JP5440786B2 - Glass substrate and manufacturing method thereof - Google Patents

Glass substrate and manufacturing method thereof Download PDF

Info

Publication number
JP5440786B2
JP5440786B2 JP2010022112A JP2010022112A JP5440786B2 JP 5440786 B2 JP5440786 B2 JP 5440786B2 JP 2010022112 A JP2010022112 A JP 2010022112A JP 2010022112 A JP2010022112 A JP 2010022112A JP 5440786 B2 JP5440786 B2 JP 5440786B2
Authority
JP
Japan
Prior art keywords
polishing
glass substrate
specific
boundary
roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010022112A
Other languages
Japanese (ja)
Other versions
JP2010234518A (en
Inventor
浩一 下津
広之 中津
泰紀 三成
祐之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2010022112A priority Critical patent/JP5440786B2/en
Priority to CN201080010281.9A priority patent/CN102341214B/en
Priority to KR1020117014792A priority patent/KR101707056B1/en
Priority to PCT/JP2010/053800 priority patent/WO2010104039A1/en
Priority to TW099106957A priority patent/TWI480127B/en
Publication of JP2010234518A publication Critical patent/JP2010234518A/en
Application granted granted Critical
Publication of JP5440786B2 publication Critical patent/JP5440786B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

本発明は、表面および裏面の外周端相互間に存する端面に、表面および裏面のそれぞれの外周端から板厚方向中央部にかけて外方に突出する研磨面が形成された後、さらに適所に研磨処理が施されてなるガラス基板およびその製造方法に関する。   In the present invention, a polishing surface protruding outward from the outer peripheral edge of each of the front surface and the back surface to the central portion in the plate thickness direction is formed on the end surface existing between the outer peripheral edges of the front surface and the back surface, and then further polished in place. The present invention relates to a glass substrate to which is applied and a manufacturing method thereof.

周知のように、液晶ディスプレイ(LCD)用やプラズマディスプレイ(PDP)用に代表されるフラットパネルディスプレイ(FPD)用などのガラス基板は、FPDの大画面化などに伴って大板化が推進されているのが現状である。この種のFPD用等のガラス基板は、ダウンドロー法やフロート法等を用いてガラスメーカーで成形した後、所定の寸法に切断されて出荷されるが、そのガラス基板における表面と裏面との外周端相互間に存する切断後の端面は、破面である。そのため、後工程において欠損や破損が生じ易く、これを防止することを目的として、その端面に対して研磨による面取り加工を施すのが通例である。   As is well known, glass substrates for flat panel displays (FPDs) such as liquid crystal displays (LCDs) and plasma displays (PDPs) are being promoted to become larger as the screen size of FPDs increases. This is the current situation. This type of glass substrate for FPD, etc. is molded by a glass maker using a downdraw method, a float method, etc., then cut to a predetermined size and shipped, but the outer periphery of the front and back surfaces of the glass substrate The end face after cutting existing between the ends is a fracture surface. For this reason, defects and breakage are likely to occur in the subsequent process, and chamfering by polishing is usually performed on the end face for the purpose of preventing this.

この切断後のガラス基板の端面に対する面取り加工は、複数回(例えば2回)にわたる研磨処理により行われるのが有利とされている。その一例として、特許文献1(段落[0005]、[0009]等)によれば、先ず、回転軸と平行な外周面が粗度の大きい研磨面とされた補助研磨砥石を用いて、当該ガラス基板の端面の予備的な粗研磨(一次研磨)を行い、然る後、回転軸と平行な外周面が粗度の小さい凹状の研磨面とされた研磨砥石を用いて、前記粗研磨処理部の仕上げ研磨(二次研磨)を行うことが開示されている。   It is advantageous that the chamfering process on the end surface of the glass substrate after the cutting is performed by a polishing process over a plurality of times (for example, twice). As an example, according to Patent Document 1 (paragraphs [0005], [0009], etc.), first, using an auxiliary polishing grindstone whose outer peripheral surface parallel to the rotation axis is a polished surface having a high roughness, the glass is used. Preliminary rough polishing (primary polishing) of the end face of the substrate is performed, and then the rough polishing processing unit is used by using a polishing grindstone whose outer peripheral surface parallel to the rotation axis is a concave polishing surface having a low roughness. It is disclosed that final polishing (secondary polishing) is performed.

そして、同文献の段落[0005]に記載された研磨手法は、一次研磨および二次研磨の双方共に、ガラス基板の端面に、外方に凸状となる断面円弧形状の研磨面が形成されるように研磨処理を行うものであるのに対し、同文献の段落[0009]に記載された研磨手法は、一次研磨により、ガラス基板の端面に、外方に凸状となる断面円弧形状の研磨面が形成されるように粗研磨処理を行った後、二次研磨により、当該端面の両側角部(当該端面と表面および裏面とのそれぞれの境部)を仕上げ研磨するものである。また、同文献の段落[0009]には、二次研磨として、上下一対の仕上げ研磨用の回転砥石を、一次研磨処理後のガラス基板の端面に、45°の角度で傾斜させて圧接させることが記載されている。   In the polishing method described in paragraph [0005] of the same document, both the primary polishing and the secondary polishing form a polishing surface having an arcuate cross-sectional shape that protrudes outward on the end surface of the glass substrate. In contrast, the polishing method described in paragraph [0009] of the same document is a method of polishing with a circular arc cross section that is convex outward on the end surface of the glass substrate by primary polishing. After performing a rough polishing process so that a surface is formed, both side corners of the end surface (each boundary between the end surface, the front surface, and the back surface) are finish-polished by secondary polishing. Also, in paragraph [0009] of the same document, as a secondary polishing, a pair of upper and lower rotary grinding wheels for finishing polishing are brought into pressure contact with an end face of the glass substrate after the primary polishing process at an angle of 45 °. Is described.

一方、特許文献2によれば、熱強化処理が施された熱強化ガラス板の表面と裏面との外周端相互間に存する端面に、外方に凸状となる断面円弧形状の研磨面を形成するための研磨処理(一次研磨)を施した後、その研磨処理後の端面と表面および裏面とのそれぞれの境部に、さらに45°程度の傾斜をもって平面状の研磨面を形成するための研磨処理(二次研磨)を施すことが開示されている。また、同文献には、上記の断面円弧形状の端面の表面最大凹凸は0.05mm以下となるように仕上げられると共に、当該端面と表面および裏面との境部の表面凹凸は0.007mm以下となるように仕上げられることも開示されている。   On the other hand, according to Patent Document 2, a polished surface having an arcuate cross section is formed on the end surface between the outer peripheral ends of the front and back surfaces of the heat strengthened glass plate that has been subjected to the heat strengthening treatment. Polishing to form a planar polishing surface with an inclination of about 45 ° at each boundary between the end surface, the front surface and the back surface after the polishing processing (primary polishing) It is disclosed that a treatment (secondary polishing) is performed. Further, in the same document, the surface maximum unevenness of the end surface of the above-mentioned circular arc shape is finished to be 0.05 mm or less, and the surface unevenness of the boundary between the end surface and the surface and the back surface is 0.007 mm or less. It is also disclosed that it can be finished.

特開2002−59346号公報JP 2002-59346 A 特開平9−278466号公報Japanese Patent Laid-Open No. 9-278466

ところで、上記の特許文献1、2に開示された研磨手法のうち、先ず、ガラス基板の端面に、外方に凸状となる断面円弧形状の研磨面を形成すべく一次研磨処理を施した後、当該端面と表面および裏面とのそれぞれの境部に、平面状の研磨面を形成すべく二次研磨処理を施す手法によれば、以下に示すような問題を有していた。   By the way, among the polishing methods disclosed in the above-mentioned Patent Documents 1 and 2, first, after performing a primary polishing process to form a polished surface having an arcuate cross-sectional shape that protrudes outward on the end surface of the glass substrate. According to the method of performing the secondary polishing treatment to form a planar polishing surface at each boundary between the end surface and the front and back surfaces, there are problems as shown below.

