JP5476249B2 - Double cylinder type shock absorber - Google Patents

Double cylinder type shock absorber Download PDF

Info

Publication number
JP5476249B2
JP5476249B2 JP2010168216A JP2010168216A JP5476249B2 JP 5476249 B2 JP5476249 B2 JP 5476249B2 JP 2010168216 A JP2010168216 A JP 2010168216A JP 2010168216 A JP2010168216 A JP 2010168216A JP 5476249 B2 JP5476249 B2 JP 5476249B2
Authority
JP
Japan
Prior art keywords
cylinder
shock absorber
outer cylinder
double
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010168216A
Other languages
Japanese (ja)
Other versions
JP2012026549A (en
Inventor
英人 群馬
朱実 石橋
光史 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2010168216A priority Critical patent/JP5476249B2/en
Publication of JP2012026549A publication Critical patent/JP2012026549A/en
Application granted granted Critical
Publication of JP5476249B2 publication Critical patent/JP5476249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)

Description

本発明は、複筒型緩衝器に関する。   The present invention relates to a double cylinder type shock absorber.

複筒型緩衝器は、これまでに種々の提案がなされており、例えば特許文献1、2には、車両の車体と車軸との間に介装されて車体振動を抑制する従来の複筒型緩衝器の構成が開示されている。   Various proposals have been made for the double-cylinder shock absorber so far. For example, Patent Documents 1 and 2 disclose a conventional double-cylinder type that is interposed between a vehicle body and an axle of a vehicle to suppress vehicle body vibration. A shock absorber configuration is disclosed.

特許文献1に記載の複筒型緩衝器は、特許文献1の図1に示すように、作動流体を収容するシリンダと、このシリンダ内に出没自在に挿通するロッドと、このロッドに保持されて上記シリンダ内に摺動自在に挿入されるピストンと、上記シリンダのボトム部に嵌装されるベース部材とを備える。   As shown in FIG. 1 of Patent Document 1, the double-cylinder shock absorber described in Patent Document 1 is held by a cylinder that accommodates a working fluid, a rod that can be freely inserted and retracted into the cylinder, and the rod. A piston slidably inserted into the cylinder; and a base member fitted to the bottom of the cylinder.

更に、上記複筒型緩衝器は、上記シリンダを覆うと共に上記シリンダとの間にリザーバ室を形成する外筒を備え、上記シリンダと上記外筒とで二重管を構成する。   Further, the double cylinder type shock absorber includes an outer cylinder that covers the cylinder and forms a reservoir chamber between the cylinder and the cylinder and the outer cylinder to form a double pipe.

そして、上記複筒型緩衝器は、振動入力に際し、上記ロッドの出没、即ち、複筒型緩衝器の伸縮運動を減衰する減衰力発生手段を備える。 The multi-cylinder shock absorber includes damping force generating means for attenuating the protrusions and depressions of the rod, that is, the expansion and contraction motion of the double-cylinder shock absorber, when a vibration is input.

上記シリンダ内は、ピストンにより二つの作用室が形成されてなり、上記減衰力発生手段は、ピストンに形成されて上記二つの作用室を連通する連通路及びベース部材に形成されてシリンダ内とリザーバ室とを連通する連通路の途中に設けられる。   In the cylinder, two working chambers are formed by a piston, and the damping force generating means is formed in a communication path and a base member that are formed in the piston and communicates the two working chambers. It is provided in the middle of the communication path that communicates with the chamber.

そして、上記減衰力発生手段が上記各連通路を作動流体が通過する際に抵抗を生じてピストンの摺動を抑制するため、複筒型緩衝器は、車体振動を抑制することが可能となる。   Since the damping force generating means generates resistance when the working fluid passes through the communication passages and suppresses the sliding of the piston, the double cylinder type shock absorber can suppress the vehicle body vibration. .

また、上記複筒型緩衝器は、車軸に連結するボトム部材に外筒及びシリンダをそれぞれ固定することによって組み立てられ、上記外筒及びシリンダが鉄材からなることが一般的である。   The multi-cylinder shock absorber is generally assembled by fixing an outer cylinder and a cylinder to a bottom member connected to an axle, and the outer cylinder and the cylinder are generally made of iron.

また、特許文献2の図5に記載の複筒型緩衝器は、上記特許文献1に記載の複筒型緩衝器と基本構造を同一にしてなり、シリンダと外周との間に内筒を設け、上記シリンダと上記内筒との間に流路を形成したアンチロール型油圧緩衝器である。   Further, the double cylinder type shock absorber shown in FIG. 5 of Patent Document 2 has the same basic structure as the double cylinder type shock absorber described in Patent Document 1, and an inner cylinder is provided between the cylinder and the outer periphery. An anti-roll hydraulic shock absorber in which a flow path is formed between the cylinder and the inner cylinder.

上記特許文献2の図5、6に記載のように、複筒型緩衝器は、それぞれ鉄材からなるシリンダ、内筒及び外筒で三重管を形成し、シリンダ、内筒及び外筒がそれぞれボトム部材に固定される。   As shown in FIGS. 5 and 6 of the above-mentioned Patent Document 2, the multi-cylinder shock absorbers form a triple pipe by a cylinder made of iron, an inner cylinder and an outer cylinder, respectively, and the cylinder, the inner cylinder and the outer cylinder each have a bottom. It is fixed to the member.

特開2009−036258号 公報JP 2009-036258 A 特開2001−088529号 公報JP 2001-088529 A

上記従来の複筒型緩衝器において、機能上特に欠陥はないが、次のような不具合の改善が望まれている。   The conventional double cylinder type shock absorber is not particularly defective in terms of function, but it is desired to improve the following problems.

第一に、シリンダ、内筒及び外筒が別々に製作されて組み立てられるため、部品数が多く、組立作業が煩雑である。   First, since the cylinder, the inner cylinder, and the outer cylinder are separately manufactured and assembled, the number of parts is large and the assembling work is complicated.

第二に、シリンダ、内筒及び外筒が鉄材からなるため、複筒型緩衝器の重量化を招き、また、防錆性能を向上させるために外筒に塗装を施すことが一般的であり、環境負荷が大きい。   Second, since the cylinder, inner cylinder and outer cylinder are made of iron, it is common to increase the weight of the double-cylinder shock absorber and to coat the outer cylinder in order to improve rust prevention performance. The environmental impact is large.

第三に、シリンダ、内筒及び外筒はそれぞれ筒体であり、各筒体の間が空間となるため、シリンダ、内筒及び外筒を合成樹脂で形成した場合においては、強度確保のためシリンダや外筒を肉厚に形成する必要があり、複筒型緩衝器の大径化を招く。   Third, the cylinder, the inner cylinder, and the outer cylinder are cylinders, and spaces are formed between the cylinders. Therefore, when the cylinder, the inner cylinder, and the outer cylinder are formed of synthetic resin, strength is ensured. It is necessary to form the cylinder and the outer cylinder thick, which leads to an increase in the diameter of the double cylinder type shock absorber.

そこで、本発明の目的は、上記不具合を解決することが可能な複筒型緩衝器を提供することである。   Therefore, an object of the present invention is to provide a double cylinder type shock absorber capable of solving the above-mentioned problems.

上記課題を解決するための手段は、作動流体を収容するシリンダと、上記シリンダ内に摺動自在に挿入されて上記シリンダ内に二つの伸側作用室と圧側作用室とを区画するピストンと、上記ピストンを保持するロッドと、上記シリンダを覆うと共に上記シリンダとの間に流路を形成する筒状の内筒と、上記内筒を覆うと共に上記内筒との間にリザーバ室を形成する外筒と、上記外筒の軸方向下側開口端を封止するボトム部材と、上記ピストン摺動する所定の減衰力を発生する減衰力発生手段とを備える複筒型緩衝器において、上記シリンダと上記内筒とを連結する、及び上記内筒と上記外筒とを連結する架橋部材を備え、上記シリンダと上記内筒、及び上記内筒と上記外筒と上記架橋部材とを合成樹脂で一体的に形成するとともに、上記ボトム部材に設けられた第一連通路を介して、上記流路と上記リザーバ室を連通することを特徴とする複筒型緩衝器。
Hand stage for solving the above problems, a cylinder for housing a working fluid, a piston partitioning the two extension side working chamber and the compression side working chamber is slidably inserted into the cylinder in the cylinder to form a rod for holding the piston, a cylindrical inner tube forming the flow path between the cylinder covers the cylinder, a reservoir chamber between the inner cylinder covers the inner cylinder an outer cylinder, a bottom member for sealing the axially lower side open end of the outer tube, the twin-tube type shock absorber and a damping force generating means for generating a predetermined damping force when the piston slides , connecting the said cylinder and the inner cylinder,及 beauty with a bridging member for connecting the said inner tube and the outer tube, the cylinder and the inner cylinder,及 beauty the inner tube and the outer tube and the cross member Are integrally formed of synthetic resin and Via a first communication passage provided in the bottom member, twin-tube type shock absorber, characterized in that communicating the flow passage and the reservoir chamber.

発明によれば、シリンダと内筒、及び内筒と外筒とを架橋部材を介して一体的に形成することから、部品数を少なくして組立作業を容易にすることが可能となる。
According to the present invention, since the cylinder and the inner cylinder, and the inner cylinder and the outer cylinder are integrally formed via the bridging member, it is possible to reduce the number of parts and facilitate the assembling work.

また、本発明において、シリンダと内筒、及び内筒と外筒を合成樹脂で形成することにより、複筒型緩衝器を軽量化することが可能となる。 Further, in the present invention, it is possible to reduce the weight of the multi-cylinder shock absorber by forming the cylinder and the inner cylinder and the inner cylinder and the outer cylinder from synthetic resin.

また、本発明において、外筒を合成樹脂で形成した場合、合成樹脂材は、外筒に防錆用の塗装を施す必要がなく、環境負荷を軽減することが可能となる。   Further, in the present invention, when the outer cylinder is formed of a synthetic resin, the synthetic resin material does not need to be coated for rust prevention on the outer cylinder, and the environmental load can be reduced.

また、架橋部材を備えることにより、シリンダと内筒、及び内筒と外筒の強度が増し、合成樹脂で形成した場合においてもシリンダや外筒の肉厚を薄くして複筒型緩衝器を小径に形成することが可能となる。 In addition, by providing a bridging member, the strength of the cylinder and the inner cylinder, and the inner cylinder and the outer cylinder are increased, and even when formed of a synthetic resin, the thickness of the cylinder and the outer cylinder is reduced and the double cylinder type shock absorber is provided. It becomes possible to form a small diameter.

本発明の参考例に係る複筒型緩衝器の縦断面原理図である。It is a longitudinal cross-sectional principle figure of the double cylinder type buffer which concerns on the reference example of this invention. (a)本発明の参考例に係る複筒型緩衝器におけるシリンダ・外筒複合体を示す斜視図である。(b)本発明の一実施の形態に係る複筒型緩衝器におけるシリンダ・外筒複合体を示すXX断面図である。(A) It is a perspective view which shows the cylinder and outer cylinder composite_body | complex in the double cylinder type buffer which concerns on the reference example of this invention. (B) It is XX sectional drawing which shows the cylinder and outer cylinder composite_body | complex in the double cylinder type buffer which concerns on one embodiment of this invention. 本発明の参考例に係る複筒型緩衝器におけるシリンダ・外筒複合体の変形例を示す横断面図である。It is a cross-sectional view which shows the modification of the cylinder and outer cylinder composite_body | complex in the double cylinder type shock absorber which concerns on the reference example of this invention. 本発明の実施の形態に係る複筒型緩衝器の縦断面原理図である。It is a longitudinal cross-sectional principle figure of the double cylinder type buffer which concerns on one embodiment of this invention. 本発明の実施の形態に係る複筒型緩衝器におけるシリンダ・内筒・外筒複合体の変形例を示す横断面図である。It is a cross-sectional view showing a modification of the cylinder / inner cylinder / outer cylinder composite in the double cylinder type shock absorber according to one embodiment of the present invention.

以下に本発明の参考例を示す複筒型緩衝器について、図面を参照しながら説明する。いくつかの図面を通して付された同じ符号は、同じ部品かまたはそれに対応する部品を示す。
A double cylinder type shock absorber showing a reference example of the present invention will be described below with reference to the drawings. The same reference numerals given throughout the several drawings indicate the same or corresponding parts.

参考例の形態に係る複筒型緩衝器は、図1に示すように、作動流体を収容するシリンダ1と、このシリンダ1内に摺動自在に挿入されて上記シリンダ1内に二つの作用室A、Bを区画するピストン2と、このピストン2を保持するロッド3と、上記シリンダ1を覆うと共に上記シリンダ1との間にリザーバ室を形成する外筒4と、上記ピストン2の摺動に際し所定の減衰力を発生する減衰力発生手段(V1、V2)とを備える。 As shown in FIG. 1, a double-cylinder shock absorber according to a reference example includes a cylinder 1 that contains a working fluid, and two working chambers that are slidably inserted into the cylinder 1. A piston 2 that partitions A and B , a rod 3 that holds the piston 2, an outer cylinder 4 that covers the cylinder 1 and forms a reservoir chamber R between the cylinder 1, and sliding of the piston 2 And a damping force generating means (V1, V2) for generating a predetermined damping force.

