JP5441392B2 - Electronic apparatus and method - Google Patents

Electronic apparatus and method Download PDF

Info

Publication number
JP5441392B2
JP5441392B2 JP2008289865A JP2008289865A JP5441392B2 JP 5441392 B2 JP5441392 B2 JP 5441392B2 JP 2008289865 A JP2008289865 A JP 2008289865A JP 2008289865 A JP2008289865 A JP 2008289865A JP 5441392 B2 JP5441392 B2 JP 5441392B2
Authority
JP
Japan
Prior art keywords
resonance frequency
power
resonance
battery
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008289865A
Other languages
Japanese (ja)
Other versions
JP2010119193A5 (en
JP2010119193A (en
Inventor
哲 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008289865A priority Critical patent/JP5441392B2/en
Publication of JP2010119193A publication Critical patent/JP2010119193A/en
Publication of JP2010119193A5 publication Critical patent/JP2010119193A5/en
Application granted granted Critical
Publication of JP5441392B2 publication Critical patent/JP5441392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、電子機器に関する。 The present invention relates to an electronic device and the like .

近年、携帯用電子機器や、産業用機器等への非接触電力伝達技術の採用が広がってきている。   In recent years, the adoption of non-contact power transmission technology for portable electronic devices, industrial devices, and the like has been spreading.

特に、電動歯ブラシや電気シェーバー等の水まわりで使う電化製品やコードレス電話機等には、この技術が重宝され、一部の製品において採用されている。   In particular, this technology is useful for electric appliances and cordless telephones used around water such as electric toothbrushes and electric shavers, and is used in some products.

非接触充電システムとしては、例えば、給電側(給電装置)に設けられた一次側のコイルと、受電側(電子機器)に設けられた二次側のコイルとの間での電磁誘導を利用した「電磁誘導型充電システム」がある。このシステムにおいて、充電効率を考慮した場合、給電側と受電側の機器に設けられた各々のコイルが対向に、かつ近接に配置される必要がある。   As the non-contact charging system, for example, electromagnetic induction between a primary coil provided on the power supply side (power supply device) and a secondary coil provided on the power reception side (electronic device) is used. There is an “electromagnetic induction charging system”. In this system, when charging efficiency is taken into consideration, it is necessary that the coils provided in the power supply side and power reception side devices are arranged opposite to each other and close to each other.

一方、数m離れた機器にワイヤレスで電力を供給する技術も開発されてきている。それは、給電側のコイルと受電側のコイルとの電場あるいは磁場共鳴を利用した「共鳴充電システム」である。   On the other hand, technologies for supplying power wirelessly to devices several meters away have been developed. It is a “resonant charging system” that uses the electric field or magnetic field resonance between the coil on the power feeding side and the coil on the power receiving side.

例えば、特許文献1には、給電側と受電側の共振周波数を利用して、自動車用のイグニッション・キーに効率的に充電する技術が開示されている。   For example, Patent Document 1 discloses a technique for efficiently charging an automobile ignition key using resonance frequencies on a power feeding side and a power receiving side.

即ち、特許文献1に開示された技術は、温度や湿度等の環境条件によって変化する、受電側の共振周波数に対して、給電側がある一定間で離間した複数の周波数成分を受電側に供給して、最適な共振周波数にて充電を行うものである。
特開平11−46157号公報
That is, the technique disclosed in Patent Document 1 supplies a plurality of frequency components separated by a certain distance to the power receiving side with respect to the resonance frequency on the power receiving side, which changes depending on environmental conditions such as temperature and humidity. Thus, charging is performed at an optimal resonance frequency.
Japanese Patent Laid-Open No. 11-46157

しかしながら、上記特許文献1に提案された技術においては、受電側の充電が完了している場合でも、給電側が給電を継続してしまうため、電力の浪費が避けられない。   However, in the technique proposed in Patent Document 1, waste of power is inevitable because the power supply side continues to supply power even when charging on the power receiving side is completed.

また、給電装置において、受電側の電子機器内の二次電池の充電状態を検出する手段を備えておらず、別途、給電側と受電側の機器に通信手段を設ける必要が発生する。   In addition, the power supply apparatus does not include means for detecting the state of charge of the secondary battery in the electronic device on the power reception side, and it is necessary to separately provide communication means for the devices on the power supply side and the power reception side.

本発明の目的は、給電装置において、電子機器の充に関する状態を検出することができるようにすることある。 An object of the present invention, in the sheet collecting device is to be able to detect the state regarding charging of electronic equipment.

本発明に係る電子機器は、給電装置から共鳴によ供給される電力を受け取る受電手段と、前記受電手段から供給される電力を用いて電池の充電を行う手と、前記受電手段の共振周波数を設定するための設定手段と、前記設定手段によって設定された前記受電手段の共振周波数が第1の共振周波数である場合に、前記電池の残量に応じて、前記受電手段の共振周波数を前記第1の共振周波数と異なる第2の共振周波数に変更するための変更処理を行う制御手段とを有することを特徴とする。 Electronic device according to the present onset Ming, a receiving means for receiving the power supplied Ri by the resonance from the power supply apparatus, a row Cormorant hand stage charging of the battery using power supplied from said power receiving unit, before Symbol receiving Setting means for setting the resonance frequency of the means, and when the resonance frequency of the power receiving means set by the setting means is the first resonance frequency, the power receiving means And control means for performing a change process for changing the resonance frequency to a second resonance frequency different from the first resonance frequency .

また、本発明に係る電子機器は、給電装置から共鳴によ供給される電力を受け取る受電手段と、前記受電手段から供給される電力を用いて電池の充電を行う手と、前記受電手段の共振周波数を設定するための設定手段と、前記設定手段によって設定された前記受電手段の共振周波数が第1の共振周波数である場合、前記電池の充電状態に応じて、前記受電手段の共振周波数を前記第1の共振周波数と異なる第2の共振周波数に変更するための変更処理を行う制御手段とを有することを特徴とする。 The electronic device according to the present invention includes: a receiving means for receiving the power supplied Ri by the resonance from the power supply apparatus, a row Cormorant hand stage charging of the battery using power supplied from said power receiving unit, the receiving When the resonance frequency of the power receiving means set by the setting means and the setting means for setting the resonance frequency of the means is the first resonance frequency, the resonance of the power receiving means is determined according to the state of charge of the battery. Control means for performing a change process for changing the frequency to a second resonance frequency different from the first resonance frequency .

