JP5493571B2 - OTDR waveform judgment method - Google Patents

OTDR waveform judgment method Download PDF

Info

Publication number
JP5493571B2
JP5493571B2 JP2009183561A JP2009183561A JP5493571B2 JP 5493571 B2 JP5493571 B2 JP 5493571B2 JP 2009183561 A JP2009183561 A JP 2009183561A JP 2009183561 A JP2009183561 A JP 2009183561A JP 5493571 B2 JP5493571 B2 JP 5493571B2
Authority
JP
Japan
Prior art keywords
loss
abnormal
otdr
section
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009183561A
Other languages
Japanese (ja)
Other versions
JP2011038785A (en
Inventor
鐘大 鄭
将元 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009183561A priority Critical patent/JP5493571B2/en
Publication of JP2011038785A publication Critical patent/JP2011038785A/en
Application granted granted Critical
Publication of JP5493571B2 publication Critical patent/JP5493571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Description

本発明は、光パルス試験器(以下、OTDRと略記する)によって測定した光ファイバの測定波形から傾き変動がある異常部を検出して、その異常部の原因を推定するOTDR波形判定方法に関する。   The present invention relates to an OTDR waveform determination method for detecting an abnormal portion having a tilt variation from a measured waveform of an optical fiber measured by an optical pulse tester (hereinafter abbreviated as OTDR) and estimating the cause of the abnormal portion.

光ファイバ伝送路などの長距離光デバイスの障害点、破断点をメートル単位の分解能で測定する手法として、従来よりOTDR(Optical Time Domain Reflectometerの略)を用いる測定方法が普及している。
即ち、OTDRは、被試験光ファイバに光パルスを入射し、各部位からの後方散乱光の戻り時間と光量を測定する。これにより、被試験光ファイバ上の損失分布や損失値(ロス値)、欠陥位置等を算出する。このとき、光ファイバ自体に局所的にロスが高い箇所があると、OTDR波形上では傾きの変化として現れる。検査工程では、このような傾きの変化を異常部として認識して適宜処置を施している。
Conventionally, a measurement method using an OTDR (abbreviation of Optical Time Domain Reflectometer) has been widely used as a method for measuring a failure point and a break point of a long-distance optical device such as an optical fiber transmission line with a resolution of a meter unit.
In other words, the OTDR measures the return time and the amount of light of backscattered light from each part by inputting a light pulse into the optical fiber under test. Thus, the loss distribution, loss value (loss value), defect position, etc. on the optical fiber under test are calculated. At this time, if there is a portion where the loss is locally high in the optical fiber itself, it appears as a change in inclination on the OTDR waveform. In the inspection process, such a change in inclination is recognized as an abnormal part and appropriately treated.

このような異常部は、OTDR測定時の光ファイバの巻かれ方の状態によっても発生する。OTDR測定は、通常ボビンに巻かれた状態で測定するため、ボビン巻き付け時にうまく整列巻きができず、線ハネ・蛇行と呼ばれるような状態で巻かれた箇所は、OTDR測定で異常部として検出される。これは、このような線ハネ・蛇行している箇所では、光ファイバ側圧・微少曲げによるロス増が発生するためである。このような、巻き状態に起因するOTDR異常部は、通常巻き替えることにより消失する。
一方、ファイバ自体に起因にした異常でOTDR異常部が生じることもあるが、このようなファイバ自体に起因したOTDR異常部は、巻き替えても消失せず、同一箇所に異常部が生じるため、異常部位を特定して除去する必要がある。
Such an abnormal part also occurs depending on how the optical fiber is wound during OTDR measurement. Since OTDR measurement is normally performed in a state where it is wound around a bobbin, it is difficult to align and wind well when bobbin is wound. The This is because the increase in the loss due to the optical fiber side pressure and the slight bending occurs in such a line-slipping / meandering portion. Such an OTDR abnormal part due to the winding state disappears by normal rewinding.
On the other hand, although an OTDR abnormal part may occur due to an abnormality caused by the fiber itself, the OTDR abnormal part caused by such a fiber itself does not disappear even if it is wound, and an abnormal part occurs at the same location. It is necessary to identify and remove the abnormal part.

従来のOTDR波形判定方法の一例として、OTDRで得られた波形を用いて光ファイバの異常部を検出する際に、OTDR波形を所定幅の複数の区間に分割して、有効範囲を決めるものがある(例えば、特許文献1参照)。具体的には、各区間内の区間標準偏差が閾値を超え、その閾値を超える区間が連続するとき、この連続する区間を有効範囲から除外するものである。   As an example of a conventional OTDR waveform determination method, when an abnormal portion of an optical fiber is detected using a waveform obtained by OTDR, the effective range is determined by dividing the OTDR waveform into a plurality of sections having a predetermined width. Yes (see, for example, Patent Document 1). Specifically, when the section standard deviation in each section exceeds the threshold and the sections exceeding the threshold continue, the consecutive sections are excluded from the effective range.

