JP5475349B2 - Light wave distance meter - Google Patents

Light wave distance meter Download PDF

Info

Publication number
JP5475349B2
JP5475349B2 JP2009156724A JP2009156724A JP5475349B2 JP 5475349 B2 JP5475349 B2 JP 5475349B2 JP 2009156724 A JP2009156724 A JP 2009156724A JP 2009156724 A JP2009156724 A JP 2009156724A JP 5475349 B2 JP5475349 B2 JP 5475349B2
Authority
JP
Japan
Prior art keywords
frequency
light
signal
receiving element
frequencies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009156724A
Other languages
Japanese (ja)
Other versions
JP2011013068A (en
Inventor
康俊 青木
Original Assignee
株式会社 ソキア・トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ソキア・トプコン filed Critical 株式会社 ソキア・トプコン
Priority to JP2009156724A priority Critical patent/JP5475349B2/en
Publication of JP2011013068A publication Critical patent/JP2011013068A/en
Application granted granted Critical
Publication of JP5475349B2 publication Critical patent/JP5475349B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、光波距離計に関し、さらに詳細には、発光素子から出射した光を測距光路(外部光路)と参照光路(内部光路)とに切換えるシャッターを用いない光波距離計に関する。   The present invention relates to a light wave distance meter, and more particularly, to a light wave distance meter that does not use a shutter for switching light emitted from a light emitting element to a distance measuring light path (external light path) and a reference light path (internal light path).

従来の光波距離計では、シャッターを移動させることによって、発光素子から出射した光を、目標反射物(ターゲット、反射シート又はノンプリズムの物体)まで往復する測距光路と、光源から直ちに受光素子へ向かう参照光路とを交互に切換えて距離測定することによって、光波距離計の固有な誤差を補正していた。しかしながら、シャッターの移動を伴うため、距離測定に時間にかかるうえ、低温で動きが遅くなるという短所があった。そこで、測距光路と参照光路とに切換えるシャッターを用いない光波距離計が望まれていた。   In the conventional lightwave distance meter, by moving the shutter, the light emitted from the light emitting element reciprocates to the target reflector (target, reflecting sheet, or non-prism object) and the light source to the light receiving element immediately. The inherent error of the light wave rangefinder was corrected by measuring the distance by alternately switching between the reference optical path to go. However, since it involves the movement of the shutter, it takes time to measure the distance and also has the disadvantages that the movement becomes slow at low temperatures. Therefore, there has been a demand for a lightwave distance meter that does not use a shutter that switches between a distance measuring optical path and a reference optical path.

このようなシャッターを用いない光波距離計を出願人は、先に出願している(下記特許文献1参照)。そこで、この光波距離計について、図10に示したブロック図に基づいて説明する。   The applicant has previously filed an optical distance meter that does not use such a shutter (see Patent Document 1 below). Therefore, the light wave distance meter will be described based on the block diagram shown in FIG.

この光波距離計は、レーザダイオード等の発光素子13、14を2つ備え、第1の発光素子13からは周波数F、F及びF(以下、主変調周波数と呼ぶ。)で変調された光を出射し、第2の発光素子14からは、主変調周波数F、F及びFそれぞれに近接した周波数F−Δf、F−Δf及びF−Δf(以下、傍変調周波数と呼ぶ。)で変調された光を出射する。第1の発光素子13から出射された光は、2つに分けられ、一方は測距光として、目標反射物22までを往復する測距光路23を経て第1の受光素子40に入射し、他方は参照光として、第1の参照光路26を経て第2の受光素50に入射する。第2の発光素子14から出射された光は、2つに分けられ、一方は参照光として、第2の参照光路31を経て第2の受光素子50に入射し、他方は参照光として、第3の参照光路29を経て第1の受光素子40に入射する。 This light wave distance meter includes two light-emitting elements 13 and 14 such as laser diodes, and is modulated from the first light-emitting element 13 at frequencies F 1 , F 2 and F 3 (hereinafter referred to as a main modulation frequency). From the second light-emitting element 14, frequencies F 1 -Δf 1 , F 2 -Δf 2 and F 3 -Δf 3 (hereinafter referred to as the main modulation frequencies F 1 , F 2 and F 3). , Which is called a side modulation frequency). The light emitted from the first light emitting element 13 is divided into two, one of which is incident on the first light receiving element 40 through the distance measuring optical path 23 that reciprocates to the target reflector 22 as distance measuring light, The other is incident on the second light receiving element 50 through the first reference optical path 26 as reference light. The light emitted from the second light emitting element 14 is divided into two parts, one of which is a reference light, which enters the second light receiving element 50 via the second reference optical path 31, and the other is the reference light. The light enters the first light receiving element 40 through the three reference light paths 29.

第1の受光素子40の出力は、主変調周波数F、F及びFの個数と同数の3つに分けられ、一つ目は第1の周波数変換器42に入力され、2つ目は第2の周波数変換器44に入力され、3つ目は第3の周波数変換器46に入力される。第2の受光素子50の出力も同じく3つに分けられ、一つ目は第4の周波数変換器52に入力され、2つ目は第5の周波数変換器54に入力され、3つ目は第6の周波数変換器56に入力される。 The output of the first light receiving element 40 is divided into three, which is the same as the number of main modulation frequencies F 1 , F 2 and F 3 , the first being input to the first frequency converter 42 and the second. Is input to the second frequency converter 44 and the third is input to the third frequency converter 46. The output of the second light receiving element 50 is also divided into three, the first being input to the fourth frequency converter 52, the second being input to the fifth frequency converter 54, and the third being Input to the sixth frequency converter 56.

第1の周波数変換器42は、主変調周波数Fで変調されて測距光路23を経た測距光から得られた信号に、前述した主変調周波数F及び傍変調周波数F−Δfの両方に近接した局部発振周波数F+Δfの信号を乗算して、周波数Δfの中間周波信号を発生させる。また、第1の周波数変換器42は、傍変調周波数F−Δfで変調されて第3の参照光路29を経た参照光から得られた信号に局部発振周波数F+Δfの信号を乗算して、周波数2Δfの中間周波信号を発生させる。 The first frequency converter 42, the main modulation frequencies F 1 to modulated by a signal obtained from the distance measuring light having passed through the distance measuring optical path 23, the main modulation frequencies F 1 and near the aforementioned modulation frequencies F 1 -.DELTA.f 1 Are multiplied by a signal having a local oscillation frequency F 1 + Δf 1 close to both to generate an intermediate frequency signal having a frequency Δf 1 . Further, the first frequency converter 42 multiplies the signal obtained from the reference light modulated by the side modulation frequency F 1 −Δf 1 and passed through the third reference optical path 29 by the signal of the local oscillation frequency F 1 + Δf 1. Thus, an intermediate frequency signal having a frequency 2Δf 1 is generated.

第2の周波数変換器44は、主変調周波数Fで変調されて測距光路23を経た測距光から得られた信号に、前述した主変調周波数F及び傍変調周波数F−Δfの両方に近接した局部発振周波数F+Δfの信号を乗算して、周波数Δfの中間周波信号を発生させる。また、第2の周波数変換器44は、傍変調周波数F−Δfで変調されて第3の参照光路29Pを経た参照光から得られた信号に局部発振周波数F+Δfの信号を乗算して、周波数2Δfの中間周波信号を発生させる。 The second frequency converter 44, the main modulation frequency F is modulated to a signal obtained from the distance measuring light having passed through the distance measuring optical path 23 at 2, the main modulation frequency F 2 and near the aforementioned modulation frequency F 2 -.DELTA.f 2 Are multiplied by a signal having a local oscillation frequency F 2 + Δf 2 close to both, to generate an intermediate frequency signal having a frequency Δf 2 . Further, the second frequency converter 44 multiplies the signal obtained from the reference light modulated by the side modulation frequency F 2 −Δf 2 and passed through the third reference optical path 29P by the signal of the local oscillation frequency F 2 + Δf 2. Then, an intermediate frequency signal having a frequency of 2Δf 2 is generated.

第3の周波数変換器46は、主変調周波数Fで変調されて測距光路23を経た測距光から得られた信号に、前述した主変調周波数F及び傍変調周波数F−Δfの両方に近接した局部発振周波数F+Δfの信号を乗算して、周波数Δfの中間周波信号を発生させる。また、第3の周波数変換器46は、傍変調周波数F−Δfで変調されて第3の参照光路29を経た参照光から得られた信号に局部発振周波数F+Δfの信号を乗算して、周波数2Δfの中間周波信号を発生させる。 Third frequency converter 46, the main modulation frequency F is modulated to a signal obtained from the distance measuring light having passed through the distance measuring optical path 23 at 3, the main modulation frequencies F 3 and near the modulation frequency F 3 -.DELTA.f 3 described above Are multiplied by a signal of the local oscillation frequency F 3 + Δf 3 close to both of them to generate an intermediate frequency signal of the frequency Δf 3 . The third frequency converter 46 multiplies the signal obtained from the reference light modulated by the side modulation frequency F 3 −Δf 3 and passed through the third reference optical path 29 by the signal of the local oscillation frequency F 3 + Δf 3. Then, an intermediate frequency signal having a frequency of 2Δf 3 is generated.

第4の周波数変換器52は、主変調周波数Fで変調されて第1の参照光路26を経た参照光から得られた信号に局部発振周波数F+Δfの信号を乗算して、周波数Δfの中間周波信号を発生させる。また、第4の周波数変換器52は、傍変調周波数F−Δfで変調されて第2の参照光路31を経た参照光から得られた信号に局部発振周波数F+Δfの信号を乗算して、周波数2Δfの中間周波信号を発生させる。 The fourth frequency converter 52 multiplies the signal obtained from the reference light modulated by the main modulation frequency F 1 and passed through the first reference optical path 26 by the signal of the local oscillation frequency F 1 + Δf 1 to obtain the frequency Δf. 1 intermediate frequency signal is generated. Further, the fourth frequency converter 52 multiplies the signal obtained from the reference light modulated by the side modulation frequency F 1 −Δf 1 and passed through the second reference optical path 31 by the signal of the local oscillation frequency F 1 + Δf 1. Thus, an intermediate frequency signal having a frequency 2Δf 1 is generated.

