JP5505646B2 - Biological sample quantification method - Google Patents

Biological sample quantification method Download PDF

Info

Publication number
JP5505646B2
JP5505646B2 JP2010198729A JP2010198729A JP5505646B2 JP 5505646 B2 JP5505646 B2 JP 5505646B2 JP 2010198729 A JP2010198729 A JP 2010198729A JP 2010198729 A JP2010198729 A JP 2010198729A JP 5505646 B2 JP5505646 B2 JP 5505646B2
Authority
JP
Japan
Prior art keywords
nucleic acid
reaction
target nucleic
amount
biological sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010198729A
Other languages
Japanese (ja)
Other versions
JP2011062197A (en
Inventor
富美男 ▲高▼城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2010198729A priority Critical patent/JP5505646B2/en
Publication of JP2011062197A publication Critical patent/JP2011062197A/en
Application granted granted Critical
Publication of JP5505646B2 publication Critical patent/JP5505646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、例えば核酸の定量に使用する生体試料定量用チップおよび生体試料定量方法に関する。   The present invention relates to a biological sample quantification chip and a biological sample quantification method used for quantification of nucleic acids, for example.

ガラス基板等に微細流路が設けられたマイクロ流体チップを使用して、化学分析や化学合成、あるいはバイオ関連の分析等を行う方法が注目されている。マイクロ流体チップは、マイクロTotal Analytical System(マイクロTAS)や、ラボオンチップ(Lab-on-a-chip)等とも呼ばれ、従来の装置に比較して試料や試薬の必要量が少ない、反応時間が短い、廃棄物が少ない等のメリットがあり、医療診断、環境や食品のオンサイト分析、医薬品や化学品等の生産等、広い分野での利用が期待されている。試薬の量が少なくてよいことから、検査のコストを下げることが可能となり、また、試料および試薬の必要量が少ないため、反応時間も大幅に短縮されて検査の効率化を図ることができる。特に、医療診断に使用する場合には、試料となる血液等の検体の必要量を少なくすることができるため、患者の負担を軽減できるというメリットがある。   A method of performing chemical analysis, chemical synthesis, bio-related analysis, or the like using a microfluidic chip in which a fine flow path is provided on a glass substrate or the like has attracted attention. Microfluidic chips are also called Micro Total Analytical System (Micro TAS), Lab-on-a-chip, etc., and require less sample and reagents than conventional devices, and reaction time It has the advantages of being short and less waste, and is expected to be used in a wide range of fields such as medical diagnosis, on-site analysis of the environment and food, and production of pharmaceuticals and chemicals. Since the amount of the reagent may be small, it is possible to reduce the cost of the inspection, and since the necessary amount of the sample and the reagent is small, the reaction time can be greatly shortened and the inspection can be made more efficient. In particular, when used for medical diagnosis, it is possible to reduce the necessary amount of a sample such as blood as a sample, which has the advantage of reducing the burden on the patient.

試料として用いるDNAやRNA等の遺伝子を増幅する方法として、ポリメラーゼ連鎖反応(PCR:Polymerase Chain Reaction)法がよく知られている。PCR法は、ター
ゲットのDNAおよび試薬を混合したものをチューブに入れ、サーマルサイクラーという温度制御装置で、例えば55℃、72℃、94℃の3段階の温度変化を数分の周期で繰り返し反応させるもので、酵素(DNAポリメラーゼ)の作用により温度サイクル1回あたり、ターゲットDNAだけを約2倍に増幅することができる。
As a method for amplifying a gene such as DNA or RNA used as a sample, a polymerase chain reaction (PCR) method is well known. In the PCR method, a mixture of target DNA and reagents is put in a tube, and a temperature control device called a thermal cycler is used to repeatedly react, for example, three steps of temperature changes of 55 ° C, 72 ° C, and 94 ° C with a period of several minutes. Therefore, only the target DNA can be amplified by about 2 times per temperature cycle by the action of the enzyme (DNA polymerase).

近年、特殊な蛍光プローブを用いて、増幅反応を行いながらDNAの定量ができるリアルタイムPCRが実用化されている。リアルタイムPCRは、測定の感度および信頼性が高いことから、研究用および臨床検査用として広く用いられている。   In recent years, real-time PCR capable of quantifying DNA while performing an amplification reaction using a special fluorescent probe has been put into practical use. Real-time PCR is widely used for research and clinical testing because of its high sensitivity and reliability of measurement.

しかしながら、リアルタイムPCR法では、検体中に増幅反応を阻害する物質が存在する場合、係る物質の影響により、得られた結果の信頼性が低い場合がある。また、PCRに必要な反応液の量は数十μlが標準的であり、さらに、1つの反応系では基本的に1つの遺伝子の測定しかできないという問題がある。一方、検体から抽出されるDNAの量は一般に少量であり、また、使用する試薬は一般に高価であるため、多数の反応系を同時に測定することは通常困難である。   However, in the real-time PCR method, when a substance that inhibits the amplification reaction is present in the sample, the reliability of the obtained result may be low due to the influence of the substance. In addition, a standard amount of reaction solution necessary for PCR is several tens of μl, and there is a problem that basically only one gene can be measured in one reaction system. On the other hand, since the amount of DNA extracted from a specimen is generally small, and the reagent used is generally expensive, it is usually difficult to measure many reaction systems simultaneously.

一方、国際公開番号WO2005/059548号には、標的核酸および内部標準核酸の両方にハイブリダイズする蛍光プローブを用いた測定方法が記載されている。この測定方法によれば、標的核酸および内部標準核酸を共増幅するため、増幅阻害物質の影響を受けにくく、高価なリアルタイムPCR専用装置が不要である。しかしながら、この測定方法では、特に標的核酸と内部標準核酸との濃度差が大きい場合に定量精度が著しく低下するうえ、定量可能な標準核酸の濃度範囲が狭い。   On the other hand, International Publication No. WO2005 / 059548 describes a measurement method using a fluorescent probe that hybridizes to both a target nucleic acid and an internal standard nucleic acid. According to this measurement method, since the target nucleic acid and the internal standard nucleic acid are co-amplified, it is difficult to be influenced by the amplification inhibitor and an expensive real-time PCR dedicated device is not required. However, in this measurement method, particularly when the concentration difference between the target nucleic acid and the internal standard nucleic acid is large, the quantification accuracy is remarkably lowered and the concentration range of the standard nucleic acid that can be quantified is narrow.

国際公開番号WO2005/059548International Publication Number WO2005 / 059548

本発明は、検体に含まれる標的核酸の定量を行う際に、検体に含まれ得る増幅阻害要因の影響を受けにくく、核酸増幅反応および標的核酸の定量を容易に行うことができ、かつ、標的核酸の定量範囲が広い生体試料定量用チップおよび生体試料定量方法を提供する。   When quantifying a target nucleic acid contained in a specimen, the present invention is less susceptible to amplification inhibition factors that can be contained in the specimen, can easily perform a nucleic acid amplification reaction and target nucleic acid quantification, Provided are a biological sample quantification chip and a biological sample quantification method having a wide nucleic acid quantification range.

本発明の第1の態様に係る生体試料定量用チップは、
検体に含まれる標的核酸の定量に使用する生体試料定量用チップであって、
複数の反応容器を含み、
前記複数の反応容器は、
前記標的核酸と共通のプライマーで増幅可能であって、該標的核酸とは異なる配列を有する既知量の競合核酸と、
前記標的核酸および前記競合核酸に共通のプライマーと、
前記標的核酸および前記競合核酸の増幅産物の一部に結合し、該標的核酸の増幅産物と該競合核酸の増幅産物とが異なる蛍光変化を示す蛍光プローブと、
を含み、
各々の前記反応容器に含まれる前記競合核酸の量が異なる。
The biological sample quantification chip according to the first aspect of the present invention comprises:
A biological sample quantification chip used for quantification of a target nucleic acid contained in a specimen,
Including a plurality of reaction vessels,
The plurality of reaction vessels are:
A known amount of a competing nucleic acid that can be amplified with a primer common to the target nucleic acid and has a sequence different from the target nucleic acid;
A primer common to the target nucleic acid and the competing nucleic acid;
A fluorescent probe that binds to a part of the amplification product of the target nucleic acid and the competing nucleic acid, and exhibits a fluorescence change that is different between the amplification product of the target nucleic acid and the amplification product of the competing nucleic acid;
Including
The amount of the competing nucleic acid contained in each reaction vessel is different.

上記生体試料定量用チップにおいて、
前記複数の反応容器に接続された反応容器導入流路と、前記反応液導入用流路に接続された反応液収容部と、廃液収容部と、をさらに含むことができる。
In the biological sample quantification chip,
The apparatus may further include a reaction vessel introduction channel connected to the plurality of reaction vessels, a reaction solution storage unit connected to the reaction solution introduction channel, and a waste solution storage unit.

また、上記生体試料定量用チップにおいて、前記複数の反応容器から構成される反応容器群を複数含み、1の反応容器群を構成する前記複数の反応容器には、同一の標的核酸を増幅させる同一のプライマーが配置され、別の1の反応容器群を構成する前記複数の反応容器には、前記1の反応容器群を構成する反応容器にて増幅される標的核酸とは異なる標的核酸を増幅させる、異なるプライマーが配置されていることができる。   The biological sample quantification chip includes a plurality of reaction container groups each including the plurality of reaction containers, and the plurality of reaction containers constituting one reaction container group are configured to amplify the same target nucleic acid. In the plurality of reaction containers constituting another reaction container group, a target nucleic acid different from the target nucleic acid amplified in the reaction container constituting the one reaction container group is amplified. Different primers can be placed.

本発明の第2の態様に係る生体試料定量用チップは、
検体に含まれる標的核酸の定量に使用する生体試料定量用チップであって、
第1の反応容器と、
第2の反応容器と、
を備え、
前記第1の反応容器は、
前記標的核酸を増幅させるプライマーと、
前記プライマーで増幅可能であって、該標的核酸とは異なる配列を有する第1の量の競合核酸と、
前記標的核酸および前記競合核酸の増幅産物の一部に結合し、該標的核酸の増幅産物と該競合核酸の増幅産物とが異なる蛍光変化を示す蛍光プローブと、
を含み、
前記第2の反応容器は、
前記第1の量とは異なる第2の量の前記競合核酸と、
前記プライマーと、
前記蛍光プローブと、
を含む。
The biological sample quantification chip according to the second aspect of the present invention comprises:
A biological sample quantification chip used for quantification of a target nucleic acid contained in a specimen,
A first reaction vessel;
A second reaction vessel;
With
The first reaction vessel comprises:
A primer for amplifying the target nucleic acid;
A first amount of a competing nucleic acid that can be amplified with the primers and has a sequence different from the target nucleic acid;
A fluorescent probe that binds to a part of the amplification product of the target nucleic acid and the competing nucleic acid, and exhibits a fluorescence change that is different between the amplification product of the target nucleic acid and the amplification product of the competing nucleic acid;
Including
The second reaction vessel comprises:
A second amount of the competing nucleic acid different from the first amount;
The primer;
The fluorescent probe;
including.

