JP5446900B2 - High tensile hot-rolled steel sheet having high bake hardenability and excellent stretch flangeability and method for producing the same - Google Patents

High tensile hot-rolled steel sheet having high bake hardenability and excellent stretch flangeability and method for producing the same Download PDF

Info

Publication number
JP5446900B2
JP5446900B2 JP2010006527A JP2010006527A JP5446900B2 JP 5446900 B2 JP5446900 B2 JP 5446900B2 JP 2010006527 A JP2010006527 A JP 2010006527A JP 2010006527 A JP2010006527 A JP 2010006527A JP 5446900 B2 JP5446900 B2 JP 5446900B2
Authority
JP
Japan
Prior art keywords
ferrite phase
less
low
steel sheet
temperature transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010006527A
Other languages
Japanese (ja)
Other versions
JP2011144425A (en
Inventor
哲也 妻鹿
勝己 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010006527A priority Critical patent/JP5446900B2/en
Publication of JP2011144425A publication Critical patent/JP2011144425A/en
Application granted granted Critical
Publication of JP5446900B2 publication Critical patent/JP5446900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、高張力熱延鋼板、特に、加工後の塗装焼付により引張強度の顕著な増加が図れる高い焼付硬化性と優れた伸びフランジ性を有する高張力熱延鋼板およびその製造方法に関する。   The present invention relates to a high-tensile hot-rolled steel sheet, and more particularly, to a high-tensile hot-rolled steel sheet having high bake hardenability and excellent stretch flangeability that can significantly increase tensile strength by painting and baking after processing, and a method for producing the same.

近年、自動車の構造部材や足回り部材などの用途に、Nを多量に添加し、塗装焼付時の歪時効を利用して部材の高強度化を図る焼付硬化型高張力熱延鋼板が提案されている。この高張力熱延鋼板では、加工後の塗装焼付によりこれまでのBH性の指標である降伏強度YSの増加のみならず引張強度TSの顕著な増加も図れる高い焼付硬化性が発現されることに特徴がある。   In recent years, bake-hardening type high-tensile hot-rolled steel sheets have been proposed that add a large amount of N to applications such as automobile structural members and underbody members, and use the strain aging during paint baking to increase the strength of the members. ing. This high-tensile hot-rolled steel sheet exhibits high bake hardenability that can not only increase the yield strength YS, which is an indicator of BH properties, but also significantly increase the tensile strength TS by painting and baking after processing. There are features.

こうした焼付硬化型高張力熱延鋼板の例として、特許文献1には、質量%で、C:0.02〜0.13%、Si:2.0%以下、Mn:0.6〜2.5%、sol.Al:0.10%以下、N:0.0080〜0.0250%を含有し、残部はFeおよび不可避不純物からなる鋼、またはさらにCa:0.0002〜0.01%、Zr:0.01〜0.10%、希土類元素:0.002〜0.10%およびCr:3.0%以下のうちの1種以上を含む鋼に、鋳造後直接あるいは1100℃以上に再加熱した後、850〜950℃で仕上圧延を終了する熱間圧延を施し、次いで、15℃/秒以上の冷却速度で350℃以下まで冷却した後巻取る焼付硬化性と加工性に優れた熱延鋼板の製造方法が開示されている。また、特許文献2には、質量%で、C:0.01〜0.12%、Si:2.0%以下、Mn:0.01〜3.0%、P:0.2%以下、Al:0.001〜0.1%、N:0.003〜0.02%を含有し、残部はFeおよび不可避的不純物よりなる組成と、平均結晶粒径が8μm以下のフェライトを主相とする組織を有し、さらに質量%で0.003〜0.01%の固溶N量を有し、フェライト結晶粒界面から±5nmの範囲内に存在する平均固溶N濃度Ngbとフェライト結晶粒内に存在する平均固溶N濃度Ngとの比、Ngb/Ngが100〜10000の範囲である焼付硬化性、耐疲労性、耐衝撃性および耐常温時効性に優れた高張力熱延鋼板が開示されている。さらに、特許文献3には、質量%で、C:0.05〜0.12%、Si:0.5%以下、Mn:1.2〜3.0%、P:0.05%以下、Al:0.001〜0.1%およびN:0.005〜0.02%を含有し、残部はFeおよび不可避的不純物の組成になり、低温変態フェライト相が面積率で10〜50%で、かつ残部が実質的にポリゴナルフェライト相の鋼組織を有し、しかも上記の低温変態フェライト相とポリゴナルフェライト相の2相の平均結晶粒径が8μm以下である焼付硬化性および延性に優れた高張力熱延鋼板が提案されている。   As an example of such a bake-hardening type high-tensile hot-rolled steel sheet, Patent Document 1 includes mass%, C: 0.02 to 0.13%, Si: 2.0% or less, Mn: 0.6 to 2.5%, sol.Al: 0.10% or less. , N: 0.0080-0.0250%, the balance is steel composed of Fe and inevitable impurities, or Ca: 0.0002-0.01%, Zr: 0.01-0.10%, rare earth elements: 0.002-0.10% and Cr: 3.0% or less The steel containing one or more of the above is subjected to hot rolling to finish finishing rolling at 850-950 ° C directly after casting or after reheating to 1100 ° C or higher, and then cooling rate of 15 ° C / second or higher Discloses a method for producing a hot-rolled steel sheet excellent in bake hardenability and workability after being cooled to 350 ° C. or lower. Patent Document 2 includes mass%, C: 0.01 to 0.12%, Si: 2.0% or less, Mn: 0.01 to 3.0%, P: 0.2% or less, Al: 0.001 to 0.1%, N: 0.003 to 0.02. And the balance is composed of Fe and inevitable impurities, and has a structure whose main phase is ferrite with an average crystal grain size of 8 μm or less, and further has a solid solution N content of 0.003 to 0.01% by mass%. The ratio of the average solid solution N concentration Ngb existing in the range of ± 5 nm from the ferrite crystal grain interface to the average solid solution N concentration Ng existing in the ferrite crystal grain, Ngb / Ng in the range of 100,000 to 10,000 A high-tensile hot-rolled steel sheet excellent in certain bake hardenability, fatigue resistance, impact resistance and room temperature aging resistance is disclosed. Further, Patent Document 3 includes mass%, C: 0.05 to 0.12%, Si: 0.5% or less, Mn: 1.2 to 3.0%, P: 0.05% or less, Al: 0.001 to 0.1%, and N: 0.005 to 0.02. And the balance has a composition of Fe and inevitable impurities, the low-temperature transformation ferrite phase has an area ratio of 10 to 50%, and the balance substantially has a steel structure of polygonal ferrite phase, and the above A high-tensile hot-rolled steel sheet excellent in bake hardenability and ductility has been proposed in which the average crystal grain size of the two phases of the low-temperature transformation ferrite phase and the polygonal ferrite phase is 8 μm or less.

