JP5488865B2 - Glass melting furnace and glass melting method - Google Patents

Glass melting furnace and glass melting method Download PDF

Info

Publication number
JP5488865B2
JP5488865B2 JP2009048928A JP2009048928A JP5488865B2 JP 5488865 B2 JP5488865 B2 JP 5488865B2 JP 2009048928 A JP2009048928 A JP 2009048928A JP 2009048928 A JP2009048928 A JP 2009048928A JP 5488865 B2 JP5488865 B2 JP 5488865B2
Authority
JP
Japan
Prior art keywords
glass
raw material
tank
platinum
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009048928A
Other languages
Japanese (ja)
Other versions
JP2010202444A (en
Inventor
和史 中野
央 加藤
正利 鈴木
慶太 飯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2009048928A priority Critical patent/JP5488865B2/en
Publication of JP2010202444A publication Critical patent/JP2010202444A/en
Application granted granted Critical
Publication of JP5488865B2 publication Critical patent/JP5488865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Description

本発明は、固体撮像素子パッケージ用カバーガラス等の溶融に好適するガラス溶融炉及びガラス溶融方法に関する。   The present invention relates to a glass melting furnace and a glass melting method suitable for melting a cover glass for a solid-state imaging device package.

デジタルカメラ、ビデオカメラ等の撮像装置に用いる固体撮像素子パッケージは、パッケージ本体内に配置した固体撮像素子の前面にカバーガラスを気密に設けるようにしている。撮像装置に高品質の高精細画像が求められるのにともない、固体撮像素子の高密度化が進み、固体撮像素子の前面を覆うカバーガラスに用いるガラスについても、光学欠陥の少ない高品質なガラスであることが必要となる。   A solid-state image pickup device package used in an image pickup apparatus such as a digital camera or a video camera has a cover glass provided in an airtight manner on the front surface of the solid-state image pickup device arranged in the package body. As high-quality, high-definition images are required for imaging devices, the density of solid-state image sensors has increased, and the glass used for the cover glass that covers the front of the solid-state image sensor is also high-quality glass with few optical defects. It is necessary to be.

光学欠陥の少ない高品質なガラスを得るには、ガラス原料の純度を高くすると共に、ガラス溶融工程における汚染、具体的にはガラス溶融炉の炉材等からの汚染をできるだけ少なくすることが必要であり、また、異物欠点やガラス本来の特性欠陥である脈理や泡などをできるだけ少なくすることが必要である。   In order to obtain high-quality glass with few optical defects, it is necessary to increase the purity of the glass raw material and to minimize the contamination in the glass melting process, specifically, the contamination from the glass melting furnace materials. In addition, it is necessary to reduce as many striae and bubbles as possible, which are foreign matter defects and inherent characteristic defects of glass.

これに対し溶融ガラスを連続して得るためのガラス溶融炉として、図5、図6に概略構成の断面図を示す天井部を有する原料溶解槽(ガラス原料の投入口、溶融ガラスの流出口は不図示)51,61のように、例えば槽材料に電鋳レンガなどの耐火物52を用いてガラス原料の溶解を行う槽本体53,63を構成し、槽内壁面を耐火物面52aとしたもの(図5)や、さらに、耐火物の表面に白金部材62を設け、槽内壁面を白金面62aとしたもの(図6)がある。   On the other hand, as a glass melting furnace for continuously obtaining molten glass, a raw material melting tank (a glass raw material inlet, a molten glass outlet is shown in FIG. 5 and FIG. (Not shown) 51 and 61, for example, tank bodies 53 and 63 for melting a glass raw material using a refractory 52 such as an electroformed brick as a tank material are formed, and the inner wall surface of the tank is a refractory surface 52a. There is a thing (FIG. 5) and a thing (FIG. 6) which further provided the platinum member 62 on the surface of the refractory and made the inner wall surface of the tank a platinum surface 62a.

耐火物面52aで槽内壁面を構成したものでは、耐火物52が溶融ガラス54によって侵蝕されるために槽材料の耐久性が低く、また侵蝕反応によって溶融ガラス54に不均質部分が発生し、不均質部分が主体となって形成されたガラスにコード脈理が生じる虞がある。一方、白金面62aで槽内壁面を構成したものでは、耐火物52の溶融ガラス54による侵蝕が防げるために槽材料の耐久性が高くなり、またガラスに生じる脈理が少ない。しかし、槽内壁面を白金面62aとしたものでは、ガラスに白金異物が多くなる問題が生じる。   In the case where the inner wall surface of the tank is constituted by the refractory surface 52a, the durability of the tank material is low because the refractory 52 is eroded by the molten glass 54, and an inhomogeneous portion is generated in the molten glass 54 by the erosion reaction. There is a possibility that cord striae may occur in the glass formed mainly of inhomogeneous portions. On the other hand, in the case where the inner wall surface of the tank is constituted by the platinum surface 62a, the refractory 52 is prevented from being eroded by the molten glass 54, so that the durability of the tank material is increased and the striae generated in the glass are small. However, in the case where the inner wall surface of the tank is the platinum surface 62a, there arises a problem that platinum foreign matter increases in the glass.

そこで異物欠点となっている白金異物について、その混入過程を調べ、解析したところ、ガラスに含まれる白金異物の殆どがガラス原料を溶解する原料溶解槽で発生していることが判明した。   Thus, the platinum foreign matter which is a foreign matter defect was investigated and analyzed, and it was found that most of the platinum foreign matter contained in the glass was generated in the raw material melting tank for melting the glass raw material.

すなわち、ガラスを溶解するため高温となっている原料溶解槽の槽上部雰囲気に白金が接することによって揮散し、その後に新たにガラス原料を投入することで槽上部雰囲気の温度よりも低温であるガラス原料に揮散していた白金が凝固する。凝固した白金は、溶融ガラスに異物として取り込まれることになる。一旦溶融ガラス中に取り込まれた白金異物は融点が高いので容易にイオン化することができず、そのまま形成されたガラスの中に欠点として残る。そして、原料溶解槽には、溶融ガラスの流出に伴い新たなガラス原料が投入されるので、槽上部雰囲気には揮散した白金が継続して存在し、ガラスへの白金異物の取り込みが続くことになる。   In other words, the glass is volatilized by contacting platinum with the atmosphere at the upper part of the raw material melting tank in order to melt the glass, and then the glass raw material is newly added to the glass so that the temperature is lower than the temperature of the upper atmosphere of the tank. Platinum volatilized in the raw material solidifies. The solidified platinum is taken into the molten glass as a foreign substance. The platinum foreign matter once taken into the molten glass has a high melting point and cannot be easily ionized, and remains as a defect in the formed glass as it is. And since a new glass raw material is thrown into the raw material melting tank as the molten glass flows out, the volatilized platinum is continuously present in the atmosphere at the top of the tank, and the platinum foreign matter is continuously taken into the glass. Become.