本発明によれば、給電装置において、電子機器の充状態を検出することが可能になる。 According to the onset bright, in the sheet collecting apparatus, it is possible to detect the state of charging of the electronic equipment.

以下、本発明を図面を参照しながら詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施の形態に係る共鳴充電システムの構成図である。   FIG. 1 is a configuration diagram of a resonance charging system according to an embodiment of the present invention.

本実施の形態の共鳴充電システムは、給電装置1によって、磁気共鳴を利用して受電側の電子機器5内の充電可能な二次電池6に充電を行う。   In the resonance charging system of the present embodiment, the power supply device 1 charges the rechargeable secondary battery 6 in the electronic device 5 on the power receiving side using magnetic resonance.

電子機器5は、撮像装置であり、前面には撮影のためのレンズ部7やストロボ発光部8を備え、内部には充電可能な二次電池6(後述する図3参照)を備える。   The electronic device 5 is an imaging device, and includes a lens unit 7 and a strobe light emitting unit 8 for photographing on the front surface, and a rechargeable battery 6 (see FIG. 3 described later) inside.

給電装置1には、家庭用のコンセントから給電装置1に電源を供給するためのソケット4が設けられている。また、給電装置1にはユーザーが電子機器5への充電を開始あるいは終了させるための、充電開始/終了用のスイッチ2が設けられており、スイッチ2のON/OFF動作により、給電装置1へ電力が供給され、または電力供給が遮断される。   The power feeding device 1 is provided with a socket 4 for supplying power to the power feeding device 1 from a household outlet. In addition, the power supply device 1 is provided with a charge start / end switch 2 for the user to start or end charging of the electronic device 5, and to the power supply device 1 by the ON / OFF operation of the switch 2. Power is supplied or power supply is cut off.

また、給電装置1の表示部3は、電子機器5内部の二次電池6の充電状態をユーザーに告知するためのものであり、例えば、二次電池6の電池残量が所定の充電量の約半分である場合には、“充電50%”と表示する。また、二次電池6が満充電された場合には、“充電完了”と表示する。   The display unit 3 of the power supply device 1 is for notifying the user of the charging state of the secondary battery 6 inside the electronic device 5. For example, the remaining battery level of the secondary battery 6 is a predetermined charge amount. When it is approximately half, “charge 50%” is displayed. When the secondary battery 6 is fully charged, “charge complete” is displayed.

図2は、図1における給電装置のブロック構成図、図3は、図1における電子機器のブロック構成図である。   2 is a block configuration diagram of the power supply apparatus in FIG. 1, and FIG. 3 is a block configuration diagram of the electronic apparatus in FIG.

図2に示すように、給電装置1の内部には、LC共振を行うための第一の共振回路10があり、また、第一の共振回路10のLC特性を一義的に決定するための第一の回路制御部9がある。   As shown in FIG. 2, the power supply apparatus 1 includes a first resonance circuit 10 for performing LC resonance, and a first resonance circuit 10 for uniquely determining the LC characteristics of the first resonance circuit 10. There is one circuit controller 9.

第一の共振回路10内には一次コイルL1が設けられている。一次コイルL1に共振周波数の交流電界を印加すると、その周辺に振動磁場が発生し、磁気共鳴によって受電側の電子機器5内部の二次コイルL2(図3)に電力が伝わり、電子機器5内部の充電可能な二次電池6に対して充電を行う。   A primary coil L1 is provided in the first resonance circuit 10. When an alternating electric field having a resonance frequency is applied to the primary coil L1, an oscillating magnetic field is generated around the primary coil L1, and power is transmitted to the secondary coil L2 (FIG. 3) inside the electronic device 5 on the power receiving side by magnetic resonance. The rechargeable secondary battery 6 is charged.

図3に示すように、電子機器5の内部には、給電装置1内の一次コイルL1と共振を行うための二次コイルL2を備えた第二の共振回路13があり、また、第二の共振回路13のLC特性を一義的に決定するための第二の回路制御部12がある。   As shown in FIG. 3, inside the electronic device 5, there is a second resonance circuit 13 including a secondary coil L <b> 2 for resonating with the primary coil L <b> 1 in the power feeding device 1, and the second There is a second circuit control unit 12 for uniquely determining the LC characteristics of the resonance circuit 13.

また、一次コイルL1と二次コイルL2とのLC共振時の磁気エネルギーを電気エネルギーへ変換する電力変換部14を備え、その電力変換部14からの電力を電子機器5内の充電可能な二次電池6に供給する。   Moreover, the power converter 14 which converts the magnetic energy at the time of LC resonance of the primary coil L1 and the secondary coil L2 into electric energy is provided, and the secondary from which the electric power from the power converter 14 can be charged in the electronic device 5 Supply to battery 6.

図4は、図2における第一の共振回路の構成図である。   FIG. 4 is a configuration diagram of the first resonance circuit in FIG.

給電装置1内部の第一の共振回路10には、異なる複数の共振周波数を任意に設定可能なLC回路として機能するために、一次コイルL1が設けられており、また、第一の共振回路10は、第一の回路制御部9と接続されている。   The first resonance circuit 10 in the power supply device 1 is provided with a primary coil L1 in order to function as an LC circuit capable of arbitrarily setting a plurality of different resonance frequencies. Is connected to the first circuit control unit 9.

さらに第一の共振回路10内に、容量の異なる複数のコンデンサ、ここでは、C11,C12,C13,C14が、それぞれ対応する抵抗R11,R12,R13,R14及びスイッチSW11,SW12,SW13,SW14を介して並列に接続されている。   Further, in the first resonance circuit 10, a plurality of capacitors having different capacities, here, C11, C12, C13, and C14 respectively have corresponding resistors R11, R12, R13, and R14 and switches SW11, SW12, SW13, and SW14. Are connected in parallel.