特開平4-74824号公報Japanese Unexamined Patent Publication No. 4-74824 特開2000-297350号公報JP 2000-297350 A 特開2003-49243号公報JP2003-49243

梅本ら:熱処理24(1984)p334Umemoto et al .: Heat treatment 24 (1984) p334

しかしながら、特許文献1に記載の方法で製造された熱延鋼板では、耐常温時効性に劣り、時間の経過とともに延性が劣化するといった問題がある。特許文献2に記載の高張力熱延鋼板では、耐常温時効性には優れているが、十分に高い焼付硬化性が得られず、加工後の塗装焼付により90MPa未満のTSの増加しか図れない。特許文献3に記載の高張力熱延鋼板では、耐常温時効性に優れ、焼付硬化性も高いが、伸びフランジ性に問題のある場合がある。   However, the hot-rolled steel sheet produced by the method described in Patent Document 1 has a problem that the room temperature aging resistance is inferior and the ductility deteriorates with time. The high-tensile hot-rolled steel sheet described in Patent Document 2 has excellent room temperature aging resistance, but does not provide sufficiently high bake hardenability, and can only increase TS below 90 MPa by paint baking after processing. . The high-tensile hot-rolled steel sheet described in Patent Document 3 has excellent room temperature aging resistance and high bake hardenability, but may have a problem with stretch flangeability.

本発明は、常温時効性に問題なく、90MPa以上のTSの増加が図れる高い焼付硬化性とともに、伸びフランジ性の指標である穴拡げ率λが85%以上という優れた伸びフランジ性を有する高張力熱延鋼板およびその製造方法を提供することを目的とする。   The present invention has high bake hardenability capable of increasing TS of 90 MPa or more without any problem in normal temperature aging, and high tensile strength having excellent stretch flangeability with a hole expansion ratio λ of 85% or more as an index of stretch flangeability. It aims at providing a hot-rolled steel plate and its manufacturing method.

本発明者らは、特許文献3に記載の高張力熱延鋼板を基に、その伸びフランジ性の向上を図るべく鋭意検討したところ、鋼板内の局所的な低温変態フェライト相の硬度のバラツキを小さくすることが極めて効果的であり、それには熱間圧延後の冷却条件を適切に制御する必要のあることを見出した。   Based on the high-tensile hot-rolled steel sheet described in Patent Document 3, the present inventors diligently studied to improve the stretch flangeability. It has been found that it is extremely effective to reduce the size, and that it is necessary to appropriately control the cooling conditions after hot rolling.

本発明は、このような知見に基づいてなされたものであり、質量%で、C:0.05〜0.12%、Si:0.5%以下、Mn:1.2〜3.0%、P:0.05%以下、Al:0.001〜0.1%、N:0.005〜0.02%を含有し、残部がFeおよび不可避的不純物からなる組成を有し、低温変態フェライト相とポリゴナルフェライト相とを含み、前記低温変態フェライト相とポリゴナルフェライト相の合計の組織全体に占める面積率が90%以上で、前記低温変態フェライト相の組織全体に占める面積率が10〜50%で、前記低温変態フェライト相とポリゴナルフェライト相の平均結晶粒径が8μm以下で、かつ前記低温変態フェライト相のHv(max)とHv(min)の比Hv(max)/Hv(min)が2.2以下であるミクロ組織を有することを特徴とする高い焼付硬化性と優れた伸びフランジ性を有する高張力熱延鋼板を提供する。   The present invention has been made based on such findings, and in mass%, C: 0.05 to 0.12%, Si: 0.5% or less, Mn: 1.2 to 3.0%, P: 0.05% or less, Al: 0.001 -0.1%, N: 0.005-0.02%, with the balance being composed of Fe and inevitable impurities, including a low-temperature transformation ferrite phase and a polygonal ferrite phase, the low-temperature transformation ferrite phase and the polygonal ferrite The area ratio of the total structure of the phase is 90% or more, the area ratio of the low-temperature transformation ferrite phase is 10 to 50%, and the average crystal grain size of the low-temperature transformation ferrite phase and the polygonal ferrite phase. Has a microstructure in which the ratio Hv (max) / Hv (min) of Hv (max) and Hv (min) of the low-temperature transformation ferrite phase is 2.2 μm or less, And a high-tensile hot-rolled steel sheet having excellent stretch flangeability.

ただし、低温変態フェライト相のHv(max)とHv(min)とは、鋼板の長手方向中央部で、幅方向の1/4、1/2、3/4にあたる3箇所の位置より試験片を採取し、各試験片の板厚断面部を走査型電子顕微鏡(SEM)により1000倍の倍率で5視野、合計で15視野観察し、各視野ごとに10個の低温変態フェライト相のビッカース硬度を測定して各視野ごとに最大硬度と最小硬度を求め、観察視野数で算術平均した最大硬度と最小硬度を表す。   However, the Hv (max) and Hv (min) of the low-temperature transformation ferrite phase are the specimens from three positions corresponding to 1/4, 1/2, 3/4 in the width direction at the center in the longitudinal direction of the steel sheet. Samples were taken, and the thickness cross section of each specimen was observed with a scanning electron microscope (SEM) at 5 magnifications at 1000 magnifications for a total of 15 visual fields, and the Vickers hardness of 10 low temperature transformation ferrite phases for each visual field. The maximum hardness and the minimum hardness are obtained for each field of view, and the maximum and minimum hardnesses are arithmetically averaged by the number of fields of observation.

本発明の高張力熱延鋼板では、さらに、質量%で、Cr:1.0%以下、Mo:1.0%以下、Ni:1.0%以下のうちから選ばれた少なくとも1種を含有する組成とすることが好ましい。さらにまた、Ti:0.1%以下、Nb:0.1%以下のうちから選ばれた少なくとも1種を含有する組成とすることが好ましい。   In the high-tensile hot-rolled steel sheet of the present invention, the composition may further include at least one selected from Cr: 1.0% or less, Mo: 1.0% or less, and Ni: 1.0% or less by mass%. preferable. Furthermore, a composition containing at least one selected from Ti: 0.1% or less and Nb: 0.1% or less is preferable.

本発明の高張力熱延鋼板は、上記の組成を有する鋼を、1000〜1300℃に加熱し、800〜1000℃の仕上温度で熱間圧延後、0.5秒以内に50℃/秒以上の平均冷却速度で620〜720℃の冷却停止温度まで1次冷却し、2〜10秒空冷後、80℃/秒以上の平均冷却速度で2次冷却し、400〜500℃の巻取温度で巻取る方法により製造できる。   The high-tensile hot-rolled steel sheet of the present invention is a steel having the above composition, heated to 1000-1300 ° C, hot-rolled at a finishing temperature of 800-1000 ° C, and averaged 50 ° C / second or more within 0.5 seconds. Primary cooling to a cooling stop temperature of 620 to 720 ° C at a cooling rate, air cooling for 2 to 10 seconds, secondary cooling at an average cooling rate of 80 ° C / second or more, and winding at a winding temperature of 400 to 500 ° C It can be manufactured by a method.

本発明により、常温時効性に問題なく、90MPa以上のTSの増加を図れる高い焼付硬化性と85%以上のλが得られる優れた伸びフランジ性を有する高張力熱延鋼板を製造できるようになった。本発明の高張力熱延鋼板は、自動車の構造部材や足回り部材などに好適である。   The present invention makes it possible to produce a high-tensile hot-rolled steel sheet having high bake hardenability that can increase TS of 90 MPa or more and excellent stretch flangeability that can obtain λ of 85% or more without any problem in normal temperature aging. It was. The high-tensile hot-rolled steel sheet of the present invention is suitable for automobile structural members and underbody members.