このため、白金が揮散しないようにするには、高温度となっている原料溶解槽の槽上部雰囲気に白金が接触しないようにすることが必要で、このようにすれば白金は揮散せず、ガラス中に白金異物が取り込まれなくなる。また、原料溶解槽の槽内壁面を白金でなく耐火物とすれば、槽内壁面から高温度の雰囲気中に揮散する白金がそもそも存在しないため、白金異物がガラスに取り込まれないことになる。すなわち、原料溶解槽の槽上部の内壁面を白金でなく耐火物とし、高温度となっている槽上部雰囲気に白金が接触しないようにすれば、ガラスへの白金異物の取込みが抑制されることになる。こうした調査、解析で得た知見をもとに、発明者等は本発明を完成させた。   For this reason, in order not to volatilize platinum, it is necessary to prevent platinum from coming into contact with the atmosphere at the upper part of the raw material dissolution tank, and in this way, platinum does not volatilize, Platinum foreign matter is not taken into the glass. Moreover, if the inner wall surface of the raw material dissolution tank is made of refractory instead of platinum, platinum volatilized from the inner wall surface into the high-temperature atmosphere does not exist in the first place, so that platinum foreign matter is not taken into the glass. In other words, if the inner wall surface of the upper part of the raw material dissolution tank is made of refractory instead of platinum, and platinum is prevented from coming into contact with the atmosphere at the upper part of the tank, the incorporation of platinum foreign matter into the glass can be suppressed. become. The inventors completed the present invention based on the knowledge obtained through such investigation and analysis.

なお、ガラス中に粒子状の白金が取り込まれるのを防ぐために、ガラス溶融炉内で酸素を燃焼させ、ガラス溶融を行う燃焼空間の酸素濃度を5%以上50%以下に保持することで白金をイオン化し、ガラス中に溶け込ませて白金異物を減少させるようにしたものがある(例えば、特許文献1参照)。しかし、このように白金をイオン化して溶け込ませようとした場合には、ガラス組成や溶融温度によっては十分にイオン化できないことが考えられ、さらに、白金イオンにより可視域の光の透過率が低下する虞があり、例えば固体撮像素子のカバーガラスに用いるガラス等では、可視域の光に対し高い透過率が求められ、また着色成分の混入はできるだけ避ける必要があるので、好ましくない。   In order to prevent particulate platinum from being taken into the glass, oxygen is burned in a glass melting furnace, and the oxygen concentration in the combustion space in which the glass is melted is maintained at 5% to 50%. Some of them are ionized and dissolved in glass to reduce platinum foreign matter (for example, see Patent Document 1). However, when platinum is ionized and melted in this way, it may be impossible to ionize sufficiently depending on the glass composition and melting temperature, and further, the transmittance of light in the visible region is reduced by platinum ions. For example, glass or the like used for a cover glass of a solid-state image sensor is not preferable because high transmittance is required for light in the visible range and mixing of coloring components should be avoided as much as possible.

また、白金製容器中で原料バッチを溶融ガラス化し、さらに白金製容器で精製を行うと多量の白金ブツが発生することから、少なくとも原料バッチの溶融ガラス化を耐火物製の容器(ルツボ)で行って、白金ブツの発生を抑制するようにしたものがある(例えば、特許文献2参照)。そして、この特許文献2によれば、耐火物製容器を用いることについて、ガラスへの放射性同位元素であるU(ウラン)及びTh(トリウム)の混入量が著しく少なくなり、形成したガラスを固体撮像素子のカバーガラスに用いた場合にはソフトエラーを低減することができるとし、一方では、耐火物製容器は溶融ガラスにより侵蝕され易いために、従来は高い均質度の光学系ガラスの製造には用いていなかったとしている。   In addition, when a raw material batch is made into molten glass in a platinum container and further refined in a platinum container, a large amount of platinum is generated, so at least the raw material batch is made into molten glass with a refractory container (crucible). In some cases, the generation of platinum bumps is suppressed (see, for example, Patent Document 2). According to Patent Document 2, the use of a refractory container reduces the amount of radioactive isotopes U (uranium) and Th (thorium) mixed into the glass and solid-state imaging the formed glass. Soft errors can be reduced when used for the cover glass of the element. On the other hand, since refractory containers are easily corroded by molten glass, conventionally, it has been difficult to produce optical glass with high homogeneity. It is said that it was not used.

特開2001−10822号公報JP 2001-10822 A 特開平7−237933号公報JP-A-7-237933

上記のような状況に鑑みて本発明はなされたもので、その目的とするところはガラス原料を投入しながら溶解槽で溶解し、連続して溶融ガラスを流出させた場合に、溶融ガラスに不均質部分が発生する虞が少なく、また白金異物が取り込まれる虞も少なく、コード脈理や異物欠点などの光学欠陥が少ない高品質なガラスを歩留よく形成することができるガラス溶融炉及びガラス溶融方法を提供することにある。   The present invention has been made in view of the above situation. The object of the present invention is to melt the molten glass in the melting tank while feeding the glass raw material, and when the molten glass is continuously discharged, the molten glass is not suitable. Glass melting furnace and glass melting that can form high-quality glass with low yield, with little chance of homogeneous parts, less chance of platinum foreign matter being incorporated, and few optical defects such as cord striae and foreign matter defects It is to provide a method.

本発明のガラス溶融炉及びガラス溶融方法は、
ガラス原料を投入しながら溶解を行うと共に、溶解で得られた溶融ガラスを連続して次段に流出させるように構成した原料溶解槽を備えるガラス溶融炉であって、 前記原料溶解槽は天井部により閉塞しており、前記天井部及び前記原料溶解槽本体の上部内壁面が、槽を形成する耐火物が露出する耐火物面となっており、前記原料溶解槽本体の下部内壁面が、白金または白金合金でなる白金部材を前記耐火物に内張りした白金面によって形成されており、かつ該白金面は、その上端が前記溶融ガラス上方の槽上部雰囲気中に露出しない位置となるように形成されていることを特徴とするものであり、
さらに、前記白金面は、その面積が前記原料溶解槽の内壁面に前記溶融ガラスが接触している面積の70%以上となっていることを特徴とするものであり、
さらに、前記原料溶解槽の次段以降に、前記溶融ガラスの流れ方向に沿って、少なくとも1つの清澄槽、攪拌槽を順に配設したことを特徴とするものであり、
さらに、前記原料溶解槽は、化石燃料をバーナー燃焼させて加熱を行うものであることを特徴とするものである。
The glass melting furnace and glass melting method of the present invention are:
A glass melting furnace comprising a raw material melting tank configured to melt while adding a glass raw material and to continuously flow the molten glass obtained by melting to the next stage, wherein the raw material melting tank is a ceiling portion The upper inner wall surface of the ceiling part and the raw material dissolution tank body is a refractory surface from which the refractory forming the tank is exposed, and the lower inner wall surface of the raw material dissolution tank body is platinum. Alternatively , a platinum member made of a platinum alloy is formed by a platinum surface lined on the refractory, and the platinum surface is formed such that the upper end thereof is not exposed to the atmosphere above the molten glass. It is characterized by that,
Furthermore, the platinum surface is characterized in that the area is 70% or more of the area where the molten glass is in contact with the inner wall surface of the raw material melting tank,
Furthermore, after the next stage of the raw material dissolution tank, along the flow direction of the molten glass, at least one clarification tank, a stirring tank is sequentially disposed,
Furthermore, the raw material dissolution tank is characterized in that fossil fuel is heated by burning with a burner.