特開2006−64480号公報JP 2006-64480 A

しかしながら、OTDR測定波形では、異常部か否かを判定することは出来るものの、巻き起因の異常と光ファイバ自体に起因するその他の異常とを区別するのは困難であった。したがって、その他の異常の場合、巻き替えても直らないものの、巻き起因の異常と同様に、再度巻き替えを行って、同一箇所に異常が発生しているかを確認する必要があり、無駄な工程が発生していた。   However, in the OTDR measurement waveform, although it can be determined whether or not it is an abnormal portion, it is difficult to distinguish between an abnormality caused by winding and another abnormality caused by the optical fiber itself. Therefore, in the case of other abnormalities, although it cannot be corrected even after rewinding, it is necessary to perform rewinding again in the same way as the abnormality caused by winding to check whether an abnormality has occurred at the same location, which is a wasteful process. Had occurred.

本発明の目的は、上記課題を解消することに係り、巻き替えを行うことなくOTDR波形から巻き起因による異常を確認・選別することができるOTDR波形判定方法を提供することにある。   An object of the present invention is to provide an OTDR waveform determination method capable of confirming and selecting an abnormality caused by winding from an OTDR waveform without performing rewinding, in order to solve the above problems.

上記課題を解決するために、本発明に係るOTDR波形判定方法は、OTDR測定器により、ボビンに巻かれた状態の光ファイバの一方端から試験光を入射させ、戻り光の戻り時間データと戻り光の光パワーを測定し、該測定されたOTDR測定データ複数の区間に分割して各区間の区間ロスを求め、該区間ロスと全体ロスとの差を求めることにより傾き変動がある異常部を検出し、該検出した異常部でのロス増分を1.55μm以上の2波長以上の決められた各波長で求め、各波長における前記異常部のロス増分の総和の比を求め、前記比を所定値と比較することにより波長依存性を求めることで、検出された前記異常部が、前記光ファイバが前記ボビンに整列されずに巻かれた部分を含むことに起因して検出された異常部であるか、または、前記光ファイバ自体に局所的にロスが高い箇所があることに起因して検出された異常部であるかを選別することを特徴とするOTDR波形判定方法。
In order to solve the above-described problem, an OTDR waveform determination method according to the present invention causes test light to enter from one end of an optical fiber wound around a bobbin by using an OTDR measuring device, and return time data and return time data of the return light. Measure the optical power of light, divide the measured OTDR measurement data into a plurality of sections to determine the section loss of each section, and determine the difference between the section loss and the total loss, thereby causing an abnormal part with inclination fluctuation And detecting the increase in loss at the detected abnormal part at each of the determined wavelengths of 1.55 μm or more, obtaining the ratio of the sum of the increase in loss at the abnormal part at each wavelength, and calculating the ratio By detecting the wavelength dependency by comparing with a predetermined value, the detected abnormal portion includes a portion in which the optical fiber is wound without being aligned with the bobbin. Or Is, OTDR waveform judgment method characterized by selecting whether a locally abnormal portion which loss is detected due to that there is a high point on the optical fiber itself.