以下に、本発明である高張力熱延鋼板およびその製造方法について詳細に説明する。なお、成分の含有量の単位である「%」は特に断らない限り「質量%」を意味するものとする。   Hereinafter, the high-tensile hot-rolled steel sheet and the manufacturing method thereof according to the present invention will be described in detail. Note that “%”, which is a unit of content of components, means “mass%” unless otherwise specified.

1) 組成
C:0.05〜0.12%
Cは、鋼の強度を増加させるだけでなく、結晶粒の粗大化を抑制するためにも有用な元素である。しかし、その量が0.05%に満たないとその効果は乏しい。一方、C量が0.12%を超えると溶接性が劣化する。したがって、C量は0.05〜0.12%とする。
1) Composition
C: 0.05-0.12%
C is an element useful not only for increasing the strength of steel but also for suppressing the coarsening of crystal grains. However, if the amount is less than 0.05%, the effect is poor. On the other hand, if the C content exceeds 0.12%, the weldability deteriorates. Therefore, the C content is 0.05 to 0.12%.

Si:0.5%以下
Siは、固溶強化により鋼の強度を増加させる元素であり、必要な強度に応じて適宜その量は調整される。しかし、その量が0.5%を超えると延性が劣化するだけでなく、低温変態フェライト相の生成が阻害される。したがって、Si量は0.5%以下とする。
Si: 0.5% or less
Si is an element that increases the strength of steel by solid solution strengthening, and the amount thereof is appropriately adjusted according to the required strength. However, when the amount exceeds 0.5%, not only the ductility deteriorates, but also the formation of the low temperature transformation ferrite phase is inhibited. Therefore, the Si content is 0.5% or less.

Mn:1.2〜3.0%
Mnは、固溶強化元素であり、高張力鋼板を得るための基本的元素である。また、低温変態フェライト相の生成にも有効に寄与する。しかし、その量が1.2%に満たないとその効果は乏しい。一方、Mn量が3.0%を超えると延性が劣化するだけでなく、溶接性にも悪影響を与える。したがって、Mn量は1.2〜3.0%とする。
Mn: 1.2-3.0%
Mn is a solid solution strengthening element and a basic element for obtaining a high-tensile steel sheet. It also contributes effectively to the generation of low temperature transformation ferrite phase. However, if the amount is less than 1.2%, the effect is poor. On the other hand, if the amount of Mn exceeds 3.0%, not only ductility deteriorates but also weldability is adversely affected. Therefore, the amount of Mn is set to 1.2 to 3.0%.

P:0.05%以下
Pは、鋼の強度を増加させる元素であり、必要な強度に応じて適宜その量は調整される。しかし、その量が0.05%を超えると溶接性が劣化したり、粒界に偏析して粒界割れが生じたり、さらには低温変態フェライト相の生成が阻害される。したがって、P量は0.05%以下とする。
P: 0.05% or less
P is an element that increases the strength of steel, and the amount thereof is appropriately adjusted according to the required strength. However, if the amount exceeds 0.05%, the weldability deteriorates, segregates at the grain boundaries to cause grain boundary cracks, and further, the formation of the low temperature transformation ferrite phase is inhibited. Therefore, the P content is 0.05% or less.

Al:0.001〜0.1%
Alは、脱酸剤として有用な元素であり、十分な脱酸効果を得るために少なくとも0.001%の含有が必要である。一方、Al量が0.1%を超えると表面性状が劣化するだけでなく、焼付硬化性に必要な固溶N量の確保が難しくなる。したがって、Al量は0.001〜0.1%とする。より好ましくは、Al量は0.001%以上0.04%以下である。
Al: 0.001 to 0.1%
Al is an element useful as a deoxidizing agent and needs to be contained at least 0.001% in order to obtain a sufficient deoxidizing effect. On the other hand, when the Al content exceeds 0.1%, not only the surface properties deteriorate, but also it becomes difficult to secure the solid solution N amount necessary for bake hardenability. Therefore, the Al amount is 0.001 to 0.1%. More preferably, the Al content is 0.001% or more and 0.04% or less.

N:0.005〜0.02%
Nは、本発明において特に重要な元素であり、鋼中に固溶して加工後の塗装焼付によってYSのみならずTSを増加させる高い焼付硬化性を発現させる効果を有する。こうした効果を得るためには、N量は0.005%以上にする必要があるが、0.02%を超えると延性が劣化する。したがって、N量は0.005〜0.02%、好ましくは0.007〜0.02%とする。
N: 0.005-0.02%
N is an especially important element in the present invention, and has an effect of expressing high bake hardenability that increases TS as well as YS by solid solution in steel and paint baking after processing. In order to obtain such an effect, the N amount needs to be 0.005% or more, but if it exceeds 0.02%, the ductility deteriorates. Therefore, the N content is 0.005 to 0.02%, preferably 0.007 to 0.02%.

残部はFeおよび不可避的不純物であるが、以下の理由により、Cr:1.0%以下、Mo:1.0%以下、Ni:1.0%以下のうちから選ばれた少なくとも1種や、Ti:0.1%以下、Nb:0.1%以下のうちから選ばれた少なくとも1種を、個別にあるいは同時に含有させることが好ましい。   The balance is Fe and inevitable impurities, but for the following reasons, at least one selected from Cr: 1.0% or less, Mo: 1.0% or less, Ni: 1.0% or less, Ti: 0.1% or less, It is preferable to contain at least one selected from Nb: 0.1% or less individually or simultaneously.

Cr:1.0%以下、Mo:1.0%以下、Ni:1.0%以下
Cr、MoおよびNiは、いずれも固溶強化により鋼の強度上昇に有効に寄与するだけでなく、オーステナイト相を安定化して低温変態フェライト相の生成を促進する効果がある。しかし、Cr、Mo、Niの量がそれぞれ1.0%を超えると延性が劣化するので、それぞれの量は1.0%以下とすることが好ましい。なお、上記したようなCr、Mo、Niの効果を得るためには、それぞれの量は0.1%以上とすることがより好ましい。
Cr: 1.0% or less, Mo: 1.0% or less, Ni: 1.0% or less
All of Cr, Mo and Ni not only effectively contribute to increasing the strength of the steel by solid solution strengthening, but also have the effect of stabilizing the austenite phase and promoting the formation of a low temperature transformation ferrite phase. However, if the amount of Cr, Mo and Ni exceeds 1.0%, the ductility deteriorates. Therefore, the amount of each is preferably 1.0% or less. In order to obtain the effects of Cr, Mo, and Ni as described above, each amount is more preferably 0.1% or more.

Ti:0.1%以下、Nb:0.1%以下
TiおよびNbは、それぞれ炭化物や窒化物を形成することによって、強度や靱性の向上に有効に寄与する。しかし、Ti、Nbの量がそれぞれ0.1%を超えると固溶Nを窒化物として析出させてしまい、焼付硬化性を低下させるので、それぞれの量は0.1%以下とすることが好ましい。なお、上記したようなTi、Nbの効果を得るためには、それぞれの量は0.01%以上とすることがより好ましい。
Ti: 0.1% or less, Nb: 0.1% or less
Ti and Nb contribute to the improvement of strength and toughness by forming carbides and nitrides, respectively. However, if the amounts of Ti and Nb each exceed 0.1%, solid solution N is precipitated as nitrides and the bake hardenability is lowered. Therefore, the respective amounts are preferably 0.1% or less. In order to obtain the effects of Ti and Nb as described above, the respective amounts are more preferably 0.01% or more.