第一の共振回路10内の検出部11では、給電装置1に電力が供給されている間、第一の共振回路10内の一次コイルL1を流れる電流値を数ms間隔の一定のタイミングで読み取っている。そして、検出部11では、給電装置1の一次コイルL1と、電子機器5の二次コイルL2が共振状態であるかどうかを判断している。   The detection unit 11 in the first resonance circuit 10 reads the value of the current flowing through the primary coil L1 in the first resonance circuit 10 at a constant timing of several ms while power is supplied to the power supply device 1. ing. Then, the detection unit 11 determines whether or not the primary coil L1 of the power feeding device 1 and the secondary coil L2 of the electronic device 5 are in a resonance state.

つまり、コイルを流れる電流値は共振回路のLC特性により定まるが、一次コイルL1と二次コイルL2が共振状態である場合には、一次コイルL1を流れる電流値が最小値となる。また、一次コイルL1と二次コイルL2が共振状態でない場合には、一次コイルL1を流れる電流値が最小値以外の値を示す。   That is, the current value flowing through the coil is determined by the LC characteristics of the resonance circuit, but when the primary coil L1 and the secondary coil L2 are in a resonance state, the current value flowing through the primary coil L1 is the minimum value. Further, when the primary coil L1 and the secondary coil L2 are not in a resonance state, the value of the current flowing through the primary coil L1 is a value other than the minimum value.

第一の回路制御部9によって、スイッチSW11,SW12,SW13,SW14の回路への接続有無が制御され、複数のコンデンサC11,C12,C13,C14の内、第一の共振回路10内に接続されるコンデンサが設定される。   The first circuit controller 9 controls whether the switches SW11, SW12, SW13, and SW14 are connected to the circuit, and is connected to the first resonance circuit 10 among the plurality of capacitors C11, C12, C13, and C14. Capacitor is set.

複数のコンデンサC11,C12,C13,C14の内、第一の共振回路10内に接続されるコンデンサの違いによって、第一の共振回路10のLC特性が一義的に設定される、即ち、給電装置1内部の一次コイルL1の共振周波数が決定される。   The LC characteristics of the first resonance circuit 10 are uniquely set by the difference in the capacitors connected to the first resonance circuit 10 among the plurality of capacitors C11, C12, C13, C14. The resonance frequency of the primary coil L1 inside 1 is determined.

具体的には、第一の回路制御部9によって、第一の共振回路10において、SW11のみをON状態にすることで共振周波数をA[Hz]とし、SW12のみをON状態にすることで共振周波数をB[Hz]とする。同様に、SW13のみをON状態にすることで共振周波数をC[Hz]、そして、SW14のみをON状態にすることで共振周波数をD[Hz]とする。   Specifically, the first circuit control unit 9 causes the resonance frequency to be set to A [Hz] by turning on only SW11 in the first resonance circuit 10, and resonant by turning on only SW12. Let the frequency be B [Hz]. Similarly, the resonance frequency is set to C [Hz] by turning on only SW13, and the resonance frequency is set to D [Hz] by turning on only SW14.

図5は、図3における第二の共振回路の構成図である。   FIG. 5 is a block diagram of the second resonance circuit in FIG.

図5に示すように、電子機器5内部の第二の共振回路13には、第一の共振回路10と同様に、異なる複数の共振周波数を任意に設定可能なLC回路として機能するために、二次コイルL2が設けられている。また、第二の共振回路13は、第二の回路制御部12と接続されている。   As shown in FIG. 5, the second resonance circuit 13 inside the electronic device 5 functions as an LC circuit that can arbitrarily set a plurality of different resonance frequencies, like the first resonance circuit 10. A secondary coil L2 is provided. The second resonance circuit 13 is connected to the second circuit control unit 12.

さらに、第二の共振回路13内に、容量の異なる複数のコンデンサ、ここでは、C21,C22,C23,C24が、それぞれ対応する抵抗R21,R22,R23,R24及びスイッチSW21,SW22,SW23,SW24を介して並列に接続されている。   Further, in the second resonance circuit 13, a plurality of capacitors having different capacities, here, C21, C22, C23, C24, respectively correspond to resistors R21, R22, R23, R24 and switches SW21, SW22, SW23, SW24. Are connected in parallel.

また、給電装置1の場合と同様、第二の回路制御部12によって、スイッチSW21,SW22,SW23,SW24の回路への接続有無が制御される。そして、第二の回路制御部12によって、複数のコンデンサC21,C22,C23,C24の内、第二の共振回路13内に接続されるコンデンサが設定される。   Further, as in the case of the power feeding apparatus 1, the second circuit control unit 12 controls whether or not the switches SW21, SW22, SW23, and SW24 are connected to the circuit. The second circuit control unit 12 sets a capacitor to be connected to the second resonance circuit 13 among the plurality of capacitors C21, C22, C23, and C24.

複数のコンデンサC21,C22,C23,C24の内、第二の共振回路13内に接続されるコンデンサの違いによって、第二の共振回路13のLC特性が一義的に設定される、即ち、電子機器5内部の二次コイルL2の共振周波数が決定される。   The LC characteristic of the second resonance circuit 13 is uniquely set by the difference in the capacitors connected to the second resonance circuit 13 among the plurality of capacitors C21, C22, C23, C24. 5, the resonance frequency of the secondary coil L2 inside is determined.

具体的には、電子機器5内部の二次コイルL2の共振周波数は、二次電池6の残量に応じて第二の回路制御部12により一義的に決定されている。   Specifically, the resonance frequency of the secondary coil L <b> 2 inside the electronic device 5 is uniquely determined by the second circuit control unit 12 according to the remaining amount of the secondary battery 6.

例えば、二次電池6の電池残量が満充電状態の0〜60%であれば、第二の共振回路13において、SW21のみをON状態にすることで共振周波数をA[Hz]とし、61〜80%であればSW22のみをON状態にすることで共振周波数をB[Hz]とする。   For example, if the remaining battery level of the secondary battery 6 is 0 to 60% of the fully charged state, the resonance frequency is set to A [Hz] by turning on only the SW 21 in the second resonance circuit 13, 61 If it is ˜80%, the resonance frequency is set to B [Hz] by turning on only SW22.