また、ガラス溶融方法が、天井部を設けて閉塞した原料溶解槽本体の上部内壁面が、槽を形成する耐火物が露出する耐火物面となっており、前記原料溶解槽本体の下部内壁面が白金または白金合金でなる白金部材を前記耐火物に内張りした白金面で形成された原料溶解槽によりガラス原料を投入しながら溶解し、溶解して得た溶融ガラスを、連続して次過程に流し出すようにしたガラス溶融方法であって、前記原料溶解槽への前記ガラス原料の投入と、該原料溶解槽からの前記溶融ガラスの流し出しとを、前記白金面の上端が前記溶融ガラス上方の槽上部雰囲気と前記溶融ガラスとの界面よりも下方に位置し、かつ前記白金面の面積が、前記溶融ガラスが前記原料溶解槽内壁面に接触する面積の70%以上となるようにしながら行なうことを特徴とする方法である。 Further, in the glass melting method, the upper inner wall surface of the raw material melting tank body closed by providing a ceiling is a refractory surface from which the refractory forming the tank is exposed, and the lower inner wall surface of the raw material melting tank body The molten glass obtained by melting the molten glass obtained by melting and melting the glass material through the raw material melting tank formed by the platinum surface lined with platinum or platinum alloy made of platinum or platinum alloy in the next process. A glass melting method in which the glass raw material is charged into the raw material melting tank and the molten glass is poured out from the raw material melting tank, and an upper end of the platinum surface is above the molten glass. The area of the platinum surface is located below the interface between the upper atmosphere of the tank and the molten glass, and the area of the platinum surface is 70% or more of the area of the molten glass contacting the inner wall surface of the raw material melting tank. That It is a method for the butterflies.

以上の説明から明らかなように、本発明によれば、原料ガラスを連続して溶解し、流出させる際、溶融ガラスに不均質部分が発生する虞や白金異物が取り込まれる虞が少なくなると共に、コード脈理や異物欠点などの光学欠陥の少ない高品質ガラスを、良好な歩留のもとに得ることができる等の効果を奏する。   As is clear from the above description, according to the present invention, when the raw glass is continuously melted and discharged, there is less risk of inhomogeneous parts being generated in the molten glass and platinum foreign matter being taken in, and High-quality glass with few optical defects such as cord striae and foreign matter defects can be obtained with good yield.

本発明の一実施形態のガラス溶融炉を示す断面図である。It is sectional drawing which shows the glass melting furnace of one Embodiment of this invention. 本発明の一実施形態における原料溶解槽を示す縦断面図である。It is a longitudinal cross-sectional view which shows the raw material dissolution tank in one Embodiment of this invention. 本発明の一実施形態における原料溶解槽の部分断面図である。It is a fragmentary sectional view of the raw material dissolution tank in one embodiment of the present invention. 本発明の一実施形態に係る各実施例におけるガラス溶融例を示す図で、図4(a)はガラス溶融結果を示す図、図4(b)はガラス原料組成を示す図である。It is a figure which shows the glass melting example in each Example which concerns on one Embodiment of this invention, FIG. 4 (a) is a figure which shows a glass melting result, FIG.4 (b) is a figure which shows a glass raw material composition. 原料溶解槽の第1の従来技術を示す概略構成の断面図である。It is sectional drawing of schematic structure which shows the 1st prior art of a raw material dissolution tank. 原料溶解槽の第2の従来技術を示す概略構成の断面図である。It is sectional drawing of schematic structure which shows the 2nd prior art of a raw material dissolution tank.

以下本発明の一実施形態を、図1乃至図4を参照して説明する。図1はガラス溶融炉を示す断面図であり、図2は原料溶解槽を示す縦断面図であり、図3は原料溶解槽の部分断面図であり、図4は各実施例におけるガラス溶融例を示す図で、図4(a)はガラス溶融結果を示す図、図4(b)はガラス原料組成を示す図である。   An embodiment of the present invention will be described below with reference to FIGS. 1 is a sectional view showing a glass melting furnace, FIG. 2 is a longitudinal sectional view showing a raw material melting tank, FIG. 3 is a partial sectional view of the raw material melting tank, and FIG. 4 is a glass melting example in each embodiment. FIG. 4A is a diagram showing a glass melting result, and FIG. 4B is a diagram showing a glass raw material composition.

図1乃至図3において、ガラス溶融炉1は、原料溶解槽2と、清澄槽3と、均質化槽4とを、それぞれガラス流路管5,6によって溶融ガラス7の流れ方向に沿って横方向に連設するように構成されている。またガラス溶融炉1は、例えばLPG(液化石油ガス)、重油、LNG(液化天然ガス)等の化石燃料を用いたバーナー燃焼方式による加熱方法でガラス原料の溶解を行うよう構成された炉となっている。そして、原料溶解槽2でガラス原料を図示しない投入口から投入しながら溶解して得られた溶融ガラス7は、清澄槽3と均質化槽4で清澄、均質化が行われる。その後、均質化槽4に設けられたガラス流出ノズル8から図示しない成形装置等に連続して送り込まれ、成形されて所要のガラス製品となる。   1 to 3, a glass melting furnace 1 includes a raw material melting tank 2, a clarification tank 3, and a homogenization tank 4, which are placed sideways along the flow direction of the molten glass 7 by glass flow path tubes 5 and 6, respectively. It is comprised so that it may continue in the direction. The glass melting furnace 1 is a furnace configured to melt a glass raw material by a heating method by a burner combustion method using fossil fuels such as LPG (liquefied petroleum gas), heavy oil, and LNG (liquefied natural gas). ing. And the molten glass 7 obtained by melting | dissolving the glass raw material in the raw material melting tank 2 through the inlet which is not shown in figure is clarified and homogenized by the clarification tank 3 and the homogenization tank 4. FIG. Thereafter, the glass is continuously fed from a glass outflow nozzle 8 provided in the homogenization tank 4 to a molding apparatus (not shown) or the like and molded into a required glass product.

また、原料溶解槽2については、天井部9を設けて槽本体10の上部を覆うことで閉塞し、略直方体状とした構造を有し、耐火物を用いて形成されている。さらに原料溶解槽2は、天井部9及び槽本体10の上部内壁面が、槽を形成する耐火物11が露出する耐火物面11aとなっており、槽本体10の下部内壁面については、白金や白金合金で形成された白金膜あるいは白金板等の白金部材12を耐火物11に内張りした白金面12aとなっている。またさらに原料溶解槽2は、槽下部側壁にガラス流路管5の片端が槽内下部に連通すると共に、下流方向に向かって上り傾斜となるように取り付けられている。そして、このように構成された原料溶解槽2では、ガラス原料を投入しながら、その溶解と溶融ガラス7中の大きな泡の除去が行われ、その後、溶融ガラス7はガラス流路管5を介して清澄槽3に流し出される。   Moreover, about the raw material melt | dissolution tank 2, the ceiling part 9 is provided, it obstruct | occludes by covering the upper part of the tank main body 10, has the structure made into the substantially rectangular parallelepiped shape, and is formed using the refractory. Further, in the raw material dissolution tank 2, the ceiling portion 9 and the upper inner wall surface of the tank body 10 are a refractory surface 11a from which the refractory material 11 forming the tank is exposed, and the lower inner wall surface of the tank body 10 is made of platinum. Further, a platinum surface 12a is formed by lining a refractory 11 with a platinum member 12 such as a platinum film or a platinum plate formed of platinum alloy. Furthermore, the raw material dissolution tank 2 is attached to the tank lower side wall so that one end of the glass flow channel pipe 5 communicates with the lower part in the tank and is inclined upward in the downstream direction. In the raw material melting tank 2 configured in this way, melting and removal of large bubbles in the molten glass 7 are performed while adding the glass raw material, and then the molten glass 7 passes through the glass flow path tube 5. And then poured out into the clarification tank 3.