本発明の第3の態様に係る生体試料定量方法は、
上記第1の態様に係る生体試料定量用チップを用いて、検体に含まれる標的核酸の定量を行う生体試料定量方法であって、
前記複数の反応容器にそれぞれ検体を導入する工程と、
前記複数の反応容器内で核酸増幅反応を行う工程と、
各々の前記反応容器内において、増幅された核酸の一部に結合した前記蛍光プローブが発する蛍光強度を測定する工程と、
各々の前記反応容器内で測定された前記蛍光強度および各々の前記反応容器で用いた前記競合核酸の量に基づいて、下記式(1)で表される回帰曲線を求める工程と、
前記回帰曲線に基づいて、前記検体に含まれる標的核酸の量を推定する工程と、
を含む。
The biological sample quantification method according to the third aspect of the present invention comprises:
A biological sample quantification method for quantifying a target nucleic acid contained in a specimen using the biological sample quantification chip according to the first aspect,
Introducing each sample into the plurality of reaction vessels;
Performing a nucleic acid amplification reaction in the plurality of reaction vessels;
Measuring the fluorescence intensity emitted by the fluorescent probe bound to a part of the amplified nucleic acid in each of the reaction vessels;
Obtaining a regression curve represented by the following formula (1) based on the fluorescence intensity measured in each reaction container and the amount of the competing nucleic acid used in each reaction container;
Estimating the amount of target nucleic acid contained in the specimen based on the regression curve;
including.

F=a/(C+b)+c ・・・・・(1)
(式中、Fは蛍光強度を示し、Cは競合核酸の量を示し、bは検体に含まれる標的核酸の量を示し、aおよびcは所定の値を示す。)。
F = a / (C + b) + c (1)
(In the formula, F represents fluorescence intensity, C represents the amount of competing nucleic acid, b represents the amount of target nucleic acid contained in the sample, and a and c represent predetermined values).

上記生体試料定量方法において、
前記回帰曲線を求める工程では、前記核酸増幅反応の前に測定された蛍光強度と、前記核酸増幅反応の後に測定された蛍光強度との比と、各々の前記反応容器で用いた前記競合核酸の量との関係に基づいて該回帰曲線を求めることができる。
In the biological sample quantification method,
In the step of obtaining the regression curve, the ratio of the fluorescence intensity measured before the nucleic acid amplification reaction to the fluorescence intensity measured after the nucleic acid amplification reaction, and the competitive nucleic acid used in each reaction vessel The regression curve can be obtained based on the relationship with the quantity.

この場合、前記回帰曲線を求める工程では、前記核酸増幅反応後において前記蛍光プローブが増幅された核酸の一部に結合している第1の状態で測定された蛍光強度と、前記核酸増幅反応後において前記蛍光プローブが増幅された核酸から解離している第2の状態で測定された蛍光強度との比と、各々の前記反応容器で用いた前記競合核酸の量との関係に基づいて該回帰曲線を求めることができる。   In this case, in the step of obtaining the regression curve, after the nucleic acid amplification reaction, the fluorescence intensity measured in the first state where the fluorescent probe is bound to a part of the amplified nucleic acid, and after the nucleic acid amplification reaction In the second state in which the fluorescent probe is dissociated from the amplified nucleic acid and the amount of the competing nucleic acid used in each of the reaction vessels. A curve can be obtained.

本発明の第4の態様に係る生体試料定量方法は、
検体に含まれる標的核酸の定量に使用する生体試料定量用チップを用いて、前記検体に含まれる標的核酸の定量を行う生体試料定量方法であって、
前記生体試料定量用チップは、第1の反応容器と第2の反応容器とを備え、前記第1の反応容器は、前記標的核酸を増幅させるプライマーと、前記プライマーで増幅可能であって、該標的核酸とは異なる配列を有する第1の量の競合核酸と、前記標的核酸および前記競合核酸の増幅産物の一部に結合し、該標的核酸の増幅産物と該競合核酸の増幅産物とが異なる蛍光変化を示す蛍光プローブと、を含み、前記第2の反応容器は、前記第1の量とは異なる第2の量の前記競合核酸と、前記プライマーと、前記蛍光プローブとを含み、
前記第1および第2の反応容器に前記検体を導入することと、
前記第1および第2の反応容器で核酸増幅反応を行うことと、
前記第1および第2の反応容器において、増幅された核酸の一部に結合した前記蛍光プローブが発する蛍光強度を測定することと、
前記第1および第2の反応容器で測定された前記蛍光強度並びに前記第1および第2の反応容器に含まれる前記競合核酸の量に基づいて、下記式(1)で表される回帰曲線を求めることと、
前記回帰曲線に基づいて、前記検体に含まれる標的核酸の量を推定することと、
を含む。
The biological sample quantification method according to the fourth aspect of the present invention comprises:
A biological sample quantification method for quantifying a target nucleic acid contained in a sample using a biological sample quantification chip used for quantification of a target nucleic acid contained in the sample,
The biological sample quantification chip includes a first reaction container and a second reaction container, and the first reaction container is capable of amplifying with the primer for amplifying the target nucleic acid, the primer, A first amount of a competitive nucleic acid having a sequence different from the target nucleic acid binds to the target nucleic acid and a part of the amplified product of the competitive nucleic acid, and the amplified product of the target nucleic acid is different from the amplified product of the competitive nucleic acid. A fluorescent probe that exhibits a change in fluorescence, and wherein the second reaction vessel includes a second amount of the competitive nucleic acid different from the first amount, the primer, and the fluorescent probe,
Introducing the specimen into the first and second reaction vessels;
Performing a nucleic acid amplification reaction in the first and second reaction vessels;
Measuring the fluorescence intensity emitted by the fluorescent probe bound to a part of the amplified nucleic acid in the first and second reaction vessels;
Based on the fluorescence intensity measured in the first and second reaction vessels and the amount of the competing nucleic acid contained in the first and second reaction vessels, a regression curve represented by the following formula (1) is obtained. Seeking and
Estimating the amount of target nucleic acid contained in the specimen based on the regression curve;
including.

F=a/(C+b)+c ・・・・・(1)
(式中、Fは前記蛍光強度を示し、Cは前記競合核酸の量を示し、bは前記検体に含まれる前記標的核酸の量を示し、aおよびcは所定の値を示す。)。
F = a / (C + b) + c (1)
(In the formula, F represents the fluorescence intensity, C represents the amount of the competing nucleic acid, b represents the amount of the target nucleic acid contained in the sample, and a and c represent predetermined values).

上記生体試料定量用チップによれば、前記複数の反応容器に、前記標的核酸と共通のプライマーで増幅可能であって、該標的核酸とは異なる配列を有する既知量の競合核酸と、前記標的核酸および前記競合核酸に共通のプライマーと、前記標的核酸および前記競合核酸の増幅産物の一部に結合し、該標的核酸の増幅産物と該競合核酸の増幅産物とが異なる蛍光変化を示す蛍光プローブとを含み、各々の前記反応容器に含まれる前記競合核酸の量が異なり、前記複数の反応容器を用いて核酸増幅反応を行うことにより、検体を前記複数の反応容器に導入すれば標的核酸の定量ができるため、核酸増幅反応および標的核酸の定量を容易に行うことができる。また、上記生体試料定量用チップを用いた標的核酸の定量では、検体に含まれ得る増幅阻害要因の影響を受けにくく、かつ、標的核酸の定量範囲が広い。また、上記生体試料定量用チップに検体を導入する以外の分注作業が不要であるため、作業量が少なく、かつ試薬の必要量を少なくすることができるため、上記生体試料定量用チップを用いることにより、標的核酸の定量を低コストでかつ高精度で行うことができる。   According to the biological sample quantification chip, a known amount of a competing nucleic acid having a sequence different from the target nucleic acid that can be amplified in the plurality of reaction containers with a common primer with the target nucleic acid, and the target nucleic acid A primer common to the competing nucleic acid, a fluorescent probe that binds to a part of the amplification product of the target nucleic acid and the competing nucleic acid, and exhibits a fluorescence change in which the amplification product of the target nucleic acid differs from the amplification product of the competing nucleic acid. The amount of the competing nucleic acid contained in each of the reaction containers is different, and the target nucleic acid is quantified by introducing a sample into the plurality of reaction containers by performing a nucleic acid amplification reaction using the plurality of reaction containers. Therefore, nucleic acid amplification reaction and target nucleic acid quantification can be easily performed. In addition, the target nucleic acid quantification using the above-described biological sample quantification chip is not easily affected by amplification inhibiting factors that can be included in the specimen, and the target nucleic acid quantification range is wide. Further, since the dispensing work other than the introduction of the specimen into the biological sample quantification chip is not required, the work amount is small and the necessary amount of the reagent can be reduced. Therefore, the biological sample quantification chip is used. Thus, the target nucleic acid can be quantified at low cost and with high accuracy.

また、上記生体試料定量方法によれば、上記生体試料定量用チップを用いて、検体に含まれる標的核酸の定量を行う生体試料定量方法であって、各々の前記反応容器内で測定された前記蛍光強度および各々の前記反応容器で用いた前記競合核酸の量に基づいて、上記式(1)で表される回帰曲線を求める工程と、前記回帰曲線に基づいて、前記検体に含まれる標的核酸の量を推定する工程とを含むことにより、検体に含まれ得る増幅阻害要因の影響を受けにくく、かつ、標的核酸の定量範囲が広い。また、上記生体試料定量用チップに検体を導入する以外の分注作業が不要であるため、作業量が少なく、かつ試薬の必要量を少なくすることができるため、標的核酸の定量を低コストでかつ高精度で行うことができる。   Further, according to the biological sample quantification method, the biological sample quantification method for quantifying a target nucleic acid contained in a specimen using the biological sample quantification chip, wherein the biological sample quantification method is performed in each of the reaction containers. A step of obtaining a regression curve represented by the above formula (1) based on the fluorescence intensity and the amount of the competitive nucleic acid used in each of the reaction containers, and a target nucleic acid contained in the sample based on the regression curve Including the step of estimating the amount of the target nucleic acid, and is difficult to be influenced by an amplification inhibiting factor that may be contained in the specimen, and the quantification range of the target nucleic acid is wide. In addition, since dispensing work other than introducing the sample into the biological sample quantification chip is unnecessary, the work volume is small and the necessary amount of reagent can be reduced, so that the target nucleic acid can be quantified at low cost. And it can be performed with high accuracy.