このように構成されたOTDR波形判定方法によれば、OTDR測定器を用いて、ボビンに巻かれた状態の光ファイバの一方端から試験光を入射させる。このときの戻り光の戻り時間データと、戻り光の光パワーのデータとを測定する。そして、測定されたOTDR測定データを複数の区間に分割して各区間の区間ロスを求め、該区間ロスと全体ロスとの差を求めることにより傾き変動がある異常部(段差部分など)を検出して、この異常部でのロス増分を1.55μm以上の2波長以上の決められた各波長で求める。さらに、各波長における前記異常部のロス増分の総和の比を求め、前記比を所定値と比較することにより異常部のロス増分の波長依存性を求めることで、該異常部の原因を推定することができ、検出された前記異常部が、前記光ファイバが前記ボビンに整列されずに巻かれた部分を含むことに起因して検出された異常部であるか、または、前記光ファイバ自体に局所的にロスが高い箇所があることに起因して検出された異常部であるかを選別することができる。OTDR波形から巻き起因による異常を確認・選別することができるので、全てのOTDR異常部において同じように巻き替えることはせずに、ファイバに起因した異常部であれば除去し、異常部の全てが巻き起因と判断された場合に限り、巻き替えれば良いことになる。
According to the OTDR waveform determination method configured as described above, the test light is incident from one end of the optical fiber wound around the bobbin using the OTDR measuring device. The return time data of the return light at this time and the optical power data of the return light are measured. Then, the measured OTDR measurement data is divided into a plurality of sections, the section loss of each section is obtained, and the difference between the section loss and the total loss is obtained to detect an abnormal portion (stepped portion, etc.) having a tilt variation. Then, the loss increment at the abnormal part is obtained at each determined wavelength of two or more wavelengths of 1.55 μm or more. Furthermore, the cause of the abnormal part is estimated by calculating the ratio of the sum of the loss increments of the abnormal part at each wavelength and determining the wavelength dependence of the loss increment of the abnormal part by comparing the ratio with a predetermined value. And the detected abnormal portion is an abnormal portion detected because the optical fiber includes a portion wound without being aligned with the bobbin, or the optical fiber itself It is possible to select whether or not an abnormal portion is detected due to the presence of a locally high loss portion . Since abnormalities due to winding can be confirmed and selected from the OTDR waveform, it is not necessary to rewind in the same way in all OTDR abnormal parts, but if there are abnormal parts due to fibers, all abnormal parts are removed. Only when it is determined that is caused by winding, rewinding is sufficient.

本発明に係るOTDR波形判定方法によれば、巻き替えを行うことなくOTDR波形から巻き起因による異常を確認・選別することができる。   According to the OTDR waveform determination method according to the present invention, it is possible to confirm and select an abnormality caused by winding from an OTDR waveform without performing rewinding.

本発明に係るOTDR測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the OTDR measuring apparatus which concerns on this invention. 本発明に係るOTDR波形判定方法の一実施形態を示すフローチャートである。3 is a flowchart illustrating an embodiment of an OTDR waveform determination method according to the present invention. 本発明に係るOTDR波形判定方法において、巻き起因による異常量Δ1550と異常量Δ1625との関係を示したグラフである。5 is a graph showing a relationship between an abnormal amount Δ1550 and an abnormal amount Δ1625 caused by winding in the OTDR waveform determination method according to the present invention.

以下、本発明に係るOTDR波形判定方法の好適な実施の形態について、図面を参照して詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of an OTDR waveform determination method according to the present invention will be described in detail with reference to the drawings.

図1に示すように、OTDR100では、パルス発生器3が発生する一定周期のパルス波でレーザダイオード等の光源5を励起し、光源5より光パルスを発生させる。光源5が発生した光パルスは、方向性結合器7を通り、光コネクタ9を介して接続される基準光ファイバや測定対象光ファイバなどの被測定光ファイバ11の一端に入射され、当該被測定光ファイバ11内を伝搬する。   As shown in FIG. 1, in the OTDR 100, a light source 5 such as a laser diode is excited by a pulse wave of a fixed period generated by a pulse generator 3, and an optical pulse is generated from the light source 5. The light pulse generated by the light source 5 passes through the directional coupler 7 and is incident on one end of an optical fiber 11 to be measured such as a reference optical fiber or an optical fiber to be measured connected via an optical connector 9. It propagates in the optical fiber 11.

被測定光ファイバ11内で反射された戻り光である光パルスは、後方散乱光出力として方向性結合器7に戻り、該方向性結合器7から受光部13に送られる。この受光部13は、例えば、アバランシェ・フォトダイオード(APD)等を内蔵していて、受光した後方散乱光出力を電気信号に変換する光電変換器として機能する。受光部13により変換された電気信号は、アンプ(増幅器)15で増幅された後、信号処理装置17に送られる。信号処理装置17によって得られるOTDR特性やデータ等は、記憶装置に記憶・保存されると共に、液晶ディスプレイ等による表示装置19に表示される。   The light pulse that is the return light reflected in the optical fiber 11 to be measured returns to the directional coupler 7 as a backscattered light output, and is sent from the directional coupler 7 to the light receiving unit 13. The light receiving unit 13 includes, for example, an avalanche photodiode (APD) and functions as a photoelectric converter that converts the received backscattered light output into an electric signal. The electric signal converted by the light receiving unit 13 is amplified by an amplifier 15 and then sent to a signal processing device 17. The OTDR characteristics, data, and the like obtained by the signal processing device 17 are stored / stored in the storage device and displayed on the display device 19 such as a liquid crystal display.