また、清澄槽3は、槽内部が密閉された構造を有する、例えば白金や白金合金で内張りし内面が白金面(不図示)となるように構成されたものであると共に、槽内形状が溶融ガラス7の流れ方向に長手方向を有する偏平な略直方体形状で水平に設置される。さらに清澄槽3の長手方向の上流側となる片端の側壁中央部分には、ガラス流路管5の他端が連通するように取り付けられている。また長手方向の下流側となる他端の側壁中央部分には、ガラス流路管6が水平になるようその片端が連通するように取り付けられている。またさらに清澄槽3の天井部分には、槽内上部に連通するようにガス抜き管13が立設されている。そして、原料溶解槽2から流入した溶融ガラス7は、溶融状態が保たれたまま槽内を下流方向に流れ、その間に清澄剤として、例えばAs、Sb、NaCl、NaSO、SnOなどを用いて清澄が行なわれ、溶存していたガスがガス抜き管15を介して槽外部へ放出され、その後、ガラス流路管6を介して均質化槽4に流し出される。 Further, the clarification tank 3 has a structure in which the inside of the tank is sealed, for example, is lined with platinum or a platinum alloy so that the inner surface becomes a platinum surface (not shown), and the inner shape of the tank is melted. The glass 7 is horizontally installed in a flat and substantially rectangular parallelepiped shape having a longitudinal direction in the flow direction. Furthermore, the other end of the glass flow path tube 5 is attached to the central portion of the side wall at one end which is the upstream side in the longitudinal direction of the clarification tank 3. Moreover, it attaches so that the one end may communicate with the center part of the side wall of the other end used as the downstream of a longitudinal direction so that the glass flow path tube 6 may become horizontal. Further, a degassing pipe 13 is erected at the ceiling portion of the clarification tank 3 so as to communicate with the upper part in the tank. Then, the molten glass 7 that has flowed from the raw material melting tank 2 flows through the tank while the molten state is maintained in the downstream direction, as a fining agent during, e.g., As 2 O 3, Sb 2 O 3, NaCl, Na 2 Clarification is performed using SO 4 , SnO 2, etc., and the dissolved gas is discharged to the outside of the tank through the gas vent pipe 15, and then flows out to the homogenization tank 4 through the glass flow path pipe 6. It is.

また、均質化槽4は、例えば白金や白金合金で内張りし内面が白金面(不図示)となるよう構成されたもので、上部に開口部を有する直立円筒形状をした容器14内に図示しない駆動源によって攪拌動作する攪拌装置15を備えている。この攪拌装置15は、容器14内に垂直に設けられた回転軸16の下端部に攪拌部材17を備えて構成されている。また容器14には、側壁面の上部にガラス流路管6の他端が容器14内に連通するように取り付けられ、さらに底部に、同じく連通するようにガラス流出ノズル8が取り付けられている。そして、清澄槽3からガラス流路管6を介して均質化槽4に流れ込んだ微細な泡が除去された溶融ガラス7は、容器14内で攪拌装置15によって攪拌され、均質化される。その後、均質化された溶融ガラス7は、ガラス流出ノズル8から成形装置等に連続して送り出される。   Further, the homogenization tank 4 is configured such that it is lined with, for example, platinum or a platinum alloy and the inner surface is a platinum surface (not shown), and is not shown in an upright cylindrical container 14 having an opening in the upper part. A stirrer 15 that stirs by a drive source is provided. The stirring device 15 includes a stirring member 17 at a lower end portion of a rotating shaft 16 provided vertically in the container 14. Moreover, the glass outflow nozzle 8 is attached to the container 14 so that the other end of the glass flow path tube 6 communicates with the inside of the container 14 at the upper part of the side wall surface and further communicates with the bottom part. And the molten glass 7 from which the fine bubble which flowed into the homogenization tank 4 via the glass flow path pipe 6 from the clarification tank 3 was removed is stirred by the stirring apparatus 15 within the container 14, and is homogenized. Thereafter, the homogenized molten glass 7 is continuously sent out from the glass outflow nozzle 8 to a molding apparatus or the like.

上記のように構成されたガラス溶融炉1で、図4(b)に示した原料組成Aのガラス原料を原料溶解槽2に投入するようにしながら溶解して溶融ガラス7を得、さらに溶融ガラス7を連続して清澄槽3、均質化槽4へと流し出し、またさらに均質化槽4から成形装置に送出し、ガラスの成形を行った。ちなみに、原料組成Aのガラス原料は、その組成が各重量%で、SiO:68.2%、Al:3.2%、B:18.8%、LiO:1.2%、NaO:0.8%、KO:7.5%、Cl:0.2%、SO:0.1%である。 In the glass melting furnace 1 configured as described above, the glass raw material of the raw material composition A shown in FIG. 4B is melted while being introduced into the raw material melting tank 2 to obtain a molten glass 7, and further the molten glass 7 was continuously poured out into the clarification tank 3 and the homogenization tank 4, and further sent out from the homogenization tank 4 to a molding apparatus to form a glass. Incidentally, the glass raw material of the raw material composition A has a composition of each weight%, SiO 2 : 68.2%, Al 2 O 3 : 3.2%, B 2 O 3 : 18.8%, Li 2 O: 1.2%, Na 2 O: 0.8%, K 2 O: 7.5%, Cl: 0.2%, SO 3 : 0.1%.

また、原料溶解槽2でガラス原料を溶解し流し出しを行う際のガラス原料の投入量と溶融ガラス7の流し出し量の関係は、槽内の溶融ガラス7の溶融ガラス面7aから白金面12aの上端12bが、槽上部雰囲気2a中に露出しないように、すなわち、溶融ガラス7上方の槽上部雰囲気2aと溶融ガラス7との界面よりも下方に位置するように、例えば溶融ガラス7が表面張力で槽内壁面に接触し濡れ上がる部分18でも界面よりも下方に位置するように、それぞれ調節するようにして行なった。   Further, the relationship between the amount of glass raw material charged and the amount of molten glass 7 poured out when melting and pouring out the glass raw material in the raw material melting tank 2 is as follows: from the molten glass surface 7a to the platinum surface 12a of the molten glass 7 in the tank. For example, the molten glass 7 has a surface tension so that the upper end 12b is not exposed in the tank upper atmosphere 2a, that is, below the interface between the tank upper atmosphere 2a above the molten glass 7 and the molten glass 7. The portion 18 that comes into contact with the inner wall surface of the tank and gets wet is adjusted so as to be positioned below the interface.