図1(A)は、本発明の一実施形態に係るマイクロリアクターアレイの概略構成を示す平面図、図1(B)は図1(A)のC−C断面図。1A is a plan view illustrating a schematic configuration of a microreactor array according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along a line CC in FIG. 図2は、本発明の一実施形態に係るマイクロリアクターアレイが設置された遠心装置を横から見た正面図。FIG. 2 is a front view of the centrifuge provided with the microreactor array according to the embodiment of the present invention as viewed from the side. 図3は、図2Aの遠心装置を上から見た平面図。FIG. 3 is a plan view of the centrifugal device of FIG. 2A as viewed from above. 図2の遠心装置のホルダに装着されたマイクロリアクターアレイを上から見た図。The figure which looked at the microreactor array with which the holder of the centrifuge of FIG. 2 was mounted | worn from the top. 図2の遠心装置のホルダに装着されたマイクロリアクターアレイの横断面図。FIG. 3 is a cross-sectional view of a microreactor array mounted on a holder of the centrifuge device of FIG. 2. 本発明の実施例1で用いた標的核酸および競合核酸の配列例を示す図。The figure which shows the example of a sequence of the target nucleic acid and competitor nucleic acid which were used in Example 1 of this invention. 本発明の実施例1で用いたプライマーの配列例を示す図。The figure which shows the example of a sequence | arrangement of the primer used in Example 1 of this invention. 本発明の実施例1で用いたQ−Probeの配列を示す図。The figure which shows the arrangement | sequence of Q-Probe used in Example 1 of this invention. 本発明の実施例1で定量された検体中の競合核酸の量(logC)と蛍光強度(変化量)Fとの関係(回帰曲線)を示す図。The figure which shows the relationship (regression curve) between the quantity (logC) of the competition nucleic acid in the sample quantified in Example 1 of this invention, and the fluorescence intensity (change amount) F. FIG.

以下に、本発明の一実施形態に係る生体試料定量用チップおよび生体試料定量方法について具体的に説明する。   Hereinafter, a biological sample quantification chip and a biological sample quantification method according to an embodiment of the present invention will be described in detail.

1.実施形態
1.1.生体試料定量用チップの構成
図1(A)は、本発明の一実施形態に係るマイクロリアクターアレイ(生体試料定量用チップ)10の概略構成を示す平面図であり、図1(B)は、図1(A)のC−C断面図である。
1. Embodiment 1.1. Configuration of Biological Sample Quantification Chip FIG. 1A is a plan view showing a schematic configuration of a microreactor array (biological sample quantification chip) 10 according to an embodiment of the present invention, and FIG. It is CC sectional drawing of FIG. 1 (A).

マイクロリアクターアレイ10は、検体に含まれる標的核酸の定量に使用する生体試料定量用チップ(バイオチップ)であり、図1(A)および図1(B)に示されるように、複数の反応容器104を含む反応容器群201、202、203、204、205、206を含む。マイクロリアクターアレイ10は、各々の反応容器104に接続された反応液導入用流路105と、反応液導入用流路105に接続された反応液収容部107と、廃液収容部106とをさらに含む。廃液収容部106は反応液収容部107に接続されている。さらに、マイクロリアクターアレイ10には、反応液導入用流路105と廃液収容部106とを接続する流路108、および、反応液収容部107にマイクロリアクターアレイ10の外部より反応液を供給するのに使用する反応液供給口109が設けられている。   The microreactor array 10 is a biological sample quantification chip (biochip) used for quantification of a target nucleic acid contained in a specimen. As shown in FIGS. 1 (A) and 1 (B), a plurality of reaction containers are used. The reaction container group 201, 202, 203, 204, 205, 206 including 104 is included. The microreactor array 10 further includes a reaction solution introduction channel 105 connected to each reaction vessel 104, a reaction solution storage unit 107 connected to the reaction solution introduction channel 105, and a waste solution storage unit 106. . The waste liquid storage unit 106 is connected to the reaction liquid storage unit 107. Further, the reaction liquid is supplied to the microreactor array 10 from the outside of the microreactor array 10 and the flow path 108 connecting the reaction liquid introduction flow path 105 and the waste liquid storage section 106 and the reaction liquid storage section 107. The reaction liquid supply port 109 used for the above is provided.

図1(B)に示すように、マイクロリアクターアレイ10は、透明基板101,102,103を貼り合わせて構成されている。透明基板101には、複数の反応容器104、反応液導入用流路105、反応液収容部107、および反応液供給口109が設けられている。透明基板102には、廃液収容部106および流路108が形成されている。透明基板101,102,103は例えば樹脂基板とすることができ、各部は例えば射出成型により形成することができる。   As shown in FIG. 1B, the microreactor array 10 is configured by bonding transparent substrates 101, 102, and 103 together. The transparent substrate 101 is provided with a plurality of reaction vessels 104, a reaction solution introduction channel 105, a reaction solution storage unit 107, and a reaction solution supply port 109. In the transparent substrate 102, a waste liquid storage portion 106 and a flow path 108 are formed. The transparent substrates 101, 102, 103 can be, for example, resin substrates, and each part can be formed by, for example, injection molding.

反応容器104はそれぞれ、定量の対象となる標的核酸と共通のプライマーで増幅可能であって、該標的核酸とは異なる配列を有する既知量の競合核酸と、標的核酸および競合核酸に共通のプライマーと、標的核酸および競合核酸の増幅産物の一部に結合し、標的核酸の増幅産物と競合核酸の増幅産物とが異なる蛍光変化を示す蛍光プローブとを含む。より具体的には、反応容器104の表面に、競合核酸、プライマー、および蛍光プローブを塗布した後乾燥させることにより、競合核酸、プライマー、および蛍光プローブを反応容器104の表面に配置させることができる。また、マイクロリアクターアレイ10では、同じ反応容器群に属する複数の反応容器104に含まれる競合核酸の量がそれぞれ異なるように調整されている。   Each of the reaction vessels 104 can be amplified with a primer common to the target nucleic acid to be quantified, and has a known amount of a competitive nucleic acid having a sequence different from the target nucleic acid, a primer common to the target nucleic acid and the competitive nucleic acid, A fluorescent probe that binds to a part of the amplification product of the target nucleic acid and the competitive nucleic acid, and exhibits a fluorescence change in which the amplification product of the target nucleic acid and the amplification product of the competitive nucleic acid differ. More specifically, the competitive nucleic acid, primer, and fluorescent probe can be placed on the surface of the reaction vessel 104 by applying the competitive nucleic acid, primer, and fluorescent probe to the surface of the reaction vessel 104 and then drying. . In the microreactor array 10, the amount of competing nucleic acids contained in a plurality of reaction vessels 104 belonging to the same reaction vessel group is adjusted to be different.

上述したように、マイクロリアクターアレイ10は、複数の反応容器群201、202、203、204、205、206を含む。同一の反応容器群に含まれる複数の反応容器104には、同じ競合核酸、同じプライマー、および同じ蛍光プローブが配置されている。また、マイクロリアクターアレイ10において、異なる反応容器群に含まれる同じ反応容器列(同一の反応容器群に含まれる反応容器104の配列方向を行方向とした場合、該行方向と垂直な方向における反応容器104の配列)A〜Fに属する反応容器104には、同じ量の競合核酸を配置させることができる。   As described above, the microreactor array 10 includes a plurality of reaction vessel groups 201, 202, 203, 204, 205, 206. The same competing nucleic acid, the same primer, and the same fluorescent probe are arranged in a plurality of reaction vessels 104 included in the same reaction vessel group. Further, in the microreactor array 10, the same reaction container row included in different reaction container groups (when the arrangement direction of the reaction containers 104 included in the same reaction container group is the row direction, the reaction in the direction perpendicular to the row direction is performed. The same amount of competing nucleic acids can be placed in the reaction vessels 104 belonging to the arrangements A to F of the vessel 104.

1の反応容器群を構成する複数の反応容器104の表面には、同一の標的核酸を増幅させる同一のプライマーが配置され、別の1の反応容器群を構成する複数の反応容器104の表面には、1の反応容器群を構成する反応容器104にて増幅される標的核酸とは異なる標的核酸を増幅させる、異なるプライマーを配置させることができる。これにより、1のマイクロリアクターアレイ10内で異なる標的核酸の定量を行うことができる。   The same primer for amplifying the same target nucleic acid is arranged on the surface of a plurality of reaction vessels 104 constituting one reaction vessel group, and the surface of the plurality of reaction vessels 104 constituting another one reaction vessel group is arranged. Can be arranged with different primers for amplifying a target nucleic acid different from the target nucleic acid amplified in the reaction vessel 104 constituting one reaction vessel group. Thereby, different target nucleic acids can be quantified in one microreactor array 10.

1の反応容器群を構成する複数の反応容器104の表面には、1つの反応容器群を構成する反応容器104にて増幅される標的核酸に結合して蛍光量の変化を示すように設計された同一の蛍光プローブが配置されている。この蛍光プローブは、当該標的核酸の競合核酸にも結合して蛍光量の変化を示すように設計されている。さらに、この蛍光プローブは、当該標的核酸に結合した際の蛍光量の変化量と、その競合核酸に結合した際の蛍光量の変化量とが異なるように設計されている。   The surface of a plurality of reaction vessels 104 constituting one reaction vessel group is designed to bind to a target nucleic acid amplified in the reaction vessel 104 constituting one reaction vessel group and show a change in fluorescence amount. The same fluorescent probe is arranged. This fluorescent probe is designed to bind to a competing nucleic acid of the target nucleic acid and show a change in the amount of fluorescence. Furthermore, this fluorescent probe is designed so that the amount of change in fluorescence when bound to the target nucleic acid is different from the amount of change in fluorescence when bound to the competing nucleic acid.

また、別の1の反応容器群を構成する複数の反応容器104の表面には、1の反応容器群を構成する反応容器104にて増幅される標的核酸とは異なる標的核酸と、その競合核酸と結合して蛍光量の変化を示す同一の蛍光プローブが配置されている。これにより、1のマイクロリアクターアレイ10内で異なる標的核酸の回帰曲線を求めることができる。   Further, a target nucleic acid different from the target nucleic acid amplified in the reaction container 104 constituting one reaction container group and its competing nucleic acid are formed on the surfaces of a plurality of reaction containers 104 constituting another one reaction container group. The same fluorescent probe that binds to and shows a change in the amount of fluorescence is disposed. Thereby, regression curves of different target nucleic acids can be obtained in one microreactor array 10.

反応容器104は例えば、直径500μmの円形断面を有する深さ100μmの円筒状である。反応液導入用流路105は例えば、反応液の流れる方向に垂直な断面が、幅200μm、深さ100μmに設けられている。隣り合う反応容器104間の距離は、反応容器104間での反応液の混合を防止できるように十分に確保されている。なお、反応容器104および反応液導入用流路105の表面は、気泡の吸着を防止するため内壁面が親液性となるように表面処理が施されていることが好ましい。また、反応容器104および反応液導入用流路105の内壁面には、タンパク質等の生体分子の非特異吸着を抑制する表面処理が施されていることが好ましい。   The reaction vessel 104 is, for example, a cylindrical shape having a circular cross section with a diameter of 500 μm and a depth of 100 μm. For example, the reaction liquid introduction flow path 105 has a cross section perpendicular to the direction in which the reaction liquid flows, having a width of 200 μm and a depth of 100 μm. The distance between the adjacent reaction vessels 104 is sufficiently secured so as to prevent mixing of the reaction liquid between the reaction vessels 104. Note that the surfaces of the reaction vessel 104 and the reaction solution introduction channel 105 are preferably subjected to surface treatment so that the inner wall surface becomes lyophilic to prevent adsorption of bubbles. The inner wall surfaces of the reaction vessel 104 and the reaction solution introduction channel 105 are preferably subjected to surface treatment that suppresses nonspecific adsorption of biomolecules such as proteins.