OTDR測定では、OTDR特性の傾きがロス値を表し、光ファイバの巻き乱れやガラス自体の異常等があると波形が蛇行したり段差となって現れたりする。このように、OTDR特性を測定することで、光ファイバの巻き起因による異常やその他の異常を検知することができる。なお、OTDR測定は、通常ボビンに巻き付けられた状態で行う。   In the OTDR measurement, the slope of the OTDR characteristic represents a loss value, and if there is a turbulence in the optical fiber or an abnormality in the glass itself, the waveform will meander or appear as a step. Thus, by measuring the OTDR characteristic, it is possible to detect an abnormality caused by the winding of the optical fiber and other abnormalities. Note that the OTDR measurement is normally performed in a state of being wound around a bobbin.

次に、OTDR波形判定フローを図2に基づいて説明する。
OTDR波形判定フローは、OTDR測定、波形解析・異常部検出、異常量算出、異常種別の判別の4工程からなっている。
Next, the OTDR waveform determination flow will be described with reference to FIG.
The OTDR waveform determination flow includes four steps of OTDR measurement, waveform analysis / abnormal part detection, abnormality amount calculation, and abnormality type determination.

(測定光ファイバのOTDR測定)
方向性結合器7に光コネクタ9を介し、被測定光ファイバ11を接続する。信号処理装置17は、その測定対象光ファイバの片端または両端から光を入射して得られたOTDR特性を測定する(ステップS1)。OTDRの測定波長は、一般的なOTDRが持っている光源で且つ長波長側の光源を使用する。これは、巻き起因のOTDR異常が、長波長側で大きく現れるためである。以下の記載では、1550nmと1625nmの2波長を使用して測定する場合について述べるが、この波長に限定されるものではない。
なお、2波長の入射端は同一である必要はなく(後で異常部の位置を合わせることが出来れば良い)、また、両端入射の場合は、各波長の両端入射した各波形を平均化した後に次の処理を進める。
(Measurement fiber OTDR measurement)
The optical fiber 11 to be measured is connected to the directional coupler 7 via the optical connector 9. The signal processing device 17 measures the OTDR characteristic obtained by entering light from one or both ends of the measurement target optical fiber (step S1). The measurement wavelength of OTDR is a light source of a general OTDR and a light source on the long wavelength side. This is because the OTDR anomaly caused by winding appears greatly on the long wavelength side. In the following description, a case where measurement is performed using two wavelengths of 1550 nm and 1625 nm will be described, but the present invention is not limited to this wavelength.
Note that the incident ends of the two wavelengths do not need to be the same (it is only necessary to align the position of the abnormal part later). In the case of both-end incidence, the waveforms incident at both ends of each wavelength are averaged. The next process is advanced later.

(測定光ファイバの異常部検出)
次に、傾き変動がある異常部(段差部分)を検出する(ステップS2)。具体的には、下記1)〜6)の順に行う。
(Detection of abnormal part of measurement optical fiber)
Next, an abnormal part (step part) having an inclination variation is detected (step S2). Specifically, the following steps 1) to 6) are performed.

1)OTDRにより取得したOTDR波形を複数の区間に分割する。
2)各区間毎に区間内の傾き(区間ロス)を算出する。
3)異常部検出の対象となる有効範囲を決定する。有効範囲は、その始点と終点を決定することにより行う。
4)有効範囲全体の傾き(以後、「全体ロス」という)を求める。
5)有効範囲から異常部の判定を行う。異常部を判定するには、全体ロスと区間ロスとの差を求める。この差を予め決めておいた所定値と比較し、その区間が異常部であるか否かを判断する。即ち、全体ロスと区間ロスとの差が所定値より大きいか又は同じである場合、その区間を異常部であると判断する。なお、有効範囲で各区間の全体ロスと区間ロスとの差の標準偏差が所定の値より大きくなった区間を、異常部と判断することとしても良い。
6)各区間が異常部か否かの判定を全区間について行う。
1) The OTDR waveform acquired by OTDR is divided into a plurality of sections.
2) The slope (section loss) within the section is calculated for each section.
3) Determine an effective range for which an abnormal part is detected. The effective range is determined by determining its start point and end point.
4) The inclination of the entire effective range (hereinafter referred to as “total loss”) is obtained.
5) The abnormal part is determined from the effective range. In order to determine the abnormal part, the difference between the total loss and the section loss is obtained. This difference is compared with a predetermined value determined in advance, and it is determined whether or not the section is an abnormal part. That is, if the difference between the total loss and the section loss is greater than or equal to a predetermined value, the section is determined to be an abnormal part. Note that a section in which the standard deviation of the difference between the total loss and the section loss of each section in the effective range is larger than a predetermined value may be determined as an abnormal part.
6) It is determined for all sections whether each section is an abnormal part.

