JP5465652B2 - 無停電電源装置 - Google Patents

無停電電源装置 Download PDF

Info

Publication number
JP5465652B2
JP5465652B2 JP2010270600A JP2010270600A JP5465652B2 JP 5465652 B2 JP5465652 B2 JP 5465652B2 JP 2010270600 A JP2010270600 A JP 2010270600A JP 2010270600 A JP2010270600 A JP 2010270600A JP 5465652 B2 JP5465652 B2 JP 5465652B2
Authority
JP
Japan
Prior art keywords
phase
zero
voltage
output
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010270600A
Other languages
English (en)
Other versions
JP2012120407A (ja
Inventor
エドワルド カズヒデ 佐藤
雅博 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2010270600A priority Critical patent/JP5465652B2/ja
Publication of JP2012120407A publication Critical patent/JP2012120407A/ja
Application granted granted Critical
Publication of JP5465652B2 publication Critical patent/JP5465652B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、無停電電源装置に関し、より特定的には、三相4線式非絶縁型無停電電源装置に関する。
この種の無停電電源装置としては、たとえば特開2010−63328号公報(特許文献1)に記載されるように、三相4線式非絶縁型電力変換装置を複数台並列接続し、並列運転させるものがある。三相4線式非絶縁型電力変換装置とは、絶縁トランスを用いずに負荷に電力を供給することができる電力変換装置であり、一例として、交流−直流変換を行なう順変換回路と、直流−交流変換を行なう逆変換回路とで構成され、順変換回路と逆変換回路との共通部分である直流回路の正極と負極との間に、ダイオードが逆並列接続された半導体スイッチング素子を2個直列接続したN相アームを接続し、順変換回路の交流入力側と逆変換回路の交流出力側に接続されたフィルタコンデンサの接続方法をスター結線とし、その中性点とN相アームの直列接続点とをリアクトルを介して接続している。
この特許文献1に記載される三相4線式非絶縁型電力変換装置の並列冗長システムにおいては、複数台の電力変換装置の並列運転時に装置間を零相電流が循環することにより、各電力変換装置の出力電流が不均等となる。そのため、特許文献1では、N相アームで出力電圧零相成分補正制御を、逆変換回路で出力電圧ノーマル成分補正制御を、各々行なうことによって、負荷に供給する電流を各電力変換装置で均等分担している。
特開2010−63328号公報 特開2009−124836号公報 特許第3057332号公報
ここで、たとえば特許第3057332号公報(特許文献3)は、負荷への電力供給を中断させないために、商用交流電源と無停電電源装置とを無瞬断で切替える無瞬断無停電電源装置を開示する。このような無瞬断無停電電源装置においては、2つの電源の切替えスイッチを用い、該切替えスイッチの切り替えを、一定のラップ期間、商用交流電源と無停電電源装置とを共通に負荷に接続させて行なう。
しかしながら、商用交流電源と上記の三相4線式非絶縁型電力変換装置とを、当該切替えスイッチを用いて無瞬断で切替えようとする場合には、ラップ期間中において、商用交流電源と電力変換装置との間に零相電流が流れる経路が形成される。そして、この経路を通じて、零相電流は電力変換装置と商用交流電源とに分流される。電力変換装置を流れる零相電流が電力変換装置の制御に干渉することにより、電力変換装置の制御が不安定となり、負荷への安定した電力供給の信頼性を低下させるという問題があった。
それゆえ、この発明は、かかる課題を解決するためになされたものであり、その目的は、交流電源からの給電と無停電電源装置からの給電との切替えを無瞬断で、かつ安定的に行なうことができる無停電電源装置を提供することである。
この発明のある局面に従う無停電電源装置は、直流正母線および直流負母線の間に接続され、中性点を備えたコンデンサからなる平滑回路と、平滑回路の直流端子および中性点に接続され、スイッチング素子のスイッチング動作によって平滑回路からの直流電力を三相交流電力に変換して、三相交流ラインへ出力するインバータ回路と、インバータ回路と三相交流ラインとの間に介挿接続された第1のスイッチと、中性点と三相交流負荷の中性点とを結ぶ中性相ラインと、三相交流ラインと中性相ラインとの間に接続され、三相交流ラインに三相交流電力を供給する三相交流電源と、三相交流電源と三相交流ラインとの間に介挿接続された第2のスイッチと、インバータ回路の出力電流を検出する電流センサと、インバータ回路の出力電圧を検出する電圧センサと、インバータ回路の電力変換動作を制御する制御装置とを備える。第1および第2のスイッチは、同時に導通状態となるラップ期間を挟んで相補に導通状態/非導通状態とされる。制御装置は、三相電圧指令と電圧センサの出力電圧検出値との偏差に基づいて三相電流指令を生成する出力電圧制御回路と、零相電圧指令と電圧センサの出力電圧検出値から抽出される零相電圧との偏差に基づいて零相電流指令を生成する零相電圧制御回路と、三相電流指令に零相電流指令を加算してインバータ回路の出力電流指令を生成し、出力電流指令と電流センサの出力電流検出値との偏差に基づいてインバータ回路の出力電圧指令を生成する出力電流制御回路と、出力電圧指令に従ってインバータ回路のスイッチング素子をオン/オフするゲート信号を出力するゲート信号出力回路とを含む。零相電圧制御回路は、第1および第2のスイッチがラップ期間にないときには、零相電圧が零電圧となるように零相電圧指令を生成する一方で、第1および第2のスイッチがラップ期間にあるときには、電流センサの出力電流検出値から導出されるインバータ回路を流れる零相電流を抑制するように零相電圧指令を生成する。
好ましくは、零相電圧制御回路は、零相電圧が零電圧となるように零相電圧指令を出力する第1の零相電圧指令手段と、電流センサの出力電流検出値から抽出されるインバータ回路を流れる零相電流に基づいて零相電圧指令を出力する第2の零相電圧指令手段と、第1および第2のスイッチがラップ期間にあるか否かを判定する判定手段と、判定手段による判定結果に応じて、第1の零相電圧指令生成手段および第2の零相電圧指令手段のいずれか一方を選択する選択手段とを含む。
好ましくは、インバータ回路は、三相4線式非絶縁型インバータである。
この発明によれば、三相交流電源からの給電とインバータ回路からの給電とのラップ期間において、該インバータ回路を流れる零相電流を抑制することができる。この結果、三相交流電源からの給電とインバータ回路からの給電との切替えを無瞬断で、かつ安定的に行なうことができるため、負荷への安定した電力供給の信頼性を向上することができる。
この発明の実施の形態に係る無停電電源装置の主回路構成を示す概略ブロック図である。 図1に示すインバータの構成を詳細に説明する回路図である。 基準発生回路により生成される基準値の波形図である。 図1に示した出力電圧制御回路の機能ブロック図である。 図1に示した零相電圧制御回路の機能ブロック図である。 論理和回路から出力されるラップ期間検出信号DETを説明するためのタイミングチャートである。 図1に示した出力電流制御回路の機能ブロック図である。 図1に示したゲート制御回路の機能ブロック図である。 図2に示した3レベルインバータの一相分の構成を示す等価回路図である。 3レベルインバータの一相分の構成を示す等価回路図である。 3レベルインバータの一相分のPWM制御を説明するための波形図である。 3レベルインバータの一相文の構成を示す等価回路図である。 ラップ期間以外の期間における無停電電源装置の構成を示す等価回路図である。 ラップ期間中の無停電電源装置の構成を示す等価回路図である。 ラップ期間中の零相電圧制御を説明するための機能ブロック図である。 本願発明が適用されるインバータの他の例を示す回路図である。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当する部分には同一符号を付してその説明は繰返さない。
図1は、この発明の実施の形態に係る無停電電源装置の主回路構成を示す概略ブロック図である。本発明の実施の形態に係る無停電電源装置100は、三相4線式非絶縁型無停電電源装置であって、三相交流負荷2への電力供給を、商用交流電源1との間で無瞬断で切換えて行なう。
図1に示す構成において、無停電電源装置100は、蓄電池3と、コンデンサC1,C2と、インバータ4と、三相交流ライン11と、中性相ライン13と、リアクトルLと、コンデンサCと、電流センサ5と、電圧センサ6と、制御装置10とを備える。
蓄電池3は、直流正母線7および直流負母線8の間に直流電力を供給する。なお、本実施の形態では、蓄電池は無停電電源装置100に内蔵されているが、無停電電源装置100の外部に設置されていてもよい。
コンデンサC1,C2は、直流正母線7および直流負母線8の間に直列に接続されて、直流正母線7および直流負母線8の間の電圧を平滑化する。平滑回路を構成するコンデンサC1,C2の接続点である中性点Nには、直流中性点母線9が接続される。中性点Nは、さらに、中性相ライン13を介して三相交流負荷2の中性点と接続される。
インバータ4は、平滑回路から直流正母線7、直流中性点母線9および直流負母線8を介して供給される直流電力を、三相交流電力に変換する。後述するように、インバータ4は3レベルインバータにより構成される。
インバータ4からの三相交流電力は、リアクトルLおよびコンデンサCにより構成された出力フィルタを介して三相交流負荷2に供給される。出力フィルタは、リアクトルL(リアクトルLu,Lv,Lw)およびコンデンサC(コンデンサCu,Cv,Cw)により構成された三相のLCフィルタ回路であって、インバータ4の動作により生じた高調波を除去する。
電流センサ5は、三相交流ライン11(U相ライン、V相ライン、W相ライン)に介挿され、インバータ4から出力される三相電流ia(U相ラインの電流iau,V相ラインの電流iav,W相ラインの電流iaw)を検出し、三相電流iaを示す三相電流信号を制御装置10へ出力する。電圧センサ6は、三相交流ライン11の電圧Vo(U相ラインの電圧Vou,V相ラインの電圧Vov,W相ラインの電圧Vow)を検出し、三相電圧Voを示す三相電圧信号を制御装置10へ出力する。
三相交流ライン11と三相交流負荷2との間にはスイッチSW1が介挿接続される。スイッチSW1は、インバータ4から三相交流負荷2に対する電力供給経路を導通/遮断する。スイッチSW1は、図示しない制御部からの信号により導通/非導通(オン/オフ)される。スイッチSW1は、スイッチSW1の導通/非導通を示す信号を生成して制御装置10へ出力する。
商用交流電源1は、三相交流負荷2に対して無停電電源装置100と並列に接続される。商用交流電源1は、三相交流電源である。三相交流電源の三相交流ライン15と三相交流負荷2との間にはスイッチSW2が介挿接続される。三相交流負荷2の中性点は、三相交流電源の接地ライン17を介して接地されている。スイッチSW2は、商用交流電源1から三相交流負荷2に対する電力供給経路を導通/遮断する。スイッチSW2は、図示しない制御部からの信号により導通/非導通(オン/オフ)される。スイッチSW2は、スイッチSW2の導通/非導通を示す信号を生成して制御装置10へ出力する。
制御装置10は、インバータ4の電力変換動作を制御する。後に詳細に説明するが、インバータ4は、半導体スイッチング素子により構成される。本実施の形態では、半導体スイッチング素子としては、たとえばIGBT(Insulated Gate Bipolar Transistor)が適用される。また、本実施の形態では、半導体スイッチング素子の制御方式として、PWM(Pulse Width Modulation)制御を適用することができる。制御装置10は、電流センサ5からの三相電流信号、電圧センサ6からの三相電圧信号およびスイッチSW1,SW2からの導通/非導通を示す信号を受けてPWM制御を実行する。
次に、本実施の形態に係る無停電電源装置100の動作について説明する。
商用交流電源1が正常に交流電力を供給可能である場合には、スイッチSW2が導通(オン)されるとともに、スイッチSW1が非導通(オフ)される。よって、商用交流電源1からの三相交流電力が、三相交流ライン15を介して三相交流負荷2に供給される。
これに対して、商用交流電源1が停電した場合には、スイッチSW1がオンされるとともに、スイッチSW2がオフされる。この場合、制御装置10は、蓄電池3からの直流電力を三相交流電力に変換するようにインバータ4を動作させることにより、三相交流負荷2に対する電力供給を継続させる。
ここで、商用交流電源1からの給電からインバータ4からの給電に切換えるときには、スイッチSW2をオン状態としたままでスイッチSW1をオンさせ、その後スイッチSW2をオフさせるように制御する。同様に、インバータ4からの給電から商用交流電源1からの給電に切換えるときには、スイッチSW1をオン状態としたままでスイッチSW2をオンさせ、その後スイッチSW1をオフさせるように制御する。このように、スイッチSW1,SW2のオン/オフを切換える際に、スイッチSW1,SW2がともにオンされている期間であるラップ期間を設けることによって、商用交流電源1とインバータ4とを無瞬断で切換えることができる。
(インバータの構成)
図2は、図1に示すインバータ4の構成を詳細に説明する回路図である。
図2を参照して、インバータ4は、U相アーム4Uと、V相アーム4Vと、W相アーム4Wと、ゲート駆動回路40とを含む。
インバータ4の各相アーム4U,4V,4Wは、3レベル回路として構成され、4つのIGBT素子と、6つのダイオードとを含む。詳細には、U相アーム4Uは、IGBT素子Q1U〜Q4Uと、ダイオードD1U〜D6Uとを含む。V相アーム4Vは、IGBT素子Q1V〜Q4Vと、ダイオードD1V〜D6Vとを含む。W相アーム4Wは、IGBT素子Q1W〜Q4Wと、ダイオードD1W〜D6Wとを含む。
以下では、インバータ4の各相アームを総括的に説明するために、符号U,V,Wをまとめて符号「x」と示す。IGBT素子Q1x〜Q4xは、直流正母線7と直流負母線8との間に直列に接続される。ダイオードD1x〜D4xは、IGBT素子Q1x〜Q4xにそれぞれ逆並列接続される。ダイオードD5xは、IGBT素子Q1x,Q2xの接続点と中性点Nとに接続される。ダイオードD6xは、IGBT素子Q3x,Q4xの接続点と中性点Nとに接続される。なお、ダイオードD5xのカソードはIGBT素子Q1x,Q2xの接続点に接続され、ダイオードD5xのアノードは中性点Nに接続される。ダイオード6xのアノードはIGBT素子Q6x,Q7xの接続点に接続され、ダイオードD6xのカソードは中性点Nに接続される。ダイオードD1x〜D4xは還流ダイオードとして機能し、ダイオードD5x,D6xはクランプダイオードとして機能する。
インバータ4の各相アーム4U,4V,4Wにおいては、ダイオードD5x,D6xの接続点が直流入力端子に対応し、IGBT素子Q2x,Q3xの接続点が交流出力端子に対応する。インバータ4の各相アーム各相アーム4U,4V,4Wの直流入力端子は、中性点Nに接続される。また、インバータ4の各相アーム4U,4V,4Wの交流出力端子は、対応する線(U相ラインUL,V相ラインVL,W相ラインWL)に接続される。
各IGBT素子Q1x〜Q4xは、ゲート駆動回路40から与えられる信号によってオン/オフされる。ゲート駆動回路40は、制御装置10内部のゲート制御回路24から出力されるゲート信号sgを受けると、このゲート信号sgに基づいて各IGBT素子Q1x〜Q4xをオン/オフするための信号を生成し、その生成した信号を対応するIGBY素子へ出力する。
(制御装置の構成)
図1に示す構成において、制御装置10は、論理和回路12と、基準発生回路14と、出力電圧制御回路16と、零相電圧制御回路18と、加算部20と、出力電流制御回路22と、ゲート制御回路24とを含む。
基準発生回路14は、三相電圧Vo(U相電圧Vou,V相電圧Vov,W相電圧Vow)の振幅基準値である三相基準値Vr(U相基準値Vru,V相基準値Vrv,W相基準値Vrw)を生成する。図3は、基準発生回路14により生成される基準値Vru,Vrv,Vrwの波形図である。なお、図3では、基準値として、U相、V相、W相の各相について振幅が一定の正弦波電圧を生成する場合を例示したが、たとえばVVVF−可変電圧可変周波数電源、ソフトスタートのように、基準値の振幅が時間とともに変化する場合であってもよい。基準発生回路14で生成された基準値Vrは、出力電圧制御回路16へ出力される。
図4は、図1に示した出力電圧制御回路16の機能ブロック図である。
図4を参照して、出力電圧制御回路16は、三相基準値Vrと電圧センサ6により検出された三相電圧Voとの偏差を演算し、その偏差に応じて三相電流の基準値である三相電流指令値Ir*を算出する。具体的には、出力電圧制御回路16は、減算部160,162,164と、PI制御回路166,168,170とを含む。
減算部160は、U相基準値Vruと電圧センサ6により検出されたU相電圧Vouとの偏差を算出する。PI制御回路166は、少なくとも比例要素(P:proportional element)および積分要素(I:integral element)を含んで構成され、U相基準値VruとU相電圧Vouとの偏差を入力として比例積分演算を行ない、その演算結果としてU相電流指令値Iru*を生成する。
同様に、減算部162は、V相基準値Vrvと電圧センサ6により検出されたV相電圧Vovとの偏差を算出する。PI制御回路168は、V相基準値VrvとV相電圧Vovとの偏差を入力として比例積分演算を行ない、その演算結果としてV相電流指令値Irv*を生成する。
また、減算部164は、W相基準値Vrwと電圧センサ6により検出されたW相電圧Vowとの偏差を算出する。PI制御回路170は、W相基準値VrwとW相電圧Vowとの偏差を入力として比例積分演算を行ない、その演算結果としてW相電流指令値Irw*を生成する。
なお、図4では、電圧制御としてPI制御を用いているが、比例要素(P)、積分要素(I)および微分要素(D:derivative element)を含むPID制御を用いてもよい。また、これらに代えて、その他一般的な制御手法や現代制御理論を用いた制御回路を構成してもよい。
出力電圧制御回路16により算出された三相電流指令値Ir*は、加算部20(図1)に入力される。加算部20には、さらに、零相電圧制御回路18からの零相電流指令値Irz*が入力される。加算部20は、三相電流指令値Ir*と零相電流指令値Irz*とを加算し、その加算結果を出力電流指令値ia*(U相電流指令値iau*,V相電流指令値流iav*,W相電流指令値iaw*)として出力電流制御回路22へ出力する。
図5は、図1に示した零相電圧制御回路18の機能ブロック図である。
図5を参照して、零相電圧制御回路18は、零相電圧の基準値である零相基準値Vrzを生成するとともに、電圧センサ6により検出された三相電圧Vo(U相電圧Vou,V相電圧Vov,W相電圧Vow)から零相電圧Vozを抽出する。そして、零相電圧制御回路18は、零相基準値Vrzと零相電圧Vozとの偏差に応じて零相電流指令値Iaz*を生成する。
具体的には、零相電圧制御回路18は、零相基準値Vrzを生成する基準発生回路として、零電圧発生部180と、加算部192と、乗算部194,196と、リミッタ198と、切替回路182とを含む。
零電圧発生部180は、零相基準値Vrzとして零電圧を生成し、切替回路182へ出力する。
加算部192は、電流センサ5により検出された三相電流ia(U相電流iau,V相電流iav,W相電流iaw)を加算し、その加算結果を乗算部194へ出力する。乗算部194は、加算部192からの加算結果を1/3倍することにより、零相電流iazを算出する(iaz=1/3(iau+iav+iaw))。乗算部196は、乗算部194からの零相電流iazをk倍(kは0以上1以下の定数)することにより零相基準値Vrsを算出する。リミッタ198は、乗算部196から受けた零相基準値Vrsを予め定められた所定範囲を超えないように制限して切替回路182へ出力する。
なお、このように零相基準値Vrsを制限する構成としたのは、たとえば電流センサ5におけるセンサ誤差が大きくなる場合には、電流センサ5により検出された三相電流iaに従って零相基準値を生成することによって、却って正常な制御ができなくなるためである。
切替回路182は、論理和回路12(図1)からのラップ期間検出信号DETに応じて、零電圧発生部180およびリミッタ198と減算部184との接続を切替可能に構成される。具体的には、切替回路182がI側に接続されると、零電圧発生部180と減算部184とが接続される。これに対して、切替回路182がII側に接続されると、リミッタ198と減算部184とが接続される。
この切替回路182をI側およびII側のいずれに接続するかの制御は、論理和回路12から出力されるラップ期間検出信号DETに応じて行なわれる。このラップ期間検出信号DETは、図1に示す無停電電源装置100が、インバータ4からの給電と商用交流電源1からの給電とを切換える際のラップ期間にあるか否かを示す信号である。
図6は、論理和回路12から出力されるラップ期間検出信号DETを説明するためのタイミングチャートである。図6(a)は、インバータ4からの給電から商用交流電源1からの給電に切換えるときのタイミングチャートである。図6(b)は、商用交流電源1からの給電からインバータ4からの給電に切換えるときのタイミングチャートである。
図6(a)を参照して、最初に、時刻t0においては、スイッチSW1が導通(オン)されるとともに、スイッチSW2が非導通(オフ)されている。よって、商用交流電源1から三相交流負荷2へ電力を供給する電路が遮断されるため、インバータ4からの三相交流電力が三相交流ライン11を介して三相交流負荷2に供給される。このとき、論理和回路12は、L(論理ロー)レベルのラップ期間検出信号DETを出力する。
次に、時刻t1において、スイッチSW2がオンされると、スイッチSW1およびSW2がともにオンされているラップ状態となる。これにより、インバータ4からの三相交流電力が三相交流ライン11を介して三相交流負荷2に供給されるとともに、商用交流電源1からの三相交流電力が三相交流ライン15を介して三相交流負荷2に供給される。論理和回路12は、スイッチSW1およびSW2がともにオンされると、H(論理ハイ)レベルのラップ期間検出信号DETを出力する。
そして、このスイッチSW2がオンされた時刻t1より遅れて、時刻t2においてスイッチSW1がオフされると、ラップ期間検出信号DETはHレベルからLレベルに立下がる。なお、時刻t2以降においては、インバータ4から三相交流負荷2へ電力を供給する電路が遮断されるため、商用交流電源1からの三相交流電力が三相交流ライン15を介して三相交流負荷2に供給される。
図6(b)を参照して、商用交流電源1からの給電からインバータ4からの給電に切換えるときも同様に、スイッチSW1がオンされた時刻t1からスイッチSW2がオフされる時刻t2までは、スイッチSW1およびSW2がともにオンされているラップ状態となる。この時刻t1から時刻t2までのラップ期間において、論理和回路12は、Hレベルのラップ期間検出信号DETを出力する。
再び図5を参照して、切替回路182は、ラップ期間検出信号DETがLレベルのときにはI側に接続される。したがって、ラップ期間以外の期間においては、零電圧発生部180からの零電圧が零相基準値Vrzとして減算部184へ出力される。
これに対して、切替回路182は、ラップ期間検出信号DETがHレベルのときにはII側に接続される。したがって、ラップ期間においては、リミッタ198からの零相基準値Vrsが零相基準値Vrzとして減算部184へ出力される。
加算部188は、電圧センサ6により検出された三相電圧Vo(U相電圧Vou,V相電圧Vov,W相電圧Vow)を加算し、その加算結果を乗算部190へ出力する。乗算部190は、加算部188からの加算結果を1/3倍することにより、零相電圧Vozを算出する(Voz=1/3(Vou+Vov+Vow))。
減算部184は、零相基準値Vrzと零相電圧Vozとの偏差を算出する。PI制御回路186は、零相基準値Vrzと零相電圧Vozとの偏差を入力として比例積分演算を行ない、その演算結果として零相電流指令値Irz*を生成する。
再び図1に戻って、加算部20は、出力電圧制御回路16からの三相電流指令値ir*と零相電圧制御回路18からの零相電流指令値irz*とを加算することによって出力電流指令値ia*を生成し、出力電流制御回路22へ出力する。
出力電流制御回路22は、加算部20から出力電流指令値ia*を受け、電圧センサ6により検出された三相電圧Voを受け、電流センサ5により検出された三相電流iaを受ける。出力電流制御回路22は、これらの入力に基づいて出力電圧指令値Vo*(U相電圧指令値Vou*,V相電圧指令値Vou*,W相電圧指令値Vow*)を生成し、その生成した出力電圧指令値Vo*をゲート制御回路24へ出力する。
図7は、図1に示した出力電流制御回路22の機能ブロック図である。
図7を参照して、出力電流制御回路22は、減算部220,222,224と、P制御回路226,228,230と、加算部232,234,236とを含む。
減算部220は、U相電流指令値iau*と電流センサ5により検出されたU相電流iauとの偏差を算出する。P制御回路226は、少なくとも比例要素(P:proportional element)を含んで構成され、U相電流指令値iau*とU相電流Iauとの偏差を入力として比例演算を行ない、その演算結果を加算部232へ出力する。加算部232は、P制御回路226の出力と電圧センサ6により検出されたU相電圧Vouとを加算し、その加算結果をU相電圧指令値Vou*としてゲート制御回路24(図1)へ出力する。
同様に、減算部222は、V相電流指令値iav*と電流センサ5により検出されたV相電流iavとの偏差を算出する。P制御回路228は、V相電流指令値iav*とV相電流Iavとの偏差を入力として比例演算を行ない、その演算結果を加算部234へ出力する。加算部234は、P制御回路228の出力と電圧センサ6により検出されたV相電圧Vovとを加算し、その加算結果をV相電圧指令値Vov*としてゲート制御回路24へ出力する。
また、減算部224は、W相電流指令値iaw*と電流センサ5により検出されたW相電流iawとの偏差を算出する。P制御回路230は、W相電流指令値iaw*とW相電流Iawとの偏差を入力として比例演算を行ない、その演算結果を加算部236へ出力する。加算部236は、P制御回路230の出力と電圧センサ6により検出されたW相電圧Vowとを加算し、その加算結果をW相電圧指令値Vow*としてゲート制御回路24へ出力する。
図8は、図1に示したゲート制御回路24の機能ブロック図である。
図8を参照して、ゲート制御回路24は、減算部240,242,244と、搬送波生成部246と、増幅器248,250,252と、ゲート信号出力回路254,256,258とを含む。
搬送波生成部246は、三角波からなる搬送波信号を生成し、その生成した搬送波信号を減算部240,242,244へ出力する。
減算部240は、出力電流制御回路22から受けるU相電圧指令値Vou*から搬送波生成部246から受ける搬送波信号を減算し、その減算結果を増幅器248へ出力する。増幅器248は、減算部240の出力を増幅してゲート信号出力回路254へ出力する。ゲート信号出力回路254は、増幅器248の出力に応じてU相アーム4Uの4つのIGBT素子Q1u〜Q4uのオン/オフを制御するためのU相ゲート信号sguを生成し、その生成したU相ゲート信号sguをインバータ4内のゲート駆動回路40(図2)へ出力する。
同様に、減算部242は、出力電流制御回路22から受けるV相電圧指令値Vov*から搬送波生成部246から受ける搬送波信号を減算し、その減算結果を増幅器250へ出力する。増幅器250は、減算部242の出力を増幅してゲート信号出力回路256へ出力する。ゲート信号出力回路256は、増幅器250の出力に応じてV相アーム4Vの4つのIGBT素子Q1v〜Q4vのオン/オフを制御するためのV相ゲート信号sgvを生成し、その生成したV相ゲート信号sgvをインバータ4内のゲート駆動回路40(図2)へ出力する。
また、減算部244は、出力電流制御回路22から受けるU相電圧指令値Vow*から搬送波生成部246から受ける搬送波信号を減算し、その減算結果を増幅器252へ出力する。増幅器252は、減算部244の出力を増幅してゲート信号出力回路258へ出力する。ゲート信号出力回路258は、増幅器252の出力に応じてW相アーム4Wの4つのIGBT素子Q1w〜Q4wのオン/オフを制御するためのW相ゲート信号sgwを生成し、その生成したW相ゲート信号sgwをインバータ4内のゲート駆動回路40(図2)へ出力する。
インバータ4においては、ゲート駆動回路40は、ゲート制御回路24から入力されるゲート信号sg(U相ゲート信号sgu,V相ゲート信号sgv,W相ゲート信号sgw)に応じて、各相アームの4つのIGBT素子Q1x〜Q4xのオン/オフを制御するための信号を生成する。なお、この4つのIGBT素子のオン/オフを制御するための信号には、IGBT素子Q1x〜Q4xが同時にオンすることを防止するためのデッドタイムが設定される。
上述したように、本実施の形態に従う無停電電源装置100においては、インバータ4からの給電と商用交流電源1からの給電とを切替える際に、スイッチSW1およびSW2がともに導通(オン)されているラップ期間が設けられている。このラップ期間中においては、三相交流負荷2に対してインバータ4および商用交流電源1が互いに並列に接続される。そのため、インバータ4および商用交流電源1の間に零相電流が流れる経路が形成されることとなる。
ここで、ラップ期間以外の期間においては、インバータ4を流れる零相電流は商用交流電源1に分流されることがないため、図5に示す零相電圧制御回路を用いて、零電圧となるように零相電圧をフィードバック制御することにより、零相電流を抑制することができる。その一方で、ラップ期間中は、インバータ4を流れる零相電流の一部が商用交流電源1に分流されるため、上記のフィードバック制御によっては、零相電流を抑制することができないという問題が生じてしまう。
このような不具合を回避するため、本実施の形態に係る無停電電源装置では、零相電圧制御回路18は、ラップ期間とラップ期間以外の期間とで、零相基準値Vrzを切替え可能に構成される。具体的には、零相電圧制御回路18は、ラップ期間以外の期間においては、零相電圧が零電圧となるように零相基準値Vrzを設定するのに対して、ラップ期間中は、インバータ4を流れる零相電流を抑制するように零相基準値Vrzを設定する。
以下に、図9に示す零相等価回路を参照して、無停電電源装置100のラップ期間中にインバータ4を流れる零相電流の抑制するための制御構造について説明する。
図9は、図2に示した3レベルインバータの一相分の構成を示す等価回路図である。なお、以下の説明では、x相アームに含まれる4つのIGBT素子の符号をQ1〜Q4と表す。
図9に示す等価回路において、コンデンサC1の電圧をEpとし、コンデンサC2の電圧をEnとする。なお、直流正母線7および直流負母線8の間の電圧はE(Eは所定値)である。中性点Nを接地して考えると、電圧Ep,EnはいずれもE/2である。また、直流正母線7を流れる電流をipとし、直流負母線8に流れる電流をinとし、直流中性点母線9に流れる電流をicとする。
x相アームに含まれる4つのIGBT素子Q1〜Q4をオン/オフさせるスイッチング制御を行なうことにより、x相ライン(交流ライン)の接続先は、直流正母線7、直流中性点母線9および直流負母線8の間で切換えられる。すなわち、図10に示すように、x相アームは、直流正母線7、直流中性点母線9および直流負母線8の間でx相ラインの接続先を切換えるスイッチと等価である。そして、このスイッチが動作することにより、x相ラインの電圧Vxは、Ep(=+E/2),0,En(=−E/2)の間で切換わる。図10の等価回路において、交流出力は、3つの電位状態(p,c,n)のいずれかとなる。このように3レベルインバータは、直流電圧Eを3つの値(Ep,0,En)を有する交流電圧に変換する。
図11は、図1に示す制御装置10により、インバータ4(3レベルインバータ)の一相分のPWM制御を説明するための波形図である。まず、図11を用いて3レベルインバータの動作について説明する。交流電圧Vxと参照信号φ1,φ2との高低が比較され、その比較結果に基づいてIGBT素子Q1〜Q4のオン/オフの組合せが決定される。
交流電圧Vxのレベルが参照信号φ1,φ2のレベルよりも高い期間(t1〜t2,t3〜t4)は、IGBT素子Q1,Q2がオンされ、IGBT素子Q3,Q4がオフされ、x相ラインと直流正母線7とが接続される。
交流電圧Vxのレベルが参照信号φ1,φ2のレベルの間にある期間(t0〜t1,t2〜t3,t4〜t5,t6〜t7)は、IGBT素子Q2,Q3がオンされ、IGBT素子Q1,Q4がオフされ、x相ラインと直流中性点母線9とが接続される。
交流電圧Vxのレベルが参照信号φ1,φ2のレベルよりも低い期間(t5〜t6,t7〜t8)は、IGBT素子Q3,Q4がオンされ、IGBT素子Q1,Q2がオフされ、x相ラインと直流負母線8とが接続される。
この結果、x相ラインには、交流電圧Vxと同じ位相の3レベル(Ep,0,En)の交流電圧が供給される。ここで、インバータのスイッチング周期Tにおける交流出力がp電位となる期間を規定するデューティ比をdpとし、スイッチング周期Tにおける交流出力がn電位となる期間を規定するデューティ比をdnとすると、x相アームからx相ラインへ出力される電圧Vおよび電流iaは、式(1)〜(3)により表わされる。
V=dp・Ep−dn・En (1)
ip=dp・ia (2)
in=−(dn・ia) (3)
上記の式(1)〜(3)を用いることにより、図10に示す一相分の等価回路は、図12のように置換えることができる。そして、図12に示される一相分の等価回路を用いて三相3レベルインバータを構成すると、図13に示すような等価回路が形成される。
ここで、図13に示す等価回路においては、直流正母線7を流れる電流ip,直流負母線8を流れる電流inおよび直流中性点母線9を流れる電流icは、式(4)〜(6)により表わすことができる。
ip=dpu・iau+dpv・iav+dpw・iaw (4)
in=−(dnu・iau+dnv・iav+dnw・iaw) (5)
ic=iau+iav+iaw−ip−in (6)
ただし、dpu,dpv,dpwは、U相アーム,V相アーム,W相アームの交流出力Vu,Vv,Vwがそれぞれp電位となる期間を規定するデューティ比を示し、dnu,dnv,dnwは交流出力Vu,Vv,Vwがそれぞれn電位となる期間を規定するデューティ比を示す。
ここで、3レベルインバータにおいて、零相電流izは、U相電流iau,V相電流iav,W相電流iawを用いて、式(7)によって定義される。
iz=iau+iav+iaw (7)
この式(7)を上記の式(6)に代入することにより、式(8)に示す関係が導かれる。
ic=iz−ip−in (8)
図13に示す単機の三相3レベルインバータの場合には、零相電流izが流れる経路が存在しないため、iz=0となる。そのため、インバータの制御は零相電流の影響を受けることなく、デューティ比dpu,dpv,dpw,dnu,dnv,dnwを適切に調整することができる。
これに対して、インバータ4からの給電と商用交流電源1からの給電とを切換える際のラップ期間中においては、三相交流負荷2の中性点と三相3レベルインバータの中性点Nとの間に商用交流電源1が接続されるため、図14に示すような等価回路が形成されることとなる。
図14に示す構成において、零相電流izは、各相ラインに流れる経路と、三相交流負荷2の中性点を経由して商用交流電源1に流れ込む経路とが形成される。このように、ラップ期間中は零相電流izが流れる経路ができることによって、零相電流izがインバータの制御に干渉するという不具合が発生する。
このような不具合を回避するため、本実施の形態に係る無停電電源装置100は、ラップ期間においては、電流センサ5により検出される三相電流iau,iav,iawから零相電流izを算出し、この算出した零相電流izを抑制するように、零相電圧をフィードバック制御する。
図15は、ラップ期間中の零相電圧制御を説明するための機能ブロック図である。この図15に示す機能ブロック図は、図5に示した零相電圧制御回路18において切替回路182がII側に接続されているときに実現される制御構造を図示したものである。
図15を参照して、零相電圧制御回路18は、ラップ期間中にインバータ4を流れる零相電流を抑制するための制御回路として、加算部192、乗算部194,196およびリミッタ198からなる零相電流抑制回路200を有している。この零相電流抑制回路200は、電流センサ5により検出される三相電流iau,iav,iawをフィードバックさせて零相電流izを算出する。そして、この算出した零相電流izに基づいて、零相電流を抑制するように零相基準値Vrzを出力する。零相電圧制御回路18は、この零相基準値Vrzと零相電圧Vozとの偏差に応じて零相電流指令値Iaz*を生成する。
この零相電流抑制分を含む零相電流指令値Iaz*は、加算部202,204,206において、出力電圧制御回路16により算出された三相電流指令値Ir*に加算されると、出力電流指令値ia*(U相電流指令値iau*,V相電流指令値流iav*,W相電流指令値iaw*)として出力電流制御回路22へ出力される。
出力電流制御回路22は、出力電流指令値ia*と、電流センサ5により検出された三相電流iaとに基づいて、三相電圧指令値Vo*(U相電圧指令値Vou*,V相電圧指令値Vou*,W相電圧指令値Vow*)を生成し、その生成した三相電圧指令値Vo*をゲート制御回路24(図2)へ出力する。ラップ期間中において、電流センサ5により検出された三相電流iaには、三相電流成分iau_i,iav_i,iaw_iと零相電流成分iazとが含まれている。この三相電流iaと零相電流抑制分を含む出力電流指令値ia*とに基づいて三相電圧指令値Vo*を生成することにより、インバータ4を流れる零相電流を効果的に抑制することができる。
以上のように、この発明の実施の形態によれば、インバータからの給電と商用交流電源からの給電とを切換える際のラップ期間中には、インバータを流れる零相電流を抑制するように零相電圧制御が行なわれるため、商用交流電源とインバータとを無瞬断で安定的に切替えることができる。この結果、負荷への安定した電力供給の信頼性を向上できる。特に、不平衡負荷に対しては、本願発明により中性相に流れる電流の影響を大幅に低減することが可能となる。
(変更例)
なお、上述した実施例では、インバータの一例として、図2に示す3レベルインバータについて例示したが、本願発明は、図16に示す構成からなる3レベルインバータにも適用できることは自明である。
図16は、本願発明が適用されるインバータの他の例を示す回路図である。図16の例では、インバータ4の各相アーム4U,4V,4Wは、4つのIGBT素子Q1x〜Q4xと、4つのダイオードD1x〜D4xとを含む。ダイオードD1x〜D4xは、IGBT素子Q1x〜Q4xにそれぞれ逆並列接続される。
IGBT素子Q1x,Q4xは、直流正母線7と直流負母線8との間に直列に接続される。IGBT素子Q2x,Q3xは、IGBT素子Q1x,Q4xの接続点と中性点Nとの間に直列に接続される。IGBT素子Q2xのエミッタはIGBT素子Q1x,Q4xの接続点に接続され、そのコレクタはIGBT素子Q3xのコレクタに接続される。IGBT素子Q3xのエミッタは中性点Nに接続される。なお、ダイオードD1x,D4xが還流ダイオードとして機能するのに対し、ダイオードD2x,D3xはクランプダイオードとして機能する。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 商用交流電源、2 三相交流負荷、3 蓄電池、4 インバータ、4U U相アーム、4V V相アーム、4W W相アーム、5 電流センサ、6 電圧センサ、7 直流正母線、8 直流負母線、9 直流中性点母線、10 制御装置、11 三相交流ライン、12 論理和回路、13 中性相ライン、14 基準発生回路、15 三相交流ライン、16 出力電圧制御回路、17 接地ライン、18 零相電圧制御回路、20,192,202,204,206,232,234,236 加算部、22 出力電流制御回路、24 ゲート制御回路、40 ゲート駆動回路、100 無停電電源装置、160,162,164,184,220,222,224,240,242,244 減算部、166,168,170,186 PI制御回路、180 零電圧発生部、182 切替回路、190,194,196 乗算部、198 リミッタ、200 零相電流抑制回路、226,228,230 P制御回路、246 搬送波生成部、248,250,252 増幅器、254,256,258 ゲート信号出力回路、C1,C2 コンデンサ、L リアクトル。

Claims (3)

  1. 直流正母線および直流負母線の間に接続され、中性点を備えたコンデンサからなる平滑回路と、
    平滑回路の直流端子および中性点に接続され、スイッチング素子のスイッチング動作によって平滑回路からの直流電力を三相交流電力に変換して、三相交流ラインへ出力するインバータ回路と、
    インバータ回路と三相交流ラインとの間に介挿接続された第1のスイッチと、
    中性点と三相交流負荷の中性点とを結ぶ中性相ラインと、
    三相交流ラインと中性相ラインとの間に接続され、三相交流ラインに三相交流電力を供給する三相交流電源と、
    三相交流電源と三相交流ラインとの間に介挿接続された第2のスイッチと、
    インバータ回路の出力電流を検出する電流センサと、
    インバータ回路の出力電圧を検出する電圧センサと、
    インバータ回路の電力変換動作を制御する制御装置とを備え、
    第1および第2のスイッチは、同時に導通状態となるラップ期間を挟んで相補に導通状態/非導通状態とされ、
    制御装置は、
    三相電圧指令と電圧センサの出力電圧検出値との偏差に基づいて三相電流指令を生成する出力電圧制御回路と、
    零相電圧指令と電圧センサの出力電圧検出値から抽出される零相電圧との偏差に基づいて零相電流指令を生成する零相電圧制御回路と、
    三相電流指令に零相電流指令を加算してインバータ回路の出力電流指令を生成し、出力電流指令と電流センサの出力電流検出値との偏差に基づいてインバータ回路の出力電圧指令を生成する出力電流制御回路と、
    出力電圧指令に従ってインバータ回路のスイッチング素子をオン/オフするゲート信号を出力するゲート信号出力回路とを含み、
    零相電圧制御回路は、第1および第2のスイッチがラップ期間にないときには、零相電圧が零電圧となるように零相電圧指令を生成する一方で、第1および第2のスイッチがラップ期間にあるときには、電流センサの出力電流検出値から導出されるインバータ回路を流れる零相電流を抑制するように零相電圧指令を生成する、無停電電源装置。
  2. 零相電圧制御回路は、
    零相電圧が零電圧となるように零相電圧指令を出力する第1の零相電圧指令手段と、
    電流センサの出力電流検出値から抽出されるインバータ回路を流れる零相電流に基づいて零相電圧指令を出力する第2の零相電圧指令手段と、
    第1および第2のスイッチがラップ期間にあるか否かを判定する判定手段と、 判定手段による判定結果に応じて、第1の零相電圧指令生成手段および第2の零相電圧指令手段のいずれか一方を選択する選択手段とを含む、請求項1に記載の無停電電源装置。
  3. インバータ回路は、三相4線式非絶縁型インバータである、請求項1または2に記載の無停電電源装置。
JP2010270600A 2010-12-03 2010-12-03 無停電電源装置 Active JP5465652B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010270600A JP5465652B2 (ja) 2010-12-03 2010-12-03 無停電電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010270600A JP5465652B2 (ja) 2010-12-03 2010-12-03 無停電電源装置

Publications (2)

Publication Number Publication Date
JP2012120407A JP2012120407A (ja) 2012-06-21
JP5465652B2 true JP5465652B2 (ja) 2014-04-09

Family

ID=46502596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010270600A Active JP5465652B2 (ja) 2010-12-03 2010-12-03 無停電電源装置

Country Status (1)

Country Link
JP (1) JP5465652B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5755197B2 (ja) * 2012-07-27 2015-07-29 三菱電機株式会社 電力変換装置
JP5874835B2 (ja) * 2013-05-17 2016-03-02 富士電機株式会社 電力変換装置
JP6060883B2 (ja) * 2013-12-05 2017-01-18 株式会社デンソー 交流電源切替装置
JP6431199B2 (ja) 2015-07-24 2018-11-28 東芝三菱電機産業システム株式会社 無停電電源装置
PT3163705T (pt) * 2015-10-30 2018-04-16 Oeveraas Invest Ab Sistema de controlo do fornecimento de eletricidade e um método do mesmo
US9923485B2 (en) 2015-11-05 2018-03-20 Futurewei Technologies, Inc. Multi-channel inverter systems
US10910876B2 (en) 2016-09-30 2021-02-02 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply device
WO2018087876A1 (ja) 2016-11-11 2018-05-17 東芝三菱電機産業システム株式会社 無停電電源装置
JP6886848B2 (ja) * 2017-03-30 2021-06-16 新電元工業株式会社 電源装置、及び制御装置
KR101887092B1 (ko) 2017-12-27 2018-09-06 주식회사 한강기전 이중 히스테리시스 전류제어기를 사용한 무변압기형 무정전전원장치
CN110011366A (zh) * 2018-01-05 2019-07-12 硕天科技股份有限公司 不断电系统及其电池管理装置
JP7367662B2 (ja) 2020-12-09 2023-10-24 株式会社明電舎 電力変換装置および電力変換装置の制御方法
CN117375199A (zh) * 2022-06-30 2024-01-09 施耐德电器工业公司 电源转换电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133633A (ja) * 1990-09-25 1992-05-07 Isao Takahashi 無停電電源装置
JP3523017B2 (ja) * 1997-06-12 2004-04-26 三菱電機株式会社 電源装置
JP3584686B2 (ja) * 1997-07-31 2004-11-04 富士電機機器制御株式会社 電圧形電力変換回路
JP4588337B2 (ja) * 2004-03-08 2010-12-01 三菱電機株式会社 電力変換装置
JP2009124836A (ja) * 2007-11-14 2009-06-04 Fuji Electric Systems Co Ltd 無停電電源システムの制御装置

Also Published As

Publication number Publication date
JP2012120407A (ja) 2012-06-21

Similar Documents

Publication Publication Date Title
JP5465652B2 (ja) 無停電電源装置
JP5463289B2 (ja) 電力変換装置
CA2868700C (en) Power supply apparatus
WO2015178376A1 (ja) 直流送電電力変換装置および直流送電電力変換方法
TWI623174B (zh) 不斷電電源裝置
JP6571903B1 (ja) 無停電電源装置
US11394295B2 (en) Power supply apparatus
JP2007300712A (ja) 交流電力供給装置
JP2018129963A (ja) 電力変換器の制御装置
JP5739734B2 (ja) 電力変換装置
JP6585872B1 (ja) 電力変換装置
JP5631445B2 (ja) 電力変換装置
JP5131403B1 (ja) 無停電電源システム
JP2006191743A (ja) 3レベルpwm電力変換装置
TWI467902B (zh) Improvement of Output Current Waveform of Current Control Type Power Converter and Current Control Type Power Converter
WO2020136698A1 (ja) 電力変換装置
JP6480290B2 (ja) 電力変換装置
CN114600337A (zh) 不间断电源装置
JP2012080753A (ja) 電力変換装置
JP6926619B2 (ja) 電力変換装置および電力変換システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140122

R150 Certificate of patent or registration of utility model

Ref document number: 5465652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250