廃液収容部106は、流路108を介して反応液導入用流路105と接続されている。廃液収容部106には、後述するように、反応液導入用流路105に充填された反応液が排出されるため、反応液導入用流路105の容積よりも大きな容積を有していればよい。流路108は、透明基板102を垂直に貫通するように設けられている(例えば、図1(B)中φ=90°)。   The waste liquid storage unit 106 is connected to the reaction liquid introduction flow path 105 via the flow path 108. As will be described later, the reaction liquid filled in the reaction liquid introduction flow path 105 is discharged to the waste liquid storage section 106, so that the waste liquid storage section 106 has a larger volume than the reaction liquid introduction flow path 105. Good. The channel 108 is provided so as to vertically penetrate the transparent substrate 102 (for example, φ = 90 ° in FIG. 1B).

また、透明基板101,102,103の互いに接触する面が撥液性を有するように表面処理を施したり、接触面にシール性を付与したりすることにより、反応容器104から反応液が漏れ、基板表面を伝わって別の反応容器104に入ることを防ぐことができる。具体的には、接触面をシリコーンゴムやフッ素樹脂でコートする等の方法が挙げられる。   Further, the surface of the transparent substrates 101, 102, 103 that are in contact with each other is subjected to surface treatment so as to have liquid repellency, or the contact surface is provided with a sealing property, whereby the reaction solution leaks from the reaction vessel 104, It is possible to prevent another reaction vessel 104 from entering the substrate surface. Specifically, a method of coating the contact surface with silicone rubber or fluororesin can be used.

1.2.生体試料定量方法
本発明の一実施形態に係る生体試料定量方法は、本実施形態に係るマイクロリアクターアレイ(生体試料定量用チップ)10を用いて、検体に含まれる標的核酸の定量を行う生体試料定量方法であって、複数の反応容器104にそれぞれ検体を導入する工程と、複数の反応容器104内で核酸増幅反応を行う工程と、各々の反応容器104内において、増幅された核酸の一部に結合した蛍光プローブが発する蛍光強度を測定する工程と、各々の反応容器104内で測定された蛍光強度および各々の反応容器104で用いた競合核酸の量に基づいて、下記式(1)で表される回帰曲線を求める工程と、回帰曲線に基づいて、検体に含まれる標的核酸の量を推定する工程と、を含む。
1.2. Biological Sample Quantification Method A biological sample quantification method according to an embodiment of the present invention uses a microreactor array (biological sample quantification chip) 10 according to the present embodiment to quantitate a target nucleic acid contained in a specimen. A method for quantification, a step of introducing a sample into each of a plurality of reaction vessels 104, a step of performing a nucleic acid amplification reaction in the plurality of reaction vessels 104, and a part of the amplified nucleic acid in each reaction vessel 104 Based on the step of measuring the fluorescence intensity emitted by the fluorescent probe bound to, the fluorescence intensity measured in each reaction vessel 104 and the amount of competing nucleic acid used in each reaction vessel 104, the following equation (1) A step of obtaining a regression curve represented, and a step of estimating an amount of a target nucleic acid contained in the specimen based on the regression curve.

F=a/(C+b)+c ・・・・・(1)
(式中、Fは蛍光強度を示し、Cは競合核酸の量を示し、bは検体に含まれる標的核酸の量を示し、aおよびcは所定の値を示す。)。
F = a / (C + b) + c (1)
(In the formula, F represents fluorescence intensity, C represents the amount of competing nucleic acid, b represents the amount of target nucleic acid contained in the sample, and a and c represent predetermined values).

1.2.1.反応容器104への検体の導入(反応液の充填方法)
まず、マイクロリアクターアレイ10の反応容器104に検体を導入する工程について説明する。本実施形態においては、検体から調製された反応液を反応容器104に充填する方法を説明する。最初に、反応液供給口109から、ピペット等を用いて反応液収容部107に反応液を供給する。
1.2.1. Introduction of specimen into reaction vessel 104 (reaction liquid filling method)
First, the process of introducing the specimen into the reaction container 104 of the microreactor array 10 will be described. In the present embodiment, a method for filling a reaction vessel 104 with a reaction solution prepared from a specimen will be described. First, the reaction solution is supplied from the reaction solution supply port 109 to the reaction solution storage unit 107 using a pipette or the like.

反応液は検体から調製されたものであり、例えば、標的核酸、DNAポリメラーゼ、およびヌクレオチド(dNTP)を含む液がそれぞれ反応に適した所定の濃度で含まれている。   The reaction solution is prepared from a specimen, and for example, a solution containing a target nucleic acid, DNA polymerase, and nucleotide (dNTP) is contained at a predetermined concentration suitable for the reaction.

標的核酸としては、例えば、血液、尿、唾液、髄液のような生体サンプルから抽出されたDNA、または抽出したRNAから逆転写したcDNA等が挙げられる。   Examples of the target nucleic acid include DNA extracted from a biological sample such as blood, urine, saliva, and cerebrospinal fluid, or cDNA reverse transcribed from the extracted RNA.

次に、図2および図3に示される遠心装置50を用いて、マイクロリアクターアレイ10を回転させる。図2は、遠心装置50を横から見た正面図であり、図3は、遠心装置50を上から見た平面図である。   Next, the microreactor array 10 is rotated using the centrifuge device 50 shown in FIGS. FIG. 2 is a front view of the centrifugal device 50 viewed from the side, and FIG. 3 is a plan view of the centrifugal device 50 viewed from above.

図2および図3に示されるように、遠心装置50は、マイクロリアクターアレイ10を装着可能なホルダ(被回転部)51および回転モータ(回転手段)52を含む。ホルダ51は、回転軸Oからマイクロリアクターアレイ10に向かう方向に対して角度θ傾斜している。このため、ホルダ51に装着されたマイクロリアクターアレイ10も回転軸Oからマイクロリアクターアレイ10に向かう方向に対して角度θ傾斜する。ここではθ=45°である。なお、θは、0°<θ<90°の範囲であればよい。   As shown in FIG. 2 and FIG. 3, the centrifuge 50 includes a holder (rotated portion) 51 and a rotation motor (rotating means) 52 to which the microreactor array 10 can be attached. The holder 51 is inclined at an angle θ with respect to the direction from the rotation axis O toward the microreactor array 10. For this reason, the microreactor array 10 mounted on the holder 51 is also inclined at an angle θ with respect to the direction from the rotation axis O toward the microreactor array 10. Here, θ = 45 °. Note that θ may be in the range of 0 ° <θ <90 °.

図4は、遠心装置50のホルダ51に装着したマイクロリアクターアレイ10を上から見た平面図であり、図5は、ホルダ51に装着したマイクロリアクターアレイ10の横断面図である。図5(A)〜図5(C)は、それぞれ図4(A)〜図4(C)のD−D断面に相当する。   FIG. 4 is a plan view of the microreactor array 10 mounted on the holder 51 of the centrifuge 50 as viewed from above, and FIG. 5 is a cross-sectional view of the microreactor array 10 mounted on the holder 51. FIGS. 5A to 5C correspond to the DD cross sections of FIGS. 4A to 4C, respectively.

まず、図4(A)および図5(A)に示されるように、回転軸Oから見て透明基板101が外側になるようにマイクロリアクターアレイ10をホルダ51に装着し回転する。これにより、反応液収容部107から反応容器104へ向かう方向に遠心力がかかり、反応液収容部107内の反応液が反応液導入用流路105を充填しながら進んで反応容器104を充填する。反応液よりも比重の軽い空気は反応液導入用流路105内へ押し出され、反応液と入れ替わることにより、反応容器104が反応液で満たされる。   First, as shown in FIGS. 4A and 5A, the microreactor array 10 is mounted on the holder 51 and rotated so that the transparent substrate 101 is on the outside as viewed from the rotation axis O. As a result, a centrifugal force is applied in a direction from the reaction solution storage unit 107 toward the reaction vessel 104, and the reaction solution in the reaction solution storage unit 107 advances while filling the reaction solution introduction channel 105 to fill the reaction vessel 104. . Air having a specific gravity lower than that of the reaction solution is pushed into the reaction solution introduction channel 105 and is replaced with the reaction solution, thereby filling the reaction vessel 104 with the reaction solution.

この時、反応液は廃液収容部106へは送出されない。これは、図5(A)に示されるように、反応液導入用流路105から廃液収容部106へ向かう流路108の方向が遠心力の方向(図中矢印Fの方向)に対して135度の角度をなしているため、反応液導入用流路105から廃液収容部106へ向かう方向の遠心力成分が0以下となるからである。   At this time, the reaction liquid is not sent to the waste liquid container 106. As shown in FIG. 5A, this is because the direction of the flow path 108 from the reaction liquid introduction flow path 105 to the waste liquid storage section 106 is 135 with respect to the direction of centrifugal force (direction of arrow F in the figure). This is because the centrifugal force component in the direction from the reaction liquid introduction flow path 105 toward the waste liquid storage section 106 is 0 or less because the angle is at an angle.

なお、反応液導入用流路105から廃液収容部106へ向かう流路108の方向と遠心力の方向のなす角度が90度以上180度以下であれば、反応液は廃液収容部106へ送出されない。よって、θ=45°の場合には、図1(B)に示される透明基板102と流路108の成す角度φが45°<φ≦135°の範囲であれば、反応液は廃液収容部106へ送出されない。   If the angle formed between the direction of the flow path 108 from the reaction liquid introduction flow path 105 to the waste liquid storage section 106 and the direction of the centrifugal force is 90 degrees or more and 180 degrees or less, the reaction liquid is not sent to the waste liquid storage section 106. . Therefore, in the case of θ = 45 °, if the angle φ formed by the transparent substrate 102 and the flow path 108 shown in FIG. 1B is in the range of 45 ° <φ ≦ 135 °, the reaction liquid is a waste liquid container. It is not sent to 106.

以上のように、反応液が廃液収容部106の方へ流れていかないため、すべての反応容器104に効率よく反応液を充填することができ、回転後は図4(B)および図5(B)に示されるように、すべての反応容器104と反応液導入用流路105に反応液が充填された状態となる。   As described above, since the reaction liquid does not flow toward the waste liquid storage unit 106, all the reaction vessels 104 can be efficiently filled with the reaction liquid, and after the rotation, the reaction liquids shown in FIGS. ), The reaction liquid is filled in all the reaction vessels 104 and the reaction liquid introduction flow path 105.