(測定光ファイバの異常量算出)
次に、前工程で測定した区間ロスを波長毎に求め、異常量を算出する(ステップS3〜S6)。
先ず、比較する波長毎の異常部位の位置をマッチングする(ステップS3)。異常範囲が比較する2波長で完全に一致しない(例えば一区間ずれる)場合には、2波長での異常部位がどちらも含まれるように、広く区間を設定する。区間ロスは、1kmの単位で求め、500m間隔でスライドさせる。そのため、単純に異常範囲内の区間ロスを全て使用すると、重なっている区間がダブルカウントすることになるので、異常範囲内で区間ロスの最大値を求め(ステップS4)、この最大値を示す位置を起点とし、起点とした位置から1kmステップで区間ロスを抽出する。
なお、異常区間の端では、500mのみが含まれる場合があるが、この場合、1km範囲で求めた区間ロスから端部の500m分のロス値を算出し、これを端での異常量とする。
(Abnormal amount calculation of measurement optical fiber)
Next, the section loss measured in the previous process is obtained for each wavelength, and the abnormal amount is calculated (steps S3 to S6).
First, the position of the abnormal part for each wavelength to be compared is matched (step S3). When the abnormal ranges do not completely match at the two wavelengths to be compared (for example, one section is shifted), the section is set to be wide so that both abnormal parts at the two wavelengths are included. The section loss is obtained in units of 1 km and is slid at intervals of 500 m. Therefore, if all section losses within the abnormal range are simply used, overlapping sections will be double counted, so the maximum value of the section loss is determined within the abnormal range (step S4), and the position indicating this maximum value Is used as a starting point, and a section loss is extracted in 1 km steps from the starting point.
In some cases, only 500 m may be included at the end of the abnormal section. In this case, a loss value for 500 m at the end is calculated from the section loss obtained in the 1 km range, and this is used as the abnormal amount at the end. .

(OTDR異常部種別の判定)
前工程で求めた異常範囲において、前述したように区間が重ならないようにしながら、波長毎に区間ロスの総和を求める(ステップS5)。その後、波長毎に異常範囲内の区間ロスと通常ロス(平均ロス)とから異常量(Δ=Σ(区間ロス−通常ロス))を求める(ステップS6)。実際の計算では、区間ロスの総和から通常ロス×区間数を差し引いた値を求めることになる。そして、波長毎の異常量の比を基準値と比較することにより、OTDR異常部の種別を判定する(ステップS7)。
(Determination of OTDR abnormal part type)
In the abnormal range obtained in the previous step, the sum of the section losses is obtained for each wavelength while preventing the sections from overlapping as described above (step S5). Thereafter, an abnormal amount (Δ = Σ (section loss−normal loss)) is obtained from the section loss and the normal loss (average loss) within the abnormal range for each wavelength (step S6). In actual calculation, a value obtained by subtracting the normal loss × the number of sections from the total section loss is obtained. Then, the type of the OTDR abnormal part is determined by comparing the ratio of the abnormal amount for each wavelength with the reference value (step S7).

以上説明したように本実施形態のOTDR波形判定方法によれば、測定されたOTDR測定データから、傾き変動がある異常部を検出し、検出した異常部でのロス増分を2波長以上の決められた各波長で求め、異常部のロス増分の波長依存性を求めることで、巻き起因による異常部を選別することができる。OTDR波形から巻き起因による異常を確認・選別することができるので、全てのOTDR異常部において巻き替える必要は無くなり、巻き起因の異常のみを含むファイバの場合に限り巻き替えれば良いことになる。   As described above, according to the OTDR waveform determination method of the present embodiment, an abnormal part having a tilt variation is detected from the measured OTDR measurement data, and the loss increment at the detected abnormal part can be determined to be two or more wavelengths. By obtaining each wavelength and obtaining the wavelength dependence of the loss increment of the abnormal part, the abnormal part due to winding can be selected. Since abnormality due to winding can be confirmed and selected from the OTDR waveform, it is not necessary to rewind in all OTDR abnormal portions, and it is sufficient to rewind only in the case of a fiber including only abnormality due to winding.

上述したOTDR波形判定方法の検証を具体的な計算例に基づいて行う。なお、以下に記載する数値は一例であって、本発明はこの数値に限定されるものではない。   Verification of the above-described OTDR waveform determination method is performed based on a specific calculation example. In addition, the numerical value described below is an example and this invention is not limited to this numerical value.