2) ミクロ組織
2-1) 低温変態フェライト相とポリゴナルフェライト相の合計の組織全体に占める面積率:90%以上で、かつ低温変態フェライト相の組織全体に占める面積率:10〜50%
本発明の高張力熱延鋼板は、実質的に低温変態フェライト相とポリゴナルフェライト相からなるミクロ組織を有しており、低温変態フェライト相により高強度化が達成されるとともに、90MPa以上のTSの増加を可能にする高い焼付硬化性が得られ、ポリゴナルフェライト相により高延性化が図られている。
2) Micro structure
2-1) Area ratio of the total structure of the low-temperature transformation ferrite phase and polygonal ferrite phase: 90% or more, and area ratio of the low-temperature transformation ferrite phase in the entire structure: 10 to 50%
The high-tensile hot-rolled steel sheet of the present invention has a microstructure substantially composed of a low-temperature transformation ferrite phase and a polygonal ferrite phase, and high strength is achieved by the low-temperature transformation ferrite phase, and a TS of 90 MPa or more is achieved. A high bake hardenability that enables an increase in the thickness is obtained, and a high ductility is achieved by the polygonal ferrite phase.

ここで、低温変態フェライト相とは、オーステナイト相を概ね500℃以下の低温で変態させたフェライト相であり、ベイニティックフェライト相あるいは上部ベイナイト相のことを意味する。こうした低温変態フェライト相内では転位密度が高いために、高強度化が達成されるとともに、加工後の塗装焼付時に加工によりさらに増大した転位密度に主として固溶Nが固着し、YSのみならずTSをも増加させる高い焼付硬化性が得られると考えられる。しかし、低温変態フェライト相の組織全体に占める面積率が10%未満ではこうした効果が十分には発揮されず、50%を超えるとポリゴナルフェライト相が低減して延性が劣化するので、低温変態フェライト相の組織全体に占める面積率は10〜50%とする必要がある。   Here, the low temperature transformation ferrite phase is a ferrite phase obtained by transforming the austenite phase at a low temperature of about 500 ° C. or lower, and means a bainitic ferrite phase or an upper bainite phase. In such a low-temperature transformation ferrite phase, the dislocation density is high, so that high strength is achieved, and solid solution N adheres mainly to the dislocation density further increased by processing during paint baking after processing. It is thought that high bake hardenability that also increases the amount of heat resistance is obtained. However, if the area ratio of the low temperature transformation ferrite phase in the entire structure is less than 10%, such an effect is not sufficiently exerted, and if it exceeds 50%, the polygonal ferrite phase is reduced and the ductility deteriorates. The area ratio of the entire phase structure needs to be 10 to 50%.

また、低温変態フェライト相とポリゴナルフェライト相以外に、マルテンサイト相やパーライト相などの他の相が組織全体に占める面積率で10%を超えて含まれると延性が劣化するので、低温変態フェライト相とポリゴナルフェライト相の合計の組織全体に占める面積率は90%以上とする必要がある。   In addition to the low-temperature transformation ferrite phase and polygonal ferrite phase, ductility deteriorates if other phases such as martensite phase and pearlite phase are included in the entire structure in excess of 10%. The area ratio of the total of the phase and the polygonal ferrite phase in the entire structure needs to be 90% or more.

なお、低温変態フェライト相とポリゴナルフェライト相の面積率は、熱延鋼板の圧延方向と直角な方向の板厚断面の組織をナイタールによる腐食により現出し、SEMにより1000倍の倍率で観察して求めた。   The area ratio of the low-temperature transformation ferrite phase and the polygonal ferrite phase is determined by the corrosion of the steel sheet in the direction perpendicular to the rolling direction of the hot-rolled steel sheet due to corrosion by nital, and observed at 1000 times magnification by SEM. Asked.

2-2) 低温変態フェライト相とポリゴナルフェライト相の平均結晶粒径:8μm以下
低温変態フェライト相とポリゴナルフェライト相の平均結晶粒径が8μmを超えると90MPa以上のTSの増加を可能にする高い焼付硬化性が得られなくなるとともに、耐常温時効性が劣化するので、両相の平均結晶粒径は8μm以下にする必要がある。結晶粒を微細化すると結晶粒界が増加するため、加工時により高い転位密度が達成されて高い焼付硬化性が得られるとともに、粒界にトラップされる固溶Nが増加して常温時効が抑制されると考えられる。
2-2) Average crystal grain size of low-temperature transformation ferrite phase and polygonal ferrite phase: 8 μm or less If the average crystal grain size of low-temperature transformation ferrite phase and polygonal ferrite phase exceeds 8 μm, TS can be increased by 90 MPa or more. Since high bake hardenability cannot be obtained and the normal temperature aging resistance deteriorates, the average crystal grain size of both phases needs to be 8 μm or less. When crystal grains are refined, the grain boundaries increase, so a higher dislocation density is achieved during processing, and high bake hardenability is obtained. Also, solid solution N trapped at the grain boundaries increases and room temperature aging is suppressed. It is thought that it is done.

なお、低温変態フェライト相とポリゴナルフェライト相の平均結晶粒径は、下記により求めた。すなわち、熱延鋼板の圧延方向と直角な方向の板厚断面の組織をナイタールによる腐食により現出し、SEMにより1000倍の倍率で撮影した組織写真を用い、ASTMに規定の求積法に求めた値と、非特許文献1に記載された切断法により求めた公称粒径のうち大きい方を平均結晶粒径とした。   The average crystal grain size of the low temperature transformation ferrite phase and the polygonal ferrite phase was determined as follows. That is, the structure of the thickness cross section in the direction perpendicular to the rolling direction of the hot-rolled steel sheet was revealed by corrosion by nital, and the structure photograph taken at a magnification of 1000 by SEM was used to determine the quadrature method specified by ASTM. The larger of the values and the nominal grain size obtained by the cutting method described in Non-Patent Document 1 was defined as the average crystal grain size.

2-3) 低温変態フェライト相のHv(max)/Hv(min):2.2以下
鋼板を自動車の構造部材や足周り部材に問題なく伸びフランジ加工するには、応力集中発生の起源となる鋼板内の局所的な硬度変動を極力小さくすることが効果的である。特に、85%以上のλが得られるほどに伸びフランジ性の向上を図るには、下記のように定義した低温変態フェライト相のHv(max)とHv(min)の比Hv(max)/Hv(min)を2.2以下、好ましくは1.9以下にする必要がある。
2-3) Hv (max) / Hv (min) of low-temperature transformation ferrite phase: 2.2 or less It is effective to minimize the local hardness fluctuation of the steel. In particular, in order to improve the stretch flangeability so that λ of 85% or more is obtained, the ratio Hv (max) / Hv (min) of the low-temperature transformation ferrite phase defined as follows: Hv (max) / Hv (min) needs to be 2.2 or less, preferably 1.9 or less.

ここで、低温変態フェライト相のHv(max)とHv(min)とは、鋼板の長手方向中央部で、幅方向の1/4、1/2、3/4にあたる3箇所の位置より試験片を採取し、各試験片の板厚断面部をSEMにより1000倍の倍率で5視野、合計で15視野観察し、各視野ごとに10個の低温変態フェライト相のビッカース硬度を測定して各視野ごとに最大硬度と最小硬度を求め、観察視野数で算術平均した最大硬度と最小硬度を表す。   Here, Hv (max) and Hv (min) of the low-temperature transformation ferrite phase are the test pieces from three positions corresponding to 1/4, 1/2, and 3/4 in the width direction at the center in the longitudinal direction of the steel sheet. The thickness cross section of each specimen was observed by SEM at 5 fields at a magnification of 1000 times, a total of 15 fields, and the Vickers hardness of 10 low-temperature transformation ferrite phases was measured for each field. The maximum hardness and the minimum hardness are obtained for each, and the maximum hardness and the minimum hardness that are arithmetically averaged by the number of observation fields are represented.

3) 製造条件
3-1) 熱間圧延前の加熱温度:1000〜1300℃
高い焼付硬化性を得るには、巻取り後の熱延鋼板に十分な固溶N量を確保する必要があるが、それには熱間圧延前の加熱時に窒化物を溶解させておく必要がある。しかし、加熱温度が1000℃に満たないと窒化物の溶解が完全ではなく、熱延鋼板に十分な固溶N量を確保できない。一方、加熱温度が1300℃を超えるとオーステナイト相が粗大化し、熱延鋼板のフェライト相の平均結晶粒径を8μm以下にすることが困難になる。したがって、熱間圧延前の加熱温度は1000〜1300℃、好ましくは1100〜1250℃とする。
3) Manufacturing conditions
3-1) Heating temperature before hot rolling: 1000-1300 ° C
In order to obtain high bake hardenability, it is necessary to secure a sufficient amount of solute N in the hot-rolled steel sheet after winding, but it is necessary to dissolve the nitride during heating before hot rolling. . However, if the heating temperature is less than 1000 ° C., the nitride is not completely dissolved, and a sufficient amount of dissolved N cannot be secured in the hot-rolled steel sheet. On the other hand, when the heating temperature exceeds 1300 ° C., the austenite phase becomes coarse, and it becomes difficult to make the average crystal grain size of the ferrite phase of the hot-rolled steel sheet 8 μm or less. Therefore, the heating temperature before hot rolling is 1000 to 1300 ° C, preferably 1100 to 1250 ° C.

3-2) 熱間圧延の仕上温度:800〜1000℃
仕上温度が800℃を下回ると一部に加工組織が残留してミクロ組織が不均一になり、伸びフランジ性が劣化する。一方、仕上温度が1000℃を超えると熱延鋼板のフェライト相の平均結晶粒径を8μm以下にすることが困難になる。したがって、熱間圧延の仕上温度は800〜1000℃とする。
3-2) Hot rolling finishing temperature: 800 ~ 1000 ℃
When the finishing temperature is below 800 ° C., a part of the processed structure remains, the microstructure becomes non-uniform, and stretch flangeability deteriorates. On the other hand, when the finishing temperature exceeds 1000 ° C., it becomes difficult to make the average crystal grain size of the ferrite phase of the hot-rolled steel sheet 8 μm or less. Therefore, the finishing temperature of hot rolling is set to 800 to 1000 ° C.

3-3) 1次冷却条件:熱間圧延後0.5秒以内に50℃/秒以上の平均冷却速度で620〜720℃の冷却停止温度まで冷却
熱間圧延後0.5秒以内に急冷を開始しないと、また、急冷時の平均冷却速度が50℃/秒未満だと、熱延鋼板のフェライト相の平均結晶粒径を8μm以下にすることが困難になるとともに、Nが窒化物として析出し、十分な固溶N量を確保することができなくなる。また、高延性化を図る目的でポリゴナルフェライト相の生成を図る必要があるが、それにはポリゴナルフェライト相への変態が促進される620〜720℃の温度で冷却を停止し、次に述べる条件で空冷する必要がある。したがって、熱間圧延後0.5秒以内に50℃/秒以上の平均冷却速度で620〜720℃の冷却停止温度まで1次冷却する必要がある。
3-3) Primary cooling condition: Cooling to the cooling stop temperature of 620-720 ° C at an average cooling rate of 50 ° C / second or more within 0.5 seconds after hot rolling If rapid cooling is not started within 0.5 seconds after hot rolling In addition, if the average cooling rate during quenching is less than 50 ° C / second, it becomes difficult to make the average crystal grain size of the ferrite phase of the hot-rolled steel sheet 8 μm or less, and N precipitates as nitride, It is impossible to secure a sufficient amount of solute N. In addition, it is necessary to generate a polygonal ferrite phase for the purpose of increasing ductility. For this purpose, cooling is stopped at a temperature of 620 to 720 ° C. at which transformation to the polygonal ferrite phase is promoted, and the following is described. It is necessary to air-cool under conditions. Therefore, it is necessary to perform primary cooling to a cooling stop temperature of 620 to 720 ° C. at an average cooling rate of 50 ° C./second or more within 0.5 seconds after hot rolling.

なお、該平均冷却速度の上限は、特に規定する必要はないが、冷却に水を用いた場合に充分な水切れ性を確保するためには130℃/秒以下とすることが好ましい。   The upper limit of the average cooling rate is not particularly limited, but is preferably set to 130 ° C./second or less in order to ensure sufficient water drainage when water is used for cooling.

3-4) 1次冷却後の空冷時間:2〜10秒
1次冷却後の空冷時間が2秒未満だとポリゴナルフェライト相の量が不足して延性が劣化し、10秒を超えるとフェライト相が粗大化するだけでなく、ポリゴナルフェライト相の量が多くなりすぎて、その後に十分な量の低温変態フェライト相を確保することが難しくなる。したがって、1次冷却後の空冷時間は2〜10秒とする。
3-4) Air cooling time after primary cooling: 2-10 seconds
If the air cooling time after the primary cooling is less than 2 seconds, the amount of polygonal ferrite phase is insufficient and the ductility deteriorates, and if it exceeds 10 seconds, not only does the ferrite phase become coarse, but the amount of polygonal ferrite phase also increases. It becomes too much, and it becomes difficult to secure a sufficient amount of the low-temperature transformation ferrite phase thereafter. Therefore, the air cooling time after the primary cooling is 2 to 10 seconds.

3-5) 2次冷却条件:80℃/秒以上の平均冷却速度で冷却
空冷後の2次冷却における平均冷却速度が80℃/秒未満だと膜沸騰冷却になりやすく、局所的に冷却速度が大きく変動するため、低温変態フェライト相のHv(max)/Hv(min)が2.2を超えて伸びフランジ性の劣化を招く。したがって、2次冷却における平均冷却速度は核沸騰冷却となる80℃/秒以上とする。
3-5) Secondary cooling conditions: Cooling at an average cooling rate of 80 ° C / second or more When the average cooling rate in the secondary cooling after air cooling is less than 80 ° C / second, film boiling cooling tends to occur, and the local cooling rate Therefore, Hv (max) / Hv (min) of the low-temperature transformation ferrite phase exceeds 2.2, and the stretch flangeability is deteriorated. Therefore, the average cooling rate in the secondary cooling is set to 80 ° C./second or more which is nucleate boiling cooling.

なお、該平均冷却速度の上限は、特に規定する必要はないが、1次冷却と同様に充分な水切れ性を確保するためには130℃/秒以下が好ましい。   The upper limit of the average cooling rate is not particularly limited, but is preferably 130 ° C./second or less in order to ensure sufficient water drainage like the primary cooling.

3-6) 巻取温度:400〜500℃
巻取温度が500℃より高い場合は、面積率で10%以上の低温変態フェライト相を得るのが難しくなるだけでなく、フェライト相の平均結晶粒径を8μm以下にできなくなる。一方、400℃より低い場合は、下部ベイナイト相やマルテンサイト相が多量に生成し、低温変態フェライト相とポリゴナルフェライト相の合計の面積率を90%以上にできなくなる。したがって、巻取温度は400〜500℃とする。
3-6) Winding temperature: 400 ~ 500 ℃
When the coiling temperature is higher than 500 ° C., not only is it difficult to obtain a low-temperature transformed ferrite phase with an area ratio of 10% or more, but the average crystal grain size of the ferrite phase cannot be made 8 μm or less. On the other hand, when the temperature is lower than 400 ° C., a large amount of the lower bainite phase and martensite phase are generated, and the total area ratio of the low-temperature transformation ferrite phase and the polygonal ferrite phase cannot be 90% or more. Therefore, the coiling temperature is 400 to 500 ° C.

本発明の組成を有する鋼を溶製するには、転炉、電気炉どちらも使用可能である。また、こうして溶製された鋼は、造塊−分塊圧延または連続鋳造によりスラブとされる。スラブは、通常、加熱された後、粗圧延と仕上圧延により熱間圧延される。なお、連続鋳造で製造されたスラブの場合は、そのままあるいは温度低下を抑制する目的で保熱して、圧延する直送圧延を適用してもよい。また、熱間圧延では、仕上温度を確保するため、熱間圧延中にシートバーヒータなどの加熱手段により被圧延材の加熱を行うこともできる。   To melt the steel having the composition of the present invention, both a converter and an electric furnace can be used. Moreover, the steel thus melted is made into a slab by ingot-bundling rolling or continuous casting. The slab is usually heated and then hot-rolled by rough rolling and finish rolling. In addition, in the case of the slab manufactured by continuous casting, you may apply the direct feed rolling which heats as it is or keeps heat in order to suppress a temperature fall. Moreover, in hot rolling, in order to ensure finishing temperature, a to-be-rolled material can also be heated by heating means, such as a sheet bar heater, during hot rolling.

表1に示す組成を有する鋼No.A〜Iを転炉で溶製後、連続鋳造によりスラブとなし、表2に示す熱延条件により板厚2.0mmの熱延鋼板No.1〜20を製造した。   Steel Nos. A to I having the composition shown in Table 1 were melted in a converter and then made into a slab by continuous casting, and hot-rolled steel plates No. 1 to 20 having a thickness of 2.0 mm were formed according to the hot rolling conditions shown in Table 2. Manufactured.

そして、熱延鋼板の長手方向中央部で、幅方向の1/2にあたる位置よりミクロ組織観察用試料を採取し、上記の方法により、低温変態フェライト相とポリゴナルフェライト相の組織全体に占める面積率、平均結晶粒径を求めた。また、熱延鋼板の同位置から圧延方向に直角な方向からJIS 5号試験片を採取し、歪速度10-3/秒で引張試験を行い、YS、TSおよび全伸びElを求めた。さらに、伸びフランジ性を評価するためにλを、焼付硬化性を評価するためにΔYS、ΔTSを、および常温時効性を評価するためにΔElを次の方法により求めた。
λ:熱延鋼板の長手方向中央部で、幅方向の1/2にあたる位置から採取した130mm角の試験片を用い、日本鉄鋼連盟規格IFST1001に基づき、試験片中央に10mmφの穴を打ち抜いた後、60°円錐ポンチをバリと反対側から押し上げ、亀裂が板厚を貫通した時点での穴径dmmを測定し、次式より算出した。
λ(%)=[(d-10)/10]×100
ΔYS、ΔTS:熱延鋼板の長手方向中央部で、幅方向の1/2にあたる位置から圧延方向に直角な方向からJIS 5号試験片を採取し、5%の予歪付与後170℃×20分間の塗装焼付をシミュレートした熱処理を施し、歪速度10-3/秒で引張試験を行い、次式より算出した。このとき、予歪付与後熱処理前の応力や予歪付与前のTSも、同じ歪速度で引張試験を行って求めたものである。
ΔYS=熱処理後のYS-予歪付与後熱処理前の応力
ΔTS=熱処理後のTS-予歪付与前のTS
ΔEl:熱延鋼板の長手方向中央部で、幅方向の1/2にあたる位置から圧延方向に直角な方向からJIS 5号試験片を採取し、50℃×400時間の時効処理を施し、歪速度10-3/秒で引張試験を行い、次式より算出した。このとき、時効処理前のElも、同じ歪速度で引張試験を行って求めたものである。なお、ここで、ΔElが2.0%以下であれば常温時効性に問題がないといえる。
ΔEl=時効処理前のEl-時効処理後のEl
また、前記の方法で、低温変態フェライト相のHv(max)/Hv(minを求めた。ここで、Hv(max)とHv(min)とは、鋼板の長手方向中央部で、幅方向の1/4、1/2、3/4にあたる3箇所の位置より試験片を採取し、各試験片の板厚断面部をSEMにより1000倍の倍率で5視野、合計で15視野観察し、各視野ごとに10個の低温変態フェライト相のビッカース硬度を測定して各視野ごとに最大硬度と最小硬度を求め、観察視野数で算術平均した最大硬度[Hv(max)]と最小硬度[Hv(min)]である。このとき、ビッカース硬度はマイクロビッカース硬度計によりJIS Z2244:2009に準じて求めた。また、そのときの試験荷重(試験力)は10g(0.098N)とした。
Then, a sample for microstructural observation is taken from a position corresponding to 1/2 in the width direction at the center in the longitudinal direction of the hot-rolled steel sheet, and the area occupying the entire structure of the low-temperature transformation ferrite phase and the polygonal ferrite phase by the above method. The average crystal grain size was determined. Further, JIS No. 5 test specimens were taken from the same position of the hot-rolled steel sheet from the direction perpendicular to the rolling direction, and subjected to a tensile test at a strain rate of 10 −3 / sec to obtain YS, TS, and total elongation El. Further, λ was obtained by the following method to evaluate stretch flangeability, ΔYS and ΔTS to evaluate bake hardenability, and ΔEl to evaluate normal temperature aging.
λ: After punching a 10mmφ hole in the center of the test piece using a 130mm square test piece taken from the position corresponding to 1/2 in the width direction at the center of the hot rolled steel sheet The 60 ° conical punch was pushed up from the side opposite to the burr, and the hole diameter dmm at the time when the crack penetrated the plate thickness was measured and calculated from the following equation.
λ (%) = [(d-10) / 10] × 100
ΔYS, ΔTS: JIS No. 5 test specimen was sampled from the center in the longitudinal direction of the hot-rolled steel sheet at a position corresponding to 1/2 of the width direction and perpendicular to the rolling direction. A heat treatment simulating paint baking for 5 minutes was performed, a tensile test was performed at a strain rate of 10 −3 / sec, and the following formula was calculated. At this time, the stress before heat treatment after prestraining and TS before prestraining were also determined by conducting a tensile test at the same strain rate.
ΔYS = YS after heat treatment-Stress before heat treatment after prestraining ΔTS = TS after heat treatment-TS before prestraining
ΔEl: JIS No. 5 test specimen was sampled from the center of the hot-rolled steel sheet in the longitudinal direction from the position corresponding to 1/2 of the width direction and perpendicular to the rolling direction, and subjected to aging treatment at 50 ° C x 400 hours, strain rate A tensile test was performed at 10 −3 / sec and calculated from the following formula. At this time, El before aging treatment was also obtained by conducting a tensile test at the same strain rate. Here, if ΔEl is 2.0% or less, it can be said that there is no problem in aging at room temperature.
ΔEl = El before aging treatment-El after aging treatment
Further, Hv (max) / Hv (min) of the low-temperature transformation ferrite phase was obtained by the above-described method. Here, Hv (max) and Hv (min) are the center part in the longitudinal direction of the steel sheet and in the width direction. Test specimens were collected from three positions corresponding to 1/4, 1/2, 3/4, and the plate thickness cross section of each test specimen was observed by SEM with 5 fields at 1000x magnification, for a total of 15 fields. The Vickers hardness of 10 low-temperature transformation ferrite phases is measured for each field, the maximum hardness and the minimum hardness are obtained for each field, and the maximum hardness [Hv (max)] and minimum hardness [Hv ( At this time, the Vickers hardness was determined according to JIS Z2244: 2009 using a micro Vickers hardness tester, and the test load (test force) at that time was 10 g (0.098 N).

結果を表3に示す。本発明である鋼板No.1、4、7、9、12、15、17、19は、85%以上のλと90MPa以上のΔTSを有しており、高い焼付硬化性および優れた伸びフランジ性を有した高張力熱延鋼板であることがわかる。また、本発明である高張力熱延鋼板は、TS×Elが17000MPa・%以上で強度−延性バランスに優れており、ΔElが2.0%以下で常温時効性にも問題がない。   The results are shown in Table 3. Steel plates No. 1, 4, 7, 9, 12, 15, 17, and 19 according to the present invention have λ of 85% or more and ΔTS of 90 MPa or more, high bake hardenability and excellent stretch flangeability It can be seen that this is a high-tensile hot-rolled steel sheet having In addition, the high-tensile hot-rolled steel sheet according to the present invention has an excellent balance between strength and ductility when TS × El is 17000 MPa ·% or more, and ΔEl is 2.0% or less, and there is no problem with room temperature aging.

Figure 0005446900
Figure 0005446900

Figure 0005446900
Figure 0005446900

Figure 0005446900
Figure 0005446900

Claims (4)

質量%で、C:0.05〜0.12%、Si:0.5%以下、Mn:1.2〜3.0%、P:0.05%以下、Al:0.001〜0.1%、N:0.005〜0.02%を含有し、残部がFeおよび不可避的不純物からなる組成を有し、低温変態フェライト相とポリゴナルフェライト相とを含み、前記低温変態フェライト相とポリゴナルフェライト相の合計の組織全体に占める面積率が90%以上で、前記低温変態フェライト相の組織全体に占める面積率が10〜50%で、前記低温変態フェライト相とポリゴナルフェライト相の平均結晶粒径が8μm以下で、かつ前記低温変態フェライト相のHv(max)とHv(min)の比Hv(max)/Hv(min)が2.2以下であるミクロ組織を有することを特徴とする高い焼付硬化性と優れた伸びフランジ性を有する高張力熱延鋼板;ただし、低温変態フェライト相のHv(max)とHv(min)とは、鋼板の長手方向中央部で、幅方向の1/4、1/2、3/4にあたる3箇所の位置より試験片を採取し、各試験片の板厚断面部を走査型電子顕微鏡(SEM)により1000倍の倍率で5視野、合計で15視野観察し、各視野ごとに10個の低温変態フェライト相のビッカース硬度を測定して各視野ごとに最大硬度と最小硬度を求め、観察視野数で算術平均した最大硬度と最小硬度を表す。   In mass%, C: 0.05 to 0.12%, Si: 0.5% or less, Mn: 1.2 to 3.0%, P: 0.05% or less, Al: 0.001 to 0. 1%, N: 0.005 to 0.02%, with the balance being composed of Fe and inevitable impurities, including a low-temperature transformation ferrite phase and a polygonal ferrite phase, The area ratio in the total structure of the polygonal ferrite phase is 90% or more, the area ratio in the entire structure of the low-temperature transformation ferrite phase is 10 to 50%, and the average of the low-temperature transformation ferrite phase and the polygonal ferrite phase It has a microstructure in which the crystal grain size is 8 μm or less and the ratio Hv (max) / Hv (min) of Hv (max) and Hv (min) of the low-temperature transformation ferrite phase is 2.2 or less. High bake hardenability A high-tensile hot-rolled steel sheet having excellent stretch flangeability; however, the Hv (max) and Hv (min) of the low-temperature transformation ferrite phase are the center part in the longitudinal direction of the steel sheet and are 1/4, 1/2 in the width direction. Specimens were sampled from three positions corresponding to 3/4, and the thickness cross section of each specimen was observed with a scanning electron microscope (SEM) at five magnifications of 1000 fields for a total of 15 fields. The Vickers hardness of each of the ten low-temperature transformation ferrite phases is measured to determine the maximum hardness and the minimum hardness for each field of view, and the maximum and minimum hardnesses are arithmetically averaged by the number of observation fields. さらに、質量%で、Cr:1.0%以下、Mo:1.0%以下、Ni:1.0%以下のうちから選ばれた少なくとも1種を含有する組成を有することを特徴とする請求項1に記載の高い焼付硬化性と優れた伸びフランジ性を有する高張力熱延鋼板。   Furthermore, it has a composition containing at least one selected from Cr: 1.0% or less, Mo: 1.0% or less, and Ni: 1.0% or less in mass%. A high-tensile hot-rolled steel sheet having high bake hardenability and excellent stretch flangeability according to Item 1. さらに、質量%で、Ti:0.1%以下、Nb:0.1%以下のうちから選ばれた少なくとも1種を含有する組成を有することを特徴とする請求項1または2に記載の高い焼付硬化性と優れた伸びフランジ性を有する高張力熱延鋼板。   Furthermore, it has the composition containing at least 1 sort (s) chosen from Ti: 0.1% or less and Nb: 0.1% or less by mass%, The high of Claim 1 or 2 characterized by the above-mentioned. High-tensile hot-rolled steel sheet with bake hardenability and excellent stretch flangeability. 請求項1〜3のいずれか1項に記載の組成を有する鋼を、1000〜1300℃に加熱し、800〜1000℃の仕上温度で熱間圧延後、0.5秒以内に50℃/秒以上の平均冷却速度で620〜720℃の冷却停止温度まで1次冷却し、2〜10秒空冷後、80℃/秒以上の平均冷却速度で2次冷却し、400〜500℃の巻取温度で巻取ることを特徴とし、低温変態フェライト相とポリゴナルフェライト相とを含み、前記低温変態フェライト相とポリゴナルフェライト相の合計の組織全体に占める面積率が90%以上で、前記低温変態フェライト相の組織全体に占める面積率が10〜50%で、前記低温変態フェライト相とポリゴナルフェライト相の平均結晶粒径が8μm以下で、かつ前記低温変態フェライト相のHv(max)とHv(min)の比Hv(max)/Hv(min)が2.2以下であるミクロ組織を有する高い焼付硬化性と優れた伸びフランジ性を有する高張力熱延鋼板の製造方法。ただし、低温変態フェライト相のHv(max)とHv(min)とは、鋼板の長手方向中央部で、幅方向の1/4、1/2、3/4にあたる3箇所の位置より試験片を採取し、各試験片の板厚断面部を走査型電子顕微鏡(SEM)により1000倍の倍率で5視野、合計で15視野観察し、各視野ごとに10個の低温変態フェライト相のビッカース硬度を測定して各視野ごとに最大硬度と最小硬度を求め、観察視野数で算術平均した最大硬度と最小硬度を表す。 The steel having the composition according to any one of claims 1 to 3 is heated to 1000 to 1300 ° C, hot-rolled at a finishing temperature of 800 to 1000 ° C, and then within 50 seconds at 50 ° C / second. Primary cooling to a cooling stop temperature of 620 to 720 ° C. at the above average cooling rate, air cooling for 2 to 10 seconds, secondary cooling at an average cooling rate of 80 ° C./second or more, and winding temperature of 400 to 500 ° C. The low-temperature transformation ferrite phase and the polygonal ferrite phase are included, and the total area ratio of the low-temperature transformation ferrite phase and the polygonal ferrite phase occupies 90% or more. The area ratio of the ferrite phase in the entire structure is 10 to 50%, the average crystal grain size of the low-temperature transformation ferrite phase and the polygonal ferrite phase is 8 μm or less, and the Hv (max) and Hv of the low-temperature transformation ferrite phase. The ratio Hv (max) / Hv (min ) is the method of producing a high tensile hot-rolled steel sheet having a high baking hardenability and excellent stretch-flange formability having microstructure is 2.2 or less in min). However, Hv (max) and Hv (min) of the low-temperature transformation ferrite phase are the center portions in the longitudinal direction of the steel sheet, and the test pieces are taken from three positions corresponding to 1/4, 1/2, 3/4 in the width direction. Samples were taken, and the cross-sectional thickness of each specimen was observed with a scanning electron microscope (SEM) at 5 fields at a magnification of 1000 times, a total of 15 fields, and the Vickers hardness of 10 low-temperature transformation ferrite phases for each field. The maximum hardness and the minimum hardness are obtained for each field of view, and the maximum and minimum hardnesses are arithmetically averaged by the number of fields of observation.
JP2010006527A 2010-01-15 2010-01-15 High tensile hot-rolled steel sheet having high bake hardenability and excellent stretch flangeability and method for producing the same Active JP5446900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010006527A JP5446900B2 (en) 2010-01-15 2010-01-15 High tensile hot-rolled steel sheet having high bake hardenability and excellent stretch flangeability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010006527A JP5446900B2 (en) 2010-01-15 2010-01-15 High tensile hot-rolled steel sheet having high bake hardenability and excellent stretch flangeability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011144425A JP2011144425A (en) 2011-07-28
JP5446900B2 true JP5446900B2 (en) 2014-03-19

Family

ID=44459527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010006527A Active JP5446900B2 (en) 2010-01-15 2010-01-15 High tensile hot-rolled steel sheet having high bake hardenability and excellent stretch flangeability and method for producing the same

Country Status (1)

Country Link
JP (1) JP5446900B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9078471B2 (en) 2007-07-17 2015-07-14 British American Tobacco (Investments) Limited Filter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482342B1 (en) 2012-12-26 2015-01-13 주식회사 포스코 High-strength hot-rolled steel plate having execellent weldability and bending workbility and method for manufacturing tereof
KR101988764B1 (en) * 2017-12-21 2019-06-12 주식회사 포스코 Hot rolled steel sheet for electro resistance welded pipe with excellent expandability and method for manufacturing thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240356A (en) * 1993-02-10 1994-08-30 Sumitomo Metal Ind Ltd Production of high strength hot rolled steel plate excellent in workability
JP4661002B2 (en) * 2001-08-07 2011-03-30 Jfeスチール株式会社 High tensile hot-rolled steel sheet excellent in bake hardenability and ductility and method for producing the same
JP4259132B2 (en) * 2003-02-06 2009-04-30 Jfeスチール株式会社 High-tensile hot-rolled steel sheet and high-tensile plated steel sheet excellent in bake hardenability and ductility, and methods for producing them
JP4692018B2 (en) * 2004-03-22 2011-06-01 Jfeスチール株式会社 High-tensile hot-rolled steel sheet with excellent strength-ductility balance and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9078471B2 (en) 2007-07-17 2015-07-14 British American Tobacco (Investments) Limited Filter
US10334875B2 (en) 2007-07-17 2019-07-02 British American Tobacco (Investments) Limited Filter

Also Published As

Publication number Publication date
JP2011144425A (en) 2011-07-28

Similar Documents

Publication Publication Date Title
RU2502820C1 (en) Plate steel characterised by low ratio between yield point and ultimate strength, high strength and high uniform relative elongation, and method for its manufacture
JP6779320B2 (en) Clad steel sheet with excellent strength and formability and its manufacturing method
JP6477570B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP6149368B2 (en) Manufacturing method of high-tensile steel plate with excellent delayed fracture resistance
JP6327282B2 (en) High strength hot rolled steel sheet and method for producing the same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JP5521444B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
JP5439819B2 (en) High-strength steel material with excellent fatigue characteristics and method for producing the same
JP5487984B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP5532800B2 (en) Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
WO2012002566A1 (en) High-strength steel sheet with excellent processability and process for producing same
JP6047983B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability
JP6252291B2 (en) Steel sheet and manufacturing method thereof
JP7218533B2 (en) Steel material and its manufacturing method
WO2013094130A1 (en) High-strength steel sheet and process for producing same
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP6056235B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance and tensile strength of 950 MPa or more
JP6290074B2 (en) High-strength cold-rolled steel sheet and high-strength galvannealed steel sheet with excellent workability
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP2011214053A (en) Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP6056236B2 (en) Method for producing high-tensile steel sheet having excellent weldability and delayed fracture resistance and tensile strength of 780 MPa or more
JP6472692B2 (en) High-strength steel sheet with excellent formability
JP5201653B2 (en) High-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP5446900B2 (en) High tensile hot-rolled steel sheet having high bake hardenability and excellent stretch flangeability and method for producing the same
JP6434348B2 (en) High strength steel plate with excellent workability

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5446900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250