次に、遠心装置50の回転を一旦停止し、今度は図4(C)および図5(C)に示されるように、回転軸Oから見て透明基板103が外側になるようにマイクロリアクターアレイ10をホルダ51に装着し回転する。これにより、今度は反応液導入用流路105内の反応液が廃液収容部106に送出される。これは、図5(C)に示されるように、反応液導入用流路105から廃液収容部106へ向かう流路108の方向が、遠心力の方向(図中矢印Fの方向)に対して45度の角度をなしているため、反応液導入用流路105から廃液収容部106へ向かう方向の遠心力成分が0以上となるからである。なお、反応液導入用流路105から廃液収容部106へ向かう流路108の方向と遠心力の方向のなす角度が0度以上かつ90度より小さければ、反応液は廃液収容部106へ送出される。よって、θ=45°の場合には、図1(B)に示される透明基板102と流路108の成す角度φが45°<φ≦135°の範囲であれば、反応液は廃液収容部106へ送出される。なお、反応液導入用流路105内の反応液は廃液収容部106へ送出されるが、反応容器104内の反応液は反応容器104内に留まる。   Next, the rotation of the centrifugal device 50 is temporarily stopped, and this time, as shown in FIG. 4C and FIG. 5C, the microreactor array so that the transparent substrate 103 is on the outside as viewed from the rotation axis O. 10 is mounted on the holder 51 and rotated. As a result, the reaction solution in the reaction solution introduction channel 105 is sent out to the waste solution storage unit 106 this time. As shown in FIG. 5C, this is because the direction of the flow path 108 from the reaction liquid introduction flow path 105 to the waste liquid storage section 106 is in the direction of centrifugal force (the direction of arrow F in the figure). This is because since the angle is 45 degrees, the centrifugal force component in the direction from the reaction liquid introduction flow path 105 toward the waste liquid container 106 becomes 0 or more. If the angle between the direction of the flow path 108 from the reaction liquid introduction flow path 105 to the waste liquid storage section 106 and the direction of the centrifugal force is not less than 0 degrees and less than 90 degrees, the reaction liquid is sent to the waste liquid storage section 106. The Therefore, in the case of θ = 45 °, if the angle φ formed by the transparent substrate 102 and the flow path 108 shown in FIG. 1B is in the range of 45 ° <φ ≦ 135 °, the reaction liquid is a waste liquid container. 106. The reaction solution in the reaction solution introduction channel 105 is sent to the waste solution storage unit 106, but the reaction solution in the reaction vessel 104 remains in the reaction vessel 104.

このように、反応液導入用流路105内の反応液を廃液収容部106に送出することにより、各反応容器104を分離することができる。   In this way, each reaction vessel 104 can be separated by sending the reaction solution in the reaction solution introduction channel 105 to the waste solution storage unit 106.

なお、図4(C)および図5(C)に示される状態で回転する際、予め反応液供給口109から、ピペット等を用いて反応液収容部107にミネラルオイルを供給しておくようにしてもよい。この状態でマイクロリアクターアレイ10を回転させると、反応液導入用流路105にミネラルオイルが充填される。この時、反応液の比重がミネラルオイルよりも重いので、反応容器104内の反応液はミネラルオイルと入れ替わらない。これにより、個々の反応容器104を分離して、反応容器104間でのコンタミネーション(ある反応容器内の反応液が、他の反応容器へ混入することによって実験環境が汚染してしまうこと)を防止することができる。また、反応処理中に、反応容器104内が乾燥することを防止することもできる。なお、ミネラルオイルの代わりに反応液よりも比重が軽く、反応液と混和せず反応液よりも蒸発しにくい液体を用いても良い。また、一旦、図4(C)および図5(C)に示される状態で回転を行って反応液導入用流路105内の反応液を廃液収容部106に送出した後で、反応液収容部107にミネラルオイルを供給し、再度遠心装置50を回転させてもよい。   When rotating in the state shown in FIG. 4C and FIG. 5C, mineral oil is previously supplied from the reaction liquid supply port 109 to the reaction liquid storage unit 107 using a pipette or the like. May be. When the microreactor array 10 is rotated in this state, the reaction liquid introduction channel 105 is filled with mineral oil. At this time, since the specific gravity of the reaction liquid is heavier than that of mineral oil, the reaction liquid in the reaction vessel 104 is not replaced with mineral oil. As a result, the individual reaction vessels 104 are separated, and contamination between the reaction vessels 104 (the reaction environment in the reaction vessel is contaminated by mixing the reaction solution in one reaction vessel with another reaction vessel). Can be prevented. It is also possible to prevent the inside of the reaction vessel 104 from being dried during the reaction process. Instead of mineral oil, a liquid that has a specific gravity lighter than that of the reaction liquid and is not miscible with the reaction liquid and is less likely to evaporate than the reaction liquid may be used. 4C and 5C, the reaction liquid in the reaction liquid introduction flow path 105 is sent to the waste liquid storage section 106 after being rotated, and then the reaction liquid storage section Mineral oil may be supplied to 107 and the centrifuge 50 may be rotated again.

以上のような手順でマイクロリアクターアレイ10に反応液を供給した後、PCR処理(生体試料反応処理)を行うことができる。具体的には、マイクロリアクターアレイ10の開口部をシールした後、マイクロリアクターアレイ10をサーマルサイクラーに設置してPCR処理を行う。一般的には、まず、94℃で2本鎖DNAを解離させる工程を実行し、次に、プライマーを約55℃でアニーリングする工程を実行し、次に耐熱性のDNAポリメラーゼを使用して約72℃で相補鎖の複製を行う工程を含むサイクルを繰り返す。   After supplying the reaction solution to the microreactor array 10 in the above procedure, PCR processing (biological sample reaction processing) can be performed. Specifically, after the opening of the microreactor array 10 is sealed, the microreactor array 10 is placed on a thermal cycler to perform PCR processing. In general, first, the step of dissociating the double-stranded DNA at 94 ° C. is performed, then the step of annealing the primer at about 55 ° C. is performed, and then the temperature is increased using a thermostable DNA polymerase. The cycle including the step of replicating the complementary strand at 72 ° C. is repeated.

PCRの後、蛍光顕微鏡を用いて個々の反応容器104内の蛍光強度を測定し、各反応容器104中の反応液に含まれる標的核酸の量を定量することができる。   After PCR, the fluorescence intensity in each reaction vessel 104 can be measured using a fluorescence microscope, and the amount of target nucleic acid contained in the reaction solution in each reaction vessel 104 can be quantified.

以上のように、本実施形態に係るマイクロリアクターアレイ10によれば、遠心力を利用して、反応液導入用流路105を通して反応容器104内に反応液を供給することにより、ピペットで定量することが難しい非常に少量の反応液での反応処理が可能となる。また、一度に多数の反応容器104内で処理を行うことができるため、多種類の検査等を効率よく行うことができる。   As described above, according to the microreactor array 10 according to the present embodiment, the reaction solution is supplied into the reaction vessel 104 through the reaction solution introduction channel 105 by using centrifugal force, and quantified with a pipette. This makes it possible to carry out a reaction process with a very small amount of reaction solution that is difficult to achieve. In addition, since processing can be performed in a large number of reaction vessels 104 at a time, various types of inspections and the like can be performed efficiently.

また、遠心力により、反応液導入用流路105と反応容器104に反応液を充填した後、遠心力の係る向きを変えて、再度遠心力により、反応液導入用流路105内の反応液を廃液収容部106に送出するようにしたので、反応処理時には個々の反応容器104を分離することができるため、反応容器間でのコンタミネーションを防ぐことができる。なお、本実施形態では、反応容器104に反応液を充填するのに遠心力を利用する例について示したが、遠心力の代わりに、毛管力やポンプによる圧力等を用いて充填するようにしてもよい。   Further, after filling the reaction liquid introduction flow path 105 and the reaction vessel 104 with the centrifugal force with the reaction liquid, the direction of the centrifugal force is changed, and the reaction liquid in the reaction liquid introduction flow path 105 is again with the centrifugal force. Since the individual reaction vessels 104 can be separated during the reaction process, contamination between the reaction vessels can be prevented. In the present embodiment, an example in which the centrifugal force is used to fill the reaction vessel 104 with the reaction solution has been described. However, instead of the centrifugal force, the reaction vessel 104 is filled with a capillary force or a pressure by a pump. Also good.

なお、本実施形態では、マイクロリアクターアレイ10をPCR反応用の反応装置として用いたが、マイクロリアクターアレイ10は、他のDNA増幅反応(例えばランプ(LAMP)法)に利用することができる。   In this embodiment, the microreactor array 10 is used as a reaction apparatus for PCR reaction, but the microreactor array 10 can be used for other DNA amplification reactions (for example, a lamp (LAMP) method).

1.2.2.標的核酸の定量
本実施形態に係る生体試料定量方法はさらに、複数の反応容器104内で核酸増幅反応を行う工程と、各々の反応容器104内において、増幅された核酸の一部に結合した蛍光プローブが発する蛍光強度を測定する工程と、各々の反応容器104内で測定された蛍光強度および各々の反応容器104で用いた競合核酸の量に基づいて、上記式(1)で表される回帰曲線を求める工程と、回帰曲線に基づいて、検体に含まれる標的核酸の量を推定する工程と、を含む。
1.2.2. Quantification of Target Nucleic Acid The biological sample quantification method according to the present embodiment further includes a step of performing a nucleic acid amplification reaction in a plurality of reaction vessels 104, and fluorescence bound to a part of the amplified nucleic acid in each reaction vessel 104. Based on the step of measuring the fluorescence intensity emitted by the probe, the fluorescence intensity measured in each reaction vessel 104 and the amount of competing nucleic acid used in each reaction vessel 104, the regression represented by the above formula (1) A step of obtaining a curve, and a step of estimating the amount of the target nucleic acid contained in the specimen based on the regression curve.

上述したように、反応容器104の表面には、既知量の競合核酸、プライマー、および蛍光プローブが配置されている。よって、反応容器104内で核酸増幅反応を行う工程では、反応容器104に予め配置された競合核酸と、反応容器104に導入された反応液に含まれる標的核酸とがともに反応容器104内で増幅される。   As described above, a known amount of competing nucleic acid, primer, and fluorescent probe are arranged on the surface of the reaction vessel 104. Therefore, in the step of performing the nucleic acid amplification reaction in the reaction vessel 104, both the competing nucleic acid previously arranged in the reaction vessel 104 and the target nucleic acid contained in the reaction solution introduced into the reaction vessel 104 are amplified in the reaction vessel 104. Is done.

核酸増幅反応では、例えば、標的核酸および競合核酸の両方に蛍光プローブが結合することができ、さらに、蛍光プローブがどちらか一方と結合した際に蛍光の消光が発生するようにしておくことができる。この状態にて、各々の反応容器104から生じる蛍光強度を測定する。次いで、各々の反応容器104内で測定された蛍光強度および各々の反応容器104で用いた競合核酸の量に基づいて、上記式(1)で表される回帰曲線を求め、この回帰曲線に基づいて、検体に含まれる標的核酸の量を推定することができる。   In the nucleic acid amplification reaction, for example, the fluorescent probe can be bound to both the target nucleic acid and the competing nucleic acid, and furthermore, quenching of the fluorescence can be caused when the fluorescent probe is bound to either one. . In this state, the fluorescence intensity generated from each reaction vessel 104 is measured. Next, based on the fluorescence intensity measured in each reaction vessel 104 and the amount of competing nucleic acid used in each reaction vessel 104, a regression curve represented by the above formula (1) is obtained, and based on this regression curve. Thus, the amount of target nucleic acid contained in the specimen can be estimated.

上記式(1)における蛍光強度(F)は、蛍光プローブが発する蛍光強度そのものでもよいし、あるいは、(i)核酸増幅反応の前に測定された蛍光強度と、核酸増幅反応の後に測定された蛍光強度との比(蛍光変化量)、または、(ii)核酸増幅後に増幅産物および蛍光プローブが解離する温度まで加熱した状態(核酸増幅反応後において蛍光プローブが増幅された核酸から解離している第1の状態)で測定された蛍光強度と、蛍光プローブが結合している温度(核酸増幅反応後において蛍光プローブが増幅された核酸の一部に結合している第2の状態)で測定された蛍光強度との比(蛍光変化量)であってもよい。   The fluorescence intensity (F) in the above formula (1) may be the fluorescence intensity itself emitted by the fluorescent probe, or (i) the fluorescence intensity measured before the nucleic acid amplification reaction and the fluorescence intensity measured after the nucleic acid amplification reaction. Ratio to fluorescence intensity (fluorescence change amount) or (ii) Heated to a temperature at which amplification product and fluorescent probe dissociate after nucleic acid amplification (fluorescent probe dissociates from amplified nucleic acid after nucleic acid amplification reaction) Fluorescence intensity measured in the first state) and the temperature at which the fluorescent probe is bound (second state in which the fluorescent probe is bound to a part of the amplified nucleic acid after the nucleic acid amplification reaction). It may be a ratio (fluorescence change amount) to the fluorescence intensity.

核酸増幅反応において得られるすべての増幅産物が標的核酸(X)を増幅したものである場合の蛍光変化量をFtとし、すべての増幅産物が競合核酸(C)を増幅したものである場合の蛍光変化量をFcとする。拡散増幅反応において競合核酸および標的核酸の両方が存在する場合、両方の増幅産物ができるため、そのときの蛍光変化量Fを以下の式(2)で表すことができる。   Fluorescence changes when Ft is the amount of change in fluorescence when all amplification products obtained in the nucleic acid amplification reaction are amplifications of the target nucleic acid (X), and fluorescence when all amplification products are amplifications of the competitive nucleic acid (C) Let Fc be the amount of change. When both the competing nucleic acid and the target nucleic acid are present in the diffusion amplification reaction, both amplification products are produced, and the fluorescence change amount F at that time can be expressed by the following formula (2).

F=FtX/(X+C)+FcC/(X+C)
=〔X(Ft−Fc)/(X+C)〕+Fc ・・・・・(2)
F = FtX / (X + C) + FcC / (X + C)
= [X (Ft−Fc) / (X + C)] + Fc (2)

上記式(2)において、Cは反応容器104における競合核酸の量(反応容器104内のコピー数)、Xは反応容器104における標的核酸の量(反応容器104内のコピー数)である。上記式(2)から上記式(1)を導くことができる。   In the above formula (2), C is the amount of competing nucleic acid in the reaction vessel 104 (copy number in the reaction vessel 104), and X is the amount of target nucleic acid in the reaction vessel 104 (copy number in the reaction vessel 104). The above formula (1) can be derived from the above formula (2).

すなわち、同じ反応容器群に属する各々の反応容器104の蛍光変化量(F)を縦軸に、各々の反応容器104に含まれる競合核酸の量(logC)を横軸にしてグラフを描くことにより、上記式(1)に示される式で表される回帰曲線が得られる(例えば後述する図9参照)。この回帰曲線から上記式(1)におけるa、b、cの3つのパラメータが求められ、bの値が標的核酸の量に相当する。   That is, by drawing a graph with the amount of change in fluorescence (F) of each reaction vessel 104 belonging to the same reaction vessel group as the vertical axis and the amount of competitive nucleic acid (log C) contained in each reaction vessel 104 as the horizontal axis, Thus, a regression curve represented by the equation shown in the above equation (1) is obtained (for example, see FIG. 9 described later). From this regression curve, three parameters a, b and c in the above equation (1) are obtained, and the value of b corresponds to the amount of the target nucleic acid.

蛍光プローブは、PCR反応によって増幅された標的核酸の一部に結合し、標的核酸と競合核酸とを識別して蛍光変化を示すものであればよく、例えば、Taqman probe(登録商標)、Hyb probe(登録商標)、Molecular Beacon(登録商標)、Q−Probe(登録商標)等を用いることができる。Q−Probeは、標識した蛍光色素にグアニン塩基が近づくと、発する蛍光が減少するという「蛍光消光現象」を利用して目的の遺伝子を検出するプローブである。   The fluorescent probe is not particularly limited as long as it binds to a part of the target nucleic acid amplified by the PCR reaction and distinguishes between the target nucleic acid and the competing nucleic acid and shows a fluorescence change. For example, Taqman probe (registered trademark), Hyb probe (Registered trademark), Molecular Beacon (registered trademark), Q-Probe (registered trademark), and the like can be used. Q-Probe is a probe that detects a target gene using a “fluorescence quenching phenomenon” in which fluorescence emitted decreases when a guanine base approaches a labeled fluorescent dye.

Q−Probeは蛍光標識されたシトシンを末端に有し、目的遺伝子に特異的に結合するような配列に設計されており、Q−Probeが目的遺伝子と結合すると、グアニンの影響を受けて蛍光が減少する。本実施形態に係る生体試料定量方法が、Q−Probeを用いた競合PCR法を採用する場合、競合核酸が、Q−Probeの蛍光標識末端塩基に対応する塩基がグアニンであるとすると、標的核酸は、Q−Probeの蛍光標識末端塩基に対応する塩基がグアニン以外の塩基であることが必要である。これにより、Q−Probeが標的核酸および競合核酸をともに共増幅した際、競合核酸とQ−Probeとがハイブリダイズすると、標識蛍光色素の蛍光発光が減少(消光)する一方、標的核酸とQ−Probeとがハイブリダイズすると、標識蛍光色素の蛍光発光は減少しない。なお、上記の説明については標的核酸と競合核酸とを入れ替えても成立する。従って、Q−Probeが標的核酸または競合核酸のどちらと結合した際に蛍光の消光が発生するかを選択することができる。   Q-Probe has a fluorescently labeled cytosine at the end and is designed to specifically bind to the target gene. When Q-Probe binds to the target gene, the fluorescence is affected by guanine. Decrease. When the biological sample quantification method according to this embodiment employs a competitive PCR method using Q-Probe, if the competitive nucleic acid is a guanine as a base corresponding to the fluorescently labeled terminal base of Q-Probe, the target nucleic acid Requires that the base corresponding to the fluorescently labeled terminal base of Q-Probe is a base other than guanine. Thereby, when Q-Probe co-amplifies both the target nucleic acid and the competing nucleic acid, when the competing nucleic acid and Q-Probe hybridize, the fluorescence emission of the labeled fluorescent dye decreases (quenches), while the target nucleic acid and Q-Probe When hybridized with Probe, the fluorescence emission of the labeled fluorescent dye does not decrease. In addition, about said description, even if it replaces a target nucleic acid and a competition nucleic acid, it is materialized. Therefore, it can be selected whether fluorescence quenching occurs when Q-Probe binds to a target nucleic acid or a competing nucleic acid.

本実施形態に係る生体試料定量方法では、マイクロリアクターアレイ10の複数の反応容器群を用いて、1つの検体から多数の検査項目を定量することができる。このような定量としては、例えば、食中毒の原因菌の遺伝子検査(より具体的には、食品中の病原微生物の検査や、食中毒患者から採取した検体(糞便)中の病原微生物の検査)が挙げられる。   In the biological sample quantification method according to the present embodiment, a large number of test items can be quantified from one specimen using a plurality of reaction container groups of the microreactor array 10. Examples of such quantification include genetic testing of food poisoning causative bacteria (more specifically, testing for pathogenic microorganisms in foods and testing for pathogenic microorganisms in samples (feces) collected from food poisoning patients). It is done.

この場合、各反応容器群を構成する反応容器104で使用する標的核酸を、食中毒の原因菌となりうる病原微生物の遺伝子とし、これらの標的核酸に対応する競合核酸を設定し、各反応容器群に配置する。各反応容器群で異なる原因菌を定量することができる。食中毒の原因菌としては、例えば、カンピロバクター、サルモネラ、緑膿菌、病原性大腸菌O−157、黄色ブドウ球菌等が挙げられる。そして、上記の各標的核酸および競合核酸に対応するように設計した蛍光プローブ(例えばQ−Probe)を各反応容器群を構成する反応容器104に配置し、上述した定量方法にしたがって各標的核酸の定量を行う。これにより、一つの検体から多項目の標的核酸の定量を一度に容易に行うことができる。   In this case, the target nucleic acid used in the reaction container 104 constituting each reaction container group is a gene of a pathogenic microorganism that can cause food poisoning, and competing nucleic acids corresponding to these target nucleic acids are set. Deploy. Different causative bacteria can be quantified in each reaction container group. Examples of food poisoning causative bacteria include Campylobacter, Salmonella, Pseudomonas aeruginosa, pathogenic Escherichia coli O-157, Staphylococcus aureus, and the like. Then, a fluorescent probe (for example, Q-Probe) designed to correspond to each of the above target nucleic acids and competing nucleic acids is placed in the reaction vessel 104 constituting each reaction vessel group, and according to the above-described quantification method, Perform quantification. As a result, multi-item target nucleic acids can be easily quantified from one sample at a time.

2.実施例
以下、実施例によって本発明をさらに詳細に説明するが、本発明は実施例に限定されない。
2. Examples Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited to the examples.

本実施例では、蛍光プローブとしてQ−Probe(Kurata et al., Nucleic acids Research, 2001, vol.29, No.6 e34)を用いた場合を例にとり、図1に示されるマイクロ
リアクターアレイ10を用いてPCR法により検体中の標的核酸を定量する方法について説明する。
In this example, the case of using Q-Probe (Kurata et al., Nucleic acids Research, 2001, vol. 29, No. 6 e34) as a fluorescent probe is taken as an example, and the microreactor array 10 shown in FIG. A method for quantifying a target nucleic acid in a sample by PCR will be described.

Q-Probeは、結合した核酸に含まれるグアニンと相互作用して著しく蛍光が消光
する。よって、標的核酸および競合核酸の両方にQ-Probeが結合できるようにし、
さらに、Q-Probeがどちらか一方と結合した際に蛍光の消光が発生するようにして
おくことにより、既知の競合核酸の量に対する標的核酸の相対量を推定することができる。
Q-Probe interacts with guanine contained in the bound nucleic acid, and its fluorescence is significantly quenched. Therefore, Q-Probe can bind to both the target nucleic acid and the competing nucleic acid,
Furthermore, by making fluorescence quenching occur when Q-Probe binds to either one, the relative amount of the target nucleic acid relative to the known amount of competing nucleic acid can be estimated.

標的核酸および競合核酸はJ−Bio21(株)から購入した。また、バッファーとして、10mM Tris−HClバッファー(pH:8.3)、KCl:50mM、Mg
Cl:1.5mMの混合液を使用した。
Target nucleic acid and competitive nucleic acid were purchased from J-Bio21 (Co). Further, as a buffer, 10 mM Tris-HCl buffer (pH: 8.3), KCl: 50 mM, Mg
A mixture of Cl 2 : 1.5 mM was used.

図6に、標的核酸とおよび競合核酸の配列例を示す。下線を引いた部分にQ-Prob
eが結合する。図6に示されるように、蛍光プローブの結合部分(下線部分)の直後が、標的核酸は「TTTT」、競合核酸は「GGGT」となっている。したがって、Q-Pr
obeは競合核酸と結合した際に、結合部分のグアニン(G)と反応するため、蛍光が消光する。
FIG. 6 shows sequence examples of the target nucleic acid and the competing nucleic acid. Q-Prob in the underlined part
e binds. As shown in FIG. 6, immediately after the binding portion (underlined portion) of the fluorescent probe, the target nucleic acid is “TTTT” and the competing nucleic acid is “GGGT”. Therefore, Q-Pr
When obe binds to a competing nucleic acid, it reacts with the binding moiety guanine (G), and thus the fluorescence is quenched.

図1に示されるマイクロリアクターアレイ10の反応容器104の表面に、図7に示される配列を有するプライマーおよび図8に示される配列を有する蛍光プローブ(Q−Probe)を予め塗布して真空乾燥することにより、プライマーおよび蛍光プローブを反応容器104の表面に配置した。Q−Probe(J-Bio21(株)から購入)は、BODI
PY FL( Molecular probes社製)を用いて蛍光標識したものを使用
した。
A primer having the sequence shown in FIG. 7 and a fluorescent probe (Q-Probe) having the sequence shown in FIG. 8 are applied in advance to the surface of the reaction vessel 104 of the microreactor array 10 shown in FIG. As a result, the primer and the fluorescent probe were arranged on the surface of the reaction vessel 104. Q-Probe (purchased from J-Bio21) is BODI
What was fluorescently labeled using PY FL (manufactured by Molecular probes) was used.

また、反応容器列A〜Fの反応容器104の表面にそれぞれ、異なる既知量の競合核酸を予め塗布して真空乾燥して配置させた。表1に、反応容器群A〜Fの各反応容器104に配置された競合核酸の量(コピー数)を示す。   In addition, different known amounts of competing nucleic acids were previously applied to the surfaces of the reaction vessels 104 in the reaction vessel rows A to F and vacuum-dried for placement. Table 1 shows the amount (copy number) of competing nucleic acids arranged in each reaction vessel 104 of the reaction vessel groups A to F.

Figure 0005505646
Figure 0005505646

続いて、標的核酸を含む反応液を反応容器104に充填し、サーマルサイクラー(Master Cycler(Eppendorf社)、Light Cycler 480(ロシュ ダイアグノスティクス社))でPCRを行った。係る反応液は、ライトサイクラー480ジェノタイピングマスターおよびウラシルDNAグルコシラーゼ(ロシュ ダイアグノスティクス社から購入)を含む。4つのマイクロリアクターアレイ10を用意し、標的核酸の量(コピー数)が異なる4つのサンプル1〜4を調製して、定量精度の確認を行った(表2)。蛍光測定は、室温で増幅反応の前後に測定し、さらに、増幅反応後には、60℃と95℃で実施した。   Subsequently, a reaction solution containing the target nucleic acid was filled in the reaction vessel 104, and PCR was performed with a thermal cycler (Master Cycler (Eppendorf), Light Cycler 480 (Roche Diagnostics)). Such a reaction solution contains a light cycler 480 genotyping master and uracil DNA glucosylase (purchased from Roche Diagnostics). Four microreactor arrays 10 were prepared, and four samples 1 to 4 having different target nucleic acid amounts (copy numbers) were prepared, and the quantitative accuracy was confirmed (Table 2). The fluorescence measurement was performed before and after the amplification reaction at room temperature, and further, at 60 ° C. and 95 ° C. after the amplification reaction.

Figure 0005505646
Figure 0005505646

反応容器列A〜Fでは、競合核酸の量が異なるため、サンプル1〜4それぞれについて、各反応容器104の蛍光変化量(F)を縦軸に、競合核酸の量(logC)を横軸にして得られたグラフが図9である。係るグラフにおいて、サンプル1〜4それぞれについて回帰曲線を求め、これらの回帰曲線に基づいて、上記式(1)におけるa、b、cの3つのパラメータが求められ、bの値が標的核酸の量に相当する。図9および上記式(1)から、サンプル1〜4におけるbの値(標的核酸の量)はそれぞれ40コピー、850コピー、9210コピー、89700コピーと算出された。   Since the amount of competing nucleic acid is different in reaction container rows A to F, the amount of change in fluorescence (F) of each reaction container 104 is plotted on the vertical axis and the amount of competing nucleic acid (log C) is plotted on the horizontal axis for each of samples 1 to 4. FIG. 9 is a graph obtained in this manner. In such a graph, a regression curve is obtained for each of samples 1 to 4, and based on these regression curves, three parameters a, b, and c in the above equation (1) are obtained, and the value of b is the amount of the target nucleic acid. It corresponds to. From FIG. 9 and the above formula (1), the value of b (amount of target nucleic acid) in samples 1 to 4 was calculated to be 40 copies, 850 copies, 9210 copies, and 89700 copies, respectively.

なお、本実施例では、1種類の標的核酸の定量結果を示したが、上述したように、反応容器群ごとに、異なる標的核酸および該標的核酸を増幅・定量するための試薬(プライマー、蛍光プローブ)を導入することにより、1つのマイクロリアクターアレイ10において、異なる複数の標的核酸の定量を行うことができる。   In this example, the quantification result of one type of target nucleic acid was shown. As described above, different target nucleic acids and reagents for amplifying and quantifying the target nucleic acid (primer, fluorescence) for each reaction container group. By introducing a probe), a plurality of different target nucleic acids can be quantified in one microreactor array 10.

以上のように、本実施例に係るマイクロリアクターアレイ10によれば、同じ反応容器群に含まれる複数の反応容器104各々において、異なる既知量の競合核酸を用いて核酸増幅反応(PCR)を行い、増幅された核酸の一部に結合した蛍光プローブが発する蛍光強度を測定することにより、各々の反応容器104内で測定された蛍光強度および各々の反応容器104で用いた競合核酸の量に基づいて、蛍光変化量Fと検体中の競合核酸の量(logC)との関係を上記式(1)で表される回帰曲線として求め、係る回帰曲線に基づいて、検体に含まれる標的核酸の量を推定することができる。これにより、標的核酸の定量を高精度でかつ効率良く行うことができる。   As described above, according to the microreactor array 10 according to the present embodiment, a nucleic acid amplification reaction (PCR) is performed using different known amounts of competing nucleic acids in each of a plurality of reaction containers 104 included in the same reaction container group. By measuring the fluorescence intensity emitted by the fluorescent probe bound to a part of the amplified nucleic acid, based on the fluorescence intensity measured in each reaction vessel 104 and the amount of competing nucleic acid used in each reaction vessel 104 Then, the relationship between the fluorescence change amount F and the amount of competing nucleic acid (logC) in the sample is obtained as a regression curve represented by the above formula (1), and the amount of target nucleic acid contained in the sample based on the regression curve Can be estimated. Thereby, the target nucleic acid can be quantified with high accuracy and efficiency.

本発明に係る実施の形態の説明は以上である。本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および結果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。   This is the end of the description of the embodiment according to the present invention. The present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same purposes and results). In addition, the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced. In addition, the invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object. Further, the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

10…マイクロリアクターアレイ、50…遠心装置、51…ホルダ、52…回転モータ、101,102,103…透明基板、104…反応容器、105…反応液導入用流路、106…廃液収容部、107…反応液収容部、108…流路、109…反応液供給口、201,202,203,204,205,206…反応容器群、A,B,C,D,E,F…反応容器列   DESCRIPTION OF SYMBOLS 10 ... Microreactor array, 50 ... Centrifugal apparatus, 51 ... Holder, 52 ... Rotation motor, 101, 102, 103 ... Transparent substrate, 104 ... Reaction container, 105 ... Reaction liquid introduction flow path, 106 ... Waste liquid storage part, 107 ... reaction liquid container, 108 ... flow path, 109 ... reaction liquid supply port, 201, 202, 203, 204, 205, 206 ... reaction container group, A, B, C, D, E, F ... reaction container row

配列番号1は、標的核酸の配列である。
配列番号2は、競合核酸の配列である。
配列番号3は、フォワードプライマーの配列である。
配列番号4は、リバースプライマーの配列である。
配列番号5は、Q−Probeの配列である。
SEQ ID NO: 1 is the sequence of the target nucleic acid.
SEQ ID NO: 2 is the sequence of a competing nucleic acid.
SEQ ID NO: 3 is the sequence of the forward primer.
SEQ ID NO: 4 is the sequence of the reverse primer.
SEQ ID NO: 5 is the sequence of Q-Probe.