そして、上記複筒型緩衝器は、図2に示すように、上記シリンダ1と上記外筒4とを連結する架橋部材5を備え、上記シリンダ1、上記外筒4及び上記架橋部材5を合成樹脂で一体的に形成する。   As shown in FIG. 2, the double cylinder type shock absorber includes a bridging member 5 that couples the cylinder 1 and the outer cylinder 4, and synthesizes the cylinder 1, the outer cylinder 4, and the bridging member 5. It is formed integrally with resin.

以下に、上記複筒型緩衝器の各構成部品について詳細に説明する。   Below, each component of the said double cylinder type shock absorber is demonstrated in detail.

上記複筒型緩衝器は、車両における車体と車軸との間に介装されてなり、車体振動を抑制するものである。   The multi-cylinder shock absorber is interposed between a vehicle body and an axle in a vehicle and suppresses vehicle body vibration.

上記シリンダ1内に出没するロッド3は、シリンダ1のヘッド部(図中上端)に設けられる環状のロッドガイド10内周に摺動自在に支持されてなり、図中上端部を車体側取付け部材(図示せず)を介して車体に固定される。   The rod 3 protruding and retracting in the cylinder 1 is slidably supported on the inner periphery of an annular rod guide 10 provided at the head portion (upper end in the figure) of the cylinder 1, and the upper end part in the figure is attached to the vehicle body side mounting member. It is fixed to the vehicle body via (not shown).

また、上記シリンダを覆う外筒のボトム部(図中下端)には、上記外筒の図中下側開口を封止するボトム部材11が設けられ、このボトム部材11は、車軸側取付け部材(図示せず)を介して車軸に固定される。
Further, a bottom member 11 for sealing the lower opening in the figure of the outer cylinder is provided at the bottom part (lower end in the figure) of the outer cylinder that covers the cylinder, and the bottom member 11 is an axle side mounting member ( (Not shown) and fixed to the axle.

上記構成を備えることにより、複筒型緩衝器は、車体と車軸との間に介装され、路面振動の入力によりロッド3がシリンダ1内に出没することにより伸縮する。   By providing the above configuration, the multi-cylinder shock absorber is interposed between the vehicle body and the axle, and expands and contracts when the rod 3 moves in and out of the cylinder 1 by the input of road surface vibration.

また、上記外筒4の図中上端開口にはキャップ部材12が設けられてなり、このキャップ部材12は、上記ロッド3の外周に摺接する環状のシール部材13を備え、上記外筒4の図中上端開口を封止して、上記ボトム部材11と共に複筒型緩衝器内に収容される作動流体が外部に漏れ出すことを防ぐ。   Further, a cap member 12 is provided at the upper end opening of the outer cylinder 4 in the figure, and this cap member 12 is provided with an annular seal member 13 slidably contacting the outer periphery of the rod 3, and the figure of the outer cylinder 4. The middle upper end opening is sealed to prevent the working fluid stored in the double cylinder type shock absorber together with the bottom member 11 from leaking to the outside.

上記外筒4に覆われるシリンダ1は、上記外筒4と同軸に配置され、外筒4とシリンダ1との間にリザーバ室Rが形成されてなり、このリザーバ室R内には、作動流体が貯留されて液面Oを介して上方に所定の内圧に設定される気室Gが形成される。   The cylinder 1 covered with the outer cylinder 4 is disposed coaxially with the outer cylinder 4, and a reservoir chamber R is formed between the outer cylinder 4 and the cylinder 1, and a working fluid is contained in the reservoir chamber R. Is stored, and an air chamber G that is set to a predetermined internal pressure is formed upward via the liquid level O.

また、上記シリンダ1は、図中上端開口部にロッドガイド10が、図中下端開口部にベース部材14が嵌装されてなり、シリンダ1内部は、摺動自在に挿入されるピストン2で二つの作用室A、Bが区画され、ロッド3側に伸側作用室Aが、ピストン2側に圧側作用室Bが形成される。   The cylinder 1 has a rod guide 10 fitted in the upper end opening in the figure and a base member 14 fitted in the lower end opening in the figure. Two working chambers A and B are partitioned, and an extension working chamber A is formed on the rod 3 side, and a compression working chamber B is formed on the piston 2 side.

上記ピストン2は、上記二つの作用室A、Bを連通する伸側及び圧側の連通路L1、L2を有し、車体側に連結される上記ロッド3の先端部に保持されて、上記ロッド3を介して路面振動を受けてシリンダ1内を摺動する。   The piston 2 has expansion side and pressure side communication passages L1 and L2 communicating with the two working chambers A and B, and is held at the tip of the rod 3 connected to the vehicle body side. The cylinder 1 is slid in response to road surface vibration.

上記伸側の連通路L1の途中には、伸側リーフバルブV1が開閉可能に設けられてなり、この伸側リーフバルブV1は、伸側の連通路L1を通過する作動流体が伸側作用室Aから圧側作用室Bへ移動することのみを許容すると共に、その移動の際に抵抗を生じて伸側の減衰力を発生する。   An extension side leaf valve V1 is provided in the middle of the extension side communication passage L1 so that the extension side leaf valve V1 can be opened and closed. The extension side leaf valve V1 has a working fluid that passes through the extension side communication passage L1. While only allowing movement from A to the pressure side working chamber B, resistance is generated during the movement to generate an expansion-side damping force.

一方、上記圧側の連通路L2の途中には、チェック弁C1が開閉可能に設けられてなり、このチェック弁C1は、圧側の連通路L2を通過する作動流体が圧側作用室Bから伸側作用室Aへ移動することのみを許容して、その移動の妨げとならない。   On the other hand, in the middle of the pressure side communication passage L2, a check valve C1 is provided so as to be openable and closable. The check valve C1 is configured such that the working fluid passing through the pressure side communication passage L2 is expanded from the pressure side working chamber B. Only movement to the room A is permitted, and the movement is not hindered.

また、シリンダ1のボトム部に嵌装されるベース部材14は、圧側作用室Bとリザーバ室Rとを連通する伸側及び圧側の連通路L3、L4を有し、ボトム部材11で支持されてなる。   Further, the base member 14 fitted to the bottom portion of the cylinder 1 has expansion side and pressure side communication passages L3 and L4 that communicate the pressure side working chamber B and the reservoir chamber R, and is supported by the bottom member 11. Become.

上記ベース部材14における伸側の連通路L3の途中には、チェック弁C2が開閉可能に設けられてなり、このチェック弁C2は、上記伸側の連通路L3を通過する作動流体がリザーバ室Rから圧側作用室Bへ移動することのみを許容して、その移動の妨げとならない。   A check valve C2 is provided in the middle of the expansion side communication path L3 of the base member 14 so that the working fluid passing through the expansion side communication path L3 is stored in the reservoir chamber R. Only the movement to the compression side working chamber B is allowed, and the movement is not hindered.

一方、ベース部材14における圧側の連通路L4の途中には、圧側リーフバルブV2が開閉可能に設けられてなり、この圧側リーフバルブV2は、上記圧側の連通路L4を通過する作動流体が圧側作用室Bからリザーバ室Rへ移動することのみを許容すると共に、その移動の際に抵抗を生じて圧側の減衰力を発生する。   On the other hand, in the middle of the pressure side communication passage L4 in the base member 14, a pressure side leaf valve V2 is provided so as to be openable and closable, and the pressure side leaf valve V2 is operated by the working fluid passing through the pressure side communication passage L4. Only the movement from the chamber B to the reservoir chamber R is allowed, and resistance is generated during the movement to generate a compression-side damping force.

つまり、ピストン2に装着される伸側リーフバルブV1と、ベース部材14に装着される圧側リーフバルブV2とで減衰力発生手段を構成し、複筒型緩衝器が伸縮する際、上記各リーフバルブV1、V2を作動流体が通過して所定の減衰力を発生することが可能となる。   In other words, the expansion side leaf valve V1 attached to the piston 2 and the compression side leaf valve V2 attached to the base member 14 constitute a damping force generating means. It becomes possible for the working fluid to pass through V1 and V2 to generate a predetermined damping force.

また、複筒型緩衝器は、上記ベース部材14を介してロッド3がシリンダ1内に出没する分過不足する作動流体をリザーバ室Rから補うことが可能となる。   Further, the double cylinder type shock absorber can supplement the reservoir chamber R with the working fluid that is insufficient and insufficient for the rod 3 to protrude into and out of the cylinder 1 through the base member 14.

上記構成を備えることにより、複筒型緩衝器が伸張する際、伸側作用室Aが加圧されて伸側リーフバルブV1を作動流体が通過して圧側作用室Bに移動して伸側の減衰力を生じ、ロッド3の退出分シリンダ1内で不足する作動流体がベース部材14のチェック弁C2を介してリザーバ室Rから圧側作動室に流入する。   By providing the above-described configuration, when the double-tube shock absorber extends, the expansion side working chamber A is pressurized and the working fluid passes through the expansion side leaf valve V1 and moves to the compression side working chamber B. A working fluid that generates a damping force and is insufficient in the cylinder 1 as the rod 3 moves out flows from the reservoir chamber R into the pressure side working chamber via the check valve C2 of the base member 14.

一方、複筒型緩衝器が収縮する際、圧側作用室Bが加圧されてピストンのチェック弁C1を介して圧側作用室Bから伸側作用室Aに作動流体が移動し、ロッド3の没入分シリンダ1内で余剰となる作動流体が圧側リーフバルブV2を通過してリザーバ室Rに移動して圧側の減衰力を生じる。   On the other hand, when the double cylinder type shock absorber contracts, the pressure side working chamber B is pressurized and the working fluid moves from the pressure side working chamber B to the extension side working chamber A via the check valve C1 of the piston, and the rod 3 is immersed. The surplus working fluid in the minute cylinder 1 passes through the pressure-side leaf valve V2 and moves to the reservoir chamber R to generate a pressure-side damping force.

尚、上記減衰力発生手段の構成は、上記の限りではなく、他の周知の構成を選択することが可能である。   The configuration of the damping force generating means is not limited to the above, and other known configurations can be selected.

参考例において、複筒型緩衝器は、図2に示すように、シリンダ1と外筒4とを連結する架橋部材5を備えてなり、上記シリンダ1、上記外筒4及び上記架橋部材5は、合成樹脂で一体的に形成されて、シリンダ・外筒複合体H1を構成する。
In the reference example , as shown in FIG. 2, the multi-cylinder shock absorber includes a bridging member 5 that couples the cylinder 1 and the outer cylinder 4, and the cylinder 1, the outer cylinder 4, and the bridging member 5 are The cylinder / outer cylinder composite H1 is formed integrally with a synthetic resin.

図2(b)中において、説明のため、シリンダ1と架橋部材5との境界及び架橋部材5と外筒4との境界を破線で示すが、この破線は、想像線である。   In FIG. 2B, for the sake of explanation, the boundary between the cylinder 1 and the bridging member 5 and the boundary between the bridging member 5 and the outer cylinder 4 are indicated by broken lines, which are imaginary lines.

このシリンダ・外筒複合体H1は、射出成形や押出成形等で円筒状に形成され、軸心部に位置する円柱状の中空部6と、肉厚を軸方向に貫通する断面六角形及び断面略矩形の軸通孔7とを備えてなる。   This cylinder / outer cylinder composite H1 is formed in a cylindrical shape by injection molding, extrusion molding, or the like, and has a columnar hollow portion 6 positioned at the axial center portion, a hexagonal cross section and a cross section that penetrate the wall thickness in the axial direction. A substantially rectangular shaft through hole 7 is provided.

そして、複筒型緩衝器を組み立てたとき、シリンダ・外筒複合体H1の内周面がシリンダ内周面1a、シリンダ・外筒複合体H1の外周面が外筒外周面4a、上記中空部6がシリンダ1内部(A、B)、上記軸通孔7がリザーバ室Rとなる。   When the double cylinder type shock absorber is assembled, the inner circumferential surface of the cylinder / outer cylinder complex H1 is the cylinder inner circumferential surface 1a, the outer circumferential surface of the cylinder / outer cylinder complex H1 is the outer cylindrical outer circumferential surface 4a, and the hollow portion 6 is the inside of the cylinder 1 (A, B), and the shaft through hole 7 is the reservoir chamber R.

つまり、架橋部材5を設けてシリンダ1及び外筒4をシリンダ・外筒複合体H1とすることにより、従来のように、シリンダ1及び外筒4をそれぞれ組み付ける必要がなく、部品数を減らして複筒型緩衝器の組立作業を容易にすることが可能となる。   In other words, by providing the bridging member 5 and making the cylinder 1 and the outer cylinder 4 the cylinder / outer cylinder composite H1, it is not necessary to assemble the cylinder 1 and the outer cylinder 4 as in the prior art, reducing the number of parts. It becomes possible to facilitate the assembly work of the double cylinder type shock absorber.

また、シリンダ・外筒複合体H1を合成樹脂で形成することにより、シリンダ1及び外筒4が鉄等の金属で形成される従来の複筒型緩衝器と比較して軽量化することが可能となる。   Further, by forming the cylinder / outer cylinder composite H1 with synthetic resin, it is possible to reduce the weight as compared with the conventional double cylinder type shock absorber in which the cylinder 1 and the outer cylinder 4 are formed of metal such as iron. It becomes.

また、合成樹脂は、外筒4に防錆用の塗装を施す必要がなく、環境負荷を軽減することが可能となる。   In addition, the synthetic resin does not need to be coated for rust prevention on the outer cylinder 4 and can reduce the environmental load.

更に、架橋部材5を備えることにより、シリンダ・外筒複合体H1におけるシリンダ1及び外筒4の強度が増し、合成樹脂で従来のシリンダ100及び外筒400を形成した場合と比較して、シリンダ1や外筒4の肉厚を薄くして複筒型緩衝器を小径に形成することが可能となる。   Further, by providing the bridging member 5, the strength of the cylinder 1 and the outer cylinder 4 in the cylinder / outer cylinder composite H1 is increased, and the cylinder is compared with the case where the conventional cylinder 100 and the outer cylinder 400 are formed of synthetic resin. It is possible to reduce the wall thickness of the outer cylinder 4 and the outer cylinder 4 to form a double cylinder type shock absorber with a small diameter.

尚、上記シリンダ・外筒複合体H1の強度を均一にするため、軸通孔7をシリンダ1と同心円周上に等間隔に形成することが好ましいが、軸通孔7及び架橋部材5の形状は適宜選択することが可能である。   In order to make the strength of the cylinder / outer cylinder composite H1 uniform, it is preferable to form the shaft through holes 7 at equal intervals on the circumference concentric with the cylinder 1, but the shapes of the shaft through holes 7 and the bridging member 5 are the same. Can be appropriately selected.

また、ピストン2の摺動性を確保するため、図3に示すように、シリンダ・外筒複合体H1の内周面、即ち、シリンダ内周面1aに鉄又はアルミからなる筒部材Tをインサート成型により設けて、上記筒部材Tでピストン2の摺動性を保障するとしても良い。   Further, in order to ensure the slidability of the piston 2, as shown in FIG. 3, a cylindrical member T made of iron or aluminum is inserted into the inner peripheral surface of the cylinder / outer cylinder composite H1, that is, the cylinder inner peripheral surface 1a. It may be provided by molding, and the cylindrical member T may ensure the slidability of the piston 2.

この場合において、筒部材Tは、ピストン摺動面のみに設けるとしても、シリンダ・外筒複合体H1の内周面全体に設けるとしても良い。   In this case, the cylindrical member T may be provided only on the piston sliding surface, or may be provided on the entire inner peripheral surface of the cylinder / outer cylinder composite H1.

同じく、筒部材Tは、架橋部材5で補強されるため、従来のシリンダ100と比較して肉厚を薄くすることが可能となるため、複筒型緩衝器の軽量化の妨げとなることはない。   Similarly, since the cylindrical member T is reinforced by the bridging member 5, it is possible to reduce the wall thickness compared to the conventional cylinder 100, so that the weight reduction of the multi-cylinder shock absorber may be hindered. Absent.

尚、上記筒部材Tの材質は、上記の限りではなく、ピストン2の摺動性を確保し得る限りにおいて、他の金属又は合成樹脂等、適宜材質を選択することが可能である。   The material of the cylindrical member T is not limited to the above, and other materials such as other metals or synthetic resins can be appropriately selected as long as the slidability of the piston 2 can be ensured.

次に、本発明の実施の形態を示す複筒型緩衝器について、図面を参照しながら説明する。参考例と対応する構成については、同一符合を付して詳細な説明を省略する。 Next, twin-tube type shock absorber of an embodiment of the present invention will be described with reference to the drawings. About the structure corresponding to a reference example , the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

本実施の形態に係る複筒型緩衝器は、図4に示すように、作動流体を収容するシリンダ1と、このシリンダ1内に摺動自在に挿入されて上記シリンダ1内に二つの作用室A、Bを区画するピストン2と、このピストン2を保持するロッド3と、上記シリンダ1を覆うと共に上記シリンダ1との間に流路Lを形成する筒状の内筒8と、この内筒8を覆うと共にこの内筒8との間にリザーバ室Rを形成する外筒4と、上記ピストン2の摺動を減衰する減衰力発生手段(V3)とを備える。   As shown in FIG. 4, the double-cylinder shock absorber according to the present embodiment includes a cylinder 1 that contains a working fluid, and two working chambers that are slidably inserted into the cylinder 1. A piston 2 that partitions A and B; a rod 3 that holds the piston 2; a cylindrical inner cylinder 8 that covers the cylinder 1 and forms a flow path L between the cylinder 1; and the inner cylinder And an outer cylinder 4 that forms a reservoir chamber R between the inner cylinder 8 and a damping force generating means (V3) that attenuates the sliding of the piston 2.

そして、図5に示すように、上記シリンダ1、上記内筒8及び上記外筒4を連結する架橋部材5を備え、上記シリンダ1、上記内筒8、上記外筒4及び上記架橋部材5を合成樹脂で一体的に形成する。   As shown in FIG. 5, the cylinder 1, the inner cylinder 8, and the outer cylinder 4 are provided with a bridging member 5, and the cylinder 1, the inner cylinder 8, the outer cylinder 4, and the bridging member 5 are provided. It is formed integrally with a synthetic resin.

上記複筒型緩衝器は、上記参考例と同様に、車両における車体と車軸との間に介装されてなり、車体振動を抑制するものである。
The multi-cylinder shock absorber is interposed between the vehicle body and the axle in the vehicle, as in the above reference example, and suppresses vehicle body vibration.

本実施の形態において、シリンダ1と外筒4との間に同軸に内筒8を設け、この内筒8と上記シリンダ1との間に流路Lを形成し、ユニフロー構造とした点において、上述の一実施の形態と異なる。   In the present embodiment, an inner cylinder 8 is provided coaxially between the cylinder 1 and the outer cylinder 4, a flow path L is formed between the inner cylinder 8 and the cylinder 1, and a uniflow structure is achieved. This is different from the above-described embodiment.

上記流路Lは、ロッドガイド10に形成される第二連通路L5を介して伸側作用室Aと通し、更に、ベース部材14に形成される第一連通路L6を介してリザーバ室Rと連通する。 The flow path L communicates with the extension side working chamber A via the second communication passage L5 formed in the rod guide 10, further reservoir chamber R via the first communication passage L6 which is formed in the base member 14 Communicate with.

上記ベース部材14に形成される第一連通路L6の途中には、流路Lからリザーバ室Rへの作動流体の移動のみを許容すると共に、移動の際に抵抗を生じる減衰力発生手段たるリーフバルブV3が設けられる。 In the middle of the first series passage L6 formed in the base member 14, only the movement of the working fluid from the flow path L to the reservoir chamber R is allowed, and a leaf serving as a damping force generating means that generates resistance during the movement is provided. A valve V3 is provided.

シリンダ1内に摺動自在に挿入されるピストン2には、当該ピストン2を貫通して伸側作用室Aと圧側作用室Bとを連通する第四連通路L7が形成されてなり、この第四連通路L7の途中には、圧側作用室Bから伸側作用室Aへの作動流体の移動のみを許容して、その移動の妨げとならないチェック弁C3が設けられる。 The piston 2 is slidably inserted in the cylinder 1, made in the fourth communication passage L7 for communicating the extension side working chamber A and the compression side working chamber B through the piston 2 is formed, the first A check valve C3 that allows only the movement of the working fluid from the pressure side working chamber B to the extension side working chamber A and does not hinder the movement is provided in the middle of the four- way passage L7.

また、上記ベース部材14には、圧側作用室Bとリザーバ室Rとを連通する第三連通路L8が形成されてなり、この第三連通路L8の途中には、リザーバ室Rから圧側作用室Bへの作動流体の移動のみを許容して、その移動の妨げとならないチェック弁C4が設けられる。 Further, the base member 14 is made by a third communication passage L8 is formed for communicating the compression side working chamber B and the reservoir chamber R, the middle is the third communication passage L8, the compression side working chamber from the reservoir chamber R A check valve C4 that allows only the movement of the working fluid to B and does not hinder the movement is provided.

上記構成を備えることにより、本実施の形態に係る複筒型緩衝器が伸張する際、加圧される伸側作用室A内の作動流体が第二連通路L5及び流路Lを介してリザーバ室R内に移動するため、リーフバルブV3を通過して所定の減衰力を発生する。
By providing the above configuration, when the multi-cylinder shock absorber according to the present embodiment expands, the working fluid in the expansion side working chamber A to be pressurized is stored in the reservoir via the second communication path L5 and the flow path L. In order to move into the chamber R, a predetermined damping force is generated through the leaf valve V3.

このとき、ロッド3の退出分シリンダ1内で不足する作動流体がベース部材14のチェック弁C4を介してリザーバ室Rから圧側作用室B内に流入する。   At this time, the working fluid that is deficient in the cylinder 1 for the withdrawal of the rod 3 flows from the reservoir chamber R into the pressure-side working chamber B via the check valve C4 of the base member 14.

また、本実施の形態に係る複筒型緩衝器が収縮する際、加圧される圧側作用室内Bの作動流体がピストン2のチェック弁C3を開いて伸側作用室A内に移動する。   Further, when the double cylinder type shock absorber according to the present embodiment contracts, the working fluid in the pressure side working chamber B to be pressurized moves into the expansion side working chamber A by opening the check valve C3 of the piston 2.

そして、シリンダ1内に没入するロッド3の体積分余剰となる作動流体が流路Lを介してリザーバ室R内に移動する際、リーフバルブV3を通過して所定の減衰力を発生する。   Then, when the working fluid that is the surplus volume of the rod 3 that is immersed in the cylinder 1 moves into the reservoir chamber R through the flow path L, it passes through the leaf valve V3 and generates a predetermined damping force.

本実施の形態において、複筒型緩衝器は、シリンダ1、内筒8及び外筒4を連結する架橋部材5を備えてなり、上記シリンダ1、上記内筒8、上記外筒4及び上記架橋部材5は、合成樹脂で一体的に形成されてシリンダ・内筒・外筒複合体H2を構成する。   In the present embodiment, the multi-cylinder shock absorber includes a bridging member 5 that couples the cylinder 1, the inner cylinder 8, and the outer cylinder 4, and the cylinder 1, the inner cylinder 8, the outer cylinder 4, and the bridging member. The member 5 is integrally formed of a synthetic resin to constitute a cylinder / inner cylinder / outer cylinder composite H2.

図5において、説明のため、シリンダ・内筒・外筒複合体H2の内周側から、シリンダ1と架橋部材5との境界、架橋部材5と内筒8との境界、内筒8と架橋部材5との境界及び架橋部材5と外筒4との境界をそれぞれ破線で示すが、各破線は想像線である。   In FIG. 5, for explanation, from the inner peripheral side of the cylinder / inner cylinder / outer cylinder complex H <b> 2, the boundary between the cylinder 1 and the bridging member 5, the boundary between the bridging member 5 and the inner cylinder 8, and the inner cylinder 8 and bridging. The boundary between the member 5 and the boundary between the bridging member 5 and the outer cylinder 4 are indicated by broken lines, and each broken line is an imaginary line.

上記シリンダ・内筒・外筒複合体H2は、射出成型や押出成型等で円筒状に形成され、軸心部に位置する円柱状の中空部60と、肉厚を軸方向に貫通する複数の軸通孔70とを備えてなる。   The cylinder / inner cylinder / outer cylinder composite H2 is formed into a cylindrical shape by injection molding, extrusion molding, or the like, and has a columnar hollow portion 60 positioned in the axial center portion and a plurality of thicknesses penetrating in the axial direction. A shaft through hole 70 is provided.

上記軸通孔70は、外周面に沿って形成される外周側軸通孔70aと、内周面に沿って形成される内周側軸通孔70bとからなる。   The shaft through hole 70 includes an outer peripheral side shaft through hole 70a formed along the outer peripheral surface and an inner peripheral side shaft through hole 70b formed along the inner peripheral surface.

そして、複筒型緩衝器を組み立てたとき、シリンダ・内筒・外筒複合体H2の内周面がシリンダ内周面1a、上記中空部60がシリンダ内部(A、B)、上記外周側軸通孔70aがリザーバ室R、上記内周側軸通孔70bが流路となる。   When the multi-cylinder shock absorber is assembled, the inner peripheral surface of the cylinder / inner cylinder / outer cylinder complex H2 is the cylinder inner peripheral surface 1a, the hollow portion 60 is the inside of the cylinder (A, B), and the outer peripheral side shaft. The through hole 70a serves as a reservoir chamber R, and the inner peripheral side shaft through hole 70b serves as a flow path.

つまり、架橋部材5でシリンダ1、内筒8及び外筒4を上記シリンダ・内筒・外筒複合体H2とすることにより、従来のように、シリンダ1、内筒8及び外筒4をそれぞれ組み付ける必要がなく、部品点数を減らして複筒型緩衝器の組立作業を容易にすることが可能となる。   That is, the cylinder 1, the inner cylinder 8 and the outer cylinder 4 are made the cylinder / inner cylinder / outer cylinder composite H2 by the bridging member 5, so that the cylinder 1, the inner cylinder 8 and the outer cylinder 4 are respectively connected as in the conventional case. There is no need to assemble, and the number of parts can be reduced to facilitate the assembly work of the double cylinder type shock absorber.

また、シリンダ・内筒・外筒複合体H2を合成樹脂で形成することにより、シリンダ1、内筒8及び外筒4が鉄等の金属で形成される従来の複筒型緩衝器と比較して軽量化することが可能となる。   In addition, by forming the cylinder / inner cylinder / outer cylinder composite H2 from a synthetic resin, the cylinder 1, the inner cylinder 8 and the outer cylinder 4 are compared with a conventional multi-cylinder shock absorber formed of a metal such as iron. And can be reduced in weight.

また、合成樹脂は、外筒4に防錆用の塗装を施す必要がなく、環境負荷を軽減することが可能となる。   In addition, the synthetic resin does not need to be coated for rust prevention on the outer cylinder 4 and can reduce the environmental load.

更に、架橋部材5を備えることにより、シリンダ・内筒・外筒複合体H2におけるシリンダ1、内筒8及び外筒4の強度が増し、合成樹脂で従来のシリンダ100、内筒800及び外筒400を形成した場合と比較して、シリンダ1や内筒8や外筒4の肉厚を薄くして複筒型緩衝器を小径に形成することが可能となる。   Further, by providing the bridging member 5, the strength of the cylinder 1, the inner cylinder 8 and the outer cylinder 4 in the cylinder / inner cylinder / outer cylinder composite H2 is increased, and the conventional cylinder 100, inner cylinder 800 and outer cylinder are made of synthetic resin. Compared with the case where 400 is formed, it is possible to reduce the thickness of the cylinder 1, the inner cylinder 8, and the outer cylinder 4 to form a double cylinder type shock absorber with a small diameter.

尚、上記参考例と同様に、軸通孔70を周方向に均等に形成することが好ましく、軸通孔70及び架橋部材5の形状を適宜選択することが可能である。
As in the above reference example , it is preferable to form the shaft through holes 70 uniformly in the circumferential direction, and the shapes of the shaft through holes 70 and the bridging member 5 can be appropriately selected.

また、図示しないが、筒部材Tをインサート成型することによる効果も、上記参考例と同様である。
Although not shown, the effect of insert-molding the cylindrical member T is the same as that of the reference example .

同じく、図示しないが、本実施の形態に係るシリンダ・内筒・外筒複合体H2の構成は、上記の限りではなく、参考例におけるシリンダ・外筒複合体H1の軸通孔7を複数形成し、そのうちの一の軸通孔を本実施の形態の流路Lとして利用するとしても良い。 Similarly, although not shown, the configuration of the cylinder / inner cylinder / outer cylinder complex H2 according to the present embodiment is not limited to the above, and a plurality of shaft through holes 7 of the cylinder / outer cylinder complex H1 in the reference example are formed. However, one of the through holes may be used as the flow path L of the present embodiment.

この場合においては、シリンダ外周に流路を有する複筒型緩衝器を更に小径に形成することが可能となる。   In this case, it is possible to further reduce the diameter of the double-tube shock absorber having a flow path on the outer periphery of the cylinder.

また、上記実施の形態においては、シリンダ・内筒・外筒複合体H2としたがこの限りではなく、シリンダ・内筒複合体を形成して従来の外筒を利用するとしても、内筒・外筒複合体を形成して従来のシリンダを利用するとしても良い。   In the above embodiment, the cylinder / inner cylinder / outer cylinder composite H2 is used. However, the present invention is not limited to this. Even if a conventional outer cylinder is used by forming a cylinder / inner cylinder composite, the inner cylinder / A conventional cylinder may be used by forming an outer cylinder composite.

また、本実施の形態に係るシリンダ・内筒・外筒複合体H2を特許文献2に示すアンチロール型油圧緩衝器に用いることも勿論可能である。   It is of course possible to use the cylinder / inner cylinder / outer cylinder composite H2 according to the present embodiment in the anti-roll hydraulic shock absorber disclosed in Patent Document 2.

以上、本発明の好ましい実施の形態を説明したが、特許請求の範囲から逸脱することなく改造、変形及び変更を行うことができることは理解すべきである。   While the preferred embodiment of the present invention has been described above, it should be understood that modifications, variations and changes may be made without departing from the scope of the claims.

例えば、上記実施の形態においては、車両における車体と車軸との間に介装される複筒型緩衝器としたが、車両以外に本発明の上記構成を備える複筒型緩衝器を用いるとしても勿論良い。   For example, in the above-described embodiment, the double cylinder type shock absorber interposed between the vehicle body and the axle in the vehicle is used. However, in addition to the vehicle, a double cylinder type shock absorber having the above-described configuration of the present invention may be used. Of course it is good.

また、複筒型緩衝器における減衰力を発生するためのバルブ構造や連通路の構成は上記の限りではなく、二重管若しくは三重管構造を有する他のいかなる複筒型緩衝器に本発明のシリンダ・外筒複合体H1や、シリンダ・内筒・外筒複合体H2を用いても良いことは勿論である。   Further, the structure of the valve structure and the communication path for generating the damping force in the double-tube shock absorber is not limited to the above, and any other double-tube shock absorber having a double-tube or triple-tube structure can be used. Of course, the cylinder / outer cylinder composite H1 and the cylinder / inner cylinder / outer cylinder composite H2 may be used.

また、上記実施の形態においては、シリンダと外筒からなる二重管、シリンダ、内筒及び外筒からなる三重管について説明したが、四重以上の管に本発明を利用するとしても良い。   Moreover, in the said embodiment, although the triple pipe which consists of a cylinder and an outer cylinder, the triple pipe which consists of a cylinder, an inner cylinder, and an outer cylinder was demonstrated, you may utilize this invention for the pipe | tube more than quadruple.

A 伸側作用室
B 圧側作用室
C1、C2、C3、C4 チェック弁
V1、V2、V3 リーフバルブ(減衰力発生手段)
H1 シリンダ・外筒複合体
H2 シリンダ・内筒・外筒複合体
L 流路
L1、L2、L3、L4 連通路
L5 第二連通路
L6 第一連通路
L7 第四連通路
L8 第三連通路
R リザーバ室
1 シリンダ
2 ピストン
3 ロッド
4 外筒
5 架橋部材
6、60 中空部
7、70 軸通孔
8 内筒
A Stretching side working chamber B Pressure side working chamber C1, C2, C3, C4 Check valves V1, V2, V3 Leaf valve (damping force generating means)
H1 Cylinder / outer cylinder complex H2 Cylinder / inner cylinder / outer cylinder complex L Flow path L1, L2, L3, L4 Communication path
L5 second communication passage
L6 1st passage
L7 4th passage
L8 Third communication path R Reservoir chamber 1 Cylinder 2 Piston 3 Rod 4 Outer cylinder 5 Bridge member 6, 60 Hollow part 7, 70 Shaft through hole 8 Inner cylinder

Claims (5)

作動流体を収容するシリンダと、A cylinder containing a working fluid;
上記シリンダ内に摺動自在に挿入されて上記シリンダ内に二つの伸側作用室と圧側作用室とを区画するピストンと、A piston that is slidably inserted into the cylinder and divides the two working chambers and the compression working chamber into the cylinder;
上記ピストンを保持するロッドと、A rod for holding the piston;
上記シリンダを覆うと共に上記シリンダとの間に流路を形成する筒状の内筒と、A cylindrical inner cylinder that covers the cylinder and forms a flow path with the cylinder;
上記内筒を覆うと共に上記内筒との間にリザーバ室を形成する外筒と、An outer cylinder that covers the inner cylinder and forms a reservoir chamber with the inner cylinder;
上記外筒の軸方向下側開口端を封止するボトム部材と、  A bottom member for sealing the axially lower open end of the outer cylinder;
上記ピストンが摺動する際に所定の減衰力を発生する減衰力発生手段とを備える複筒型緩衝器において、In a double cylinder type shock absorber comprising a damping force generating means for generating a predetermined damping force when the piston slides,
上記シリンダと上記内筒とを連結する、及び上記内筒と上記外筒とを連結する架橋部材を備え、A bridging member for coupling the cylinder and the inner cylinder, and for coupling the inner cylinder and the outer cylinder;
上記シリンダと上記内筒、及び上記内筒と上記外筒と上記架橋部材とを合成樹脂で一体的に形成するとともに、上記ボトム部材に設けられた第一連通路を介して、上記流路と上記リザーバ室を連通することを特徴とする複筒型緩衝器。The cylinder and the inner cylinder, and the inner cylinder, the outer cylinder, and the bridging member are integrally formed of a synthetic resin, and the flow path is formed through a first series passage provided in the bottom member. A multi-cylinder shock absorber communicating with the reservoir chamber.
上記シリンダにおけるピストン摺動面に筒部材を上記シリンダにインサート成型することにより設けることを特徴とする請求項1に記載の複筒型緩衝器。2. The double cylinder type shock absorber according to claim 1, wherein a cylindrical member is provided on the piston sliding surface of the cylinder by insert molding into the cylinder.
上記シリンダと、上記内筒と、上記外筒と、上記架橋部材とを一体的に形成して円柱状のシリンダ・内筒・外筒複合体を構成し、このシリンダ・内筒・外筒複合体の肉厚を軸方向に貫通する軸通孔を複数形成し、この軸通孔を上記流路及び上記リザーバ室とすることを特徴とする請求項1または2に記載の複筒型緩衝器。The cylinder, the inner cylinder, the outer cylinder, and the bridging member are integrally formed to form a cylindrical cylinder / inner cylinder / outer cylinder composite. 3. The multi-cylinder shock absorber according to claim 1, wherein a plurality of shaft through holes that penetrate the thickness of the body in the axial direction are formed, and the shaft through holes serve as the flow path and the reservoir chamber. .
上記軸通孔を上記シリンダと同心円周上に等間隔に形成したことを特徴とする請求項3に記載の複筒型緩衝器。The double cylinder type shock absorber according to claim 3, wherein the shaft through holes are formed at equal intervals on a circumference concentric with the cylinder.
上記外筒の軸方向上側開口端にロッドガイドを設け、  A rod guide is provided at the axially upper opening end of the outer cylinder,
上記流路と上記伸側作用室とを連通する上記ロッドガイドに設けられた第二連通路と、  A second communication path provided in the rod guide communicating the flow path and the extension side working chamber;
上記圧側作用室と上記リザーバ室とを連通する上記ボトム部材に設けられた第三連通路とを有することを特徴とする請求項1〜4に記載の複筒型緩衝器。  5. The multi-cylinder shock absorber according to claim 1, further comprising a third communication passage provided in the bottom member that communicates the pressure side working chamber and the reservoir chamber.
JP2010168216A 2010-07-27 2010-07-27 Double cylinder type shock absorber Active JP5476249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010168216A JP5476249B2 (en) 2010-07-27 2010-07-27 Double cylinder type shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010168216A JP5476249B2 (en) 2010-07-27 2010-07-27 Double cylinder type shock absorber

Publications (2)

Publication Number Publication Date
JP2012026549A JP2012026549A (en) 2012-02-09
JP5476249B2 true JP5476249B2 (en) 2014-04-23

Family

ID=45779714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010168216A Active JP5476249B2 (en) 2010-07-27 2010-07-27 Double cylinder type shock absorber

Country Status (1)

Country Link
JP (1) JP5476249B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013006893B4 (en) 2013-03-29 2023-07-27 Hitachi Astemo, Ltd. pressure damping device
JP6581895B2 (en) * 2015-12-24 2019-09-25 株式会社ショーワ Pressure shock absorber
JP6654943B2 (en) * 2016-03-24 2020-02-26 Kyb株式会社 Railcar damper
JP6789874B2 (en) * 2017-04-07 2020-11-25 日立オートモティブシステムズ株式会社 Vehicle shock absorber

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095242U (en) * 1983-12-07 1985-06-28 カヤバ工業株式会社 hydraulic shock absorber
JPH0484842U (en) * 1990-11-29 1992-07-23
JP5105750B2 (en) * 2006-02-24 2012-12-26 不二ラテックス株式会社 shock absorber

Also Published As

Publication number Publication date
JP2012026549A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
KR20180133797A (en) Adjustable occilation damper
JP2009014019A (en) Shock absorber
JP5827871B2 (en) Hydraulic shock absorber
JP6420602B2 (en) Shock absorber
WO2017047526A1 (en) Shock absorber
JP5476249B2 (en) Double cylinder type shock absorber
US9371880B2 (en) Dual-tube shock absorber
JP5403755B2 (en) Shock absorber
JP6128636B2 (en) Shock absorber
JP4815418B2 (en) Pneumatic shock absorber
IT201800007584A1 (en) Variable damping hydraulic shock absorber, particularly for vehicle suspension.
JP4514640B2 (en) Front fork
US20120048664A1 (en) Multi-cylinder hydraulic shock absorber
JP5530291B2 (en) Shock absorber
JP4898719B2 (en) Front fork
JP5426853B2 (en) Hydraulic buffer
JP4535949B2 (en) Pneumatic shock absorber
JP2009097680A (en) Pneumatic shock absorber
WO2022201671A1 (en) Shock absorber
JP6401862B2 (en) piston
JP2009097552A (en) Pneumatic shock absorber
JP6335667B2 (en) shock absorber
JPH0412264Y2 (en)
JP5926666B2 (en) Damper device
JP2010038171A (en) Hydraulic shock absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140207

R151 Written notification of patent or utility model registration

Ref document number: 5476249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350