(計算例)
区間ロスは、上記したように1km単位500mステップにて求めているため、単純に異常範囲内のΣ(区間ロス−通常ロス)として算出せず、下記方法を採っている。
1)異常範囲内で最大区間ロスとなる区間検出。
2)検出した区間を起点とし、区間が重ならないように区間ロスを一つ飛ばして区間ロスの和を求める。但し、端の区間ロスが異常範囲内に500mしか含まれない場合は、前後区間ロスを勘案し、重み付けを行い500mの区間ロスを求める。
3)2)にて求めた区間ロスの和から通常ロスを差し引き、異常量を求める。
(Calculation example)
As described above, the section loss is obtained in units of 1 km and 500 m steps. Therefore, the section loss is not simply calculated as Σ (section loss−normal loss) within the abnormal range, and the following method is employed.
1) Detecting a section with a maximum section loss within the abnormal range.
2) Starting from the detected section, skip one section loss so that the sections do not overlap, and obtain the sum of the section losses. However, if the end section loss is only 500 m within the abnormal range, the section loss of 500 m is obtained by weighting in consideration of the preceding and following section loss.
3) The normal loss is subtracted from the sum of the section losses obtained in 2) to obtain the abnormal amount.

Figure 0005493571
Figure 0005493571

表1において、波長1550nmでは、33km〜35.5kmの範囲が異常区間と判定され、波長1625nmでは、33km〜36kmの範囲が異常区間と判定された。
波長1550nmと波長1625nmで異常範囲が異なるため、マッチングを実施して、異常範囲の広い波長1625nmに合わせて、33km〜36kmの範囲を異常範囲とする。
In Table 1, the range of 33 km to 35.5 km was determined as an abnormal interval at a wavelength of 1550 nm, and the range of 33 km to 36 km was determined as an abnormal interval at a wavelength of 1625 nm.
Since the abnormal range is different between the wavelength 1550 nm and the wavelength 1625 nm, matching is performed, and the range of 33 km to 36 km is set as the abnormal range in accordance with the wavelength 1625 nm having a wide abnormal range.

上記1)の異常範囲内での最大区間ロスを探す。
表1より区間ロス@1550nmでは、0.19882(★印)を示す34.5〜35.5km、区間ロス@1625nmでは、0.25385(★印)を示す33.5〜34.5kmが最大区間ロスとなる。
Find the maximum section loss within the abnormal range of 1) above.
According to Table 1, 34.5 to 35.5 km indicating 0.19882 (★ mark) at section loss @ 1550 nm, and 33.5 to 34.5 km indicating 0.25385 (★ mark) at section loss @ 1625 nm. It becomes section loss.

上記2)の起点となる区間から区間ロスの総和を算出する。
区間ロス(33.0〜34.0)から33.0〜33.5の範囲(端部)、区間ロス(33.5〜34.5)、区間ロス(34.5〜35.5)、区間ロス(35.0〜36.0)から35.5〜36.0の範囲(端部)の和(表1中の太枠内の斜字の区間の和。但し、端部を含む区間は、範囲の重ならない0.5km分を計算した値のみを加えるものとする。)を取る。なお、端部の区間から500m部分のみ抜き取る方法として、除外する区間が重なる区間との重み付け平均化を実施している。即ち、次式から求めている。
区間ロス(33.0〜33.5)=区間ロス(33.0〜34.0)×{区間ロス(33.0〜34.0)/(区間ロス(33.0〜34.0)+区間ロス(33.5〜34.5))}
The sum of the section losses is calculated from the section that is the starting point of 2).
The range (end) of section loss (33.0-34.0) to 33.0-33.5, section loss (33.5-34.5), section loss (34.5-35.5), Sum of sections (ends) ranging from section loss (35.0 to 36.0) to 35.5 to 36.0 (sum of slanted sections within the thick frame in Table 1. Section including ends Is only the value calculated for 0.5 km where the ranges do not overlap. Note that, as a method of extracting only the 500 m portion from the end section, weighted averaging with a section in which sections to be excluded overlap is performed. That is, it is obtained from the following equation.
Section loss (33.0 to 33.5) = section loss (33.0 to 34.0) × {section loss (33.0 to 34.0) / (section loss (33.0 to 34.0) + Section loss (33.5-34.5))}

区間ロスの総和の計算結果は以下となる。
波長1550nmの総和は、Σ区間ロス(33.0〜36.0)=0.19126×
0.19126/(0.19126+0.19267)
+0.19267
+0.19882
+0.18442×0.18442/(0.19882+0.18442)
=0.575514dB
波長1625nmの総和は、Σ区間ロス(33.0〜36.0)=0.22854×
0.22854/(0.22854+0.25385)
+0.25385
+0.22729
+0.21377×0.21377/(0.22729+0.21377)
=0.693023dB
The calculation result of the sum of the section loss is as follows.
The sum of the wavelengths of 1550 nm is Σ section loss (33.0-36.0) = 0.19126 ×
0.19126 / (0.19126 + 0.19267)
+0.19267
+0.19882
+ 0.18442 × 0.18442 / (0.19882 + 0.18442)
= 0.575514 dB
The sum total of the wavelength 1625 nm is Σ section loss (33.0-36.0) = 0.282854 ×
0.22854 / (0.22854 + 0.25385)
+0.25385
+0.22729
+ 0.21377 × 0.21377 / (0.22729 + 0.21377)
= 0.693023dB

上記3)の異常量(Δ)を、上記2)で求めた異常範囲内の区間ロスの総和から(通常ロス×異常範囲数)を引くことで算出する。なお、通常ロスは、OTDR全体の測定値(平均値)とする。
Δ1550=0.575514−0.186×3=0.017514dB
Δ1625=0.693023−0.212×3=0.057023dB
ロス増分の比Δ1550/Δ1625=0.307
The abnormal amount (Δ) of 3) is calculated by subtracting (normal loss × number of abnormal ranges) from the sum of the section losses in the abnormal range obtained in 2). The normal loss is a measured value (average value) of the entire OTDR.
Δ1550 = 0.575514-0.186 × 3 = 0.0175514 dB
Δ1625 = 0.6930303-0.212 × 3 = 0.057023 dB
Loss increment ratio Δ1550 / Δ1625 = 0.307

図3は巻き起因による異常量Δ1550と異常量Δ1625との関係を示す。グラフから、巻き起因による異常量をこのようにグラフ化すると、一定の傾きを持った直線上に乗ることが分かる。この直線は、異常量Δ1550をy、異常量Δ1625をxとすると、次式で表すことができる。
y=0.3652x
一般的に、巻き起因以外のOTDR異常の場合、波長依存性が小さいため、Δ1550/Δ1625の値は大きくなる。即ち、この比を計算し、基準値と比較することによって、巻き起因の異常であるか、それ以外の異常であるかが判定できる。上記の例では、例えばΔ1550/Δ1625の基準値を0.4とすれば、これ以上の値であれば巻き起因以外、これ以下の値であれば巻き起因と判定できる。
FIG. 3 shows the relationship between the abnormal amount Δ1550 due to winding and the abnormal amount Δ1625. From the graph, it can be seen that when the abnormal amount due to winding is graphed in this way, it is on a straight line with a certain slope. This straight line can be expressed by the following equation where y is the abnormal amount Δ1550 and x is the abnormal amount Δ1625.
y = 0.3652x
In general, in the case of an OTDR abnormality other than that due to winding, since the wavelength dependency is small, the value of Δ1550 / Δ1625 increases. That is, by calculating this ratio and comparing it with a reference value, it is possible to determine whether the abnormality is due to winding or other abnormality. In the above example, if the reference value of Δ1550 / Δ1625 is set to 0.4, for example, it can be determined that the value is greater than this, except for winding, and if it is less than this, it is determined that winding is caused.

3 パルス発生器
5 光源(レーザダイオード)
7 方向性結合器
9 光コネクタ
13 受光部(光電変換器)
15 アンプ(増幅器)
17 信号処理装置
19 表示装置
100 OTDR(光パルス試験器)
3 Pulse generator 5 Light source (laser diode)
7 Directional coupler 9 Optical connector 13 Light receiving part (photoelectric converter)
15 Amplifier
17 Signal Processing Device 19 Display Device 100 OTDR (Optical Pulse Tester)

Claims (1)

OTDR測定器により、ボビンに巻かれた状態の光ファイバの一方端から試験光を入射させ、戻り光の戻り時間データと戻り光の光パワーを測定し、該測定されたOTDR測定データを複数の区間に分割して各区間の区間ロスを求め、該区間ロスと全体ロスとの差を求めることにより傾き変動がある異常部を検出し、該検出した異常部でのロス増分を1.55μm以上の2波長以上の決められた各波長で求め、各波長における前記異常部のロス増分の総和の比を求め、前記比を所定値と比較することにより波長依存性を求めることで、検出された前記異常部が、前記光ファイバが前記ボビンに整列されずに巻かれた部分を含むことに起因して検出された異常部であるか、または、前記光ファイバ自体に局所的にロスが高い箇所があることに起因して検出された異常部であるかを選別することを特徴とするOTDR波形判定方法。 The test light is incident from one end of the optical fiber wound in the bobbin by the OTDR measuring instrument, the return time data of the return light and the optical power of the return light are measured, and the measured OTDR measurement data Dividing into sections to determine section loss of each section, and detecting the difference between the section loss and the total loss to detect an abnormal part with inclination fluctuation, and increase the loss increment at the detected abnormal part to 1.55 μm or more It was detected at each determined wavelength of two or more wavelengths, and the ratio of the total loss increment of the abnormal portion at each wavelength was determined, and the wavelength dependency was determined by comparing the ratio with a predetermined value . The abnormal portion is an abnormal portion detected because the optical fiber includes a portion wound without being aligned with the bobbin , or a location where the optical fiber itself has a high loss Wake up to OTDR waveform judgment method characterized by selecting whether the detected abnormal portion by.
JP2009183561A 2009-08-06 2009-08-06 OTDR waveform judgment method Active JP5493571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009183561A JP5493571B2 (en) 2009-08-06 2009-08-06 OTDR waveform judgment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009183561A JP5493571B2 (en) 2009-08-06 2009-08-06 OTDR waveform judgment method

Publications (2)

Publication Number Publication Date
JP2011038785A JP2011038785A (en) 2011-02-24
JP5493571B2 true JP5493571B2 (en) 2014-05-14

Family

ID=43766730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009183561A Active JP5493571B2 (en) 2009-08-06 2009-08-06 OTDR waveform judgment method

Country Status (1)

Country Link
JP (1) JP5493571B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8724102B2 (en) * 2010-12-22 2014-05-13 Telefonaktièbolaget LM Ericsson (publ) Optical time domain reflectometry (OTDR) trace analysis in PON systems
US11483067B2 (en) 2018-08-30 2022-10-25 Nec Corporation Optical time domain reflectometer, test method of optical transmission line, and test system of optical transmission line
US11476930B2 (en) 2018-08-30 2022-10-18 Nec Corporation Optical time domain reflectometer, method of testing optical transmission line, and test system of optical transmission line

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330739A (en) * 1986-07-24 1988-02-09 Sumitomo Electric Ind Ltd Method for measuring back scattering of optical fiber
JPH0227231A (en) * 1988-07-18 1990-01-30 Nippon Telegr & Teleph Corp <Ntt> Measurement of length-wise distortion for optical fiber
JP4518873B2 (en) * 2004-08-25 2010-08-04 住友電気工業株式会社 Abnormal part judgment method

Also Published As

Publication number Publication date
JP2011038785A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
CN107483106B (en) Online optical time domain reflectometer structure, detection system and detection method
US9322721B2 (en) Optic fiber distributed temperature sensor system with self-correction function and temperature measuring method using thereof
US20140104599A1 (en) Method of improving performance of optical time domain reflectometer (otdr)
KR100822506B1 (en) Turbine blade bucket health monitoring and prognosis using neural network based diagnostic techniques in conjunction with pyrometer signals
JP4759493B2 (en) Optical equipment detection method and optical equipment detection system
CN109029770B (en) Distributed optical fiber Raman temperature and strain demodulation method based on loop demodulation
JP5493571B2 (en) OTDR waveform judgment method
JP7200989B2 (en) Optical fiber transmission loss measurement method and OTDR measurement device
JP6896354B2 (en) Optical pulse test device and optical pulse test method
JP6220764B2 (en) Optical fiber characteristic analysis apparatus and optical fiber characteristic analysis method
US20150022803A1 (en) Fiber signal loss event identification
JP2008020229A (en) Light pulse tester
JP5489047B2 (en) OTDR device
US7317518B2 (en) Determination of an optical property of a DUT by OTDR measurement
JP4518873B2 (en) Abnormal part judgment method
US20230126470A1 (en) Inundation detection system and inundation detection method
WO2020158033A1 (en) Optical pulse testing device and optical pulse testing method
JP2011179845A (en) System and method for monitoring of optical communication
CN111103067A (en) Cable trench temperature monitoring method and system based on single-mode optical fiber
JP6387025B2 (en) Determination apparatus, determination method, and program
JP2006078378A (en) Method for measuring length in optical fiber
JP4728991B2 (en) Optical line monitoring method, optical line monitoring system, optical line monitoring device and program thereof
JP7192626B2 (en) Temperature measuring device, temperature measuring method and temperature measuring program
CN217469960U (en) Optical time domain reflectometer and distributed optical fiber sensor optical cable fault acquisition device
JP7331959B2 (en) Apparatus and method for detecting immersion in optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121120

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5493571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250