同様に、81〜95%であればSW23のみをON状態にすることで共振周波数をC[Hz]、そして、96〜100%であればSW24のみをON状態にすることで共振周波数をD[Hz]とする。   Similarly, if 81 to 95%, only the SW23 is turned on to set the resonance frequency to C [Hz], and if 96 to 100%, only the SW24 is turned to ON to set the resonance frequency to D [ Hz].

ここでの共振周波数A〜D[Hz]は、前述の給電装置1における共振周波数A〜D[Hz]と同一である。   The resonance frequencies A to D [Hz] here are the same as the resonance frequencies A to D [Hz] in the above-described power feeding device 1.

一次コイルL1と二次コイルL2は、それぞれの共振回路内におけるスイッチの接続状態により、異なる複数の共振周波数を設定可能であるが、上述したように、一次コイルL1の持つ複数の共振周波数と、二次コイルL2の持つ複数の共振周波数は共通である。従って、電子機器5の充電時は、一次コイルL1と二次コイルL2における共通の共振周波数を利用することにより充電を行う。   The primary coil L1 and the secondary coil L2 can set different resonance frequencies depending on the connection state of the switches in the respective resonance circuits, but as described above, the resonance frequencies of the primary coil L1 and A plurality of resonance frequencies of the secondary coil L2 are common. Therefore, when the electronic device 5 is charged, charging is performed by using a common resonance frequency in the primary coil L1 and the secondary coil L2.

共通の複数の共振周波数を用いることによる本発明の充電方法を説明する。   The charging method of the present invention by using a plurality of common resonance frequencies will be described.

図6は、図1の共鳴充電システムによる充電時の給電装置側を中心とした処理の手順を示すフローチャートである。   FIG. 6 is a flowchart showing a processing procedure centering on the power feeding apparatus side during charging by the resonant charging system of FIG. 1.

まず、ユーザーが給電装置1のスイッチ2をON状態にすることで、第一の共振回路10、第一の回路制御部9及び検出部11に電力が供給され、電子機器5への充電を開始する。   First, when the user turns on the switch 2 of the power supply device 1, power is supplied to the first resonance circuit 10, the first circuit control unit 9, and the detection unit 11, and charging of the electronic device 5 is started. To do.

給電装置1側において、充電開始時における電子機器5内部の二次電池6の電池残量を検出するために、給電装置1の第一の回路制御部9により、第一の共振回路10内のSW11のみをON状態とし、残りのSW12,SW13,SW14はOFF状態とする。   On the power supply device 1 side, in order to detect the remaining battery level of the secondary battery 6 inside the electronic device 5 at the start of charging, the first circuit control unit 9 of the power supply device 1 Only SW11 is turned on, and the remaining SW12, SW13, and SW14 are turned off.

このスイッチング動作により、コンデンサC11のみが第一の共振回路9内に接続され、一次コイルL1の共振周波数がA[Hz]に設定された後、電子機器5内部の二次コイルL2と共振状態であるか否かを、検出部11によって判別する。   By this switching operation, only the capacitor C11 is connected in the first resonance circuit 9, and after the resonance frequency of the primary coil L1 is set to A [Hz], it is in a resonance state with the secondary coil L2 inside the electronic device 5. The detection unit 11 determines whether or not there is.

充電開始時、電子機器5内部の二次電池6の電池残量が60%以下、つまり二次コイルL2の共振周波数がA[Hz]であれば、給電装置1内部の一次コイルL1と共振し、給電装置1の第一の共振回路10内に流れる電流が最小となる。これにより、共振状態であることが給電装置1側で検出部11によって判別でき、電子機器5への充電を継続する(ステップS601、S602)。   At the start of charging, if the remaining battery level of the secondary battery 6 in the electronic device 5 is 60% or less, that is, if the resonant frequency of the secondary coil L2 is A [Hz], the secondary coil 6 resonates with the primary coil L1 inside the power feeding device 1. The current flowing in the first resonance circuit 10 of the power feeding device 1 is minimized. Thereby, it can discriminate | determine by the detection part 11 by the electric power feeder 1 side that it is a resonance state, and the charge to the electronic device 5 is continued (step S601, S602).

また、充電開始時、電子機器5内部の二次コイルL2の共振周波数がA[Hz]以外の場合、例えば、B[Hz]であれば、一次コイルL1と共振を行わない。そのため、第一の共振回路10に流れる電流の変化がなく、二次コイルL2と共振状態ではないことが、給電装置1内部の検出部11によって判別される。   Further, at the start of charging, when the resonance frequency of the secondary coil L2 inside the electronic device 5 is other than A [Hz], for example, B [Hz], the resonance with the primary coil L1 is not performed. Therefore, the detection unit 11 in the power feeding apparatus 1 determines that there is no change in the current flowing through the first resonance circuit 10 and that the secondary coil L2 is not in a resonance state.

これは、電子機器5内部の二次コイルL2の共振周波数がC[Hz]及びD[Hz]であった場合も同様である。   The same applies to the case where the resonance frequency of the secondary coil L2 in the electronic device 5 is C [Hz] and D [Hz].

この場合、給電装置1の第一の回路制御部9により、第一の共振回路10において、設定周波数をA[Hz]の次の周波数であるB[Hz]に設定するべく、第一の共振回路10に接続されているSW11をOFF状態へと切り替える。続いて、SW12のみをON状態へと切り替える動作を行う。   In this case, the first circuit controller 9 of the power supply device 1 uses the first resonance circuit 10 to set the set frequency to B [Hz], which is the frequency next to A [Hz]. The switch SW11 connected to the circuit 10 is switched to the OFF state. Subsequently, an operation of switching only the SW 12 to the ON state is performed.

そして上述と同様、電子機器5内部の二次コイルL2と共振状態であるか否かを検出部11によって判別する(ステップS603乃至ステップS605)。   Similarly to the above, the detection unit 11 determines whether or not the secondary coil L2 in the electronic device 5 is in a resonance state (steps S603 to S605).

また、充電開始時、電子機器5内部の二次コイルL2の共振周波数がC[Hz]であれば、給電装置1側の設定共振周波数をC[Hz]に設定するべく、第一の共振回路10に接続されているSW12をOFF状態へと切り替える。続いて、SW13のみをON状態へと切り替える動作を行う。そして、充電完了間近であることをユーザーに告知する(ステップS606乃至ステップS608)。   In addition, when the resonance frequency of the secondary coil L2 inside the electronic device 5 is C [Hz] at the start of charging, the first resonance circuit is set to set the set resonance frequency on the power feeding device 1 side to C [Hz]. SW12 connected to 10 is switched to the OFF state. Subsequently, an operation of switching only the SW 13 to the ON state is performed. Then, the user is notified that charging is almost complete (steps S606 to S608).

また、充電開始時、電子機器5内部の二次コイルL2の共振周波数がD[Hz]であれば、給電装置1側の設定共振周波数をD[Hz]に設定するべく、第一の共振回路10に接続されているSW13をOFF状態へと切り替える。続いて、SW14のみをON状態へと切り替える動作を行う。そして、充電完了をユーザーに告知する(ステップS609乃至ステップS611)。   In addition, when the resonance frequency of the secondary coil L2 in the electronic device 5 is D [Hz] at the start of charging, the first resonance circuit is set to set the set resonance frequency on the power feeding device 1 side to D [Hz]. 10 is switched to the OFF state. Subsequently, an operation of switching only the SW 14 to the ON state is performed. Then, the user is notified of the completion of charging (steps S609 to S611).

このようにして、給電装置1は、充電開始時における電子機器5内部の二次電池6の電池残量の特定を、共振周波数を利用してA,B,C,D[Hz]の順に行い、充電開始時の電子機器5への共振周波数を決定する。   In this way, the power supply device 1 specifies the remaining battery level of the secondary battery 6 inside the electronic device 5 at the start of charging in the order of A, B, C, and D [Hz] using the resonance frequency. The resonance frequency to the electronic device 5 at the start of charging is determined.

図7は、図1の共鳴充電システムによる充電時の電子機器側を中心とした処理の手順を示すフローチャートである。   FIG. 7 is a flowchart showing a processing procedure centering on the electronic device side during charging by the resonant charging system of FIG. 1.

電子機器5の共振周波数については、第二の回路制御部12及び第二の共振回路13によって、二次電池6の電池残量によって異なるように設定されており、これは、二次電池6の充電時、共振周波数が電池残量の増大によって遷移していくことを示す。   The resonance frequency of the electronic device 5 is set to be different depending on the remaining battery level of the secondary battery 6 by the second circuit control unit 12 and the second resonance circuit 13. It shows that the resonance frequency transitions due to an increase in the remaining battery level during charging.

充電開始時、給電装置1と電子機器5が共にA[Hz]の共振周波数を利用して充電を行っている場合、電子機器5内の二次電池6の電池残量が61%以上になった時点で(ステップS701乃至ステップS704)、以下の処理が行われる。   At the start of charging, when both the power supply device 1 and the electronic device 5 are charged using the resonance frequency of A [Hz], the remaining battery capacity of the secondary battery 6 in the electronic device 5 becomes 61% or more. (Steps S701 to S704), the following processing is performed.

即ち、電子機器5内の第二の回路制御部12によってSW21をOFF状態とし、SW22のみをON状態へと切り替える。これにより、コンデンサC22のみが第二の共振回路13内に接続され、二次コイルL2の共振周波数がB[Hz]へと遷移する。   That is, the second circuit control unit 12 in the electronic device 5 turns off the SW 21 and switches only the SW 22 to the ON state. Thereby, only the capacitor C22 is connected in the second resonance circuit 13, and the resonance frequency of the secondary coil L2 transitions to B [Hz].

電子機器5の共振周波数の変化が起こると、給電装置1の一次コイルL1を流れる電流値が変化し、給電装置1側で電子機器5と共振していない、つまり二次電池6への充電が成されていないことが判明する。   When a change in the resonance frequency of the electronic device 5 occurs, the value of the current flowing through the primary coil L1 of the power supply device 1 changes and the power supply device 1 does not resonate with the electronic device 5, that is, the secondary battery 6 is charged. It turns out that it was not made.

そのため、給電装置1内の第一の回路制御部9において、第一の共振回路10内のSW11をOFF状態とし、SW12のみをON状態へと切り替える。これにより、コンデンサC12のみが第一の共振回路9内に接続され、一次コイルL1の共振周波数をB[Hz]へと遷移させ充電を継続する。   Therefore, in the first circuit control unit 9 in the power supply apparatus 1, the SW 11 in the first resonance circuit 10 is turned off and only the SW 12 is turned on. Thereby, only the capacitor C12 is connected in the first resonance circuit 9, and the resonance frequency of the primary coil L1 is changed to B [Hz] to continue charging.

そして、二次電池6の電池残量が、満充電状態の81%に達した場合(ステップS705乃至ステップS707)、第二の回路制御部12によって、第二の共振回路13内のSW22がOFF状態となり、SW23のみをON状態へと切り替える。   When the remaining battery level of the secondary battery 6 reaches 81% of the fully charged state (steps S705 to S707), the SW 22 in the second resonance circuit 13 is turned off by the second circuit control unit 12. State, and only SW23 is switched to the ON state.

これにより、コンデンサC23のみが第二の共振回路13内に接続され、次の共振周波数C[Hz]へと遷移させることができる。   As a result, only the capacitor C23 is connected in the second resonance circuit 13 and can be shifted to the next resonance frequency C [Hz].

このとき、前述と同様、電子機器5の共振周波数の変化により、給電装置1の一次コイルL1を流れる電流値が変化し、給電装置1側で電子機器5と共振していないことが判明する。   At this time, as described above, the value of the current flowing through the primary coil L1 of the power feeding device 1 changes due to the change in the resonance frequency of the electronic device 5, and it is found that the power feeding device 1 does not resonate with the electronic device 5.

そのため、給電装置1内の第一の回路制御部9において、第一の共振回路10内のSW12をOFF状態とし、SW13をON状態へと切り替えることにより、コンデンサC13のみが第一の共振回路10内に接続される。そして、一次コイルL1の共振周波数がC[Hz]へと遷移し、電子機器5への充電を継続する。   Therefore, in the first circuit control unit 9 in the power supply apparatus 1, the SW 12 in the first resonance circuit 10 is turned off and the SW 13 is turned on, so that only the capacitor C 13 is in the first resonance circuit 10. Connected in. And the resonant frequency of the primary coil L1 changes to C [Hz], and the charge to the electronic device 5 is continued.

また、二次電池6の電池残量が、満充電状態の96%に達した場合(ステップS708乃至ステップS710)、第二の回路制御部12によって、第二の共振回路13内のSW23がOFF状態となり、SW24のみをON状態へと切り替える。これにより、コンデンサC24のみが第二の共振回路13内に接続され、次の共振周波数D[Hz]へと遷移する。   Further, when the remaining battery level of the secondary battery 6 reaches 96% of the fully charged state (steps S708 to S710), the SW 23 in the second resonance circuit 13 is turned off by the second circuit control unit 12. State, and only SW24 is switched to the ON state. As a result, only the capacitor C24 is connected in the second resonance circuit 13, and transitions to the next resonance frequency D [Hz].

このとき、前述と同様、電子機器5の共振周波数の変化により、給電装置1の一次コイルL1を流れる電流値が変化し、給電装置1側で電子機器5と共振していないことが検出部11によって判明する。   At this time, as described above, the detection unit 11 indicates that the value of the current flowing through the primary coil L1 of the power supply device 1 changes due to the change in the resonance frequency of the electronic device 5 and the power supply device 1 is not resonating with the electronic device 5. To find out.

そのため、給電装置1内の第一の回路制御部9において、第一の共振回路10内のSW13をOFF状態とし、SW14のみをON状態へと切り替えることにより、コンデンサC14のみが第一の共振回路10内に接続され。そして、一次コイルL1の共振周波数がD[Hz]へと遷移し、電子機器5への充電を継続する(ステップS711)。   Therefore, in the first circuit control unit 9 in the power supply apparatus 1, the SW 13 in the first resonance circuit 10 is turned off and only the SW 14 is turned on, so that only the capacitor C 14 is in the first resonance circuit. 10 connected. And the resonant frequency of the primary coil L1 changes to D [Hz], and the charge to the electronic device 5 is continued (step S711).

このようにして、電子機器5の共振周波数は、二次電池6の電池残量によってA[Hz],B[Hz],C[Hz],D[Hz]へと変化していく。また、給電装置1側の共振周波数も、その変化に追従するようにしてA[Hz],B[Hz],C[Hz],D[Hz]へと変化していく。   In this way, the resonance frequency of the electronic device 5 changes to A [Hz], B [Hz], C [Hz], and D [Hz] depending on the remaining battery level of the secondary battery 6. Further, the resonance frequency on the power feeding device 1 side also changes to A [Hz], B [Hz], C [Hz], and D [Hz] so as to follow the change.

このとき、給電装置1側においては、どの共振周波数で共振を行っているかを検出部11によって判別することにより、その共振周波数を以って、電子機器5内部の二次電池6の電池残量を検出し、ユーザーに告知することが可能である。   At this time, on the power feeding device 1 side, the remaining amount of the secondary battery 6 inside the electronic device 5 is determined with the resonance frequency by determining at which resonance frequency the resonance is performed. Can be detected and notified to the user.

また、電子機器5の二次電池6が満充電状態となれば、その状態での共振周波数を給電装置1の第一の回路制御部9により認識し、給電装置1が電子機器5への給電を停止させることで、電力の浪費を防止することも可能である。   When the secondary battery 6 of the electronic device 5 is fully charged, the resonance frequency in that state is recognized by the first circuit control unit 9 of the power supply device 1, and the power supply device 1 supplies power to the electronic device 5. It is also possible to prevent waste of power by stopping the operation.

また、本発明の構成では、便宜的に共振周波数をA〜D[Hz]としたが、給電装置側で二次電池の電池残量をより細かく把握するために、共振周波数の数をさらに増やしてもよい。   In the configuration of the present invention, the resonance frequency is set to A to D [Hz] for convenience, but the number of resonance frequencies is further increased in order to grasp the remaining battery level of the secondary battery in detail on the power feeding device side. May be.

例えば、給電装置1及び電子機器5内部の共振回路において、接続するコンデンサ、抵抗、スイッチの数をそれぞれ5個とし、電子機器5側において、二次電池6の電池残量が満充電状態の0〜60%であれば、共振周波数をA[Hz]とする。また、61〜80%であればB[Hz]、81〜90%であればC[Hz]、91〜96%であればD[Hz]、97〜100%であればE[Hz]とする。   For example, in the resonance circuit inside the power feeding device 1 and the electronic device 5, the number of capacitors, resistors, and switches to be connected is five, and the remaining amount of the secondary battery 6 is 0 on the electronic device 5 side. If it is ˜60%, the resonance frequency is A [Hz]. Moreover, if it is 61-80%, it will be B [Hz], if it is 81-90%, it will be C [Hz], if it is 91-96%, it will be D [Hz], if it is 97-100%, it will be E [Hz]. To do.

また、給電装置1側においても、電子機器5の共振周波数に対応するA〜E[Hz]の共振周波数を備え、前述のように、二次電池6の電池残量が増大していくにつれて、共振周波数の切り替え(遷移)を細かく行うようにする。   Further, the power supply device 1 also has a resonance frequency of A to E [Hz] corresponding to the resonance frequency of the electronic device 5, and as described above, as the remaining battery level of the secondary battery 6 increases, The switching (transition) of the resonance frequency is performed finely.

このことにより、二次電池の充電完了までの状態が、給電装置1側においてより正確に検出でき、ユーザーに告知することで、ユーザーにとっての利便性が向上する。   As a result, the state until the charging of the secondary battery is completed can be detected more accurately on the power feeding device 1 side, and notification to the user improves convenience for the user.

本発明の実施の形態に係る共鳴充電システムの構成図である。1 is a configuration diagram of a resonance charging system according to an embodiment of the present invention. 図1における給電装置のブロック構成図である。It is a block block diagram of the electric power feeder in FIG. 図1における電子機器のブロック構成図である。It is a block block diagram of the electronic device in FIG. 図4は、図2における第一の共振回路の構成図である。FIG. 4 is a configuration diagram of the first resonance circuit in FIG. 図3における第二の共振回路の構成図である。It is a block diagram of the 2nd resonance circuit in FIG. 図1の共鳴充電システムによる充電時の給電装置側を中心とした処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process centering on the electric power feeder side at the time of charge by the resonance charge system of FIG. 1の共鳴充電システムによる充電時の電子機器側を中心とした処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process centering on the electronic device side at the time of the charge by the 1 resonance charging system.

符号の説明Explanation of symbols

1 給電装置
2 スイッチ
3 表示部
4 ソケット
5 電子機器
6 二次電池
7 レンズ部
8 ストロボ発光部
9 第一の回路制御部
10 第一の共振回路
11 検出部
12 第二の回路制御部
13 第二の共振回路
14 電力変換部
L1 一次コイル
L2 二次コイル
DESCRIPTION OF SYMBOLS 1 Power feeder 2 Switch 3 Display part 4 Socket 5 Electronic device 6 Secondary battery 7 Lens part 8 Strobe light emission part 9 First circuit control part 10 First resonance circuit 11 Detection part 12 Second circuit control part 13 Second Resonance circuit 14 of power converter L1 primary coil L2 secondary coil

Claims (10)

給電装置から共鳴によ供給される電力を受け取る受電手段と、
前記受電手段から供給される電力を用いて電池の充電を行う手と、
記受電手段の共振周波数を設定するための設定手段と、
前記設定手段によって設定された前記受電手段の共振周波数が第1の共振周波数である場合に、前記電池の残量に応じて、前記受電手段の共振周波数を前記第1の共振周波数と異なる第2の共振周波数に変更するための変更処理を行う制御手段と
を有することを特徴とする電子機器。
A receiving means for receiving the power supplied Ri by the resonance from the power supply device,
And line Cormorant hand stage charging of the battery using power supplied from said power receiving means,
And setting means for setting the resonance frequency of the previous Symbol receiving means,
When the resonance frequency of the power reception means set by the setting means is the first resonance frequency, the resonance frequency of the power reception means is different from the first resonance frequency according to the remaining amount of the battery. Control means for performing a change process for changing to the resonance frequency of
An electronic device comprising:
前記制御手段は、前記設定手段によって設定された前記受電手段の共振周波数が前記第1の共振周波数である場合、前記電池の残量が所定値以上であることが検出されたことに応じて、前記変更処理を行うことを特徴とする請求項1に記載の電子機器。 The control means, when the resonance frequency of the power receiving means set by the setting means is the first resonance frequency, in response to detecting that the remaining amount of the battery is greater than or equal to a predetermined value, The electronic device according to claim 1, wherein the change process is performed . 前記制御手段は、前記給電装置に前記電池の残量を通知するために前記変更処理を行うことを特徴とする請求項1または2に記載の電子機器。The electronic apparatus according to claim 1, wherein the control unit performs the change process to notify the power supply apparatus of a remaining amount of the battery. 前記変更処理は、前記受電手段に接続されるコンデンサの容量を前記電池の残量に応じて変更するための処理を含むことを特徴とする請求項1から3のいずれか1項に記載の電子機器。4. The electron according to claim 1, wherein the changing process includes a process for changing a capacity of a capacitor connected to the power receiving unit in accordance with a remaining amount of the battery. 5. machine. 給電装置から共鳴によ供給される電力を受け取る受電手段と、
前記受電手段から供給される電力を用いて電池の充電を行う手と、
前記受電手段の共振周波数を設定するための設定手段と、
前記設定手段によって設定された前記受電手段の共振周波数が第1の共振周波数である場合、前記電池の充電状態に応じて、前記受電手段の共振周波数を前記第1の共振周波数と異なる第2の共振周波数に変更するための変更処理を行う制御手段と
を有することを特徴とする電子機器。
A receiving means for receiving the power supplied Ri by the resonance from the power supply device,
And line Cormorant hand stage charging of the battery using power supplied from said power receiving means,
Setting means for setting a resonance frequency of the power receiving means;
When the resonance frequency of the power reception means set by the setting means is a first resonance frequency, a second resonance frequency different from the first resonance frequency is set according to a state of charge of the battery. Control means for performing change processing for changing to the resonance frequency;
An electronic device comprising:
前記設定手段によって設定された前記受電手段の共振周波数が前記第1の共振周波数である場合、前記制御手段は、前記充電状態が所定の状態に達したことが検出されたことに応じて、前記変更処理を行うことを特徴とする請求項5に記載の電子機器。When the resonance frequency of the power receiving unit set by the setting unit is the first resonance frequency, the control unit is configured to detect that the charging state has reached a predetermined state. 6. The electronic apparatus according to claim 5, wherein a change process is performed. 前記制御手段は、前記給電装置に前記充電状態が前記所定の状態に達したことを通知するために前記変更処理を行うことを特徴とする請求項6に記載の電子機器。The electronic device according to claim 6, wherein the control unit performs the changing process to notify the power supply apparatus that the state of charge has reached the predetermined state. 前記変更処理は、前記受電手段に接続されるコンデンサの容量を前記電池の充電状態に応じて変更するための処理を含むことを特徴とする請求項5から7のいずれか1項に記載の電子機器。8. The electron according to claim 5, wherein the changing process includes a process for changing a capacity of a capacitor connected to the power receiving unit in accordance with a state of charge of the battery. 9. machine. 受電手段を用いて、給電装置から共鳴により供給される電力を受け取るステップと、Receiving power supplied by resonance from the power supply device using the power receiving means;
前記受電手段から供給される電力を用いて電池の充電を行うステップと、Charging the battery using power supplied from the power receiving means;
前記受電手段の共振周波数を設定するステップと、Setting a resonance frequency of the power receiving means;
設定された前記受電手段の共振周波数が第1の共振周波数である場合に、前記電池の残量に応じて、前記受電手段の共振周波数を前記第1の共振周波数と異なる第2の共振周波数に変更するための変更処理を行うステップとWhen the set resonance frequency of the power reception means is the first resonance frequency, the resonance frequency of the power reception means is changed to a second resonance frequency different from the first resonance frequency according to the remaining amount of the battery. Step to perform change process to change
を有することを特徴とする方法。A method characterized by comprising:
受電手段を用いて、給電装置から共鳴により供給される電力を受け取るステップと、Receiving power supplied by resonance from the power supply device using the power receiving means;
前記受電手段から供給される電力を用いて電池の充電を行うステップと、Charging the battery using power supplied from the power receiving means;
前記受電手段の共振周波数を設定するステップと、Setting a resonance frequency of the power receiving means;
設定された前記受電手段の共振周波数が第1の共振周波数である場合、前記電池の充電状態に応じて、前記受電手段の共振周波数を前記第1の共振周波数と異なる第2の共振周波数に変更するための変更処理を行うステップとWhen the set resonance frequency of the power receiving means is the first resonance frequency, the resonance frequency of the power receiving means is changed to a second resonance frequency different from the first resonance frequency according to the state of charge of the battery. Step to perform change processing to
を有することを特徴とする方法。A method characterized by comprising:
JP2008289865A 2008-11-12 2008-11-12 Electronic apparatus and method Active JP5441392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008289865A JP5441392B2 (en) 2008-11-12 2008-11-12 Electronic apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008289865A JP5441392B2 (en) 2008-11-12 2008-11-12 Electronic apparatus and method

Publications (3)

Publication Number Publication Date
JP2010119193A JP2010119193A (en) 2010-05-27
JP2010119193A5 JP2010119193A5 (en) 2011-12-08
JP5441392B2 true JP5441392B2 (en) 2014-03-12

Family

ID=42306471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008289865A Active JP5441392B2 (en) 2008-11-12 2008-11-12 Electronic apparatus and method

Country Status (1)

Country Link
JP (1) JP5441392B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158114A (en) * 2008-12-27 2010-07-15 Kyokko Denki Kk Power supply system
JP2012143091A (en) * 2011-01-04 2012-07-26 Kimitake Utsunomiya Remotely and wirelessly driven charger
JP5798407B2 (en) 2011-08-09 2015-10-21 Fdk株式会社 Non-contact chargeable secondary battery
EP2940830B1 (en) 2014-04-30 2020-03-04 WITS Co., Ltd. Wireless power reception device
KR101670128B1 (en) 2014-04-30 2016-10-27 삼성전기주식회사 Wireless power receiver and electronic device comprising the same
JP6862877B2 (en) * 2017-02-06 2021-04-21 富士通株式会社 Battery level measurement circuit, electronic devices and battery level measurement method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ329195A (en) * 1997-11-17 2000-07-28 Auckland Uniservices Ltd Loosely coupled inductive power transfer using resonant pickup circuit, inductor core chosen to saturate under overload conditions
US7989986B2 (en) * 2006-03-23 2011-08-02 Access Business Group International Llc Inductive power supply with device identification
JP2008035405A (en) * 2006-07-31 2008-02-14 Sharp Corp Semiconductor device
JP4308858B2 (en) * 2007-02-16 2009-08-05 セイコーエプソン株式会社 Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic equipment
JP4494426B2 (en) * 2007-02-16 2010-06-30 セイコーエプソン株式会社 Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic equipment
JP5190108B2 (en) * 2007-03-27 2013-04-24 マサチューセッツ インスティテュート オブ テクノロジー Wireless energy transfer device
JP4911148B2 (en) * 2008-09-02 2012-04-04 ソニー株式会社 Contactless power supply

Also Published As

Publication number Publication date
JP2010119193A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
JP5441392B2 (en) Electronic apparatus and method
JP5690251B2 (en) Resonance type wireless charger
US9071057B2 (en) Contactless power transmitting system having overheat protection function and method thereof
CN105594098B (en) Foreign object detection device, power transmission device and power reception device for wireless power transmission, and wireless power transmission system
KR102004541B1 (en) Method for controlling wireless power transmission in resonat wireless power transmission system, wireless power transmitting apparatus using the same, and wireless power receiving apparatus using the same
JP5527407B2 (en) Wireless power receiving apparatus and power receiving method
CN103107709B (en) There is the adaptive inductive power supply of communication capacity
TWI400851B (en) Contactless power receiving apparatus, power receiving method for contactless power receiving apparatus and contactless power supplying system
JP5372537B2 (en) Electronic device charging system, charger, and electronic device
US20100188041A1 (en) Apparatus supplying electric power to external device
KR101812444B1 (en) Wireless charging device for detection foreign object and method for detection foreign object of detection foreign object
KR101720400B1 (en) Power delivery device and power delivery/power receiving system
JP2016007117A (en) Power transmission device and wireless power transmission system
JP2010011588A (en) Power transmission control device, power transmission device, power receiving control device, power receiving device, and electronic apparatus
JP2010158151A (en) Contactless power transmission apparatus
KR20140018373A (en) Contactless power receiving device, vehicle equipped with the same, contactless power transmitting device, and contactless power transfer system
JP5528080B2 (en) Power supply
JP6186373B2 (en) Wireless power transmission device and wireless power signal transmission control method in wireless power transmission device
JP6186372B2 (en) Wireless power transmission apparatus and method
JP2009213294A (en) Contactless battery charger
CN109245254A (en) Power transmitting apparatus and power receiving system
JPWO2015033860A1 (en) Power transmission device, wireless power transmission system, and power transmission discrimination method
WO2011118673A1 (en) Non-contact power transmission device
JP6555848B2 (en) Charged device, its control method, control program, and non-contact charging system
CN109204016B (en) Vehicle and power transmission system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131217

R151 Written notification of patent or utility model registration

Ref document number: 5441392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151