Claims (4)

検体に含まれる標的核酸の定量に使用する生体試料定量用チップを用いて、前記検体に含まれる標的核酸の定量を行う生体試料定量方法であって、
前記生体試料定量用チップは複数の反応容器を含み、前記複数の反応容器は、前記標的核酸と共通のプライマーで増幅可能であって、該標的核酸とは異なる配列を有する既知量の競合核酸と、前記標的核酸および前記競合核酸に共通のプライマーと、前記標的核酸および前記競合核酸の増幅産物の一部に結合し、該標的核酸の増幅産物と該競合核酸の増幅産物とが異なる蛍光変化を示す蛍光プローブと、を含み、かつ、各々の前記反応容器に含まれる前記競合核酸の量が異なり、
前記生体試料定量方法は、
前記複数の反応容器にそれぞれ検体を導入する工程と、
前記複数の反応容器内で核酸増幅反応を行う工程と、
各々の前記反応容器内において、増幅された核酸の一部に結合した前記蛍光プローブが発する蛍光強度を測定する工程と、
各々の前記反応容器内で測定された前記蛍光強度および各々の前記反応容器で用いた前記競合核酸の量に基づいて、下記式(1)で表される回帰曲線を求める工程と、
前記回帰曲線に基づいて、前記検体に含まれる標的核酸の量を推定する工程と、
を含む、生体試料定量方法。
F=a/(C+b)+c ・・・・・(1)
(式中、Fは蛍光強度を示し、Cは競合核酸の量を示し、bは検体に含まれる標的核酸の量を示し、aおよびcは所定の値を示す。)。
A biological sample quantification method for quantifying a target nucleic acid contained in a sample using a biological sample quantification chip used for quantification of a target nucleic acid contained in the sample,
The biological sample quantification chip includes a plurality of reaction containers, and the plurality of reaction containers can be amplified with a primer common to the target nucleic acid and have a known amount of a competitive nucleic acid having a sequence different from the target nucleic acid. A primer common to the target nucleic acid and the competing nucleic acid, and a part of the amplification product of the target nucleic acid and the competing nucleic acid, wherein the amplification product of the target nucleic acid is different from the amplification product of the competing nucleic acid. And the amount of the competing nucleic acid contained in each of the reaction containers is different,
The biological sample quantification method comprises:
Introducing each sample into the plurality of reaction vessels;
Performing a nucleic acid amplification reaction in the plurality of reaction vessels;
Measuring the fluorescence intensity emitted by the fluorescent probe bound to a part of the amplified nucleic acid in each of the reaction vessels;
Obtaining a regression curve represented by the following formula (1) based on the fluorescence intensity measured in each reaction container and the amount of the competing nucleic acid used in each reaction container;
Estimating the amount of target nucleic acid contained in the specimen based on the regression curve;
A biological sample quantification method comprising:
F = a / (C + b) + c (1)
(In the formula, F represents fluorescence intensity, C represents the amount of competing nucleic acid, b represents the amount of target nucleic acid contained in the sample, and a and c represent predetermined values).
請求項1において、
前記回帰曲線を求める工程では、前記核酸増幅反応の前に測定された蛍光強度と、前記核酸増幅反応の後に測定された蛍光強度との比と、各々の前記反応容器で用いた前記競合核酸の量との関係に基づいて該回帰曲線を求める、生体試料定量方法。
In claim 1,
In the step of obtaining the regression curve, the ratio of the fluorescence intensity measured before the nucleic acid amplification reaction to the fluorescence intensity measured after the nucleic acid amplification reaction, and the competitive nucleic acid used in each reaction vessel A biological sample quantification method for obtaining the regression curve based on a relationship with an amount.
請求項1において、
前記回帰曲線を求める工程では、前記核酸増幅反応後において前記蛍光プローブが増幅された核酸の一部に結合している第1の状態で測定された蛍光強度と、前記核酸増幅反応後において前記蛍光プローブが増幅された核酸から解離している第2の状態で測定された蛍光強度との比と、各々の前記反応容器で用いた前記競合核酸の量との関係に基づいて該回帰曲線を求める、生体試料定量方法。
In claim 1,
In the step of obtaining the regression curve, after the nucleic acid amplification reaction, the fluorescence probe is bonded to a part of the amplified nucleic acid, and the fluorescence intensity is measured in the first state. The regression curve is obtained based on the relationship between the ratio of the fluorescence intensity measured in the second state in which the probe is dissociated from the amplified nucleic acid and the amount of the competing nucleic acid used in each of the reaction vessels. Quantitative method for biological sample.
検体に含まれる標的核酸の定量に使用する生体試料定量用チップを用いて、前記検体に含まれる標的核酸の定量を行う生体試料定量方法であって、
前記生体試料定量用チップは、第1の反応容器と第2の反応容器とを備え、前記第1の反応容器は、前記標的核酸を増幅させるプライマーと、前記プライマーで増幅可能であって、該標的核酸とは異なる配列を有する第1の量の競合核酸と、前記標的核酸および前記競合核酸の増幅産物の一部に結合し、該標的核酸の増幅産物と該競合核酸の増幅産物とが異なる蛍光変化を示す蛍光プローブと、を含み、前記第2の反応容器は、前記第1の量とは異なる第2の量の前記競合核酸と、前記プライマーと、前記蛍光プローブとを含み、
前記第1および第2の反応容器に前記検体を導入することと、
前記第1および第2の反応容器で核酸増幅反応を行うことと、
前記第1および第2の反応容器において、増幅された核酸の一部に結合した前記蛍光プローブが発する蛍光強度を測定することと、
前記第1および第2の反応容器で測定された前記蛍光強度並びに前記第1および第2の反応容器に含まれる前記競合核酸の量に基づいて、下記式(1)で表される回帰曲線を求めることと、
前記回帰曲線に基づいて、前記検体に含まれる標的核酸の量を推定することと、
を含む、生体試料定量方法。
F=a/(C+b)+c ・・・・・(1)
(式中、Fは前記蛍光強度を示し、Cは前記競合核酸の量を示し、bは前記検体に含まれる前記標的核酸の量を示し、aおよびcは所定の値を示す。)。
A biological sample quantification method for quantifying a target nucleic acid contained in a sample using a biological sample quantification chip used for quantification of a target nucleic acid contained in the sample,
The biological sample quantification chip includes a first reaction container and a second reaction container, and the first reaction container is capable of amplifying with the primer for amplifying the target nucleic acid, the primer, A first amount of a competitive nucleic acid having a sequence different from the target nucleic acid binds to the target nucleic acid and a part of the amplified product of the competitive nucleic acid, and the amplified product of the target nucleic acid is different from the amplified product of the competitive nucleic acid. A fluorescent probe that exhibits a change in fluorescence, and wherein the second reaction vessel includes a second amount of the competitive nucleic acid different from the first amount, the primer, and the fluorescent probe,
Introducing the specimen into the first and second reaction vessels;
Performing a nucleic acid amplification reaction in the first and second reaction vessels;
Measuring the fluorescence intensity emitted by the fluorescent probe bound to a part of the amplified nucleic acid in the first and second reaction vessels;
Based on the fluorescence intensity measured in the first and second reaction vessels and the amount of the competing nucleic acid contained in the first and second reaction vessels, a regression curve represented by the following formula (1) is obtained. Seeking and
Estimating the amount of target nucleic acid contained in the specimen based on the regression curve;
A biological sample quantification method comprising:
F = a / (C + b) + c (1)
(In the formula, F represents the fluorescence intensity, C represents the amount of the competing nucleic acid, b represents the amount of the target nucleic acid contained in the sample, and a and c represent predetermined values).
JP2010198729A 2010-09-06 2010-09-06 Biological sample quantification method Active JP5505646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010198729A JP5505646B2 (en) 2010-09-06 2010-09-06 Biological sample quantification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010198729A JP5505646B2 (en) 2010-09-06 2010-09-06 Biological sample quantification method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009214712A Division JP2011062119A (en) 2009-09-16 2009-09-16 Chip for quantitatively determining biological sample

Publications (2)

Publication Number Publication Date
JP2011062197A JP2011062197A (en) 2011-03-31
JP5505646B2 true JP5505646B2 (en) 2014-05-28

Family

ID=43949125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010198729A Active JP5505646B2 (en) 2010-09-06 2010-09-06 Biological sample quantification method

Country Status (1)

Country Link
JP (1) JP5505646B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6116836B2 (en) * 2011-09-08 2017-04-19 東芝メディカルシステムズ株式会社 Multi-nucleic acid reaction device and detection method using the same
CN110951604B (en) * 2019-12-31 2023-07-21 广州源起健康科技有限公司 Rotary device for real-time quantitative gene amplification fluorescence detection

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070128608A1 (en) * 2003-12-19 2007-06-07 Kankyo Engineering Co., Ltd. Novel mixtures for assaying nucleic acid, novel method of assaying nucleic acid with the use of the same and nucleic acid probe to be used therefor
JP4452798B2 (en) * 2004-06-25 2010-04-21 独立行政法人産業技術総合研究所 Nucleic acid quantification reagent and nucleic acid quantification method using the same
JP4458253B2 (en) * 2004-10-28 2010-04-28 有限会社バイオデバイステクノロジー Microchip for specimen sample
JP3930517B2 (en) * 2005-03-23 2007-06-13 株式会社東芝 Quantitative analysis chip for biomolecule, quantitative analysis method, quantitative analysis apparatus and system
WO2008123112A1 (en) * 2007-03-23 2008-10-16 Kabushiki Kaisha Toshiba Nucleic acid detection cassette and nucleic acid detection apparatus
JP2009047643A (en) * 2007-08-22 2009-03-05 Toppan Printing Co Ltd Biochip, and temperature detection method of same
JP5404638B2 (en) * 2007-11-07 2014-02-05 ザ ユニヴァーシティ オブ ブリティッシュ コロンビア Microfluidic device and method of use thereof
WO2009066737A1 (en) * 2007-11-20 2009-05-28 Toray Industries, Inc. Liquid-feeding chip, and analyzing method

Also Published As

Publication number Publication date
JP2011062197A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP2011062119A (en) Chip for quantitatively determining biological sample
EP2271767B1 (en) Amplicon rescue multiplex polymerase chain reaction for amplificaton of multiple targets
JP5202686B2 (en) Apparatus for performing oxygen reactions and / or molecular biology reactions and methods for amplifying nucleic acids and processes for filling
AU2013350823B2 (en) Handling liquid samples
US20050196779A1 (en) Self-contained microfluidic biochip and apparatus
US8092999B2 (en) Biological sample reaction chip and biological sample reaction method
JP5871600B2 (en) General matrix for control nucleic acids
CA2734131A1 (en) Temperature controlled nucleic-acid detection method suitable for practice in a closed-system
AU2009201529A1 (en) Apparatus For Polynucleotide Detection and Quantitation
EP3006938B1 (en) Real time quantitative and qualitative analysis method for biosubstance
EP2180066A1 (en) Single nucleotide polymorphism genotyping detection via the real-time invader assay microarray platform
EP2627787B1 (en) Quantitative multiplexed identification of nucleic acid targets
JP5505646B2 (en) Biological sample quantification method
EP3842549A1 (en) Simplified polynucleotide sequence detection method
JP6116836B2 (en) Multi-nucleic acid reaction device and detection method using the same
JP2006217818A (en) Micro reactor for inspecting gene and method for inspecting gene
WO2013035867A1 (en) Multi-nucleic acid reaction tool, and detection method using same
US20240123447A1 (en) Methods and related aspects for multiplexed analyte detection using sequential magnetic particle elution
EP2035142A1 (en) Lid for pcr vessel comprising probes permitting pcr amplification and detection of the pcr product by hybridisation without opening the pcr vessel
JP2010088317A (en) Chip for biological sample determination, kit for biological sample determination and method for biological sample determination
JP6320684B2 (en) Positive control concept
JP5258755B2 (en) A reaction chamber for real-time PCR that includes a capture probe and allows detection of PCR products by hybridization without opening the PCR chamber
WO2023046829A1 (en) Nucleic acid detection
JP2014060954A (en) Multiple nucleic acid reaction tool, production method thereof and method of quantifying nucleic acid using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140304

R150 Certificate of patent or registration of utility model

Ref document number: 5505646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350