この時の原料溶解槽2における溶融ガラス面7aのレベルの調節位置は、原料溶解槽2の耐火物面11a、白金面12aを合わせた槽内壁面に接触する溶融ガラス7の総接触面積に対し、白金面12aの面積が70%(白金接触面積比率)となるようにした。また、原料溶解槽2でガラス原料を溶解した後の清澄槽3での清澄工程は1450℃で清澄を行い、さらに均質化槽4で均質化を行った。そして、このようにして得られたガラスついて、所定形状のガラスブロックを形成し、研磨を施して50倍の実体顕微鏡で観察して、白金異物と泡についてチェックした(以降の実施例、比較例においても同様)。チェックの結果、白金異物は、10個/kgと少なく、泡は、0.4個/kgであり、脈理については見られなかった。また、α線放出量についての測定を行ったところ、0.002c/cm・hと低レベルであった。 The adjustment position of the level of the molten glass surface 7a in the raw material melting tank 2 at this time is relative to the total contact area of the molten glass 7 in contact with the inner wall surface of the raw material melting tank 2 including the refractory surface 11a and the platinum surface 12a. The area of the platinum surface 12a was 70% (platinum contact area ratio). Moreover, the clarification process in the clarification tank 3 after melt | dissolving the glass raw material in the raw material dissolution tank 2 performed clarification at 1450 degreeC, and also homogenized in the homogenization tank 4. FIG. Then, a glass block having a predetermined shape was formed on the glass thus obtained, polished, and observed with a 50-fold stereomicroscope to check for foreign platinum particles and bubbles (the following examples and comparative examples) The same applies to the above). As a result of the check, platinum foreign matter was as small as 10 pieces / kg, and foam was 0.4 pieces / kg, and no striae was observed. Further, when the amount of α-ray emission was measured, it was a low level of 0.002 c / cm 2 · h.

次に、実施例1と同じガラス溶解炉1で、図4(b)に示した原料組成Bのガラス原料を原料溶解槽2に投入するようにしながら溶解して溶融ガラス7を得、さらに溶融ガラス7を連続して清澄槽3、均質化槽4へと流し出し、またさらに均質化槽4から成形装置に送出し、ガラスの成形を行った。ちなみに、原料組成Bのガラス原料は、その組成が各重量%で、SiO:73.0%、Al:4.3%、B:12.5%、LiO:1.8%、NaO:7.6%、ZnO:0.6%、Sb:0.2%である。 Next, in the same glass melting furnace 1 as in Example 1, the glass raw material having the raw material composition B shown in FIG. The glass 7 was continuously poured out into the clarification tank 3 and the homogenization tank 4, and further sent out from the homogenization tank 4 to a molding apparatus to form the glass. By the way, the glass raw material of the raw material composition B has a composition of each weight%, SiO 2 : 73.0%, Al 2 O 3 : 4.3%, B 2 O 3 : 12.5%, Li 2 O: It is 1.8%, Na 2 O: 7.6%, ZnO: 0.6%, Sb 2 O 3 : 0.2%.

この時の原料溶解槽2における溶融ガラス面7aのレベルの調節位置については、原料溶解槽2の槽内壁面の耐火物面11a、白金面12aに接触する溶融ガラス7の総接触面積に対して白金面12aの面積が80%(白金接触面積比率)となるようにし、原料溶解槽2へのガラス原料の投入量と溶融ガラス7の流し出し量の関係を、槽内の溶融ガラス7の溶融ガラス面7aから白金面12aの上端12bが、槽上部雰囲気2a中に露出しないように調節した。また、原料溶解槽2でガラス原料を溶解した後の清澄槽3での清澄工程は1420℃で清澄を行い、さらに均質化槽4で均質化を行った。   About the adjustment position of the level of the molten glass surface 7a in the raw material melting tank 2 at this time, with respect to the total contact area of the molten glass 7 in contact with the refractory surface 11a and the platinum surface 12a of the inner wall surface of the raw material melting tank 2 The area of the platinum surface 12a is 80% (platinum contact area ratio), and the relationship between the amount of the glass raw material charged into the raw material melting tank 2 and the amount of the molten glass 7 poured out is determined by melting the molten glass 7 in the tank. It adjusted so that the upper end 12b of the platinum surface 12a might not be exposed in the tank upper atmosphere 2a from the glass surface 7a. Moreover, the clarification process in the clarification tank 3 after melt | dissolving the glass raw material in the raw material dissolution tank 2 performed clarification at 1420 degreeC, and also homogenized in the homogenization tank 4. FIG.

そして、このようにして得られたガラスにおける白金異物は、0.3個/kgと実施例1よりもさらに少なく、泡は、0.1個/kgであり、脈理については見られなかった。また、α線放出量についての測定を行ったところ、0.0001c/cm・hと非常に低レベルであった。 And the platinum foreign material in the glass obtained in this way was 0.3 pieces / kg and still less than Example 1, a bubble was 0.1 piece / kg, and it was not seen about striae. . Further, when the amount of α-ray emission was measured, it was a very low level of 0.0001 c / cm 2 · h.

比較例1Comparative Example 1

上記の実施例1に対し、ガラス原料の原料組成を実施例2と同じ原料組成Bとし、原料溶解槽2の槽内壁面への溶融ガラス7の総接触面積に対して白金面12aの面積が50%(白金接触面積比率)となるように変更した以外は全て同一装置を用いてガラスの成形を行った。   Compared to Example 1 above, the raw material composition of the glass raw material is the same raw material composition B as in Example 2, and the area of the platinum surface 12a with respect to the total contact area of the molten glass 7 to the inner wall surface of the raw material melting tank 2 is Except for changing to 50% (platinum contact area ratio), glass was molded using the same apparatus.

このようにしてガラス溶解を行った比較例1では、得られたガラスにおける白金異物は槽内の溶融ガラス7の溶融ガラス面7aから白金面12aの上端12bが、槽上部雰囲気2a中に露出しないように調節されることから4.4個/kgと非常に少ないものの、溶融ガラス7が耐火物面11aに接触する面積が大きいために、溶融ガラス7によって耐火物11が侵蝕され、脈理が25%生じた。なお、α線放出量については、0.004c/cm・hと低レベルであった。 In Comparative Example 1 in which glass was melted in this manner, platinum foreign matter in the obtained glass was not exposed from the molten glass surface 7a of the molten glass 7 to the upper end 12b of the platinum surface 12a in the tank upper atmosphere 2a. However, since the area where the molten glass 7 contacts the refractory surface 11a is large, the refractory 11 is eroded by the molten glass 7 and the striae is very small. 25% produced. The α ray emission amount was a low level of 0.004 c / cm 2 · h.

次に、実施例1と同じガラス溶解炉1で、図4(b)に示した原料組成Cのガラス原料を原料溶解槽2に投入するようにしながら溶解して溶融ガラス7を得、さらに溶融ガラス7を連続して清澄槽3、均質化槽4へと流し出し、またさらに均質化槽4から成形装置に送出し、ガラスの成形を行った。ちなみに、原料組成Cのガラス原料は、その組成が各重量%で、SiO:60.5%、Al:13.2%、B:7.5%、LiO:4.2%、NaO:2.7%、MgO:0.3%、CaO:1.0%、ZnO:10.0%、SO:0.1%、SnO:0.5%である。 Next, in the same glass melting furnace 1 as in Example 1, the glass raw material of the raw material composition C shown in FIG. The glass 7 was continuously poured out into the clarification tank 3 and the homogenization tank 4, and further sent out from the homogenization tank 4 to a molding apparatus to form the glass. By the way, the glass raw material of the raw material composition C is SiO 2 : 60.5%, Al 2 O 3 : 13.2%, B 2 O 3 : 7.5%, Li 2 O: 4.2%, Na 2 O: 2.7%, MgO: 0.3%, CaO: 1.0%, ZnO: 10.0%, SO 3 : 0.1%, SnO 2 : 0.5% It is.

この時の原料溶解槽2における溶融ガラス面7aのレベルの調節位置については、原料溶解槽2の槽内壁面の耐火物面11a、白金面12aに接触する溶融ガラス7の総接触面積に対して白金面12aの面積が90%(白金接触面積比率)となるようにし、原料溶解槽2へのガラス原料の投入量と溶融ガラス7の流し出し量の関係を、槽内の溶融ガラス7の溶融ガラス面7aから白金面12aの上端12bが、槽上部雰囲気2a中に露出しないように調節した。また、原料溶解槽2でガラス原料を溶解した後の清澄槽3での清澄工程は1550℃で清澄を行い、さらに均質化槽4で均質化を行った。   About the adjustment position of the level of the molten glass surface 7a in the raw material melting tank 2 at this time, with respect to the total contact area of the molten glass 7 in contact with the refractory surface 11a and the platinum surface 12a of the inner wall surface of the raw material melting tank 2 The area of the platinum surface 12a is 90% (platinum contact area ratio), and the relationship between the amount of the glass raw material charged into the raw material melting tank 2 and the amount of the molten glass 7 poured out is determined by the melting of the molten glass 7 in the tank. It adjusted so that the upper end 12b of the platinum surface 12a might not be exposed in the tank upper atmosphere 2a from the glass surface 7a. Moreover, the clarification process in the clarification tank 3 after melt | dissolving the glass raw material in the raw material dissolution tank 2 performed clarification at 1550 degreeC, and also homogenized in the homogenization tank 4. FIG.

そして、このようにして得られたガラスにおける白金異物は、5個/kgと非常に少なく、泡は、0.8個/kgであり、脈理については見られなかった。また、α線放出量についての測定を行ったところ、0.0008c/cm・hと非常に低レベルであった。 And the platinum foreign material in the glass obtained in this way was as very few as 5 piece / kg, and a bubble was 0.8 piece / kg, and it was not seen about striae. Further, when the amount of α-ray emission was measured, it was a very low level of 0.0008 c / cm 2 · h.

次に、実施例1と同じガラス溶解炉1で、図4(b)に示した原料組成Dのガラス原料を原料溶解槽2に投入するようにしながら溶解して溶融ガラス7を得、さらに溶融ガラス7を連続して清澄槽3、均質化槽4へと流し出し、またさらに均質化槽4から成形装置に送出し、ガラスの成形を行った。ちなみに、原料組成Dのガラス原料は、その組成が各重量%で、SiO:65.0%、Al:18.0%、B:4.0%、LiO:2.5%、MgO:0.9%、CaO:2.0%、ZnO:7.5%、Cl:0.05%、SO:0.05%である。 Next, in the same glass melting furnace 1 as in Example 1, the glass raw material having the raw material composition D shown in FIG. The glass 7 was continuously poured out into the clarification tank 3 and the homogenization tank 4, and further sent out from the homogenization tank 4 to a molding apparatus to form the glass. By the way, the glass raw material of the raw material composition D has a composition of each weight%, SiO 2 : 65.0%, Al 2 O 3 : 18.0%, B 2 O 3 : 4.0%, Li 2 O: 2.5%, MgO: 0.9%, CaO: 2.0%, ZnO: 7.5%, Cl: 0.05%, SO 3: 0.05%.

この時の原料溶解槽2における溶融ガラス面7aのレベルの調節位置については、原料溶解槽2の槽内壁面の耐火物面11a、白金面12aに接触する溶融ガラス7の総接触面積に対して白金面12aの面積が95%(白金接触面積比率)となるようにし、原料溶解槽2へのガラス原料の投入量と溶融ガラス7の流し出し量の関係を、槽内の溶融ガラス7の溶融ガラス面7aから白金面12aの上端12bが、槽上部雰囲気2a中に露出しないように調節した。また、原料溶解槽2でガラス原料を溶解した後の清澄槽3での清澄工程は1520℃で清澄を行い、さらに均質化槽4で均質化を行った。   About the adjustment position of the level of the molten glass surface 7a in the raw material melting tank 2 at this time, with respect to the total contact area of the molten glass 7 in contact with the refractory surface 11a and the platinum surface 12a of the inner wall surface of the raw material melting tank 2 The area of the platinum surface 12a is set to 95% (platinum contact area ratio), and the relationship between the amount of the glass raw material charged into the raw material melting tank 2 and the amount of the molten glass 7 poured out is determined by the melting of the molten glass 7 in the tank. It adjusted so that the upper end 12b of the platinum surface 12a might not be exposed in the tank upper atmosphere 2a from the glass surface 7a. Moreover, the clarification process in the clarification tank 3 after melt | dissolving the glass raw material in the raw material dissolution tank 2 performed clarification at 1520 degreeC, and also homogenized in the homogenization tank 4. FIG.

そして、このようにして得られたガラスにおける白金異物は、2個/kgと非常に少なく、泡は、1.3個/kgであり、脈理については見られなかった。また、α線放出量についての測定を行ったところ、0.0002c/cm・hと非常に低レベルであった。 And the platinum foreign material in the glass obtained in this way was very few at 2 pieces / kg, and bubbles were 1.3 pieces / kg, and no striae was seen. Further, when the amount of α-ray emission was measured, it was a very low level of 0.0002 c / cm 2 · h.

比較例2Comparative Example 2

上記の実施例4に対し、ガラス原料の原料組成を実施例4と同じ原料組成Dとし、原料溶解槽2の槽内壁面の白金面12aと溶融ガラス7との関係を、溶融ガラス7の溶融ガラス面7aから白金面12aの上端12bおよび上端側部分の一部が、上方の槽上部雰囲気2aに露出するように調節(白金接触面積比率:100%)し、また、原料溶解槽2でガラス原料を溶解した後の清澄槽3での清澄工程は1520℃で清澄を行い、さらに均質化槽4で均質化を行った。ガラス原料の溶解、流し出しを行なった。こうして得られた比較例2におけるガラスの白金異物は、白金面12aが高温度の槽上部雰囲気2aに露出し揮散することから3000個/kgを超え、非常に多量含まれる結果となった。なお、脈理については見られず、α線放出量については、0.0002c/cm・hと実施例4と同様、非常に低レベルであった。なお、白金接触面積比率が100%の場合、白金面2aは槽上部雰囲気2aに露出していることを意味する。 Compared to Example 4 above, the raw material composition of the glass raw material is the same raw material composition D as Example 4, and the relationship between the platinum surface 12a on the inner wall surface of the raw material melting tank 2 and the molten glass 7 is determined by melting the molten glass 7. The glass surface 7a is adjusted so that the upper end 12b and part of the upper end side portion of the platinum surface 12a are exposed to the upper tank upper atmosphere 2a (platinum contact area ratio: 100%). The clarification process in the clarification tank 3 after dissolving the raw material was clarified at 1520 ° C., and further homogenized in the homogenization tank 4. The glass raw material was melted and poured out. The platinum foreign matter of the glass in Comparative Example 2 thus obtained exceeded 3000 pieces / kg because the platinum surface 12a was exposed and volatilized in the high-temperature tank upper atmosphere 2a, resulting in a very large amount. Note that no striae was observed, and the α ray emission amount was 0.0002 c / cm 2 · h, which was a very low level as in Example 4. In addition, when a platinum contact area ratio is 100%, it means that the platinum surface 2a is exposed to the tank upper atmosphere 2a.

以上の通り、本実施形態によれば、原料溶解槽2では白金が高温度の槽上部雰囲気2aに露出していないために、槽上部雰囲気2aへの白金の揮散が少なく、比較的低温度のガラス原料を連続して投入するようにしてもガラス原料に白金が凝固することが少ないため、白金異物が溶融ガラス7内に混入する虞が少ない。   As described above, according to the present embodiment, since the platinum is not exposed to the high-temperature tank upper atmosphere 2a in the raw material dissolution tank 2, there is little volatilization of platinum into the tank upper atmosphere 2a and the temperature is relatively low. Even if the glass raw material is continuously charged, platinum hardly solidifies in the glass raw material, so that there is little possibility that foreign matter of platinum is mixed in the molten glass 7.

また、原料溶解槽2の槽本体内壁面の下部に内張りされた白金面12aは、その面積が原料溶解槽2の内壁面に溶融ガラス7が接触している面積の70%以上とすることで、溶融ガラス7と槽材料の耐火物面11aとの接触面積が非常に少ないために、侵蝕反応によって不均質部分が発生するといった虞が少なく、コード脈理や異物欠点などの光学欠陥の少ない高品質ガラスを、高歩留で得ることができる。なお、原料溶解槽2の槽本体内壁面の下部に内張りされた白金面12aが溶融ガラス7の上方の槽上部雰囲気に露出しない位置とするため、原料溶解槽2の槽本体内壁面の下部に内張りされた白金面12aは、その面積が原料溶解槽2の内壁面に溶融ガラス7が接触している面積の上限は100%未満とするべきである。   Moreover, the platinum surface 12a lined under the inner wall surface of the tank body of the raw material melting tank 2 has an area of 70% or more of the area where the molten glass 7 is in contact with the inner wall surface of the raw material melting tank 2. In addition, since the contact area between the molten glass 7 and the refractory surface 11a of the tank material is very small, there is little possibility that an inhomogeneous portion is generated due to the erosion reaction, and there are few optical defects such as cord striae and foreign matter defects. Quality glass can be obtained with high yield. In addition, since the platinum surface 12a lining the lower part of the inner wall surface of the raw material dissolution tank 2 is not exposed to the upper atmosphere of the tank above the molten glass 7, the lower surface of the inner wall surface of the raw material dissolution tank 2 is The upper limit of the area where the molten glass 7 is in contact with the inner wall surface of the raw material melting tank 2 should be less than 100% of the lined platinum surface 12a.

また、ガラスの品種交換等で原料溶解槽2を一度ドレンアウトし入れ替えを行う際、原料溶解槽2の白金面12aが雰囲気2a中に暴露され、新たに投入する交換品種のガラス原料に揮散していた白金が凝集してガラス中に取り込まれる虞がある。しかし、原料溶解槽2でのガラス原料の溶解を、例えばLPG、重油、LNG等の化石燃料を用いたバーナー燃焼方式による加熱方法で行っているので、燃焼に伴う排ガスを排気する時に、揮散している白金が燃焼排ガスと共に排出され少なくなり、排気を伴わない電気ヒータ方式等による加熱方法よりも、白金異物のガラスへの混入を少なくすることができる。   In addition, when the raw material dissolution tank 2 is drained out once for replacement of the glass type, etc., the platinum surface 12a of the raw material dissolution tank 2 is exposed to the atmosphere 2a and volatilized into the newly introduced replacement glass material. There is a possibility that the platinum that has been agglomerated may be incorporated into the glass. However, since the melting of the glass raw material in the raw material melting tank 2 is performed by a heating method by a burner combustion method using fossil fuel such as LPG, heavy oil, LNG, etc., it is volatilized when exhaust gas exhausted by combustion is exhausted. Platinum is discharged with the combustion exhaust gas less, and it is possible to reduce contamination of the platinum foreign matter into the glass as compared with a heating method such as an electric heater method without exhaust.

さらにまた、原料溶解槽2の槽材料として、ジルコニア系電鋳レンガやAl−ZrO−SiO(AZS)系電鋳レンガやアルミナ系電鋳レンガなどを用いることができる。特に、槽上部雰囲気2aから溶融ガラス7に混入する放射性同位元素の量を少なくするため、原料溶融槽2の槽上部雰囲気2aに露出する槽上部内壁面には、原材料にU、Th等の放射性同位元素の含有量が少ないアルミナ系電鋳レンガを用いたり、内壁面にシリカブロックを内張りすることが好ましい。これにより、ガラスのα線放出量を少なくすることができる。 Furthermore, zirconia electrocast bricks, Al 2 O 3 —ZrO 2 —SiO 2 (AZS) electrocast bricks, alumina electrocast bricks, and the like can be used as the material for the raw material dissolution bath 2. In particular, in order to reduce the amount of radioisotope mixed in the molten glass 7 from the tank upper atmosphere 2a, the tank upper inner wall surface exposed to the tank upper atmosphere 2a of the raw material melting tank 2 has a radioactive material such as U or Th as a raw material. It is preferable to use an alumina electrocast brick with a low isotope content or to line a silica block on the inner wall surface. Thereby, the alpha ray discharge | release amount of glass can be decreased.

1…ガラス溶融炉
2…原料溶解槽
2a…雰囲気
7…溶融ガラス
9…天井部
10…槽本体
11…耐火物
11a…耐火物面
12…白金部材
12a…白金面
12b…上端
DESCRIPTION OF SYMBOLS 1 ... Glass melting furnace 2 ... Raw material melting tank 2a ... Atmosphere 7 ... Molten glass 9 ... Ceiling part 10 ... Tank main body 11 ... Refractory 11a ... Refractory surface 12 ... Platinum member 12a ... Platinum surface 12b ... Upper end

Claims (5)

ガラス原料を投入しながら溶解を行うと共に、溶解で得られた溶融ガラスを連続して次段に流出させるように構成した原料溶解槽を備えるガラス溶融炉であって、
前記原料溶解槽は天井部により閉塞しており、前記天井部及び前記原料溶解槽本体の上部内壁面が、槽を形成する耐火物が露出する耐火物面となっており、前記原料溶解槽本体の下部内壁面が、白金または白金合金でなる白金部材を前記耐火物に内張りした白金面によって形成されており、かつ該白金面は、その上端が前記溶融ガラス上方の槽上部雰囲気中に露出しない位置となるように形成されていることを特徴とするガラス溶融炉。
A glass melting furnace provided with a raw material melting tank configured to melt while melting a glass raw material and to continuously flow the molten glass obtained by melting to the next stage,
The raw material dissolution tank is closed by a ceiling part, and the upper inner wall surface of the ceiling part and the raw material dissolution tank body is a refractory surface from which the refractory forming the tank is exposed, and the raw material dissolution tank body The lower inner wall surface is formed by a platinum surface in which a platinum member made of platinum or a platinum alloy is lined on the refractory , and the upper end of the platinum surface is not exposed in the atmosphere above the molten glass. A glass melting furnace formed so as to be in a position.
前記白金面は、その面積が前記原料溶解槽の内壁面に前記溶融ガラスが接触している面積の70%以上となっていることを特徴とする請求項1記載のガラス溶融炉。   The glass melting furnace according to claim 1, wherein the platinum surface has an area of 70% or more of an area where the molten glass is in contact with an inner wall surface of the raw material melting tank. 前記原料溶解槽の次段以降に、前記溶融ガラスの流れ方向に沿って、少なくとも1つの清澄槽、攪拌槽を順に配設したことを特徴とする請求項1記載のガラス溶融炉。   2. The glass melting furnace according to claim 1, wherein at least one clarification tank and a stirring tank are sequentially arranged along the flow direction of the molten glass after the next stage of the raw material melting tank. 前記原料溶解槽は、化石燃料をバーナー燃焼させて加熱を行うものであることを特徴とする請求項1記載のガラス溶融炉。   The glass melting furnace according to claim 1, wherein the raw material melting tank heats by burning a fossil fuel with a burner. 天井部を設けて閉塞した原料溶解槽本体の上部内壁面が、槽を形成する耐火物が露出する耐火物面となっており、前記原料溶解槽本体の下部内壁面が白金または白金合金でなる白金部材を前記耐火物に内張りした白金面で形成された原料溶解槽によりガラス原料を投入しながら溶解し、溶解して得た溶融ガラスを、連続して次過程に流し出すようにしたガラス溶融方法であって、
前記原料溶解槽への前記ガラス原料の投入と、該原料溶解槽からの前記溶融ガラスの流し出しとを、前記白金面の上端が前記溶融ガラス上方の槽上部雰囲気と前記溶融ガラスとの界面よりも下方に位置し、かつ前記白金面の面積が、前記溶融ガラスが前記原料溶解槽内壁面に接触する面積の70%以上となるようにしながら行なうことを特徴とするガラス溶融方法。
The upper inner wall surface of the raw material melting tank body closed by providing a ceiling is a refractory surface from which the refractory forming the tank is exposed, and the lower inner wall surface of the raw material melting tank body is made of platinum or a platinum alloy . A glass melt that melts molten glass obtained by melting the molten glass obtained by melting the glass material with a raw material melting tank formed on the platinum surface with the platinum member lined on the refractory. A method,
The introduction of the glass raw material into the raw material melting tank, and the flow of the molten glass out of the raw material melting tank, the upper end of the platinum surface from the interface between the upper atmosphere of the tank above the molten glass and the molten glass The glass melting method is performed in such a manner that the area of the platinum surface is 70% or more of the area where the molten glass contacts the inner wall surface of the raw material melting tank.
JP2009048928A 2009-03-03 2009-03-03 Glass melting furnace and glass melting method Active JP5488865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009048928A JP5488865B2 (en) 2009-03-03 2009-03-03 Glass melting furnace and glass melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009048928A JP5488865B2 (en) 2009-03-03 2009-03-03 Glass melting furnace and glass melting method

Publications (2)

Publication Number Publication Date
JP2010202444A JP2010202444A (en) 2010-09-16
JP5488865B2 true JP5488865B2 (en) 2014-05-14

Family

ID=42964322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009048928A Active JP5488865B2 (en) 2009-03-03 2009-03-03 Glass melting furnace and glass melting method

Country Status (1)

Country Link
JP (1) JP5488865B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109142413A (en) * 2018-08-01 2019-01-04 彩虹显示器件股份有限公司 A kind of test method detecting glass platinum rhodium defect occurrence condition
US11674211B2 (en) 2017-06-19 2023-06-13 Corning Incorporated Refractory article, coating composition for preventing redox reaction, and method of manufacturing a refractory article

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104780070B (en) 2010-09-09 2018-04-24 日本电气株式会社 Network system and network management
WO2012091130A1 (en) * 2010-12-28 2012-07-05 旭硝子株式会社 Clarification tank, glass melting furnace, molten glass production method, glassware production method and glassware production device
EP2692703B1 (en) * 2011-03-28 2018-04-25 Asahi Glass Company, Limited Molten glass holding refractory, glass manufacturing apparatus using molten glass holding refractory and method for manufacturing glass using glass manufacturing apparatus
WO2013145460A1 (en) * 2012-03-28 2013-10-03 コニカミノルタ株式会社 Method for producing hdd glass substrate and hdd glass substrate
JP5864690B2 (en) 2013-09-30 2016-02-17 AvanStrate株式会社 Glass substrate manufacturing method, glass substrate manufacturing apparatus, and molten glass processing apparatus
TWI568696B (en) * 2013-12-26 2017-02-01 Avanstrate Inc A glass substrate manufacturing method and a glass substrate manufacturing apparatus
WO2015099133A1 (en) * 2013-12-26 2015-07-02 AvanStrate株式会社 Manufacturing method for glass substrate and manufacturing apparatus for glass substrate
CN112119043B (en) * 2018-07-04 2023-04-14 日本电气硝子株式会社 Method and apparatus for manufacturing glass article
JP7330434B2 (en) 2019-07-05 2023-08-22 日本電気硝子株式会社 Glass melting furnace and method for manufacturing glass article
JP7358806B2 (en) * 2019-07-05 2023-10-11 日本電気硝子株式会社 Glass article manufacturing equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632816A (en) * 1986-06-20 1988-01-07 Tanaka Kikinzoku Kogyo Kk Platinum vessel for high temperature use
JPH01201033A (en) * 1988-02-04 1989-08-14 Canon Inc Melting device and melting vessel using same
JP4513605B2 (en) * 2005-03-07 2010-07-28 旭硝子株式会社 Vacuum degassing apparatus for molten glass, method for clarifying molten glass using the vacuum degassing apparatus, and glass manufacturing apparatus elements
JP2007063097A (en) * 2005-09-01 2007-03-15 Nippon Electric Glass Co Ltd Glass melting furnace and method of manufacturing glass article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11674211B2 (en) 2017-06-19 2023-06-13 Corning Incorporated Refractory article, coating composition for preventing redox reaction, and method of manufacturing a refractory article
CN109142413A (en) * 2018-08-01 2019-01-04 彩虹显示器件股份有限公司 A kind of test method detecting glass platinum rhodium defect occurrence condition
CN109142413B (en) * 2018-08-01 2021-04-13 彩虹显示器件股份有限公司 Test method for detecting platinum-rhodium defect occurrence conditions of glass

Also Published As

Publication number Publication date
JP2010202444A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP5488865B2 (en) Glass melting furnace and glass melting method
KR101011418B1 (en) Glass melting furnace
KR101217369B1 (en) Molten glass production apparatus and molten glass production method using same
KR102169675B1 (en) High volume production of display quality glass sheets having low zirconia levels
JP2003095662A (en) Method to manufacture molten glass and equipment
JP4446283B2 (en) Glass melting furnace
JP2022160601A (en) Method for shortening life of air bubble on surface of glass melt
KR20190102057A (en) Glass manufacturing apparatus and methods comprising crystalline zirconia
JP5728445B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP6563230B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2006076871A (en) Production apparatus for borosilicate sheet glass article, production process therefor and borosilicate sheet glass article
KR101798288B1 (en) Method and apparatus for making glass substrate
JP2010052971A (en) Method and apparatus for melting glass
JP6110448B2 (en) Manufacturing method of glass substrate and stirring device
JP2008201617A (en) Method for production of glass
JP2013075823A (en) Method for melting glass and glass melting apparatus
JP2003252631A (en) Method for producing glass
JP2007063097A (en) Glass melting furnace and method of manufacturing glass article
JP2010030881A (en) Bubbling device, method for manufacturing glass article and glass melting apparatus
JP5327698B2 (en) Glass melting method and glass melting apparatus
TWI766053B (en) Melters for glass forming apparatuses
WO2010041305A1 (en) Apparatus and process for glassmaking
CN207175755U (en) For producing the smelting apparatus of optical glass
JP2017178731A (en) Manufacturing method of glass sheet
US20240116818A1 (en) Casting compounds, composite material and channel systems with stabilizing casting compound

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140212

R151 Written notification of patent or utility model registration

Ref document number: 5488865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250