第5の周波数変換器54は、主変調周波数Fで変調されて第1の参照光路26を経た参照光から得られた信号に局部発振周波数F+Δfの信号を乗算して、周波数Δfの中間周波信号を発生させる。また、第5の周波数変換器54は、傍変調周波数F−Δfで変調されて第2の参照光路31を経た参照光から得られた信号に局部発振周波数F+Δfの信号を乗算して、周波数2Δfの中間周波信号を発生させる。 The fifth frequency converter 54 multiplies the signal obtained from the reference light modulated by the main modulation frequency F 2 and passed through the first reference optical path 26 by the signal of the local oscillation frequency F 2 + Δf 2 to obtain the frequency Δf 2 intermediate frequency signals are generated. Further, the fifth frequency converter 54 multiplies the signal obtained from the reference light modulated by the side modulation frequency F 2 −Δf 2 and passed through the second reference optical path 31 by the signal of the local oscillation frequency F 2 + Δf 2. Then, an intermediate frequency signal having a frequency of 2Δf 2 is generated.

第6の周波数変換器56は、主変調周波数Fで変調されて第1の参照光路26を経た参照光から得られた信号に局部発振周波数F+Δfの信号を乗算して、周波数Δfの中間周波信号を発生させる。また、第6の周波数変換器56は、傍変調周波数F−Δfで変調されて第2の参照光路31を経た参照光から得られた信号に局部発振周波数F+Δfの信号を乗算して、周波数2Δfの中間周波信号を発生させる。 The sixth frequency converter 56 multiplies the signal obtained from the reference light modulated by the main modulation frequency F 3 and passed through the first reference optical path 26 by the signal of the local oscillation frequency F 3 + Δf 3 to obtain the frequency Δf. 3 intermediate frequency signals are generated. Further, the sixth frequency converter 56 multiplies the signal obtained from the reference light modulated by the side modulation frequency F 3 −Δf 3 and passed through the second reference optical path 31 by the signal of the local oscillation frequency F 3 + Δf 3. Then, an intermediate frequency signal having a frequency of 2Δf 3 is generated.

こうして同時に、測距光路23に係る周波数Δf、Δf及びΔfの中間周波信号、第1の参照光路26に係る周波数Δf、Δf及びΔfの中間周波信号、第2の参照光路31に係る周波数2Δf、2Δf及び2Δfの中間周波信号、第3の参照光路29に係る周波数2Δf、2Δf及び2Δfの中間周波信号の合わせて12の中間周波信号が得られる。12の中間周波信号をフィルタやフーリエ変換器等の適当な手段で分離し、各中間周波信号の初期位相を求めれば、目標反射物22までの距離が光波距離計内部で発生する誤差を補正して算出される。 At the same time, the intermediate frequency signals of the frequencies Δf 1 , Δf 2 and Δf 3 relating to the distance measuring optical path 23, the intermediate frequency signals of the frequencies Δf 1 , Δf 2 and Δf 3 relating to the first reference optical path 26, and the second reference optical path Twelve intermediate frequency signals are obtained by combining the intermediate frequency signals of frequencies 2Δf 1 , 2Δf 2 and 2Δf 3 related to 31 and the intermediate frequency signals of frequencies 2Δf 1 , 2Δf 2 and 2Δf 3 related to the third reference optical path 29. If the 12 intermediate frequency signals are separated by an appropriate means such as a filter or a Fourier transformer, and the initial phase of each intermediate frequency signal is obtained, the error that the distance to the target reflector 22 is generated inside the optical distance meter is corrected. Is calculated.

特願2009−144488号Japanese Patent Application No. 2009-144488

前記光波距離計によれば、測距光と参照光とを切換えるのにシャッターを用いることなく、全ての変調周波数における測距光路と参照光路に係る各中間周波信号の初期位相が同時に求まるため、従来よりも高速に距離測定を行うことができる。また、シャッターを用いないことによるコストダウンが可能になる。さらに、全ての変調周波数における測距距離と参照距離の同時測定が可能になるため、温度位相ドリフトが打ち消し合って、電気部品の温度位相ドリフトを低減できる。   According to the lightwave distance meter, since the initial phase of each intermediate frequency signal related to the ranging optical path and the reference optical path at all modulation frequencies can be obtained simultaneously without using a shutter to switch the ranging light and the reference light, Distance measurement can be performed faster than before. Further, the cost can be reduced by not using the shutter. Furthermore, since the distance measurement distance and the reference distance can be simultaneously measured at all modulation frequencies, the temperature phase drift can be canceled out and the temperature phase drift of the electrical component can be reduced.

しかし、前記光波距離計において、発光素子13、14から出射する光の主変調周波数F、F、Fが、例えば、それぞれ75MHz、3.75MHz、250kHzであるとすると、それぞれの波長は4m、80m、1200mとなり、それぞれの測定可能な範囲は2m、40m、600mとなる。このため、遠距離測定の際には低い変調周波数を使用する必要があるが、数百kHz以下の変調周波数を使用すると、空気中の微粒子からの反射量が増して、測定誤差が大きくなるため、遠距離測定には限界があった。しかし、最近では、従来よりもいっそうの遠距離測定できる光波距離計が要望されるようになってきた。 However, in the lightwave distance meter, if the main modulation frequencies F 1 , F 2 , and F 3 of light emitted from the light emitting elements 13 and 14 are, for example, 75 MHz, 3.75 MHz, and 250 kHz, respectively, 4 m, 80 m, and 1200 m, and the measurable ranges are 2 m, 40 m, and 600 m, respectively. For this reason, it is necessary to use a low modulation frequency for long-distance measurement, but if a modulation frequency of several hundred kHz or less is used, the amount of reflection from fine particles in the air increases, resulting in a large measurement error. There was a limit to long-range measurement. However, recently, there has been a demand for a lightwave distance meter that can measure a greater distance than before.

本発明は、前記要望に鑑みてなされたものであって、従来よりも、電気部品の温度位相ドリフトを低減するとともに誤差を小さくしながら遠距離測定できる光波距離計を提供することを課題とする。   The present invention has been made in view of the above-described demand, and an object of the present invention is to provide an optical rangefinder that can measure a long distance while reducing the temperature phase drift of an electrical component and reducing an error as compared with the prior art. .

前記課題を解決するため、請求項1に係る発明の光波距離計は、複数の主変調周波数(F、F、F)で変調された光を出射する第1の発光素子と、前記各主変調周波数それぞれに近接する傍変調周波数(F−Δf、F−Δf、F−Δf)で変調された光を出射する第2の発光素子と、両発光素子から出射された光を受光する第1の受光素子及び第2の受光素子と、第1の受光素子に接続された第1の周波数変換器群と、第2の受光素子に接続された第2の周波数変換器群とを備え、第1の発光素子から出射された光は2つに分けられ、一方は目標反射物までを往復する測距光路を経て第1の受光素子に入射し、他方は第1の参照光路を経て第2の受光素子に入射し、第2の発光素子から出射された光は2つに分けられ、一方は第2の参照光路を経て第2の受光素子に入射し、他方は第3の参照光路を経て第1の受光素子に入射し、第1の周波数変換器群及び第2の周波数変換器群は、それぞれ、前記主変調周波数と同数の周波数変換器から構成され、各周波数変換器にはそれぞれ異なる周波数の局部発振周波数(F+Δf、F+Δf、F+Δf)の信号が入力され、該局部発振周波数は、各主変調周波数及び各主変調周波数に近接した各傍変調周波数の両方に近接した周波数とされ、前記各周波数変換器で発生させた中間周波信号を用いて目標反射物までの距離を算出するとともに、前記主変調周波数、前記傍変調周波数及び前記局部発振周波数は、それぞれの中で最も低い周波数(F、F−Δf、F+Δf)は、それぞれに近接した別の周波数の主変調周波数(F−F)、傍変調周波数(F−F−Δf)及び局部発振周波数(F−F+Δf)に変更でき、近接法によって、最も低い周波数の主変調周波数の周波数変更前後の周波数差となる変調周波数(F)を用いた場合の目標反射物までの距離も算出できるようにした。 In order to solve the above-mentioned problem, the lightwave distance meter of the invention according to claim 1 includes a first light-emitting element that emits light modulated at a plurality of main modulation frequencies (F 1 , F 2 , F 3 ), and A second light-emitting element that emits light modulated at a side modulation frequency (F 1 -Δf 1 , F 2 -Δf 2 , F 3 -Δf 3 ) close to each main modulation frequency, and emitted from both light-emitting elements A first light receiving element and a second light receiving element for receiving the emitted light, a first frequency converter group connected to the first light receiving element, and a second frequency connected to the second light receiving element. The light emitted from the first light emitting element is divided into two, one is incident on the first light receiving element through a distance measuring optical path that reciprocates to the target reflector, and the other is the first light emitting element. The light incident on the second light receiving element through one reference light path and emitted from the second light emitting element is divided into two. One is incident on the second light receiving element via the second reference optical path, and the other is incident on the first light receiving element via the third reference optical path. The first frequency converter group and the second frequency Each converter group is composed of the same number of frequency converters as the main modulation frequency, and each frequency converter has a local oscillation frequency (F 1 + Δf 1 , F 2 + Δf 2 , F 3 + Δf 3 ) having a different frequency. The local oscillation frequency is a frequency close to each main modulation frequency and each side modulation frequency close to each main modulation frequency, and an intermediate frequency signal generated by each frequency converter is used as the local oscillation frequency. And calculating the distance to the target reflector, and the main modulation frequency, the side modulation frequency, and the local oscillation frequency are the lowest frequency (F 3 , F 3 −Δf 3 , F 3 + Δf 3). ) It can be changed to a main modulation frequency (F 3 -F 4 ), a side modulation frequency (F 3 -F 4 -Δf 4 ), and a local oscillation frequency (F 3 -F 4 + Δf 4 ), which are close to each other. According to the method, the distance to the target reflector when the modulation frequency (F 4 ) that is the frequency difference before and after the frequency change of the lowest main modulation frequency is used can also be calculated.

また、前記各中間周波信号の周波数は最も低いものに対して整数倍になっており、前記各中間周波信号はデジタル帯域フィルタによって分離されるようにした。
The frequency of each intermediate frequency signal is an integral multiple of the lowest frequency, and each intermediate frequency signal is separated by a digital band filter.

請求項1に係る発明の光波距離計によれば、測距光と参照光とを切換えるのに、シャッターを用いることなく、測距光路と参照光路に係る各中間周波信号の初期位相が同時に求まるため、従来よりも高速に距離測定を行うことができる。また、シャッターを省くことによるコストダウンが可能になる。さらに、本発明によれば、測距距離と参照距離の同時測定が可能になるため、温度位相ドリフトが打ち消し合って、電気部品の温度位相ドリフトを低減できる。このため、従来は、電気部品の温度位相ドリフトを少なくするため、連続測距中の発光素子を電源ONに保っていたが、本発明では、測距毎に発光素子の電源をON/OFFすることが可能となって、節電を図ることができる。   According to the lightwave distance meter of the first aspect of the invention, the initial phase of each intermediate frequency signal related to the distance measuring light path and the reference light path can be obtained simultaneously without using a shutter to switch between the distance measuring light and the reference light. Therefore, distance measurement can be performed at a higher speed than before. Further, the cost can be reduced by omitting the shutter. Furthermore, according to the present invention, since the distance measurement distance and the reference distance can be measured simultaneously, the temperature phase drift cancels out, and the temperature phase drift of the electrical component can be reduced. For this reason, conventionally, in order to reduce the temperature phase drift of the electrical component, the light emitting element during the continuous distance measurement is kept ON, but in the present invention, the light emitting element is turned ON / OFF for each distance measurement. This makes it possible to save power.

さらに、本発明では、2つの主変調周波数FとF−Fとを近接させているので、近接法によって、両主変調周波数の差となる変調周波数Fを用いることなく、極めて低い変調周波数Fを用いた場合の測距値を得ることができる。このため、誤差を小さくしながら遠距離測定できる。 Furthermore, in the present invention, since the two main modulation frequencies F 3 and F 3 -F 4 are close to each other, it is extremely low without using the modulation frequency F 4 that is the difference between the two main modulation frequencies by the proximity method. it is possible to obtain a distance measurement values in the case of using a modulation frequency F 4. For this reason, it is possible to measure a long distance while reducing the error.

また、各中間周波信号の周波数は最も低いものに対して整数倍になっており、各中間周波信号はデジタル帯域フィルタによって分離されるようにしたから、確実に各中間周波信号を分離できて、いっそう誤差の少ない測距値が得られる。 In addition, the frequency of each intermediate frequency signal is an integral multiple of the lowest, and since each intermediate frequency signal is separated by a digital band filter, each intermediate frequency signal can be reliably separated, Ranging values with less error can be obtained.

本発明の一実施例に係る光波距離計の主要部のブロック図である。It is a block diagram of the principal part of the lightwave distance meter which concerns on one Example of this invention. 近接した2つの周波数から両周波数の差の周波数を得る方法を説明する図である。It is a figure explaining the method of obtaining the frequency of the difference of both frequencies from two adjacent frequencies. 光波距離計において、近接した2つの変調周波数を用いて測距値を得る近接法について説明する図である。It is a figure explaining the proximity method which obtains a ranging value using two adjacent modulation frequencies in an optical distance meter. 前記光波距離計の詳細なブロック図である。It is a detailed block diagram of the lightwave distance meter. 前記光波距離計の主変調周波数、傍変調周波数、中間周波数及び局部発振周波数の例を示す表である。It is a table | surface which shows the example of the main modulation frequency of the said light wave rangefinder, a side modulation frequency, an intermediate frequency, and a local oscillation frequency. 本発明の第2の実施例に係る光波距離計のブロック図である。It is a block diagram of the light wave distance meter concerning the 2nd example of the present invention. 本発明の第3の実施例に係る光波距離計のブロック図である。It is a block diagram of the light wave distance meter concerning the 3rd example of the present invention. 本発明の第4の実施例に係る光波距離計のブロック図である。It is a block diagram of the lightwave distance meter which concerns on the 4th Example of this invention. 本発明の第5の実施例に係る光波距離計のブロック図である。It is a block diagram of the lightwave distance meter which concerns on the 5th Example of this invention. 従来の光波距離計のブロック図である。It is a block diagram of the conventional lightwave distance meter.

まず、図面に基づいて、本発明の光波距離計の第1実施例について説明する。   First, a first embodiment of the lightwave distance meter of the present invention will be described with reference to the drawings.

この光波距離計は、図1に示したように、第1の発光素子13を主変調周波数F、F及びFで変調して発光させ、第2の発光素子14を前記主変調周波数F、F及びFそれぞれに近接した傍変調周波数F−Δf、F−Δf、F−Δfで変調して発光させ、周波数変換器42、44、46、52、54、56で周波数Δf、Δf、Δf、2Δf、2Δf、2Δfの12個の中間周波信号を得ることができることは、前記特許文献1で開示したものと同じである。 As shown in FIG. 1, the light wave distance meter modulates the first light emitting element 13 with main modulation frequencies F 1 , F 2 and F 3 to emit light, and causes the second light emitting element 14 to emit light with the main modulation frequency. The light is modulated by the near modulation frequencies F 1 -Δf 1 , F 2 -Δf 2 , F 3 -Δf 3 adjacent to F 1 , F 2 and F 3, respectively, and the frequency converters 42, 44, 46, 52, It is the same as that disclosed in Patent Document 1 that twelve intermediate frequency signals of frequencies Δf 1 , Δf 2 , Δf 3 , 2Δf 1 , 2Δf 2 , 2Δf 3 can be obtained at 54 and 56.

しかし、その後、主変調周波数F及びFは前と同じであるが、最も低い主変調周波数を前の主変調周波数Fに近接したF−Fに変更して、第1の発光素子13を発光させるとともに、傍変調周波数F−Δf及びF−Δfは前と同じであるが、最も低い傍変調周波数を前の傍変調周波数Fに近接したF−F−Δfに変更して、第2の発光素子14を発光させることができる。このとき、周波数変換器42、44、52、54へ入力する局部発振周波数は前と同じであるが、周波数変換器46、56へ入力する局部発振周波数は、前のF+Δfに近接させたF−F+Δfに変更する。 However, after that, the main modulation frequencies F 1 and F 2 are the same as before, but the lowest main modulation frequency is changed to F 3 -F 4 close to the previous main modulation frequency F 3 , and the first emission is performed. While causing the element 13 to emit light, the side modulation frequencies F 1 -Δf 1 and F 2 -Δf 2 are the same as before, but the lowest side modulation frequency is F 3 -F 4, which is close to the previous side modulation frequency F 3. By changing to −Δf 4 , the second light emitting element 14 can emit light. At this time, the local oscillation frequency input to the frequency converters 42, 44, 52, and 54 is the same as before, but the local oscillation frequency input to the frequency converters 46 and 56 is set close to the previous F 3 + Δf 3. F 3 −F 4 + Δf 4

この変調周波数の変更後の中間周波数は、測距光路23に係る周波数Δf及びΔf、第1の参照光路26に係る周波数Δf及びΔf、第2の参照光路31に係る周波数2Δf及び2Δf、第3の参照光路29に係る周波数2Δf、及び2Δfの8つの中間周波数が得られることは前記特許文献1で開示したものと同じであるが、残り4つの中間周波数は、測距光路23に係るΔf、第1の参照光路26に係るΔf、第2の参照光路31に係る2Δf、第3の参照光路29に係る2Δfとなる。 Intermediate frequency after the change of the modulation frequency, the frequency Delta] f 1 and Delta] f 2 according to the distance measuring optical path 23, the frequency Delta] f 1 and Delta] f 2 according to the first reference light path 26, the frequency 2.DELTA.f 1 according to the second reference light path 31 And 2Δf 2 , and 8 intermediate frequencies of frequencies 2Δf 1 and 2Δf 2 related to the third reference optical path 29 are obtained in the same manner as disclosed in Patent Document 1, but the remaining four intermediate frequencies are Delta] f 4 according to the distance measuring optical path 23, Delta] f 4 according to the first reference light path 26, 2.DELTA.f 4 according to the second reference light path 31, the 2.DELTA.f 4 according to a third reference optical path 29.

本実施例は、前述したように最も低い主変調周波数、傍変調周波数及び局部発振周波数を近接した周波数に交互に変更することができること以外は、前記特許文献1で開示したものと同じである。   This embodiment is the same as that disclosed in Patent Document 1 except that the lowest main modulation frequency, side modulation frequency, and local oscillation frequency can be alternately changed to close frequencies as described above.

本実施例によれば、最初の測定で、主変調周波数F、F及びFでの測距値が得られる。次に最も低い主変調周波数、傍変調周波数及び局部発振周波数を近接した周波数に変更した後の測定では、主変調周波数F、F及びF−Fでの測距値が得られる。これらの測距値からは、近接法により、近接した2つの主変調周波数F及びF−Fの差となる変調周波数Fでの測距値も得られる。以下、変調周波数Fでの測距値が得られる理由を説明する。 According to the present embodiment, distance values at the main modulation frequencies F 1 , F 2 and F 3 are obtained in the first measurement. In the measurement after the next lowest main modulation frequency, side modulation frequency, and local oscillation frequency are changed to close frequencies, distance measurement values at main modulation frequencies F 1 , F 2, and F 3 -F 4 are obtained. From these distance measurement values, a distance measurement value at a modulation frequency F 4 that is the difference between two adjacent main modulation frequencies F 3 and F 3 -F 4 is also obtained by the proximity method. Hereinafter, explaining the reason why the distance value at the modulation frequency F 4 is obtained.

周波数F、F−Fは、一般に周波数Fを分周して作る。例えば、周波数Fを15等分して主変調周波数Fを作り、主変調周波数Fを16等分して主変調周波数F−Fを作ったとする。例えば、Fを37.5MHzとすると、Fは2.5MHz(波長120m)、F−Fは2.34375MHz(波長128m)となる。ここで、周波数FとF−Fの両周波数の信号を加えると、図2に示したように、ビート(うなり)により両周波数F、F−Fの差の周波数F(156.25kHz、波長1920m)の信号を生じる。この例から分かるように、一般的に次式が成立する 。
=F−(F−F) (1)
The frequencies F 3 and F 3 -F 4 are generally generated by dividing the frequency F 2 . For example, it is assumed that the frequency F 2 is equally divided into 15 to create the main modulation frequency F 3 , and the main modulation frequency F 2 is equally divided into 16 to generate the main modulation frequency F 3 -F 4 . For example, when the F 2 and 37.5 MHz, F 3 is 2.5 MHz (wavelength 120m), F 3 -F 4 is a 2.34375MHz (wavelength 128m). Here, when signals of both frequencies F 3 and F 3 -F 4 are added, as shown in FIG. 2, the frequency F 4 of the difference between the frequencies F 3 and F 3 -F 4 due to the beat (beat). A signal of (156.25 kHz, wavelength 1920 m) is generated. As can be seen from this example, the following equation generally holds.
F 4 = F 3 − (F 3 −F 4 ) (1)

周波数Fでの波長をλ、周波数Fでの波長をλ、周波数F−Fでの波長をλ34、光速をcとすると、(1)式は次式のようにも書ける。
c/λ=c/λ−c/λ34 又は 1/λ=1/λ−1/λ34 (2)
Assuming that the wavelength at the frequency F 4 is λ 4 , the wavelength at the frequency F 3 is λ 3 , the wavelength at the frequency F 3 -F 4 is λ 34 , and the speed of light is c, the equation (1) can be expressed as I can write.
c / λ 4 = c / λ 3 −c / λ 34 or 1 / λ 4 = 1 / λ 3 −1 / λ 34 (2)

図3に、周波数FとF−Fとが近接した2.5MHz(波長120m)と2.3475MHz(波長約128m)の場合の、距離と位相との関係を示す。距離960m(往復1920m)で両者の位相差は2πになる。一方、両周波数FとF−Fとの差となる周波数F(波長1920m)の位相も2πになる。これから、周波数Fの位相は、周波数Fの位相と周波数F−Fの位相との位相差に等しいことが分かる。一般に、周波数Fでの測距値をd、周波数Fでの測距値をd、周波数F−Fでの測距値をd34とすると、次式が成立する。
2d/λ=2d/λ−2d34/λ34=θ/(2π) (3)
FIG. 3 shows the relationship between the distance and phase when the frequencies F 3 and F 3 -F 4 are close to 2.5 MHz (wavelength 120 m) and 2.3475 MHz (wavelength about 128 m). At a distance of 960 m (roundtrip 1920 m), the phase difference between the two becomes 2π. On the other hand, the phase of frequency F 4 (wavelength 1920 m), which is the difference between both frequencies F 3 and F 3 -F 4, is also 2π. Now, the frequency F 4 of the phase, it can be seen equal to the phase difference between the frequency F 3 phase and frequency F 3 -F 4 phases. In general, when the distance measurement value at the frequency F 4 is d 4 , the distance measurement value at the frequency F 3 is d 3 , and the distance measurement value at the frequency F 3 -F 4 is d 34 , the following equation is established.
2d 4 / λ 4 = 2d 3 / λ 3 -2d 34 / λ 34 = θ / (2π) (3)

ただし、θは周波数Fでの位相である。したがって、この位相θは、周波数Fでの位相2π(2d/λ)と周波数F−Fでの位相2π(2d34/λ34)の差から算出できる。なお、(3)式において、2d、2d、2d34としたのは、測距光が目標反射物22までを往復するからである。もし、2d/λ−2d34/λ34の値が負の場合は、2πを加えてこの位相θを算出する。こうして位相θを算出すると、次式から周波数Fでの測距値dを算出できる。
=λ・θ/(4π) (4)
However, θ is the phase of the frequency F 4. Therefore, the phase θ can be calculated from the difference in phase 2π (2d 34 / λ 34) of the phase 2π (2d 3 / λ 3) and the frequency F 3 -F 4 at the frequency F 3. In Equation (3), 2d 4 , 2d 3 , and 2d 34 are set because the distance measuring light reciprocates to the target reflector 22. If the value of 2d 3 / λ 3 -2d 34 / λ 34 is negative, 2π is added to calculate this phase θ. When the phase θ is thus calculated, the distance measurement value d 4 at the frequency F 4 can be calculated from the following equation.
d 4 = λ 4 · θ / (4π) (4)

例えば、主変調周波数FとF−Fとが近接した2.5MHzと2.34375MHzであれば、両主変調周波数FとF−Fとの差となる周波数Fは、156.25kHzで、波長は1920mとなる。こうして、極めて低い変調周波数Fを用いることなく、極めて低い変調周波数Fを用いた場合の測距値dを得ることができる。 For example, if the 2.5MHz and 2.34375MHz which the main modulation frequency F 3 and F 3 -F 4 is close, the frequency F 4 which is a difference between the both main modulation frequency F 3 and F 3 -F 4 is At 156.25 kHz, the wavelength is 1920 m. In this way, it is possible to obtain the distance measurement value d 4 when the extremely low modulation frequency F 4 is used without using the extremely low modulation frequency F 4 .

この光波距離計については、図4に示したブロック図に基づいて、さらに詳細に説明する。   This lightwave distance meter will be described in more detail based on the block diagram shown in FIG.

まず、発振器1で主変調周波数Fの信号を発生させる。この主変調周波数Fの信号は、分周部2に入力されるとともに、PLL9,10を介して、発振器5、11に入力される。PLL9、10は、発振器5、11を主変調周波数Fと正確に同期して発振させるために使用する。 First, to generate a signal in the main modulation frequencies F 1 by the oscillator 1. The signal having the main modulation frequency F 1 is input to the frequency divider 2 and also input to the oscillators 5 and 11 via the PLLs 9 and 10. PLL9,10 is an oscillator 5,11 precisely synchronized to the main modulation frequencies F 1 used in order to oscillate.

分周部2は、主変調周波数Fの信号を分周して、主変調周波数F2及びF又はF−Fの信号を発生する。この主変調周波数F2及びF又はF−Fの信号と主変調周波数Fの信号とは、周波数重畳回路3を経て駆動回路4へ入力される。第1の発光素子13は、駆動回路4によって駆動され、主変調周波数F、F及びF又はF−Fで変調された光を出射する。 Dividing unit 2, a signal of the main modulation frequencies F 1 by dividing, for generating a signal of the main modulation frequency F 2 and F 3 or F 3 -F 4. The main modulation frequency F 2 and the signal of F 3 or F 3 -F 4 and the signal of the main modulation frequency F 1 are input to the drive circuit 4 through the frequency superimposing circuit 3. The first light emitting element 13 is driven by the drive circuit 4 and emits light modulated at the main modulation frequencies F 1 , F 2 and F 3 or F 3 -F 4 .

発振器5は、傍変調周波数F−Δfの信号を発生する。この傍変調周波数F−Δfの信号は、さらに分周部6で周波数を分周されて、傍変調周波数F−Δf及びF−Δf又はF−F−Δfの信号となる。これらの傍変調周波数F−Δf、F−Δf及びF−Δf又はF−F−Δfの信号は、周波数重畳回路7を経て駆動回路8へ入力される。第2の発光素子14は、駆動回路8によって駆動され、傍変調周波数F−Δf、F−Δf及びF−Δf又はF−F−Δfで変調された光を出射する。 The oscillator 5 generates a signal having a side modulation frequency F 1 −Δf 1 . The signal of the side modulation frequency F 1 −Δf 1 is further frequency-divided by the frequency divider 6, and the signals of the side modulation frequencies F 2 −Δf 2 and F 3 −Δf 3 or F 3 −F 4 −Δf 4 are obtained. Signal. The signals of these side modulation frequencies F 1 −Δf 1 , F 2 −Δf 2 and F 3 −Δf 3 or F 3 −F 4 −Δf 4 are input to the drive circuit 8 through the frequency superimposing circuit 7. The second light-emitting element 14 is driven by the drive circuit 8 and receives the light modulated by the side modulation frequencies F 1 −Δf 1 , F 2 −Δf 2 and F 3 −Δf 3 or F 3 −F 4 −Δf 4. Exit.

発振器11は、局部発振周波数F+Δfの信号を発生する。この局部発振周波数F+Δfの信号からは、周波数生成回路12で分周されて局部発振周波数F+Δf及びF+Δf又はF−F+Δfの信号も生成される。これらの局部発振周波数F+Δf、F+Δf及びF+Δf又はF−F+Δfの信号は、後述するように、周波数変換器42、44、46、52、54、56へ入力される。 The oscillator 11 generates a signal having a local oscillation frequency F 1 + Δf 1 . From the signal of the local oscillation frequency F 1 + Δf 1 , the frequency generation circuit 12 divides the frequency to generate the local oscillation frequency F 2 + Δf 2 and the signal of F 3 + Δf 3 or F 3 −F 4 + Δf 4 . These local oscillation frequencies F 1 + Δf 1 , F 2 + Δf 2 and F 3 + Δf 3 or F 3 −F 4 + Δf 4 are converted into frequency converters 42, 44, 46, 52, 54, 56 as described later. Is input.

第1の発光素子13から出射された光は、ビームスプリッタ20で2つに分けられ、一方は図示しない送光光学系から測距光として出射され、目標反射物22までを往復する測距光路23を経て第1の受光素子40に入射し、他方は参照光として、第1の参照光路26を経て第2の受光素子50に入射する。測距光路23には、受光素子40の前に、光量調整用の濃度フィルタ24と受光光学系25が配置されている。第1の参照光路26にも、受光素子50の前に光量調整用の濃度フィルタ27が配置されている。   The light emitted from the first light emitting element 13 is divided into two by the beam splitter 20, one of which is emitted as distance measuring light from a light transmission optical system (not shown) and travels back and forth to the target reflector 22. 23 enters the first light receiving element 40, and the other enters the second light receiving element 50 as the reference light through the first reference optical path 26. In the distance measuring optical path 23, a density filter 24 for adjusting the amount of light and a light receiving optical system 25 are arranged in front of the light receiving element 40. Also in the first reference optical path 26, a density filter 27 for adjusting the amount of light is disposed in front of the light receiving element 50.

第2の発光素子14から出射された光は、ビームスプリッタ28で2つに分けられ、一方は参照光として、第2の参照光路31を経て第2の受光素子50に入射し、他方は参照光として、第3の参照光路29を経て第1の受光素子40に入射する。第2の参照光路31にも、第2の受光素子50の前に光量調整用の濃度フィルタ32が配置されており、第3の参照光路29にも、第1の受光素子40の前に光量調整用の濃度フィルタ30が配置されている。   The light emitted from the second light emitting element 14 is divided into two by the beam splitter 28, one of which enters the second light receiving element 50 through the second reference optical path 31 as the reference light, and the other is the reference. Light enters the first light receiving element 40 through the third reference light path 29. A density filter 32 for adjusting the amount of light is also disposed in the second reference light path 31 in front of the second light receiving element 50, and the amount of light in the third reference light path 29 is also disposed in front of the first light receiving element 40. A density filter 30 for adjustment is arranged.

第1の受光素子40の出力は、増幅器41を経て3つに分けられ、一つ目は第1の周波数変換器42に入力され、2つ目は第2の周波数変換器44に入力され、3つ目は第3の周波数変換器46に入力される。第2の受光素子50の出力も、増幅器51を経て3つに分けられ、一つ目は第4の周波数変換器52に入力され、2つ目は第5の周波数変換器54に入力され、3つ目は第6の周波数変換器56に入力される。   The output of the first light receiving element 40 is divided into three through the amplifier 41, the first is input to the first frequency converter 42, the second is input to the second frequency converter 44, The third is input to the third frequency converter 46. The output of the second light receiving element 50 is also divided into three through the amplifier 51, the first is input to the fourth frequency converter 52, the second is input to the fifth frequency converter 54, The third is input to the sixth frequency converter 56.

第1〜第6の各周波数変換器42、44、46、52、54、56から、合計12の中間周波信号が得られることは、前述したとおりである。各周波数変換器42、44、46、52、54、56から出力された中間周波信号は、それぞれ、低域フィルタ43、45、47、53、55、57によって高周波成分が除去される。   As described above, a total of twelve intermediate frequency signals are obtained from the first to sixth frequency converters 42, 44, 46, 52, 54, and 56. The intermediate frequency signals output from the frequency converters 42, 44, 46, 52, 54, 56 are respectively removed from the high frequency components by the low-pass filters 43, 45, 47, 53, 55, 57.

低域フィルタ43、45及び47の出力は、加算器48で加算された後にA/D変換器49に入力される。すなわち、A/D変換器49には、測距光路23に係る周波数Δf、Δf及びΔf又はΔfの3つの中間周波信号と、第3の参照光路29に係る周波数2Δf、2Δf、2Δf又は2Δfの3つの中間周波信号が入力される。これらの中間周波信号は、A/D変換された後に、図示しないデジタル帯域フィルタによって分離され、さらに各中間周波信号の初期位相及び振幅が求められる。 The outputs of the low-pass filters 43, 45 and 47 are added by the adder 48 and then input to the A / D converter 49. That is, the A / D converter 49 includes three intermediate frequency signals having frequencies Δf 1 , Δf 2 and Δf 3 or Δf 4 related to the distance measuring optical path 23, and frequencies 2Δf 1 and 2Δf related to the third reference optical path 29. Three intermediate frequency signals of 2 , 2Δf 3 or 2Δf 4 are input. These intermediate frequency signals are A / D converted and then separated by a digital band filter (not shown), and the initial phase and amplitude of each intermediate frequency signal are obtained.

低域フィルタ53、55、57の出力は、加算器58で加算された後にA/D変換器59に入力される。すなわち、A/D変換器59には、第1の参照光路26に係る周波数Δf、Δf及びΔf又はΔfの3つの中間周波信号と、第2の参照光路31に係る周波数2Δf、2Δf及び2Δf又は2Δfの3つの中間周波信号が入力される。これらの中間周波信号は、A/D変換された後に、図示しないデジタル帯域フィルタによって分離され、さらに各中間周波信号の初期位相及び振幅が求められる。 The outputs of the low-pass filters 53, 55, and 57 are added by the adder 58 and then input to the A / D converter 59. That is, the A / D converter 59 includes three intermediate frequency signals having frequencies Δf 1 , Δf 2 and Δf 3 or Δf 4 related to the first reference optical path 26, and a frequency 2Δf 1 related to the second reference optical path 31. Three intermediate frequency signals of 2Δf 2 and 2Δf 3 or 2Δf 4 are input. These intermediate frequency signals are A / D converted and then separated by a digital band filter (not shown), and the initial phase and amplitude of each intermediate frequency signal are obtained.

各中間周波信号の初期位相が求まると、目標反射物22までの距離が光波距離計内部で発生する誤差を補正して算出される。また、各中間周波信号の振幅も求まると、これらの振幅は各濃度フィルタ24、27、30、32による光量調節に利用される。   When the initial phase of each intermediate frequency signal is obtained, the distance to the target reflector 22 is calculated by correcting an error generated inside the light wave rangefinder. Further, when the amplitudes of the intermediate frequency signals are also obtained, these amplitudes are used for light amount adjustment by the density filters 24, 27, 30, and 32.

ところで、中間周波信号の周波数に関しては、Δf又はΔfが最も低く、このΔf又はΔfの整数倍が2Δf又は2Δf、Δf、2Δf、Δf、2Δfとなっている。これにより、デジタル帯域フィルタによって確実に6つの周波数を分離することができる。また、各中間周波信号は、A/D変換器49、59に入力するとき、1信号だけのときの1/6の信号レベルにする。これは、6信号が合成されたとき、入力レベルが飽和しないようにするためである。また、A/D変換器49、59への入力レベルが飽和しなければ、各中間周波信号レベルは、1信号だけのときの1/6以上の信号レベルにしてもよい。 By the way, regarding the frequency of the intermediate frequency signal, Δf 3 or Δf 4 is the lowest, and an integer multiple of Δf 3 or Δf 4 is 2Δf 3 or 2Δf 4 , Δf 2 , 2Δf 2 , Δf 1 , 2Δf 1 . . Thus, the six frequencies can be reliably separated by the digital band filter. Each intermediate frequency signal is set to a signal level that is 1/6 of only one signal when it is input to the A / D converters 49 and 59. This is to prevent the input level from being saturated when 6 signals are combined. If the input levels to the A / D converters 49 and 59 are not saturated, each intermediate frequency signal level may be set to a signal level that is 1/6 or more of the case of only one signal.

ここで、本実施例のデジタル帯域フィルタの原理についても、簡単に説明する。周期関数yは、定数項を省略すると、次式のようなフーリエ級数で表すことができる。
y=asinωt+asin2ωt+asin3ωt+・・・・+asin(nωt)+・・・・・・・・
+bcosωt+bcos2ωt+bcos3ωt+・・・・・+bcos(nωt)+・・・・・・ (5)
Here, the principle of the digital bandpass filter of the present embodiment will also be briefly described. If the constant term is omitted, the periodic function y can be expressed by a Fourier series as shown in the following equation.
y = a 1 sin ωt + a 2 sin 2ωt + a 3 sin3ωt +... + a n sin (nωt) +.
+ B 1 cos ωt + b 2 cos 2ωt + b 3 cos 3ωt +... + B n cos (nωt) + (5)

ただし、a=(1/π)∫ 2πysin(nωt)dt (6)
=(1/π)∫ 2πycos(nωt)dt (7)
However, a n = (1 / π ) ∫ 0 2π ysin (nωt) dt (6)
b n = (1 / π) ∫ 0 y cos (nωt) dt (7)

前記(6)式及び(7)式から、周期関数yに対して基本波(最も周波数が低いもの)asinωt+bcosωtと同じ周期のsin波を乗じたものを基本波の1周期にわたって積分するとaが求まり、周期関数yに対して基本波のn倍波のsin波を乗じたものを基本波の1周期にわたって積分するとaが求まる。また、周期関数yに対して基本波asinωt+bcosωtと同じ周期のcos波を乗じたものを基本波の1周期にわたって積分するとbが求まり、周期関数yに対して基本波のn倍波のcos波を乗じたものを基本波の1周期にわたって積分するとbが求まる。これから、n倍波(n=1の場合は基本波)の振幅Anと初期位相φnは次式から求まる。
An=√(a +b ) (8)
φn=tan−1(b/a) (9)
From the above formulas (6) and (7), the periodic function y multiplied by a sin wave having the same period as the fundamental wave (having the lowest frequency) a 1 sin ωt + b 1 cos ωt is integrated over one period of the fundamental wave. Then Motomari is a 1, a n is obtained when integrated over one period of the fundamental wave are multiplied by sin wave of n times of a fundamental wave with respect to the periodic function y. Further, by integrating a periodic function y multiplied by a cosine wave having the same period as the fundamental wave a 1 sin ωt + b 1 cos ωt over one period of the fundamental wave, b 1 is obtained, and the periodic function y is multiplied by n times the fundamental wave. When a product obtained by multiplying the cosine wave is integrated over one period of the fundamental wave, b n is obtained. From this, the amplitude An and the initial phase φn of the n-th harmonic wave (fundamental wave when n = 1) are obtained from the following equations.
An = √ (a n 2 + b n 2 ) (8)
φn = tan −1 (b n / a n ) (9)

前記実施例において、各中間周波信号の周波数は、最も低いものがΔf又はΔfで、その他のものはΔf又はΔfの整数倍で2Δf又は2Δf、Δf、2Δf、Δf、2Δfとなっている。したがって、これらの中間周波信号を加算した全中間周波信号は、周波数Δf又はΔfを基本波asinωt+bcosωtとし、フーリエ級数で表される周期関数yとなり、前記(5)〜(7)式で表すことができる。 In the above embodiment, the lowest frequency of each intermediate frequency signal is Δf 3 or Δf 4 , and the others are integer multiples of Δf 3 or Δf 4 and 2Δf 3 or 2Δf 4 , Δf 2 , 2Δf 2 , Δf 1, and has a 2Δf 1. Therefore, the total intermediate frequency signal obtained by adding these intermediate frequency signals becomes the periodic function y represented by the Fourier series with the frequency Δf 3 or Δf 4 as the fundamental wave a 1 sin ωt + b 1 cos ωt, and the above (5) to (7 ) Expression.

そこで、全中間周波信号yを基本波の1周期について適宜回数(例えば4800回)サンプリングして、基本波(周波数Δf又はΔfの中間周波信号)と同じ周期のsin波を乗じたものを合計するとaが求まる。全中間周波信号yを基本波の1周期について適宜回数サンプリングして、基本波と同じ周期のcos波を乗じたものを合計するとbが求まる。これから、(8)式及び(9)式を用いると、周波数Δf又はΔfの中間周波信号の振幅Aと初期位相φが求まる。 Therefore, the total intermediate frequency signal y is sampled as appropriate (for example, 4800 times) for one period of the fundamental wave and multiplied by a sine wave having the same period as the fundamental wave (intermediate frequency signal of frequency Δf 3 or Δf 4 ). In total a 1 is obtained. The total intermediate frequency signal y is sampled as many times as necessary for one period of the fundamental wave, and summed by multiplying the cosine wave having the same period as the fundamental wave, b 1 is obtained. From this, when the equations (8) and (9) are used, the amplitude A 1 and the initial phase φ 1 of the intermediate frequency signal having the frequency Δf 3 or Δf 4 can be obtained.

次に、全中間周波信号yを基本波の1周期について適宜回数サンプリングして、基本波の2倍波のsin波を乗じたものを合計するとaが求まる。全中間周波信号yを基本波の1周期について適宜回数サンプリングして、基本波の2倍波のcos波を乗じたものを合計するとbが求まる。これから、(8)式及び(9)式を用いると、周波数2Δf又は2Δfで2倍波である中間周波信号の振幅Aと初期位相φが求まる。 Then, the total intermediate frequency signal y as appropriate number of times of sampling for one period of the fundamental wave, the sum are multiplied by sin wave of the second harmonic of the fundamental wave a 2 is obtained. All intermediate frequency signal y as appropriate number of times of sampling for one period of the fundamental wave, b 2 is obtained when the sum are multiplied by cos wave of the second harmonic of the fundamental wave. From this, using the equations (8) and (9), the amplitude A 2 and the initial phase φ 2 of the intermediate frequency signal which is a second harmonic at the frequency 2Δf 3 or 2Δf 4 can be obtained.

以下同様に、全中間周波信号yを基本波の1周期について適宜回数サンプリングして、基本波のn倍波のsin波を乗じたものを合計するとaが求まる。全中間周波信号yを基本波の1周期について適宜回数サンプリングして、基本波のn倍波のcos波を乗じたものを合計するとbが求まる。これから、(14)及び(15)式を用いると、n倍波である中間周波信号の振幅Aと初期位相φが求まるので、全ての中間周波信号の振幅Aと初期位相φが求まる。この際、各中間周波信号の周波数が基本波の周波数の何倍であるかは分かっているから、明らかにAn=0となるn倍波については、An及びφnの計算はしない。 Hereinafter Similarly, the total intermediate frequency signal y as appropriate number of times of sampling for one period of the fundamental wave, a n is obtained when the sum are multiplied by sin wave of n times the fundamental wave. The total intermediate frequency signal y is sampled as appropriate for one period of the fundamental wave, and summed by multiplying the fundamental wave with the cosine wave of the nth harmonic wave, b n is obtained. Now, (14) is used and (15), since the amplitude A n and the initial phase phi n of the intermediate frequency signal is n times wave is determined, the amplitude A n and the initial phase phi n of all of the intermediate frequency signal I want. At this time, since it is known how many times the frequency of each intermediate frequency signal is the frequency of the fundamental wave, An and φn are not calculated for the n-th harmonic wave where An = 0 clearly.

本実施例によれば、測距光と参照光とを切換えるのにシャッターを使うことなく、測距光路と参照光路に係る各中間周波信号の初期位相が同時に求まるため、従来よりも高速に距離測定を行うことができる。また、シャッターを用いないことによるコストダウンが可能になる。さらに、従来は、温度位相ドリフトを少なくするため、連続測距中の発光素子を電源ONに保っていた。しかし、本実施例によれば、測距光路と参照光路の同時測距が可能になるため、温度位相ドリフトが打ち消し合うので、測距毎に発光素子の電源をON/OFFでき、節電を図ることができる。   According to this embodiment, since the initial phase of each intermediate frequency signal related to the distance measuring optical path and the reference optical path can be obtained simultaneously without using a shutter to switch between the distance measuring light and the reference light, the distance can be increased at a higher speed than in the past. Measurements can be made. Further, the cost can be reduced by not using the shutter. Further, conventionally, in order to reduce the temperature phase drift, the light emitting elements during continuous distance measurement are kept on. However, according to the present embodiment, since the distance measurement optical path and the reference optical path can be simultaneously measured, the temperature phase drift cancels out. Therefore, the power of the light emitting element can be turned on / off for each distance measurement to save power. be able to.

さらに、変調周波数FとF−Fとを近接させているので、近接法によって、両変調周波数の差となる変調周波数Fを用いることなく、極めて低い変調周波数Fを用いた場合の測距値dを得ることができる。このため、変調周波数をあまり下げることなく、遠距離測定が可能となり、しかも従来よりも誤差を小さくできる。 Furthermore, since the modulation frequencies F 3 and F 3 -F 4 are close to each other, the extremely low modulation frequency F 4 is used without using the modulation frequency F 4 that is the difference between the two modulation frequencies by the proximity method. distance value d 4 in can be obtained. For this reason, it is possible to perform a long distance measurement without reducing the modulation frequency so much, and the error can be reduced as compared with the conventional case.

ここで、温度位相ドリフトが打ち消し合う理由について説明する。温度位相ドリフトは、周波数F、F及びF又はF−Fの全てで起きるが、同じ理由で起きるのであるから、ここでは周波数Fについてのみ説明する。第1の発光素子13に印加される変調された電気信号の周波数をF=(1+0)F1、第2の発光素子14に印加される変調された電気信号の周波数をF−Δf=(1+b)F、受光素子40、50に接続された周波数変換器42、52に印加される局部発振周波数Flo=(1+a)Fとし、かつ、a>0>bの条件で考える。 Here, the reason why the temperature phase drifts cancel each other will be described. The temperature phase drift occurs at all of the frequencies F 1 , F 2 and F 3 or F 3 -F 4 , but for the same reason, only the frequency F 1 will be described here. The frequency of the modulated electric signal applied to the first light emitting element 13 is F 1 = (1 + 0) F 1, and the frequency of the modulated electric signal applied to the second light emitting element 14 is F 1 −Δf 1. = (1 + b) F 1 , local oscillation frequency F lo = (1 + a) F 1 applied to the frequency converters 42 and 52 connected to the light receiving elements 40 and 50, and a condition of a>0> b .

受光素子40の出力の波形yは、次式のようになる。
=ypd1,ld1cos{2πFt+ψld1(F)+ψpd1(F)−2πF(2D/c)}
+ypd1,ld2cos{2π(1+b)Ft+ψld2((1+b)F)+ψpd1((1+b)F)−2π(1+b)F(2D/c)} (10)
Waveform y 1 of the output of the light receiving element 40 is as follows.
y 1 = y pd1, ld1 cos {2πF 1 t + ψ ld1 (F 1 ) + ψ pd1 (F 1 ) -2πF 1 (2D 0 / c)}
+ Y pd1, ld2 cos {2π (1 + b) F 1 t + ψ ld2 ((1 + b) F 1 ) + ψ pd1 ((1 + b) F 1 ) -2π (1 + b) F 1 (2D 3 / c)} (10)

受光素子50の出力の波形yは、次式のようになる。
=ypd2,ld1cos{2πFt+ψld1(F)+ψpd2(F)−2πF(2D/c)}
+ypd2,ld2cos{2π(1+b)Ft+ψld2((1+b)F)+ψpd2((1+b)F)−2π(1+b)F(2D/c)} (11)
Waveform y 2 of the output of the light receiving element 50 is as follows.
y 2 = y pd2, ld1 cos {2πF 1 t + ψ ld1 (F 1 ) + ψ pd2 (F 1 ) -2πF 1 (2D 1 / c)}
+ Y pd2, ld2 cos {2π (1 + b) F 1 t + ψ ld2 ((1 + b) F 1 ) + ψ pd2 ((1 + b) F 1 ) -2π (1 + b) F 1 (2D 2 / c)} (11)

ただし、各記号は、次のように定義される。
pd1,ld1:第1の発光素子13と第1の受光素子40間の信号の振幅
pd1,ld2:第2の発光素子14と第1の受光素子40間の信号の振幅
pd2,ld1:第1の発光素子13と第2の受光素子50間の信号の振幅
pd2,ld2:第2の発光素子14と第2の受光素子50間の信号の振幅
ψld1:第1の発光素子13の温度位相ドリフト
ψld2:第2の発光素子14の温度位相ドリフト
ψpd1:第1の受光素子40の温度位相ドリフト
ψpd2:第2の受光素子50の温度位相ドリフト
2D:光波距離計から目標反射物までの往復距離
2D:第1の参照光路26の光路長
2D:第2の参照光路31の光路長
2D:第3の参照光路29の光路長
c:光速
次に、周波数変換器42、52に入力される局部発振信号の波形yは、局部発振信号の振幅をylo、局部発振信号の初期位相をφとすると、次式のようになる。
=ylocos{2π(1+a)Ft+φ} (12)
However, each symbol is defined as follows.
y pd1, ld1 : Amplitude of signal between first light emitting element 13 and first light receiving element 40 y pd1, ld2 : Amplitude of signal between second light emitting element 14 and first light receiving element 40 y pd2, ld1 : Amplitude y pd2, ld2 of the signal between the first light emitting element 13 and the second light receiving element 50: amplitude ψ ld1 of the signal between the second light emitting element 14 and the second light receiving element 50: first light emitting element 13 temperature phase drift [psi ld2: temperature phase drift [psi pd1 of the second light-emitting element 14: first temperature phase drift [psi of light receiving elements 40 pd2: temperature phase drift 2D 0 of the second light-receiving element 50: light wave distance meter 2D 1 : optical path length 2D 2 of the first reference optical path 26: optical path length 2D 3 of the second reference optical path 31: optical path length c of the third reference optical path 29: light speed Input to frequency converters 42 and 52 Waveform y 3 of the local oscillation signal, when the amplitude of the local oscillation signal y lo, the initial phase of the local oscillation signal phi, is as follows.
y 3 = y lo cos {2π (1 + a) F 1 t + φ} (12)

周波数変換器42、52に接続された低域フィルタ43、53からの出力波形y、yは、それぞれy×y、y×yに低域フィルタ43、53の温度位相ドリフトψf1、ψf2を加えて、次式のようになる。
=(ypd1,ld1lo/2)cos{2πaFt−ψld1(F)−ψpd1(F)+ψf1(aF)+2πF(2D/c)+φ}
+(ypd1,ld2lo/2)cos{2π(a−b)Ft−ψld2((1+b)F)−ψpd1((1+b)F)+ψf1((a−b)F)+2π(1+b)F(2D/c)+φ} (13)
=(ypd2,ld1lo/2)cos{2πaFt−ψld1(F)+ψpd2(F)−ψf2(aF)+2πF(2D/c)+φ}
+(ypd2,ld2lo/2)cos{2π(a−b)Ft−ψld2((1+b)F)−ψpd2((1+b)F)+ψf2((a−b)F)+2π(1+b)F(2D/c)+φ} (14)
The output waveforms y 4 and y 5 from the low-pass filters 43 and 53 connected to the frequency converters 42 and 52 are the temperature phase drift of the low-pass filters 43 and 53 to y 1 × y 3 and y 2 × y 3 , respectively. By adding ψ f1 and ψ f2 , the following equation is obtained.
y 4 = (y pd1, ld1 y lo / 2) cos {2πaF 1 t−ψ ld1 (F 1 ) −ψ pd1 (F 1 ) + ψ f1 (aF 1 ) + 2πF 1 (2D 0 / c) + φ}
+ (Y pd1, ld2 y lo / 2) cos {2π (ab) F 1 t−ψ ld2 ((1 + b) F 1 ) −ψ pd1 ((1 + b) F 1 ) + ψ f1 ((ab)) F 1 ) + 2π (1 + b) F 1 (2D 3 / c) + φ} (13)
y 5 = (y pd2, ld1 y lo / 2) cos {2πaF 1 t−ψ ld1 (F 1 ) + ψ pd2 (F 1 ) −ψ f2 (aF 1 ) + 2πF 1 (2D 1 / c) + φ}
+ (Y pd2, ld2 y lo / 2) cos {2π (ab) F 1 t−ψ ld2 ((1 + b) F 1 ) −ψ pd2 ((1 + b) F 1 ) + ψ f2 ((ab)) F 1 ) + 2π (1 + b) F 1 (2D 2 / c) + φ} (14)

測距値dは、中間周波信号の初期位相をθとすると、d=θc/(2π)/Fm(Fmは変調周波数)と求まるから、測距光路23に係るyの第1項の位相成分から求まる測距値をd、第3の参照光絽29に係るyの第2項の位相成分から求まる測距値をd、第1の参照光絽26に係るyの第1項の位相成分から求まる測距値をd、第2の参照光絽31に係るyの第2項の位相成分から求まる測距値をdとすると、d、d、d、dは、それぞれ次のように求まる。ただし、F=75MHzとする。
=2D+{4/(2π)}{−ψld1(F)−ψpd1(F)+ψf1(aF)+φ} (15)
=2D+{4/(2π(1+b)){−ψld2((1+b)F)−ψpd1((1+b)F)+ψf1((a−b)F)+φ} (16)
=2D+{4/(2π)}{−ψld1(F)−ψpd2(F)+ψf2(aF)+φ} (17)
=2D+{4/(2π(1+b))}{−ψld2((1+b)F)−ψpd2((1+b)F)+ψf2((a−b)F)+φ} (18)
The distance measurement value d is obtained as d = θc / (2π) / Fm (Fm is the modulation frequency), where θ is the initial phase of the intermediate frequency signal. Therefore, the phase of the first term of y 4 related to the distance measurement optical path 23 The distance value obtained from the component is d 0 , the distance value obtained from the second phase component of y 4 related to the third reference beam 29 is d 3 , and the y 5th value related to the first reference beam 26 is If the distance value obtained from the phase component of the first term is d 1 , and the distance value obtained from the phase component of the second term of y 5 related to the second reference beam 31 is d 2 , d 0 , d 3 , d 1 and d 2 are obtained as follows. However, F 1 = 75 MHz.
d 0 = 2D 0 + {4 / (2π)} {− ψ ld1 (F 1 ) −ψ pd1 (F 1 ) + ψ f1 (aF 1 ) + φ} (15)
d 3 = 2D 3 + {4 / (2π (1 + b)) {− ψ ld2 ((1 + b) F 1 ) −ψ pd1 ((1 + b) F 1 ) + ψ f1 ((a−b) F 1 ) + φ} ( 16)
d 1 = 2D 1 + {4 / (2π)} {− ψ ld1 (F 1 ) −ψ pd2 (F 1 ) + ψ f2 (aF 1 ) + φ} (17)
d 2 = 2D 2 + {4 / (2π (1 + b))} {− ψ ld2 ((1 + b) F 1 ) −ψ pd2 ((1 + b) F 1 ) + ψ f2 ((a−b) F 1 ) + φ} (18)

測距値d、d、d、dを次のように加減算を行う。
(d−d)−(d−d)=d−d+d−d
=2D−2D+2D−2D
+{4/(2π)}{ψPd2(F)−ψpd1(F)−ψf2(aF)+ψf1(aF)}
−{4/(2π(1+b))}{ψPd2((1+b)F)−ψpd1((1+b)F)−ψf2((a−b)F)+ψf1((a−b)F)} (19)
The distance values d 0 , d 3 , d 1 and d 2 are added and subtracted as follows.
(D 0 -d 3 )-(d 1 -d 2 ) = d 0 -d 1 + d 2 -d 3
= 2D 0 -2D 1 + 2D 2 -2D 3
+ {4 / (2π)} {ψ Pd2 (F 1) -ψ pd1 (F 1) -ψ f2 (aF 1) + ψ f1 (aF 1)}
- {4 / (2π (1 + b))} {ψ Pd2 ((1 + b) F 1) -ψ pd1 ((1 + b) F 1) -ψ f2 ((a-b) F 1) + ψ f1 ((a-b ) F 1 )} (19)

ここで、各周波数F、(1+b)F、Floは近接しているので、次のように近似する。
{4/(2π)}{ψPd2(F)≒{4/(2π(1+b))}{ψPd2((1+b)F)} (20)
{4/(2π)}{−ψPd1(F)≒{4/(2π(1+b))}{−ψPd1((1+b)F)} (21)
Here, since the frequencies F 1 , (1 + b) F 1 and F lo are close to each other, they are approximated as follows.
{4 / (2π)} {ψ Pd2 (F 1 ) ≈ {4 / (2π (1 + b))} {ψ Pd2 ((1 + b) F 1 )} (20)
{4 / (2π)} {− ψ Pd1 (F 1 ) ≈ {4 / (2π (1 + b))} {− ψ Pd1 ((1 + b) F 1 )} (21)

すると、(19)式は、次式のように書ける。
(d−d)−(d−d)≒2D−2D+2D−2D
+{4/(2π)}{ψf1(aF)−{4/(2π(1+b))}{ψf1((a−b)F)}
−{4/(2π)}{ψf2(aF)−{4/(2π(1+b))}{ψf2((a−b)F)} (22)
Then, equation (19) can be written as:
(D 0 −d 3 ) − (d 1 −d 2 ) ≈2D 0 −2D 1 + 2D 2 −2D 3
+ {4 / (2π)} {ψ f1 (aF 1 ) − {4 / (2π (1 + b))} {ψ f1 ((ab) F 1 )}
-{4 / (2π)} {ψ f2 (aF 1 )-{4 / (2π (1 + b))} {ψ f2 ((ab) F 1 )} (22)

(22)式からは、発光素子13、14の温度位相ドリフトψld1、ψld2、受光素子40、50の温度位相ドリフトψPd1、ψPd2が無くなっているうえ、(22)式の第2行及び第3行では、それぞれ前後の項が打ち消し合い、さらに(22)式の第2行と第3行も打ち消し合うことから、低域フィルタ43、53の温度位相ドリフトψf1、ψf2も低減されていることが分かる。
また、低域フィルタ43、53の温度位相ドリフト低減効果を奏するためには、a>0>bの他に、a>b>0、b>0>a、0>b>aの条件でもよいことも分かる。このような条件を持たす周波数の例を図5に示す。なお、b>a>0、0>a>bの場合は、温度位相ドリフト低減効果は少ない。
(22) From the equation, terms of temperature phase drift [psi ld1 of the light emitting element 13, 14, [psi ld2, temperature phase drift [psi Pd1 of the light receiving elements 40, 50, [psi Pd2 is missing, (22) the second row of In the third and third rows, the preceding and following terms cancel each other, and the second and third rows of equation (22) cancel each other, so that the temperature phase drifts ψ f1 and ψ f2 of the low-pass filters 43 and 53 are also reduced. You can see that.
Further, in order to achieve the temperature phase drift reduction effect of the low-pass filters 43 and 53, a>b> 0, b>0> a, and 0>b> a may be satisfied in addition to a>0> b. I understand that. An example of a frequency having such a condition is shown in FIG. When b>a> 0 and 0>a> b, the effect of reducing the temperature phase drift is small.

ところで、本発明は、前記実施例に限るものではなく、種々の変形が可能である。たとえば、図6に示したように、低域フィルタ43、45、47、53、55、57の後に、それぞれ増幅器60、61、62、63、64、65を配置して、加算器48、58に入力される信号レベルを調節してもよい。また、図7に示したように、増幅器41、51の後に分波回路70、71を配置し、各周波数変換器42、44、46、52、54、56それぞれに適切な信号のみが入力されるようにしてもよい。   By the way, the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, as shown in FIG. 6, amplifiers 60, 61, 62, 63, 64, 65 are arranged after the low-pass filters 43, 45, 47, 53, 55, 57, respectively, and adders 48, 58 are provided. You may adjust the signal level input into. Further, as shown in FIG. 7, demultiplexing circuits 70 and 71 are arranged after the amplifiers 41 and 51, and only appropriate signals are inputted to the respective frequency converters 42, 44, 46, 52, 54 and 56, respectively. You may make it do.

さらに、図8に示したように、低域フィルタ43に続く増幅器60の出力と低域フィルタ55に続く増幅器64の出力とが加算器80に入力され、加算器80の出力がA/D変換機83に入力され、低域フィルタ45に続く増幅器61の出力と低域フィルタ57に続く増幅器65の出力とが加算器81に入力され、加算器81の出力がA/D変換機84に入力され、低域フィルタ47に続く増幅器62の出力と低域フィルタ53に続く増幅器63の出力とが加算器82に入力され、加算器82の出力がA/D変換機85に入力されるように変更してもよい。   Further, as shown in FIG. 8, the output of the amplifier 60 following the low-pass filter 43 and the output of the amplifier 64 following the low-pass filter 55 are input to the adder 80, and the output of the adder 80 is A / D converted. The output of the amplifier 61 following the low-pass filter 45 and the output of the amplifier 65 following the low-pass filter 57 are input to the adder 81, and the output of the adder 81 is input to the A / D converter 84. The output of the amplifier 62 following the low-pass filter 47 and the output of the amplifier 63 following the low-pass filter 53 are input to the adder 82, and the output of the adder 82 is input to the A / D converter 85. It may be changed.

この場合は、参照光路に係わる信号レベルの大きな中間周波信号のみが入力される増幅器63、64、65の増幅度を下げ、測距光路に係わる信号レベルの小さな中間周波信号が入力される増幅器60、61、62の増幅度を上げることができる。すると、遠距離測定のため微小な中間周波信号でも大きく増幅できるので、いっそう遠距離測定が可能になる。   In this case, the amplification degree of the amplifiers 63, 64, 65 to which only an intermediate frequency signal having a large signal level related to the reference optical path is input is lowered, and an amplifier 60 to which an intermediate frequency signal having a small signal level related to the distance measuring optical path is input. , 61 and 62 can be increased. As a result, even a minute intermediate frequency signal can be greatly amplified for long-distance measurement, so that further long-distance measurement becomes possible.

さらに、図9に示したように、低域フィルタ43に続く増幅器60の出力と低域フィルタ57に続く増幅器65の出力とが加算器80に入力され、加算器80の出力がA/D変換機83に入力され、低域フィルタ45に続く増幅器61の出力と低域フィルタ53に続く増幅器63の出力とが加算器81に入力され、加算器81出力がA/D変換機84に入力され、低域フィルタ47に続く増幅器62の出力と低域フィルタ55に続く増幅器64の出力とが加算器82に入力され、加算器82の出力がA/D変換機85に入力されるように変更してもよい。この場合も、図7に示した実施例と同じ効果を奏する。   Further, as shown in FIG. 9, the output of the amplifier 60 following the low-pass filter 43 and the output of the amplifier 65 following the low-pass filter 57 are input to the adder 80, and the output of the adder 80 is A / D converted. The output of the amplifier 61 following the low pass filter 45 and the output of the amplifier 63 following the low pass filter 53 are input to the adder 81, and the output of the adder 81 is input to the A / D converter 84. The output of the amplifier 62 following the low-pass filter 47 and the output of the amplifier 64 following the low-pass filter 55 are input to the adder 82, and the output of the adder 82 is input to the A / D converter 85. May be. In this case, the same effect as that of the embodiment shown in FIG.

さらに、本発明は、前記各実施例に限るものではなく、例えば、本発明は、光波距離計だけでなく、光波距離計を内蔵した測量機、例えばトータルステーションや、その他の距離測定装置等にも広く利用できる。   Furthermore, the present invention is not limited to the above-described embodiments. For example, the present invention is not limited to a light wave distance meter, but also a surveying instrument incorporating a light wave distance meter, such as a total station or other distance measuring device. Widely available.

13、14 発光素子
22 目標反射物
23 測距光路
26、29、31 参照光路
40、50 受光素子
42、44、46、52、54、56 周波数変換器
、F、F 主変調周波数
−Δf、F−Δf、F−Δf 傍変調周波数
+Δf、F+Δf、F+Δf 局部発振周波数
13,14-emitting element 22 target reflection object 23 distance measuring optical path 26,29,31 reference optical path 40 and 50 receiving element 42,44,46,52,54,56 frequency converter F 1, F 2, F 3 main modulation frequencies F 1 −Δf 1 , F 2 −Δf 2 , F 3 −Δf 3 side modulation frequency F 1 + Δf 1 , F 2 + Δf 2 , F 3 + Δf 3 local oscillation frequency

Claims (1)

複数の主変調周波数 、F 、F で変調された光を出射する第1の発光素子と、前記各主変調周波数それぞれに近接する傍変調周波数 −Δf 、F −Δf 、F −Δf で変調された光を出射する第2の発光素子と、両発光素子から出射された光を受光する第1の受光素子及び第2の受光素子と、第1の受光素子に接続された第1の周波数変換器群と、第2の受光素子に接続された第2の周波数変換器群とを備え、
第1の発光素子から出射された光は2つに分けられ、一方は目標反射物までを往復する測距光路を経て第1の受光素子に入射し、他方は第1の参照光路を経て第2の受光素子に入射し、第2の発光素子から出射された光は2つに分けられ、一方は第2の参照光路を経て第2の受光素子に入射し、他方は第3の参照光路を経て第1の受光素子に入射し、
第1の周波数変換器群及び第2の周波数変換器群は、それぞれ、前記主変調周波数と同数の周波数変換器から構成され、各周波数変換器にはそれぞれ異なる周波数の局部発振周波数の信号が入力され、該局部発振周波数は、各主変調周波数及び各主変調周波数に近接した各傍変調周波数の両方に近接した周波数 +Δf 、F +Δf 、F +Δf とされ、
前記各周波数変換器で発生させた中間周波信号Δf 、Δf 、Δf を用いて目標反射物までの距離を算出するとともに、
前記主変調周波数、前記傍変調周波数及び前記局部発振周波数は、それぞれの中で最も低い周波数 、F −Δf 、F +Δf は、それぞれに近接した別の周波数の主変調周波数 −F 、傍変調周波数 −F −Δf 及び局部発振周波数 −F +Δf に変更でき、近接法によって、最も低い周波数の主変調周波数の周波数変更前後の周波数差となる変調周波数 に係る中間周波信号Δf を用いた場合の目標反射物までの距離も算出でき
前記各中間周波信号の周波数は、最も低いものに対して整数倍になっており、前記各中間周波信号はデジタル帯域フィルタによって分離される光波距離計。
A first light emitting element that emits light modulated at a plurality of main modulation frequencies F 1 , F 2 , F 3 , and side modulation frequencies F 1 -Δf 1 , F 2 -Δf adjacent to each of the main modulation frequencies. 2 , a second light emitting element that emits light modulated by F 3 −Δf 3 , a first light receiving element and a second light receiving element that receive light emitted from both light emitting elements, and a first light receiving element A first frequency converter group connected to the element; and a second frequency converter group connected to the second light receiving element;
The light emitted from the first light emitting element is divided into two, one is incident on the first light receiving element via a distance measuring optical path that reciprocates to the target reflector, and the other is incident on the first light path via the first reference optical path. The light incident on the second light receiving element and emitted from the second light emitting element is divided into two parts, one entering the second light receiving element via the second reference light path, and the other being the third reference light path. Through the first light receiving element,
Each of the first frequency converter group and the second frequency converter group is composed of the same number of frequency converters as the main modulation frequency, and a signal of a local oscillation frequency having a different frequency is input to each frequency converter. And the local oscillation frequency is set to frequencies F 1 + Δf 1 , F 2 + Δf 2 , F 3 + Δf 3 that are close to both the main modulation frequency and each of the near modulation frequencies close to the main modulation frequency,
Calculating the distance to the target reflector using the intermediate frequency signals Δf 1 , Δf 2 , Δf 3 generated by the frequency converters;
Said main modulation frequency, the near modulation frequency and the local oscillation frequency is the lowest frequency F 3 in each, F 3 -Δf 3, F 3 + Δf 3 is the main modulation frequency F of another frequency close to each 3− F 4 , the side modulation frequency F 3 −F 4 −Δf 4, and the local oscillation frequency F 3 −F 4 + Δf 4 , and the frequency difference between before and after the frequency change of the lowest main modulation frequency can be changed by the proximity method. The distance to the target reflector when using the intermediate frequency signal Δf 4 related to the modulation frequency F 4 can be calculated ,
The frequency range of each said intermediate frequency signal is an integral multiple with respect to the lowest thing, Each said intermediate frequency signal is a light wave rangefinder isolate | separated by a digital band filter .
JP2009156724A 2009-07-01 2009-07-01 Light wave distance meter Expired - Fee Related JP5475349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009156724A JP5475349B2 (en) 2009-07-01 2009-07-01 Light wave distance meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009156724A JP5475349B2 (en) 2009-07-01 2009-07-01 Light wave distance meter

Publications (2)

Publication Number Publication Date
JP2011013068A JP2011013068A (en) 2011-01-20
JP5475349B2 true JP5475349B2 (en) 2014-04-16

Family

ID=43592128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009156724A Expired - Fee Related JP5475349B2 (en) 2009-07-01 2009-07-01 Light wave distance meter

Country Status (1)

Country Link
JP (1) JP5475349B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5730094B2 (en) * 2011-03-28 2015-06-03 株式会社トプコン Light wave distance meter
JP2023142441A (en) * 2022-03-25 2023-10-05 株式会社トプコン Light wave rangefinder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2929385B2 (en) * 1990-02-03 1999-08-03 株式会社ソキア Lightwave rangefinder
JPH05323029A (en) * 1992-05-18 1993-12-07 Sokkia Co Ltd Distance measuring method by light wave range finder
JP4707363B2 (en) * 2004-10-20 2011-06-22 株式会社 ソキア・トプコン Light wave distance meter
JP4851737B2 (en) * 2005-06-23 2012-01-11 株式会社トプコン Distance measuring device
JP4855749B2 (en) * 2005-09-30 2012-01-18 株式会社トプコン Distance measuring device
JP4828245B2 (en) * 2006-02-02 2011-11-30 株式会社 ソキア・トプコン Light wave distance meter

Also Published As

Publication number Publication date
JP2011013068A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JPH0419512B2 (en)
JP5014382B2 (en) Light wave distance meter
JPH11352227A (en) Circuit device for forming frequency signal
JP6019360B2 (en) Optical heterodyne rangefinder
JP4828245B2 (en) Light wave distance meter
JP5736247B2 (en) Distance measuring method and apparatus
JP5475349B2 (en) Light wave distance meter
JP6264547B2 (en) Optical signal generation apparatus, distance measurement apparatus, spectral characteristic measurement apparatus, frequency characteristic measurement apparatus, and optical signal generation method
EP4249947A1 (en) Electro-optical distance meter
JP6841726B2 (en) Phase difference frequency creation method, phase difference frequency creation device, and light wave rangefinder
JP6902902B2 (en) Light wave rangefinder
JP2007155660A (en) Light wave range finder
JP5234653B2 (en) Light wave distance meter
JP5674117B2 (en) Light wave distance meter
JP7330728B2 (en) light rangefinder
JP7115738B2 (en) Rangefinder, distance measuring method, and optical three-dimensional shape measuring machine
JP5730094B2 (en) Light wave distance meter
JP2007328044A (en) Optical frequency measuring system, and method for determining frequency component of optical frequency comb
JP2010286240A (en) Light wave range finder
JP5450181B2 (en) Light wave distance meter
JP2019078531A (en) Light wave range finder and method of determining modulation frequency of feedback signal
JP5535599B2 (en) Light wave distance meter
WO2022176378A1 (en) Low relative phase noise optical comb generation device
JP2023082558A (en) Optical comb generator and optical comb distance measuring device
JP2007519908A (en) Method and apparatus for controlling heterodyne interferometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees