JP5448918B2 - 生体情報処理装置 - Google Patents

生体情報処理装置 Download PDF

Info

Publication number
JP5448918B2
JP5448918B2 JP2010038977A JP2010038977A JP5448918B2 JP 5448918 B2 JP5448918 B2 JP 5448918B2 JP 2010038977 A JP2010038977 A JP 2010038977A JP 2010038977 A JP2010038977 A JP 2010038977A JP 5448918 B2 JP5448918 B2 JP 5448918B2
Authority
JP
Japan
Prior art keywords
subject
ultrasonic
photoacoustic
element array
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010038977A
Other languages
English (en)
Other versions
JP2011172730A (ja
JP2011172730A5 (ja
Inventor
克哉 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010038977A priority Critical patent/JP5448918B2/ja
Priority to US13/029,245 priority patent/US20110208057A1/en
Publication of JP2011172730A publication Critical patent/JP2011172730A/ja
Publication of JP2011172730A5 publication Critical patent/JP2011172730A5/ja
Application granted granted Critical
Publication of JP5448918B2 publication Critical patent/JP5448918B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4416Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to combined acquisition of different diagnostic modalities, e.g. combination of ultrasound and X-ray acquisitions

Description

本発明は生体情報処理装置に関し、特に光音響波による三次元立体像と超音波エコーによる二次元断層像を組み合わせる生体情報処理装置に関する。
従来、超音波を利用した画像診断装置が広く利用されている。従来の装置では、超音波を被検体に送信し、反射される超音波エコーを受信して画像化することで、断層画像を生成している。また、二次元配列の機械電気変換素子(トランスデューサ)を利用したり、一次元配列のトランスデューサを走査することで三次元立体画像を得ることもできる。また、このような三次元立体像を二次元断層像と同時に表示する提案がなされている(特許文献1)。
一方、検体の検査においては形態画像だけでなく機能画像を表示する装置の開発も近年進められている。そして、このような装置の一つに光音響分光分析法を利用した装置がある。この光音響分光分析法は、所定の波長をもつ可視光、近赤外光、又は中間赤外光を検体に照射した際に、検体内の特定物質がこの照射光のエネルギーを吸収した結果生じる光音響波を検出して、その特定物質の濃度を定量的に計測するものである。検体内の特定物質は、例えば血液中に含まれるグルコースやヘモグロビンなどである。
また、特許文献2では、光音響画像と通常の超音波エコー画像の双方を、共通の一次元トランスデューサを用いて同時に取得することによって、形態画像と機能画像を表示している。超音波エコー法によって得られる組織構造を、光音響イメージング法によって得られるグルコースやヘモグロビンやそれらの活性の立体分布構造に重ね合わせて表示することで、組織内の悪性腫瘍の判定を効果的に行えると期待されている。特に、光音響イメージング法による機能画像では、特定機能を有する部位だけが表示されるので三次元表示時の視認性は良いが、体内での位置の判定が難しい。超音波エコー法では組織全般の構造が写るので部位特定に有利であり、光音響イメージングと同時に表示することが有効である。
なお、本明細書では、光音響分光分析法(光音響イメージング法)によって発生する弾性波を光音響波と呼び、通常のパルスエコー法において送受信される弾性波を超音波と呼ぶ。
特開2008−229097号公報 特開2005−21380号公報
超音波エコー法による二次元断層像と三次元立体像を同時表示する特許文献1では、そもそも機能画像を得ることができない。また、超音波エコー法では軟組織を詳細に撮影できるという利点があるが、それ故に立体画像とした場合には逆に視認性が劣ってしまう。超音波エコー法による立体像は、心臓や胎児など明確な境界を有する部位の観察が実用的用途であり、境界が明瞭でない複数組織の部位の観察では立体像化することで複数部位が重複することで却って視認性が劣化することがある。また、超音波エコー法によって立体像を得るためには、多数の超音波ビームを順次作成して、その各々について超音波エコーを採取しなければならない。したがって、高い解像度をもつ精細な画像を短時間で作成す
ることは困難である。
一方、光音響イメージング法による三次元画像取得では、一度の光照射によって発生する光音響波を二次元配列トランスデューサで受信して三次元画像データを構成できる。したがって、特許文献2の手法では、超音波エコー法による三次元画像データ取得時のように取得時間が増大することがない。
しかしながら、特許文献2では、共通のトランスデューサによって光音響波の受信と聴音ビームの送信とそのエコーの受信を行っているので、以下のような問題が生じる。
光音響分光分析法で用いられる光音響波の周波数帯域は、超音波エコーで用いられる超音波の周波数帯域と比較すると、一般的に低い。例えば、光音響波の周波数帯域は1MHzを中心周波数として、200KHz乃至2MHzの範囲に分布しており、これは超音波エコーで用いられる超音波の中心周波数3.5MHz乃至12MHzよりも低い。したがって、これら両方を共通のトランスデューサで受信すると、超音波画像において空間分解能の劣化を招くという課題がある。特許文献2ではハーモニックイメージング法を適用して対処しているが、高調波成分は基本波成分よりも信号が減衰するため感度が低下するおそれがある。光音響波と超音波の周波数帯域がより離れている場合(例えば、光音響波の中心帯域が1MHz程度で、超音波の中心帯域が10MHz程度)、共通のトランスデューサで受信すると上記課題は顕著となる。
また、上述のように光音響イメージング法による三次元立体画像を高速に構築するには二次元のトランスデューサが必要である。一方で超音波エコー法による画像データ採取を短時間で行うためは略一次元配列的なトランスデューサにより平面上の超音波ビーム走査を行って断層画像を構成するのが好ましい。
このように超音波エコー法と光音響イメージング法ではトランスデューサに対する要求が異なるため、それぞれ個別にトランスデューサを用いることが好ましい。この場合、それぞれのトランスデューサの配置のずれによって実際の画像を取得する領域にずれが生じてしまうという課題を有していた。
本発明は、上記課題を考慮してなされたものであり、その目的は、光音響イメージング法による三次元立体像と超音波エコー法による二次元断層像を異なるトランスデューサで取得する際に、両者の撮影領域を一致させることにある。
上記課題を解決するために、本発明に係る生体情報処理装置は、
弾性波を送受信するための第1の素子アレイと、
前記第1の素子アレイによって受信される信号から断層像を生成する第1の信号処理部と、
被検体に光を照射する光源と、
被検体に照射された光によって発生する弾性波を受信するための第2の素子アレイと、
前記第2の素子アレイによって受信される信号から立体像を生成する第2の信号処理部と、
を有する生体情報処理装置であって、
前記第1の素子アレイは、前記断層像が得られる被検体内の領域と前記立体像が得られる被検体内の領域が重複するように、被検体表面に対して斜めに弾性波を送受信する、
ことを特徴とする。
また、本発明に係る生体情報処理方法は、
被検体に照射した弾性波が被検体内で反射したエコー弾性波を、被検体に照射した光によって被検体から発生する光音響波と、を受信して被検体内の情報を取得する光音響イメージング装置における生体情報処理方法であって、
被検体に対して弾性波を照射し、被検体内から反射されるエコー弾性波を受信して、被検体の断層像を生成する断層像生成工程と、
被検体に対して光を照射し、被検体内で発生する弾性波を受信して、被検体の立体像を生成する立体像生成工程と、
を含み、
前記断層像生成工程において、前記断層像が得られる被検体内の領域と前記立体像が得られる被検体内の領域が重複するように、被検体表面に対して斜めに弾性波を送受信する、
ことを特徴とする。
本発明によれば、光音響分光法による三次元立体像と超音波エコー法による超音波断層像の撮影領域が重なるので、同じ被検体部位について同時刻に両方の画像を取得することができる。さらには、光音響イメージング法による検査対象と周囲の生体組織との位置関係を精度よく観察でき、光音響分光法によるイメージングを行う領域を、組織断層面で視認しながら設定することができる。
光音響イメージング装置の構成例を示すブロック図 光音響プローブを説明する図 超音波走査面を機械的に制御する場合のプローブ構成を示す図 光音響イメージング装置の例を示す図
<第1の実施形態>
[全体構成]
図1に本実施形態に係る光音響イメージング装置(生体情報処理装置)の全体概要を示す。本実施形態に係る光音響イメージング装置では、光音響探触子(光音響プローブ)100に、超音波エコー法用のトランスデューサアレイ4aと光音響イメージ用のトランスデューサアレイ4bを有する。以下、それぞれを、超音波用トランスデューサアレイ4a、光音響用トランスデューサアレイ4bと称する。また、超音波用トランスデューサアレイ4aが本発明における第1の素子アレイに相当し、光音響用トランスデューサアレイ4bが本発明における第2の素子アレイに相当する。
まず、超音波エコー法による断層像生成を行うための構成について説明する。超音波用トランスデューサアレイ4aから超音波(弾性波)を送信するためにシステム制御部1、送信ビームフォーマ2、送信アンプ3を通して超音波信号が生成され、超音波用トランスデューサアレイ4aへ電圧が印加される。送信された超音波は被検体14から反射し、反射超音波(エコー弾性波)は超音波用トランスデューサアレイ4aによって受信される。受信された超音波信号は受信アンプ5、遅延や重み付け制御を行う受信ビームフォーマ6を通して、各素子での受信信号が整相加算される。そして、超音波信号処理部(第1の信号処理部)10によって検波され輝度信号に変換された後、画像処理部11内の画像メモリに蓄積される。
超音波エコー法による断層画像を作成するための送受信ビームフォーミングはリニア走査法を用いることができる。リニア走査法では超音波用トランスデューサアレイ4aで超音波ビームを形成しこれを略平行に走査する。このため超音波用トランスデューサアレイ4aを構成するトランスデューサ群の一部分を超音波送受信の超音波開口として利用し、この超音波開口部分より超音波ビームを送受信する。送信ビームフォーマ2及び受信ビームフォーマ6はこの超音波開口部分を選択し、超音波用トランスデューサアレイ4a中の対応する複数のトランスデューサを用いて超音波の送受信を行う。選択するトランスデュ
ーサを切り替えることにより超音波開口を一次元方向へ移動させる。すなわち、送受信超音波ビームを略平行に移動させることができる。超音波ビームの走査(リニア走査)により、超音波走査面21(図2C)が形成される。超音波エコー法による断層像の撮影領域は、この超音波走査面21である。
また同時に送信ビームフォーマ2及び受信ビームフォーマ6は、複数のトランスデューサの送受信信号に異なる遅延を与えることで超音波ビームを収束する、フォーカシングと称される動作を行う。さらには受信信号の整相加算時にフォーカス点を移動させるダイナミックフォーカスや、アポダイゼーションを行うことが望ましいが、これらは当該技術分野で広く周知であるので説明は省略する。なお詳細は後で述べるが、本実施形態では、送受信のビームフォーミング処理により超音波走査面21を傾けられるように構成している。
次に、光音響分光法による立体像生成を行うための構成について説明する。光源13はシステム制御部1からの駆動信号により被検体14に照射するためのパルスレーザ光を発振して、被検体14に照射する。被検体14にパルスレーザ光が照射されることで、被検体内部のヘモグロビンなどの検出対象がレーザ光のエネルギーを吸収し、この吸収したエネルギー量に応じて検出対象の温度が上昇する。これに起因して検出対象が瞬間的に膨張して光音響波(弾性波)を発生する。発生した光音響波は光音響用トランスデューサアレイ4bにて受信され、受信アンプ7、A/D変換器8を経由して、光音響信号処理部(第2の信号処理部)9にて画像再構成処理される。再構成された光音響信号は輝度信号として画像処理部11内の画像メモリに蓄積される。
画像処理部11のメモリには、光音響信号処理部9および超音波信号処理部10から得られる立体像(光音響画像)と断層像(超音波画像)の画像データが格納される。画像処理部11では、これらの画像データとシステム制御部1からの超音波走査面21の角度データをもとに、血管などの光音響分析画像と超音波エコーによる組織画像を合成した合成画像を作成し、画像表示部12で表示を行う。この表示は、例えば、光音響法による三次元立体像に超音波エコー法の断層像を重ねた合成画像であっても良いし、光音響法の二次元断面画像や二次元投影画像に超音波画像を重ねた合成画像であっても良い。また、それぞれの画像を個別に表示するものであっても構わない。
[プローブ構成]
図2に、光音響信号と超音波エコー信号を同時に取得するためのプローブ構成を示す。図2Aはプローブの外観を示し、図2Bはトランスデューサ部分の拡大図である。また、図2Cはプローブの全体構成と光音響法および超音波エコー法による撮影領域を示す。
図2Aに示すように、プローブ100はケース30、ケーブル31、およびトランスデューサ部4から構成される。トランスデューサ部4は、上述のように超音波用トランスデューサアレイ4aと光音響用トランスデューサアレイ4bからなる。図2Bに示すように、光音響用トランスデューサアレイ4bは、二次元配列されており、その周囲にパルスレーザ光を入射するための光照射開口23が設けられている。超音波用トランスデューサアレイ4aは、一次元状のトランスデューサ列を複数列配列させたアレイ(リニア)型構造である。ここでは、1列のトランスデューサに含まれる素子数が、列数に比較して十分に多い。この構造は、正確には二次元配列であるが、略一次元配列とみなせ、1.75次元アレイ型トランスデューサとも呼ばれる。
なお、超音波用トランスデューサアレイ4aと光音響用トランスデューサアレイ4bは、超音波用トランスデューサアレイ4aのリニア走査の方向に直交する方向に並べて設けられている。また、超音波用トランスデューサアレイ4aにはトランスデューサ列が複数あるため、ビームフォーミング処理によりリニア走査の方向と垂直な方向にビームを傾けることができ、超音波ビームを被検体表面に対して斜めに送受信できる。
なお、トランスデューサアレイの上面、下面にはそれぞれ整合層、バッキング、配線、
また超音波用トランスデューサアレイの上面には音響レンズが配置されているが、図面では省略されている。
プローブの全体構成について図2Cを参照して説明する。本実施形態におけるプローブ100では、保護板15上に、超音波用トランスデューサアレイ4a、光音響用トランスデューサアレイ4b、光入射プリズム16a,16b、光伝送路17が形成されている。光伝送路17内には半透明鏡膜18と全反射鏡膜19が形成されている。光源13より発生したパルスレーザ光は光伝送路17を伝搬し、その一部好ましくはその半分の光量が半透明鏡膜18で反射され光入射プリズム16aにより保護板15を透過して被検体14へ照射される。また光伝送路17中で半透明鏡膜18を透過したパルスレーザ光は全反射鏡膜19で反射され光入射プリズム16bにより保護板15を透過して被検体14へ照射される。光伝送路17はパルスレーザ光を損失なく透過させるものであればよく、光ファイバ束や硝子ブロック材を用いて作成できる。硝子ブロック材で形成される場合は半透明鏡膜18と全反射鏡膜19をブロック張り合わせ面や端面にパルスレーザ光の波長に合わせた多層薄膜によって形成できる。さらに光伝送路17内はパルスレーザ光を空間伝搬させる構成とし、半透明鏡膜18と全反射鏡膜19を半透鏡、全反射鏡を用いて構成することもできる。この場合には光伝送路17内を外部と区切る鏡筒で囲うことで構成すればよい。光入射プリズム16a,16bも硝子ブロック材で構成できるが、全反射鏡で代用して同等の効果を得ることも可能である。さらに光伝送路17を光ファイバ束で構成するときは光ファイバ束の可塑性を用いて直接光伝送路17よりパルスレーザ光を被検体14に照射することも可能である。
本実施形態では照射用パルスレーザ光は、被検体14に光音響用トランスデューサアレイ4b周囲の光照射開口23から入射される。パルスレーザ光は、光入射プリズム16a,16bによって被検体14に斜入射し、光音響用トランスデューサアレイ4bの直下で交差するように照射される。パルスレーザ光が照射される部分(光音響用トランスデューサアレイ4bの前方の部分)が、光音響分光法により立体像が撮像される光音響撮像領域20である。本構成では、光音響用トランスデューサアレイ4b下部の光音響撮像領域20を略均一光量で照射できるという利点を有する。
被検体14が薄い場合には、光音響用トランスデューサアレイ4bと反対側から被検体14にパルスレーザを入射する構成とすることも可能である。また被検体14に対して光音響用トランスデューサアレイ4b側と反対側の両面照射を行うことで被検体14の厚み方向の光照射の強度を均一化することもできる。ただし、被検体14が厚い場合には被検体14内をパルスレーザ光が透過しにくいため、本構成のように少なくとも光音響用トランスデューサアレイ4b側からのパルスレーザ光入射が好ましい形態である。
超音波用トランスデューサアレイ4aは、超音波ビームの送信を行い、同時に被検体14内での該ビームの反射波を、超音波エコー信号として受信する。なお、受信超音波にビームフォーミング処理を行うことで、受信ビームに指向性を持たせることができる。超音波の送受信ビームは走査方向(図2Cでは紙面に垂直な方向)に走査される。これにより、超音波走査面21における被検体14の断層像が得られる。つまり、超音波走査面21は、超音波エコー法による撮像領域(撮像断面)である。また、超音波ビームを被検体表面に対して傾けて被検体14に入射させて断層像撮影を良好に行うための超音波用スタンドオフ29を設けることが好ましい。
[超音波用トランスデューサアレイの動作]
上述したように本実施形態では、送受信ビームフォーマによって、超音波用トランスデューサアレイ4aから送受信する超音波ビームの方向を走査方向と垂直な方向(図2Cでは左右方向)に傾けることができる。このために、超音波用トランスデューサアレイは4aは、複数列のトランスデューサ列を有している。以下、ビーム方向を傾けるビームステ
アリング処理について説明する。
上述のように超音波用トランスデューサアレイ4aは、マトリックス状にトランスデューサ群が配列されている。説明のため超音波ビーム走査方向(図2Cで紙面に垂直な方向。本発明の第1の方向に相当。)をラテラル方向、それと垂直方向(図2Cで左右方向。本発明の第2の方向に相当。)をエレベーション方向と呼ぶ。超音波ビーム走査はラテラル方向に超音波開口を移動させて行う。送信ビームフォーマ2及び受信ビームフォーマ6では超音波開口を構成するトランスデューサを選択することでビーム走査を行う。
このとき、エレベーション方向に配列されたトランスデューサ間で異なる遅延時間を与えた送信信号を入力することで、相対的に遅延時間量が少ない素子方向へ送信ビームがステアリングされる。ステアリングの傾き量、すなわち、リニア走査の方向と直交する平面内での超音波ビームの送受信方向は、遅延時間の相対量によって制御される。なお、このステアリングの傾き量は、不図示の入力部から利用者が指定できる。したがって、利用者は、取得画像を見ながら所望の角度に断層像取得面の傾きを調整できる。
同様にトランスデューサからの受信信号出力に対しエレベーション方向に配列されたトランスデューサ間で異なる遅延時間を与えることで、整相加算に於いて、相対的に時間遅延量が少ない素子方向へ受信ビームがステアリングされる。ステアリングの傾き量は遅延時間の相対量によって制御される。さらに当該技術分野で周知のように超音波開口内のトランスデューサ間で信号に遅延を与えることで送受信ビームをフォーカシングさせる。
このようにエレベーション方向に傾いた超音波ビームをラテラル方向に走査することで超音波走査面21の傾きが制御され、光音響撮像領域20と交叉する超音波エコー法による撮像断面を変化させることができる。
本実施形態における超音波用トランスデューサアレイ4aは、上記のような動作にも特徴がある。上記1.75次元アレイという用語も単純に形態的なトランスデューサ配列のみでなく、その駆動方法を含んだ表現である。すなわち、超音波用トランスデューサアレイとして縦横の素子数が同数またはほぼ同数のトランスデューサアレイを使用してもよい。この場合は、トランスデューサ送受信表面の法線と該超音波ビームとがなす角度を指定された角度に保ったまま、この角度での断層像を作成するために超音波開口部分を一次元的に移動させてリニアに走査する構成であってもよい。もっとも、一般には画面の幅を広く取るために走査方向の素子数は多いことが望ましい反面、超音波ビームを傾ける(ステアリングする)ための素子数はそれより少なくてもかまわない。したがって、コストの面から形態的には縦横の素子配列の異なるトランスデューサアレイを用いることが好ましい。
[光音響用トランスデューサアレイの動作]
光音響用トランスデューサアレイ4bは形態上は二次元アレイ状に配列されたトランスデューサ群である。ただし、超音波用トランスデューサアレイ4aとは異なり、光音響波を受信するための開口部分を設けるための素子選択や、開口部分を移動させるといったビームの走査を行わない。光音響用トランスデューサアレイ4bは、立体画像構築のための受信中の全ての時刻にわたって、略全ての素子からの受信信号を利用する。また超音波の送信は行わない。光照射により発生する所望の立体的な撮像領域からの光音響波が光音響用トランスデューサアレイ4bの各素子でその伝播時間の差を除いて略同時に受信され、各素子で受信された全光音響信号を用いて三次元立体画像を構築する。このため光音響波の信号取得は瞬時に行われる。
本発明ではこのように三次元立体画像用の信号を一括取得できる光音響トランスデューサアレイ4bと断層画像作成のために受送信のビーム走査を行う必要のある超音波用トラ
ンスデューサアレイ4aを分離して具備している。さらに、両者の撮像画像を好適に合成するために超音波用トランスデューサアレイ4aにより形成する超音波走査面の角度を制御可能としている。
[トランスデューサの特性]
超音波用トランスデューサアレイ4aと光音響用トランスデューサアレイ4bは上記のような動作上の差異のほかに以下のような特性上の差異を有する。
超音波用トランスデューサアレイ4aは検体内部の形態情報を描出する目的で使用されるため、機能情報を取得する光音響用トランスデューサよりも高周波な超音波を送受信可能なトランスデューサから構成される。ここで超音波用トランスデューサアレイ4aの周波数帯域は、典型的な値としては7乃至12MHz程度を指す。また、形態情報とは検体内部の形態に基づく情報であり、通常の超音波パルスエコー法により得られる情報のことである。さらに超音波用トランスデューサアレイ4aでは超音波の送受信を行うために、トランスデューサは超音波の受信・送信双方の特性ともに同時に満たすものを用いる必要がある。例えば受信用に高いSNRを有すると同時に、送信時に印加する高圧電圧に対する耐久性を有する素子が必要となり、これによりトランスデューサの選定が限定される。
一方、光音響用トランスデューサアレイ4bは検体内部の機能情報を描出する目的で使用されるため、形態情報を取得する超音波用トランスデューサよりも低周波な超音波(光音響波)を受信可能なトランスデューサから構成される。ここで光音響用トランスデューサアレイ4bの周波数帯域は、典型的な値としては1乃至4MHz程度を指す。また、機能情報とは光音響分光分析法(光音響イメージング法)により得られる情報であり、例えば血液中に含まれるグルコースやヘモグロビンなどの検体内の特定物質の濃度に関する情報である。このような機能情報を取得するためには光音響信号に高いSNRが求められるが、本実施形態のように送受信を行う超音波用トランスデューサと分離することで受信時の高SNRに特化したトランスデューサの選定が可能となるという利点を有する。
例えば超音波用トランスデューサアレイ4aを構成するトランスデューサとして、電気信号と機械振動(超音波)との相互変換を行う圧電素子が用いられる。これに対して光音響用トランスデューサアレイ4bを構成するトランスデューサとしては、音響波を検知できるものであればどのような検出器を用いても良い。たとえば、圧電現象を用いたトランスデューサ、光の共振を用いたトランスデューサ、容量の変化を用いたトランスデューサなどを挙げられる。これらの中から、用途に応じて受信SNRが高いトランスデューサを利用すればよい。例えば、様々な大きさの検出対象から発生した音響波を受信する場合には、検出周波数帯の広い容量の変化を用いたトランスデューサや、検出帯域の異なる複数のトランスデューサを用いることもできる。
[プローブの作製方法]
本実施形態に係るプローブ100は例えば以下のようにして作製できる。まず超音波用トランスデューサアレイ4a(一次元アレイトランスデューサ)と光音響用トランスデューサアレイ4b(二次元アレイトランスデューサ)を従来と同様の方法にて作製する。これは圧電振動子の切り出し、バッキング材への固着、振動子のダイシング、音響整合層の貼付及び配線部の引き出しによって行われる。また、超音波用トランスデューサには音響レンズが取り付けられる。そして、超音波用トランスデューサアレイ4aと光音響用トランスデューサアレイ4bを間隔を空けて並べた後、モールド固定する。そしてハウジングにはめ込むことにより完成する。
また別途作成した超音波用トランスデューサアレイ4a(一次元アレイトランスデューサ)と光音響用トランスデューサアレイ4b(二次元アレイトランスデューサ)を並列して配置してもよい。
[本実施形態の利点]
本実施形態によれば、光音響法による三次元立体像と超音波エコー法による二次元断層像を同時に取得できるので、光音響法による機能画像に含まれる特定構造の組織内での位置を、組織全般の構造が得られる超音波エコー法による断層像で確認できる。
また、光音響法用のトランスデューサアレイと超音波エコー法用のトランスデューサアレイを個別に設けているので、それぞれの条件にあった素子を採用できる。したがって、光音響法による画像も超音波エコー法による画像も良い条件で撮影でき、したがって良好な画像が得られる。
さらに、光音響法による撮像領域と超音波エコー法による撮像領域が重なっているため、両方の画像を同時に撮像して、リアルタイムに合成した画像を表示できる。また、信号の干渉を避けるために時分割で撮像するにしても、ほぼ同じタイミングで同一の箇所の撮像ができる。もし、両方の撮影領域が異なっている場合に同一箇所について両手法による画像を得るためには、プローブの移動と再撮像が必要となり同時刻での情報を得ることができない。
また、超音波断層像の角度(超音波ビームの傾き)を制御可能としているので、利用者は、基準となる組織構造の断面を選択できる。このため、被検体中の特徴的な形態が抽出できる断面を選択して断層画像を表示することで、光音響分析領域を設定する際に良好な領域指定が可能となる。また、被検体中の光音響分析的特徴と超音波エコーによる組織構造の観測を行う際に、超音波画像の断面を変えられるため、広範囲な断面で光音響分析特徴と組織構造の比較が可能となる。
<第2の実施形態>
第1の実施形態では、超音波用トランスデューサアレイ4aを複数のトランスデューサ列を備える構成とし、エレベーション方向の素子間で遅延時間を与えることで、超音波走査面の傾きを制御する構成とした。本実施形態では、超音波用トランスデューサアレイ4aを、機械的に傾ける構成とする。
図3に本実施形態での超音波用トランスデューサアレイを傾けるための構成を示す。超音波用トランスデューサアレイ4aは支持腕26で支持され、支持腕26は回転軸27を通して不図示の回転モータにより指定の回転が可能である。回転モータには回転センサが付属し回転軸27の回転角度が計測される。回転モータ、回転センサはシステム制御部1に接続され、システム制御部1からの駆動信号により回転モータを駆動すると同時に回転センサにより支持腕26の傾斜角度情報信号をシステム制御部1へ送信する。システム制御部1は傾斜角度情報信号をもとに支持腕26の傾斜角度を検知すると供に回転モータを駆動信号で駆動し、支持腕26の傾斜角度を所望の角度に設定できる。なお、支持腕26,回転軸27,回転センサ、回転モータが本発明における回転機構に相当する。
以上の動作により超音波用トランスデューサアレイ4aのエレベーション方向の傾斜が所望の角度に設定できる。超音波用トランスデューサアレイ4a、支持腕26、回転軸27は超音波を減衰なく伝搬するオイル25で満たされたパッケージング材24内に格納される。パッケージング材24の被検体14に接する面には、超音波を反射せずに透過させるように超音波整合層28が形成されていることが好ましい。
本構成では超音波用トランスデューサアレイ4a自体の傾きを制御することで、超音波ビームの角度を変え、超音波走査面21と光音響撮像領域20の交叉角度を変更できるため、ステアリングのためのビームフォーミング処理が不要である。このためトランスデューサアレイ4aのトランスデューサを1列の一次元構造とすることが可能であり、トランスデューサおよびその信号線の数を少なく構成できる。また送信ビームフォーマ2および受信ビームフォーマ6で超音波ビームステアリングが不要となるため各ビームフォーマの回路構成規模を前述の実施構成に比べ小さいものとすることができるという利点を有する。ただし、トランスデューサアレイ4aのトランスデューサを1列にした場合、音響レンズ22をトランスデューサアレイ4aの送受信面に設けて、エレベーション方向の超音波ビームのフォーカシングを行うことが望ましい。
なお、所望の走査断面角度を得るために、機械的なトランスデューサアレイ面の傾斜制
御と素子間の信号遅延制御によるビームステアリングを組み合わせてもよい。
図4を用いて本発明を用いた三次元光音響イメージング装置の実施例について説明する。被検体14は二枚の保護板15に挟まれて保持される。保護板15上にはプローブ100とガイド支持具(ガイド部)32が配置される。プローブ部は不図示のステッピングラインモータ(移動部)によりガイド支持具32にそって移動される。プローブ100はケーブル31で本体33に接続される。またステッピングラインモータは本体33内のシステム制御部1からの駆動信号により駆動される。本体33には図2Cに示したシステム制御部1、送信アンプ3、送信ビームフォーマ2、受信アンプ5及び7、受信ビームフォーマ6、A/D8、光音響信号処理部9、超音波信号処理部10、画像処理部11、画像表示部12などが格納される。本体33は、また、動作入力を行うコンソール43を備える。
パルスレーザ光源13はプローブ100内に具備しても良く、外部に配置され発生するレーザ光がプローブ100へ不図示の伝送路で導かれる構成としても良い。プローブ100内の超音波用トランスデューサアレイ4aは、ラテラル方向がガイド支持具32に沿った方向と垂直に、エレベーション方向がガイド支持具32に沿った方向と平行になるように配置されている。したがって、プローブ部の動きはガイド支持具32によってエレベーション方向に規制される。画像表示部12内には光音響分析画像を表示する光音響画像表示部42と、超音波エコー法による組織の断層画像を表示する超音波画像表示部41がある。
プローブ100内の超音波用トランスデューサアレイ4aで超音波ビームをラテラル方向に走査しながら送受信し、前述のように本体33内で超音波エコーによる組織の断層画像を作成し実時間で画像表示部12内の超音波画像表示部41に表示する。超音波断層の断層面が光音響撮像領域20の幅の全域を含むように、利用者は被検体14の厚みに応じてコンソール43を通じて超音波走査面21の角度を調節することが好ましい。この際実時間で表示される超音波断層画像を参考に撮像断面の位置を調節することが可能である。
ついでシステム制御部1からの駆動信号よりパルスレーザ光源を駆動し、プローブ100内の光開口から被検体14にパルスレーザ光が照射され、同時に光音響用トランスデューサアレイ4bで光音響信号の取得が行われる。取得された光音響信号を用いて本体33内で前記に記したような手順で光音響分析画像データが作成され、画像処理部11により三次元立体の光音響画像を作成し画像表示部12内の光音響画像表示部42に表示する。光音響画像表示部42に表示される画像は三次元立体の光音響画像に超音波エコー法による断層画像を重ねた合成画像、あるいは光音響の二次元断面画像、二次元投影画像、さらにそれらを超音波画像と重ねた合成画像であってもかまわない。さらに光音響画像表示部42に表示される画像はガイド支持具32に沿って移動したプローブ100から得られた被検体14の異なる部位の撮像画像をつなぎ合わせた画像でもよい。
本実施例ではプローブ100をガイド支持具32に沿った方向に移動させることで被検体14の広範囲な領域にわたって光音響分析画像を取得し、その一部または全部を表示できるという利点を有する。このとき光音響撮像領域20と交叉する超音波断層画像を同時取得し実時間で表示することで、使用者がプローブ100で撮像する被検体14内の領域を確認しながらプローブ100を移動できる。即ち超音波画像表示部41の超音波画像を見ながらプローブ100の光音響分析の撮像位置や撮像範囲を指定することが可能となり、超音波画像による被検体内の組織構造を指標に光音響分析撮像範囲を決定できるようになる。さらに超音波画像の断層面の角度が調節できるようになっているために基準とする組織構造の断面が選定できる。このため被検体14内の構造に対し特徴的な形態が抽出できる断面を選定してその断面の超音波断層画像が表示でき、超音波画像を用いて光音響分
析領域を設定する際に良好な領域指定が可能になる。また、被検体14内の光音響分析的特徴と超音波エコーによる組織構造の観測を合成画像によって行う際に、超音波画面の断面が変えられるため、広範囲な断面で光音響分析的特徴と組織構造の比較が可能になる。
以上では光音響画像は三次元立体画像、超音波画像は二次元断層画像としたが、超音波エコー法による三次元立体画像を作成して表示しても良い。超音波エコー法による三次元立体画像は、ガイド支持具32に沿って移動するプローブ100で採取する複数の超音波断層画像をそのプローブ100の位置に応じて合成することで作成できる。このような場合にも、光音響撮像領域20と超音波走査面21が交叉重複しているために以下のような効果が生じる。即ち、光音響画像と超音波画像が移動方向に重なっているために、プローブ100の移動量に対して、両画像のずれによって生じる合成画像の表示不可能領域を減少させ、プローブ100の移動量を減少して装置全体をコンパクトに構成できる。
以上の実施例ではプローブ100の移動は一次元的であったが、この直線移動をラスタ状に組み合わせて、被検体14上でプローブ100を二次元的に移動させ、より広範囲な光音響撮像を作成できる。
4a 超音波用トランスデューサアレイ
4b 光音響用トランスデューサアレイ
9 光音響信号処理部
10 超音波信号処理部
13 光源
14 被検体

Claims (8)

  1. 弾性波を送受信するための第1の素子アレイと、
    前記第1の素子アレイによって受信される信号から断層像を生成する第1の信号処理部と、
    被検体に光を照射する光源と、
    被検体に照射された光によって発生する弾性波を受信するための第2の素子アレイと、
    前記第2の素子アレイによって受信される信号から立体像を生成する第2の信号処理部と、
    を有する生体情報処理装置であって、
    前記第1の素子アレイは、前記断層像が得られる被検体内の領域と前記立体像が得られる被検体内の領域が重複するように、被検体表面に対して斜めに弾性波を送受信する、
    ことを特徴とする生体情報処理装置。
  2. 前記第1の素子アレイから送信する弾性波を走査することで、走査面における断層像を得るものであり、
    前記走査面が、前記光源からの光が照射される被検体の領域と重複している
    ことを特徴とする請求項1に記載の生体情報処理装置。
  3. 前記第1の素子アレイは、少なくとも第1の方向に配列された複数のトランスデューサから構成され、
    前記第2の素子アレイは、二次元配列された複数のトランスデューサから構成され、
    前記第1の素子アレイと前記第2の素子アレイは、前記第1の方向と直交する第2の方向に並べて設けられており、
    前記第1の素子アレイは、弾性波を前記第2の方向に傾けて送受信する、
    ことを特徴とする請求項1または2に記載の生体情報処理装置。
  4. 前記第1の素子アレイは、前記第2の方向に対しても複数のトランスデューサが配列された二次元配列の構成であり、
    前記第2の方向に並んだトランスデューサに与える遅延時間を異ならせることで、弾性波の送受信方向の前記第2の方向への傾き角度を制御可能である、
    ことを特徴とする請求項3に記載の生体情報処理装置。
  5. 前記第1の方向を回転軸として前記第1の素子アレイを回転させる回転機構をさらに有し、
    当該回転機構によって前記第1の素子アレイを回転させることで、弾性波の送受信方向の前記第2の方向への傾き角度を制御可能である、
    ことを特徴とする請求項3に記載の生体情報処理装置。
  6. 前記第1の素子アレイと前記第2の素子アレイとを少なくとも含むプローブ部と、
    前記プローブ部の動きを、前記第2の方向に規制するガイド部と、
    前記ガイド部に沿って前記プローブ部を移動させる移動部と、
    をさらに有することを特徴とする請求項3〜5のいずれか1項に記載の生体情報処理装置。
  7. 前記第1の信号処理部によって生成された断層像と、前記第2の信号処理部によって生成された立体像とを、重ねて表示する表示部をさらに有する
    ことを特徴とする請求項1〜6のいずれか1項に記載の生体情報処理装置。
  8. 被検体に照射した弾性波が被検体内で反射したエコー弾性波と、被検体に照射した光によって被検体から発生する光音響波と、を受信して被検体内の情報を取得する生体情報処理装置における生体情報処理方法であって、
    被検体に対して弾性波を照射し、被検体内から反射されるエコー弾性波を受信して、被検体の断層像を生成する断層像生成工程と、
    被検体に対して光を照射し、被検体内で発生する光音響波を受信して、被検体の立体像を生成する立体像生成工程と、
    を含み、
    前記断層像生成工程において、前記断層像が得られる被検体内の領域と前記立体像が得られる被検体内の領域が重複するように、被検体表面に対して斜めに弾性波を送受信する、
    ことを特徴とする生体情報処理方法。
JP2010038977A 2010-02-24 2010-02-24 生体情報処理装置 Expired - Fee Related JP5448918B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010038977A JP5448918B2 (ja) 2010-02-24 2010-02-24 生体情報処理装置
US13/029,245 US20110208057A1 (en) 2010-02-24 2011-02-17 Subject information processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010038977A JP5448918B2 (ja) 2010-02-24 2010-02-24 生体情報処理装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013270556A Division JP2014073411A (ja) 2013-12-26 2013-12-26 被検体情報処理装置

Publications (3)

Publication Number Publication Date
JP2011172730A JP2011172730A (ja) 2011-09-08
JP2011172730A5 JP2011172730A5 (ja) 2013-04-11
JP5448918B2 true JP5448918B2 (ja) 2014-03-19

Family

ID=44477093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010038977A Expired - Fee Related JP5448918B2 (ja) 2010-02-24 2010-02-24 生体情報処理装置

Country Status (2)

Country Link
US (1) US20110208057A1 (ja)
JP (1) JP5448918B2 (ja)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5294998B2 (ja) * 2008-06-18 2013-09-18 キヤノン株式会社 超音波探触子、該超音波探触子を備えた光音響・超音波システム並びに検体イメージング装置
CN102137618B (zh) 2008-07-25 2015-06-17 健康与环境慕尼黑德国研究中心赫姆霍茨中心(有限公司) 组织生物标志物的定量多光谱光声断层摄影(msot)
JP5393256B2 (ja) 2009-05-25 2014-01-22 キヤノン株式会社 超音波装置
JP5566456B2 (ja) 2009-06-29 2014-08-06 ヘルムホルツ・ツェントルム・ミュンヒェン・ドイチェス・フォルシュンクスツェントルム・フューア・ゲズントハイト・ウント・ウムベルト(ゲーエムベーハー) 被写体を熱音響撮像するための撮像装置及び撮像方法、コンピュータプログラム並びにコンピュータで読み取り可能な記憶媒体を備える装置
EP2459987A1 (en) 2009-07-27 2012-06-06 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Imaging device and method for optoacoustic imaging of small animals
US9289191B2 (en) 2011-10-12 2016-03-22 Seno Medical Instruments, Inc. System and method for acquiring optoacoustic data and producing parametric maps thereof
JP5697615B2 (ja) * 2011-02-07 2015-04-08 富士フイルム株式会社 超音波プローブ
JP5655021B2 (ja) * 2011-03-29 2015-01-14 富士フイルム株式会社 光音響画像化方法および装置
WO2012176400A1 (en) * 2011-06-22 2012-12-27 Canon Kabushiki Kaisha Specimen information acquisition apparatus and specimen information acquisition method
JP5984542B2 (ja) * 2011-08-08 2016-09-06 キヤノン株式会社 被検体情報取得装置、被検体情報取得システム、表示制御方法、表示方法、及びプログラム
JP5950517B2 (ja) * 2011-09-02 2016-07-13 キヤノン株式会社 被検体情報取得装置、被検体情報取得方法、及びプログラム
JP5863345B2 (ja) 2011-09-08 2016-02-16 キヤノン株式会社 被検体情報取得装置および被検体情報取得方法
JP5932814B2 (ja) * 2011-09-30 2016-06-08 キヤノン株式会社 被検体情報取得装置
US10433732B2 (en) 2011-11-02 2019-10-08 Seno Medical Instruments, Inc. Optoacoustic imaging system having handheld probe utilizing optically reflective material
KR102117132B1 (ko) * 2011-11-02 2020-05-29 세노 메디컬 인스투르먼츠 인코포레이티드 상호 정합된 기능적 및 해부학적 매핑을 위한 이중 방식 이미징 시스템
US20130217995A1 (en) * 2011-12-01 2013-08-22 Optosonics, Inc. Photoacoustic Tomography of Breast Tissue Using Hemispherical Array and Planar Scanning
JP5840152B2 (ja) * 2012-02-03 2016-01-06 富士フイルム株式会社 プローブ
JP6143390B2 (ja) * 2012-02-29 2017-06-07 富士フイルム株式会社 光音響計測装置
JP6261159B2 (ja) * 2012-06-01 2018-01-17 キヤノン株式会社 被検体情報取得装置および被検体情報の取得方法
KR101420003B1 (ko) 2012-06-27 2014-08-14 한양대학교 산학협력단 통합 단층 촬영 시스템
KR101984824B1 (ko) 2012-08-08 2019-05-31 삼성전자주식회사 초음파를 이용하여 조직의 탄성을 분석하는 방법 및 장치
KR20140035747A (ko) * 2012-09-14 2014-03-24 삼성전자주식회사 초음파 영상 장치 및 그 제어방법
EP2742853B1 (en) * 2012-12-11 2022-03-23 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH Handheld device and method for volumetric real-time optoacoustic imaging of an object
EP2742854B1 (en) * 2012-12-11 2021-03-10 iThera Medical GmbH Handheld device and method for tomographic optoacoustic imaging of an object
JP6292836B2 (ja) * 2012-12-28 2018-03-14 キヤノン株式会社 被検体情報取得装置、表示方法、プログラム、処理装置
EP2754388B1 (en) 2013-01-15 2020-09-09 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH System and method for quality-enhanced high-rate optoacoustic imaging of an object
CA2841374A1 (en) * 2013-02-01 2014-08-01 Sunnybrook Health Sciences Centre System and method for frequency domain photoacoustic intravascular imaging
JP6222955B2 (ja) * 2013-03-25 2017-11-01 キヤノン株式会社 被検体情報取得装置
JP6508867B2 (ja) * 2013-03-29 2019-05-08 キヤノン株式会社 被検体情報取得装置およびその制御方法
JP6161941B2 (ja) * 2013-04-15 2017-07-12 株式会社アドバンテスト 光音響波測定器、光音響波測定装置、方法、プログラム、記録媒体
EP2868279A1 (en) * 2013-10-31 2015-05-06 Canon Kabushiki Kaisha Subject information acquisition apparatus
JP2015112326A (ja) * 2013-12-12 2015-06-22 キヤノン株式会社 プローブ、被検体情報取得装置
CN106461765B (zh) * 2014-06-13 2019-12-31 B-K医疗公司 三维(3d)和/或四维(4d)超声成像
JP6166700B2 (ja) * 2014-08-18 2017-07-19 プレキシオン株式会社 光音響画像化装置
JP6525565B2 (ja) * 2014-11-28 2019-06-05 キヤノン株式会社 被検体情報取得装置および被検体情報取得方法
JP6465648B2 (ja) * 2014-12-25 2019-02-06 キヤノン株式会社 被検体情報取得装置および装置
EP3103396B1 (en) * 2015-06-10 2018-10-24 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH Device and method for hybrid optoacoustic tomography and ultrasonography
US20170055844A1 (en) * 2015-08-27 2017-03-02 Canon Kabushiki Kaisha Apparatus and method for acquiring object information
JP2019509857A (ja) * 2016-03-30 2019-04-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光音響及び超音波技法を利用した組織及び血管経路マッピング
WO2017167762A1 (en) * 2016-03-30 2017-10-05 Koninklijke Philips N.V. Phased array intravascular devices, systems, and methods utilizing photoacoustic and ultrasound techniques
CN107582096A (zh) * 2016-07-08 2018-01-16 佳能株式会社 用于获取信息的装置、方法和存储介质
CN110113984B (zh) * 2016-09-12 2022-11-29 德克萨斯州大学系统董事会 氧饱和度的超声引导光声监测
KR101992333B1 (ko) * 2016-12-22 2019-06-26 원텍 주식회사 심혈관질환 진단을 위한 융합 영상 획득 시스템
JP6612287B2 (ja) * 2017-05-15 2019-11-27 富士フイルム株式会社 音響波検出用プローブおよび光音響計測装置
CN112244779A (zh) * 2020-10-22 2021-01-22 电子科技大学 一种基于声光成像的医疗检测系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1499981A (en) * 1974-01-03 1978-02-01 Nat Res Dev Doppler flowmeter
US5107844A (en) * 1989-04-06 1992-04-28 Olympus Optical Co., Ltd. Ultrasonic observing apparatus
US5564424A (en) * 1995-06-30 1996-10-15 Siemens Medical Systems, Inc. Method and apparatus for pulsed doppler ultrasound beam-forming
US6261233B1 (en) * 1996-01-05 2001-07-17 Sunlight Medical Ltd. Method and device for a blood velocity determination
US5840023A (en) * 1996-01-31 1998-11-24 Oraevsky; Alexander A. Optoacoustic imaging for medical diagnosis
JP4406226B2 (ja) * 2003-07-02 2010-01-27 株式会社東芝 生体情報映像装置
JP4643153B2 (ja) * 2004-02-06 2011-03-02 株式会社東芝 非侵襲生体情報映像装置
US20070093702A1 (en) * 2005-10-26 2007-04-26 Skyline Biomedical, Inc. Apparatus and method for non-invasive and minimally-invasive sensing of parameters relating to blood
JP5294687B2 (ja) * 2008-05-02 2013-09-18 キヤノン株式会社 超音波測定装置およびその制御方法
JP5495607B2 (ja) * 2008-05-27 2014-05-21 キヤノン株式会社 超音波診断装置
JP5294998B2 (ja) * 2008-06-18 2013-09-18 キヤノン株式会社 超音波探触子、該超音波探触子を備えた光音響・超音波システム並びに検体イメージング装置
JP4448189B2 (ja) * 2008-06-18 2010-04-07 キヤノン株式会社 生体情報取得装置
JP5451014B2 (ja) * 2008-09-10 2014-03-26 キヤノン株式会社 光音響装置

Also Published As

Publication number Publication date
JP2011172730A (ja) 2011-09-08
US20110208057A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5448918B2 (ja) 生体情報処理装置
US10561396B2 (en) Ultrasonic probe, and photoacoustic-ultrasonic system and inspection object imaging apparatus including the ultrasonic probe
US10241199B2 (en) Ultrasonic/photoacoustic imaging devices and methods
JP5895152B2 (ja) 超音波検査装置及び超音波検査方法
JP5495607B2 (ja) 超音波診断装置
US8480584B2 (en) Non-invasive subject-information imaging method and apparatus
US20150351717A1 (en) Ultrasound diagnostic apparatus, method of transmitting and receiving ultrasonic wave, and program for transmitting and receiving ultrasonic wave
JP2009066110A (ja) 測定装置
JPH06209941A (ja) 超音波診断装置
JP5864904B2 (ja) 生体情報取得装置
US20100056917A1 (en) Ultrasonic diagnostic apparatus
JP2012170467A (ja) 超音波プローブおよび超音波診断装置
JP4688262B2 (ja) 超音波診断装置
US10105060B2 (en) Breast scanning apparatus using photoacoustic ultrasonic wave
JP2014073411A (ja) 被検体情報処理装置
KR102180436B1 (ko) 3차원 광음향 영상 장치
KR20150118732A (ko) 초음파 장치 및 그 제어 방법
JP2006218089A (ja) 超音波診断装置
JP6005126B2 (ja) 探触子ユニット、光音響・超音波プローブ並びに被検体イメージングシステム
JP2010110642A (ja) 超音波診断装置
Alles et al. Reconfigurable 1.5 D source arrays for improved elevational focussing in all-optical ultrasound imaging
JP5868458B2 (ja) 測定装置
JP4564544B2 (ja) 超音波診断装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R151 Written notification of patent or utility model registration

Ref document number: 5448918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees