 20 W fluorescent lamp 8 is installed in the center of the two rows. One row was installed in the longitudinal direction of the house. The green light of the fluorescent light 7 installed in the two rows on both sides and the blue light of the fluorescent light 8 installed in the center one row are as uniform as possible on the strawberry plant seedlings. In order to irradiate the strawberry plant seedling 16 with the light beam, as shown in the plan view 12, the distance between the green 20W fluorescent lamps installed in the two rows on both sides is set to 4 m, and the blue 20W fluorescent lamp installed in the central row. The interval of 8 was installed at intervals of 8 m, and blue and green fluorescent lamps were installed at a height of 1 m from the upper surface of the strawberry plant seedling 16.

育苗のパイプハウス立面図、図11、育苗のパイプハウス平面図、図12表示の育苗ハウス内には、本圃に定植する苗を8500本置き並べた。In the nursery house shown in Fig. 11, the seedling pipe house elevation, Fig. 11, the nursery pipe house plan view, and the seedling house shown in Fig. 12, 8500 seedlings to be planted in this farm were arranged.

「[0044]」項記載の育苗パイプハウス間口5.4m長さ40mのハウスより2M離れた隣の同等の面積を保持したパイプハウス間口5.4m長さ40mハウスには、蛍光灯は、設置せずに、本圃に定植する株を8500本置き並べた。Pipeline frontage 5.4m long 40m house that is 2M away from the 5.4m long 40m length house described in "[0044]" No fluorescent lamps are installed in the house In addition, 8500 strains to be planted in the main farm were arranged.

「[0044]」項記載の蛍光灯を設置したパイプハウスのいちご植物苗に全ての緑色蛍光灯、青色蛍光灯にて、7月30日〜8月31日までの約30日間、日没から日の出までの夜間に緑色蛍光灯の緑色光線と青色蛍光灯の青色の光線を同時に点灯させ、いちご植物苗に照射した。昼間は7月30日〜8月31日までの約1月間自然の太陽光に準じた育苗管理を保持した。その後8月31日以降は日没から日の出までの夜間の緑色、青色の蛍光灯は全て消灯し、昼間は日の出から日没までの約1月間自然の太陽光に準じた育苗管理を保持した。Sunrise from sunset for 30 days from July 30th to August 31st with all green fluorescent lights and blue fluorescent lights on the strawberry plant seedlings of the pipe house where the fluorescent lamps described in "[0044]" are installed The green light from the green fluorescent light and the blue light from the blue fluorescent light were simultaneously turned on at night until the strawberry plant seedling was irradiated. In the daytime, the nursery management according to natural sunlight was maintained for about one month from July 30 to August 31. After August 31, all the green and blue fluorescent lights at night from sunset to sunrise were extinguished, and during the day, seedling management was maintained for about one month from sunrise to sunset.

「[0046]」項記載の育苗パイプハウス間口5.4m長さ40mの蛍光灯設置をしないハウスは、夜間は暗黒にし、昼間は日の出から日没までの約1月間自然の太陽光に準じた育苗管理を保持した。The nursery pipe house entrance 5.4m long 40m long house without the fluorescent lamp installation described in "[0046]" is dark at night, raising seedlings according to natural sunlight for about one month from sunrise to sunset in the daytime. Retained management.

本圃ハウスに育苗処理苗、すなわち「[0046]」「[0047]」項にて記載した緑色蛍光灯の緑色光線、青色蛍光灯の青色光線、光線無し、を「[0046]」「[0047]」項にて記載した如く処理したいちご植物苗を9月10日〜9月16日までに定植した。The seedlings treated with seedlings in the main house, that is, the green light of the green fluorescent light described in the paragraphs “[0046]” and “[0047]”, the blue light of the blue fluorescent light, and no light, “[0046]” “[0047] The strawberry plant seedlings treated as described in the section were planted from September 10 to September 16.

「[0048]」項記載の処理したいちご植物苗16を下記の如く、30日間実施例育苗パイプハウス間口5.4m長さ40mハウスにて蛍光灯の緑色光線と青色光線との照射処理したいちご植物苗と蛍光灯の照射無しのいちご植物苗の葉柄、葉体内のケルダール窒素の量すなわち、タンパク質の量とうどんこ病発生いちご植物苗の比較対照区分を設け圃場に当該いちご植物苗、サンプル1、2、3、4、5、6の各20本ずつを分類し対照区に定植した。Treated strawberry plant seedlings 16 described in the paragraph “[0048]” for 30 days Example nurturing Pipe house frontage 5.4m length 40m house Strawberry plants treated with green and blue light from fluorescent lamps The pedicel of the strawberry plant seedling without irradiation of the seedling and the fluorescent lamp, the amount of Kjeldahl nitrogen in the leaf body, that is, the comparison of the amount of protein and the strawberry plant seedling with powdery mildew disease is established in the field, the strawberry plant seedling, sample 1, 20 each of 2, 3, 4, 5 and 6 were classified and planted in a control group.

各サンプル1,2,3,4,5,6いちご植物苗として、本圃にいちご植物苗として定植後20日目に、ケルダール法に基ずきケルダール窒素量を調べ各サンプル1,2,3,4,5,6ごとに、当該いちご植物苗20本ずつの平均値を別表3にて表示した。Each sample 1, 2, 3, 4, 5, 6 As a strawberry plant seedling, on the 20th day after planting as a strawberry plant seedling in the mainland, the Kjeldahl nitrogen amount was examined based on the Kjeldahl method, and each sample 1, 2, 3, The average value of 20 strawberry plant seedlings is shown in Appendix 3 for each of 4, 5, and 6.

当該いちご植物苗である、各サンプル1,2,3,4,5,6いちご植物苗として、本圃にいちご植物苗として定植後20日目に、うどんこ病発生数をチェックし、別表3に表示した。Each sample 1, 2, 3, 4, 5, 6 strawberry plant seedlings, which are the strawberry plant seedlings, checked the number of powdery mildew occurrence on the 20th day after planting as strawberry plant seedlings in this field, displayed.

いちごの育成中の葉柄、葉体内のケルダール窒素の量すなわち、タンパク質の量が、無照射、緑色蛍光灯の緑色のみの光線の照射、青色蛍光灯の青色のみの光線の照射、緑色蛍光灯の緑色の光線照射の上面に青色蛍光灯の青色の光線を同時に照射、青色蛍光灯の青色光線の照射の上面に緑色蛍光灯の緑色光線を同時に照射、緑色蛍光灯の緑色光線の照射と同一平面上に青色蛍光灯の青色光線を同時に照射した当該いちご植物苗に照射した当該いちご植物苗と光線無照射、緑色LEDの緑色のみの光線の照射、青色LEDの青色のみの光線の照射、緑色LEDの緑色の光線照射の上面に青色LEDの青色の光線を同時に照射、青色LEDの青色光線の照射の上面に緑色LEDの緑色光線を同時に照射、緑色LEDの緑色光線の照射と同一平面上に青色LEDの青色光線を同時に照射した当該いちご植物苗とを光線照射無し、緑色光線、青色光線の照射の組み合わせの違いによる効果が、当該いちご植物苗のうどんこ病発生の多少の違いの表示の比較を、下記別表1は、蛍光灯の照射による比較、表2は、LEDの照射による比較を表示した。The amount of Kjeldahl nitrogen in the strawberry growing leaf, the amount of protein, that is, the amount of protein is not irradiated, green fluorescent light only green light irradiation, blue fluorescent light only blue light irradiation, green fluorescent light Simultaneously irradiate the blue light of the blue fluorescent lamp on the upper surface of the green light irradiation, simultaneously irradiate the green light of the green fluorescent light on the upper surface of the blue light of the blue fluorescent light, and flush with the green light of the green fluorescent light The strawberry plant seedling irradiated to the strawberry plant seedling irradiated simultaneously with the blue light of the blue fluorescent lamp and no light irradiation, the green LED only green light irradiation, the blue LED only blue light irradiation, the green LED Simultaneously irradiate the blue light of the blue LED on the upper surface of the green light irradiation, simultaneously irradiate the green light of the green LED on the upper surface of the blue light irradiation of the blue LED, and flush with the green light irradiation of the green LED The effect of different combinations of irradiation of green light and blue light on the strawberry plant seedlings simultaneously irradiated with the blue light of the blue LED is an indication of some differences in the occurrence of powdery mildew on the strawberry plant seedlings. Table 1 below shows the comparison, and Table 2 shows the comparison by the irradiation of the fluorescent lamp, and Table 2 shows the comparison by the irradiation of the LED.

別表1及び別表2の表示の如く、上記「[0052]」項記載の照射の組み合わせによる、蛍光灯及びLEDの各光線照射をした当該いちご植物苗と蛍光灯の無照射いちご植物苗とを本圃に定植して後、20日後にうどんこ病の発生した本数である。As shown in Attached Table 1 and Attached Table 2, the strawberry plant seedling irradiated with each light beam of the fluorescent lamp and the LED and the non-irradiated strawberry plant seedling of the fluorescent lamp by the combination of irradiation described in the above “[0052]” This is the number of powdery mildew that occurred 20 days after planting.

別表3にて表示のうどんこ病発生本数の中において、「[0044]」、「[0045]」、「[0046]」、「[0047]」、「[0048]」、「[0049]」、「[0050]」、「[0051]」項記載の育苗ハウス内のサンプル2のデータにて1本と、サンプル3のデータにて1本のうどんこ病発生した、当該いちご植物苗のうどんこ病は、サンプル2、サンプル3の各々20本の圃場に定植後20日後の、いちご植物苗平均ケルダール窒素はサンプル2において、156PPM、サンプル3においては、160PPMの高い値を表示している。Among the numbers of powdery mildew occurrence shown in Attached Table 3, “[0044]”, “[0045]”, “[0046]”, “[0047]”, “[0048]”, “[0049]” , “[0050]”, “[0051]” in the nursery house described in the section 2 of the sample 2 data and sample 3 data of 1 powdery mildew occurred, this strawberry plant seedling udon As for this disease, the strawberry plant seedling average Kjeldahl nitrogen 20 days after planting in 20 fields each of sample 2 and sample 3 shows a high value of 156 PPM in sample 2 and 160 PPM in sample 3.

サンプル2、サンプル3のいちご植物苗を定植した圃場にて、農薬を散布せずのに、農薬を散布した防除後と同等の効果が、うどんこ病の発生後12日目で、白い胞子が茶色に渇変化の症状になり、農薬防除後の効果と同じ効果となった。サンプル1のいちご植物苗を定植した圃場にても、うどんこ病の白い胞子が、農薬防除後と同じく茶色く渇変化の症状になり、うどんこ病の発生から15日目で、白い胞子が消えた。
又、当該いちご植物苗が、うどんこ病に感染して、うどんこ病の菌が、白く付着していても、いちご植物苗の白い胞子の部分は、農薬散布後に農薬効果と同等の症状である、うどんこ病の白い胞子が茶色に渇変化し、周りのいちご植物にはうどんこ病が感染しなかった。
サンプル2、におけるケルダール窒素156PPM、サンプル3におけるケルダール窒素160PPMの高い値は、蛍光灯の緑色と青色との光線による効果がはっきりとした証明が立証された。
In the field where sample 2 and sample 3 strawberry plant seedlings were planted, the same effect as after pesticide spraying was achieved without spraying pesticides. It became a symptom of drought change to brown and became the same effect as after pesticide control. Even in the field where sample 1 strawberry plant seedlings were planted, the white spores of powdery mildew became brown and the symptoms of drought change were the same as after pesticide control, and the white spores disappeared 15 days after the powdery mildew occurred. It was.
In addition, even if the strawberry plant seedling is infected with powdery mildew and the powdery mildew fungus is attached to white, the white spore part of the strawberry plant seedling has the same symptoms as the pesticide effect after spraying the pesticide. One powdery white spore drowned brown, and the surrounding strawberry plants were not infected with powdery mildew.
The high values of Kjeldahl Nitrogen 156PPM in Sample 2 and Kjeldahl Nitrogen 160PPM in Sample 3 proved a clear proof of the effect of fluorescent green and blue light.

別表3にてうどんこ病発生本数の中において、サンプル4のデータにて5本と、サンプル5のデータにて10本、サンプル6のデータにて12本の、うどんこ病が発生。別表3にてケルダール窒素及びうどんこ病発生本数を表示後、その後10日後には、かなり多くうどんこ病が対照区のサンプル4、サンプル5、サンプル6のいちご植物苗に発生した為に農薬防除に頼らざる状態になるほど隣の定植苗に、感染しながら大量に発生した為に農薬防除を行なった。Among the number of powdery mildew occurrences in Attached Table 3, powdery mildew occurred in the sample 4 data, 5 in the sample 5 data, 10 in the sample 5 data, and 12 in the sample 6 data. After showing the number of Kjeldahl nitrogen and powdery mildew occurrence in Attached Table 3, pesticide control because 10 years later, there were quite a lot of powdery mildew on the strawberry plant seedlings in Sample 4, Sample 5 and Sample 6 The planting seedlings that were next to the plant were so infected that they were infected in large quantities.

別表3にて表示、サンプル4、サンプル5、サンプル6の各々20本の圃場に定植後20日後の、いちご植物苗平均ケルダール窒素はサンプル4において、111PPM、サンプル5においては、98PPM、サンプル6においては、80PPMが、別表3にて表示。The strawberry plant seedling average Kjeldahl nitrogen, which is indicated in Attached Table 3 and 20 days after planting in 20 fields of Sample 4, Sample 5 and Sample 6, respectively, is 111 PPM in Sample 4, 98 PPM in Sample 5 and in Sample 6 Shows 80PPM in Attached Table 3.

又、サンプル1、136PPMサンプル2、156PPM、サンプル3、160PPMのケルダール窒素の各20本の平均値に対しかなり低い値を別表3に表示されている。
サンプル1、サンプル2、サンプル3は、蛍光灯の緑色光線と青色光線との照射による、ケルダール窒素の値と、サンプル4、サンプル5、サンプル6は、蛍光灯による照射無しによる、ケルダール窒素の値とに大きな値の差として、別表3にて表示。
In Table 3, a considerably low value is displayed with respect to the average value of 20 Kjeldahl nitrogens of Sample 1, 136 PPM Sample 2, 156 PPM, Sample 3, and 160 PPM.
Sample 1, sample 2 and sample 3 are values of Kjeldahl nitrogen by irradiation with green light and blue light of a fluorescent lamp, and samples 4, sample 5 and sample 6 are values of Kjeldahl nitrogen without irradiation by a fluorescent light Displayed in Attached Table 3 as the difference between the two values.

以上、「[0044]」、「[0045]」、「[0046]」、「[0047]」、「[0048]」、「[0049]」、「[0050]」、「[0051]」、「[0054]」、「[0055]」、「[0056]」、「[0057]」、「[0058]」項にて実施例にて説明した様に、緑色光線、青色光線を日没から日の出前の夜間に照射することにより、当該いちご植物苗の体内にケルダール窒素が増加する。
それ故に、当該いちご植物の体内に栄養濃度をつかさどるタンパク質が高濃度に蓄積されることにより、当該いちご植物苗のうどんこ病の発生を抑える効果としての証明が立証された。

Figure 0005505830
Figure 0005505830
Figure 0005505830
As described above, “[0044]”, “[0045]”, “[0046]”, “[0047]”, “[0048]”, “[0049]”, “[0050]”, “[0051]”, As described in the embodiments in “[0054]”, “[0055]”, “[0056]”, “[0057]”, and “[0058]”, the green light and the blue light are emitted from sunset. Irradiation at night before sunrise increases Kjeldahl nitrogen in the body of the strawberry plant seedling.
Therefore, proof as an effect of suppressing the occurrence of powdery mildew in the strawberry plant seedling was proved by accumulating a high concentration of the protein that controls the nutrient concentration in the strawberry plant body.
Figure 0005505830
Figure 0005505830
Figure 0005505830

1・・・青色蛍光灯、2・・・緑色蛍光灯、3・・・青色LED
4・・・緑色LED,13・・・いちご植物苗、15・・・いちご植物苗、
16・・・いちご植物苗、7・・・緑色蛍光灯 8・・・青色蛍光灯、
9・・・パイプハウス、
1 ... Blue fluorescent lamp, 2 ... Green fluorescent lamp, 3 ... Blue LED
4 ... Green LED, 13 ... Strawberry plant seedling, 15 ... Strawberry plant seedling,
16 ... Strawberry plant seedling, 7 ... Green fluorescent lamp 8 ... Blue fluorescent lamp,
9 ... pipe house,

Claims (2)

緑色蛍光灯と青色蛍光灯とを育成食用植物の上面より一定の高さの、一平面状に置き並べ、当該緑色蛍光灯の緑色光線と当該青色蛍光灯の青色光線とを当該育成食用植物に一定の日数夜間照射し、ケルダール窒素を増加せしめた、当該植物のうどんこ病防除制御の方法。The green fluorescent lamp and the blue fluorescent lamp are arranged in a single plane at a certain height from the upper surface of the cultivated edible plant, and the green light of the green fluorescent lamp and the blue light of the blue fluorescent lamp are placed on the cultivated edible plant. A method of controlling powdery mildew control of the plant, which was irradiated for a certain number of days and increased Kjeldahl nitrogen. 緑色LEDと青色LEDとを育成食用植物の上面よりの一定の高さの、一平面状に置き並べ、緑色LEDの緑色光線と青色LEDの青色光線とを育成食用植物に一定の日数夜間照射し、ケルダール窒素を増加せしめた、当該植物のうどんこ病防除制御の方法。The green LED and the blue LED are arranged in a single plane at a certain height from the upper surface of the cultivated edible plant, and the green light of the green LED and the blue light of the blue LED are irradiated to the cultivated edible plant for a certain number of days and nights. The method of controlling powdery mildew control of the plant with increased Kjeldahl nitrogen.
JP2009165105A 2009-06-22 2009-06-22 Method for controlling powdery mildew control using light rays Active JP5505830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009165105A JP5505830B2 (en) 2009-06-22 2009-06-22 Method for controlling powdery mildew control using light rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009165105A JP5505830B2 (en) 2009-06-22 2009-06-22 Method for controlling powdery mildew control using light rays

Publications (3)

Publication Number Publication Date
JP2011000115A JP2011000115A (en) 2011-01-06
JP2011000115A5 JP2011000115A5 (en) 2012-09-06
JP5505830B2 true JP5505830B2 (en) 2014-05-28

Family

ID=43558604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009165105A Active JP5505830B2 (en) 2009-06-22 2009-06-22 Method for controlling powdery mildew control using light rays

Country Status (1)

Country Link
JP (1) JP5505830B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131506A (en) * 2012-12-03 2014-07-17 Nobuyuki Takahashi Method for pests control during plant growth using light beam and device using light beam, method for phenol content increase and device using light beam, and method for kjeldahl nitrogen increase
JP6761970B2 (en) 2016-08-18 2020-09-30 パナソニックIpマネジメント株式会社 Pest control device
CN111133936B (en) * 2018-11-05 2022-03-25 浙江省农业科学院 Cultivation method for reducing acidity of waxberry fruits by using colored greenhouse film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138845A (en) * 1977-05-11 1978-12-04 Nippon Carbide Kogyo Kk Cultivation of strawberry
JP3631648B2 (en) * 1999-06-07 2005-03-23 載昇 盧 Green nutritional soybean sprouts using colored light and its cultivation method
JP3088226U (en) * 2002-02-27 2002-09-06 伯幸 湯浅 Strawberry cultivation equipment
JP2004337058A (en) * 2003-05-15 2004-12-02 Sumika Plastech Co Ltd Plant cultivation method and agricultural facilities
JP4396389B2 (en) * 2004-05-18 2010-01-13 パナソニック電工株式会社 Lighting equipment for plant growth
EP1992216B1 (en) * 2006-03-08 2018-12-05 Shikoku Research Institute Incorporated Method for inducing an expression of a disease-resistant gene of a plant
JP5162740B2 (en) * 2007-07-17 2013-03-13 パナソニック株式会社 Lighting device for plant disease control
JP5106228B2 (en) * 2008-04-24 2012-12-26 パナソニック株式会社 Lighting device for plant disease control

Also Published As

Publication number Publication date
JP2011000115A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
Zhang et al. Overhead supplemental far-red light stimulates tomato growth under intra-canopy lighting with LEDs
Ma et al. Effects of light emitting diode lights on plant growth, development and traits a meta-analysis
Pettersen et al. Effects of intracanopy lighting on photosynthetic characteristics in cucumber
US20170000041A1 (en) Method to improve crop yield and/or quality
KR20170139551A (en) Method and apparatus for stimulation of plant growth and development with near infrared and visible lights
KR101861217B1 (en) Method for improving growth and phytochemicals of Crepidiastrum plants using various LED lights
CN103931429A (en) Artificial light seedling culture method capable of promoting plant growth and differentiation
Yakimchuk et al. The influence of ultraviolet-B light and carbon dioxide enrichment on the growth and physiology of seedlings of three conifer species
CN106718183B (en) Water culture seedling culture light environment and seedling culture method for lettuce vegetables
JP5505830B2 (en) Method for controlling powdery mildew control using light rays
JP5783476B2 (en) A method of controlling the concentration of phenolic substances and Kjeldahl nitrogen in plant leaves using light.
JP2011055816A (en) Method for controlling growth of plant utilizing light ray
JP2011055816A5 (en)
CN114794113A (en) Use of 2-amino-3-phenylbutyric acid or derivatives thereof as plant growth regulators
WO2007037023A1 (en) Method of plant cultivation
JP2014131506A5 (en)
JP2014131517A5 (en)
JP2011055834A (en) Method for increasing amount of protein in body of food plant utilizing light ray
Pepin et al. Beneficial effects of using a 3-D LED interlighting system for organic greenhouse tomato grown in Canada under low natural light conditions
JP2011000115A5 (en)
Matysiak et al. The growth, photosynthetic parameters and nitrogen status of basil, coriander and oregano grown under different led light spectra
EP4245129A1 (en) Tomato plant, tomato fruit, and method for cultivating tomato plant
JP3923480B2 (en) Seedling method
JP5481968B2 (en) Control method for increasing the number of flowers using light
JP6541231B2 (en) Method of suppressing dormancy of strawberry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140307

R150 Certificate of patent or registration of utility model

Ref document number: 5505830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250