すなわち、一次研磨処理を施してガラス基板の端面に、外方に凸状となる断面円弧状の研磨面を形成した場合には、表面および裏面と、研磨後の端面との境界は、長手方向に直線状に延びる形態とはならない。具体的には、図7に平面視で示すように、一次研磨後の断面円弧状の端面3b1と、表面(または裏面)2a1との境界部z1が、凹凸形状になると共に、この境界部z1は、本来ならば直線zxで示す位置に存在するものであるが、実際には表面(または裏面)2a1の中央側に偏倚して存在することになる。   That is, when a polishing surface having an arcuate cross section that is convex outward is formed on the end surface of the glass substrate by performing a primary polishing process, the boundary between the front and back surfaces and the end surface after polishing is in the longitudinal direction. It does not have a form extending linearly. Specifically, as shown in a plan view in FIG. 7, a boundary portion z1 between the end surface 3b1 having an arcuate cross section after the primary polishing and the front surface (or back surface) 2a1 has an uneven shape, and the boundary portion z1 Is originally present at the position indicated by the straight line zx, but is actually biased toward the center of the front surface (or back surface) 2a1.

このような現象は、ガラス基板11の端面3b1の研磨時に、砥石の砥粒が、本来の境界となるべき直線zxよりも、表面(または裏面)2a1側に食い込むこと、および砥石の砥粒が、表面(または裏面)2a1側部分を剥離させることなどによって生じるものである。このような事態は、生産性の向上を図るべく、砥石をガラス基板の端面の長手方向に対して高速度で相対移動させる必要性があることによって一層顕著となって現れる。   Such a phenomenon is caused by the fact that the abrasive grains of the grindstone bite into the front surface (or back surface) 2a1 side rather than the straight line zx that should be the original boundary when the end surface 3b1 of the glass substrate 11 is polished. This is caused by peeling off the front surface (or back surface) 2a1 side portion. Such a situation becomes more prominent due to the necessity of relatively moving the grindstone at a high speed with respect to the longitudinal direction of the end face of the glass substrate in order to improve productivity.

然るに、特許文献1、2によれば、図8に縦断面で示すように、ガラス基板11の表面(または裏面)2aと端面3b1との本来的に境界となるべき上記の直線zx近辺に、砥石の砥面6b1が45°程度の傾斜をもって接触したのでは、実際の境界部z1に砥石の砥面6b1が非接触となる。そのため、砥石が、この凹凸状の境界部z1を研磨できなかったり、或いは境界部z1の一部のみを研磨できるに留まるなどして、結果的には凹凸状の境界部zが完全に研磨されず、この境界部に特定の研磨面からなる面取り部を形成できないという事態を招く。このような事態は、生産性の向上を図るべく、砥石を本来的に境界となるべき上記の直線zx近辺の長手方向に対して高速度で相対移動させる必要性がある故に、研磨量を多くすることができない場合に一層顕著となって現れる。   However, according to Patent Documents 1 and 2, as shown in a longitudinal section in FIG. 8, in the vicinity of the straight line zx that should essentially be the boundary between the front surface (or back surface) 2a of the glass substrate 11 and the end surface 3b1, When the grinding surface 6b1 of the grindstone contacts with an inclination of about 45 °, the grinding surface 6b1 of the grindstone is not in contact with the actual boundary portion z1. Therefore, the grindstone cannot polish the uneven boundary portion z1 or can only polish a part of the boundary portion z1, and as a result, the uneven boundary portion z is completely polished. Therefore, a situation occurs in which a chamfered portion made of a specific polished surface cannot be formed at the boundary portion. In such a situation, in order to improve productivity, it is necessary to relatively move the grindstone at a high speed with respect to the longitudinal direction in the vicinity of the straight line zx that should essentially be a boundary. If you can't do it, it will be even more pronounced.

そして、本発明者等は、鋭意努力を重ねた結果、上記の端面に対する研磨後のガラス基板に欠損や破損が発生するのは、上記の境界部z1を起点として欠けやクラック等が発生し或いはそのクラック等が進展することに由来するものであることを知見した。そのため、特許文献1、2に開示された研磨手法では、端面研磨後の後処理工程において、ガラス基板の欠損や破損を回避することが極めて困難となる。   And, as a result of intensive efforts, the inventors have lost or damaged the glass substrate after polishing with respect to the end face because of the occurrence of chipping, cracking, etc. starting from the boundary z1 or It was found that the cracks and the like originate from the progress. Therefore, with the polishing methods disclosed in Patent Documents 1 and 2, it is extremely difficult to avoid the glass substrate from being damaged or damaged in the post-processing step after end face polishing.

しかも、ガラス基板の端面研磨後に、当該端面と表面または裏面との実際の境界部が凹凸状になっていると、その部分からガラスチッピング或いはガラスパーティクルが剥離除去して、ガラス基板の有効面(ディスプレイ製造工程でパターン等の膜が形成される面)となるべき領域を有する表面に付着し、洗浄工程を経てもそれを除去できないという不具合を招く。また、端面の研磨時に発生してガラス基板の表面に付着したガラスパーティクル等が、洗浄工程において、端面と表面との凹凸状の境界部に滞留し易いと不具合をも招く。そして、これらが原因となって、乾燥工程において、ガラスパーティクル等が、ガラス基板の表面に付着した状態となり、ガラス基板の品位低下という致命的な欠陥をも招来する。   In addition, after polishing the end surface of the glass substrate, if the actual boundary between the end surface and the front surface or the back surface is uneven, glass chipping or glass particles are peeled and removed from that portion, and the effective surface of the glass substrate ( It adheres to the surface having a region to be a surface on which a film such as a pattern is formed in the display manufacturing process, and causes a problem that it cannot be removed even after a cleaning process. In addition, glass particles and the like that are generated during the polishing of the end face and adhere to the surface of the glass substrate tend to stay at the uneven boundary between the end face and the surface in the cleaning process. For these reasons, in the drying process, glass particles and the like are attached to the surface of the glass substrate, leading to a fatal defect that the quality of the glass substrate is degraded.

一方、特許文献2には、既述のように、端面の表面最大凹凸が0.05mm以下となるように仕上げられ、当該端面と表面および裏面との境界部の表面凹凸が0.007mm以下となるように仕上げられると記載されている。しかしながら、仮に、生産性を無視して境界部の研磨量を極めて多くして面取り部を形成したとしても、図9に示すように、端面が、粗さ曲線Y(実線)で示すような粗面状態であり、境界部(面取り部)が、粗さ曲線Z(破線)で示すような粗面状態であったのでは、後述するように意義のないものとなる。   On the other hand, in Patent Document 2, as described above, the surface maximum unevenness of the end surface is finished to be 0.05 mm or less, and the surface unevenness of the boundary portion between the end surface and the surface and the back surface is 0.007 mm or less. It is described that it will be finished. However, even if productivity is ignored and the chamfered portion is formed by increasing the amount of polishing at the boundary portion, as shown in FIG. 9, the end surface is rough as shown by the roughness curve Y (solid line). If it is a surface state and the boundary portion (chamfered portion) is a rough surface state as shown by the roughness curve Z (broken line), it becomes meaningless as will be described later.

この場合において、同文献に開示された研磨手法によれば、境界部の粗面状態を示す粗さ曲線Zが、端面の粗面状態を示す粗さ曲線Yよりも高低差が小さくなることは予測できるものの、その周期については、砥石の砥面の粗度、砥粒の軌道列数や軌道方向、その他の要素が複雑に影響を与えるものである。そのため、このような研磨手法では、境界部の粗面状態を示す粗さ曲線Zの周期は不明であって、端面の粗面状態を示す粗さ曲線Yの周期と図示のように同等、またはそれよりも短くなる可能性がある。   In this case, according to the polishing method disclosed in the same document, the roughness curve Z indicating the rough surface state of the boundary portion has a lower height difference than the roughness curve Y indicating the rough surface state of the end surface. Although predictable, the roughness of the grindstone surface, the number of trajectory trains and the trajectory direction of the abrasive grains, and other factors affect the period in a complicated manner. Therefore, in such a polishing method, the period of the roughness curve Z indicating the rough surface state of the boundary is unknown, and is equal to the period of the roughness curve Y indicating the rough surface state of the end face as illustrated, or It may be shorter.

そのため、ガラス基板は、依然として本発明者等の知見に則して、この境界部を起点として欠けやクラック等が発生し、ガラス基板を欠損或いは破損に至らしめるおそれがあるという問題が残存すると共に、ガラスパーティクル等も依然として境界部に滞留等してガラス基板の品位を低下させるおそれがあるという問題が残存する。   Therefore, the glass substrate still has the problem that in accordance with the knowledge of the present inventors, chipping, cracking, etc. occur starting from this boundary, and the glass substrate may be damaged or broken. Further, there remains a problem that glass particles and the like may still stay in the boundary portion and reduce the quality of the glass substrate.

本発明は、上記事情に鑑み、生産性を向上させた上で、ガラス基板の研磨後の端面と表面および/または裏面との境界部に適正な面取り部を確実に形成すると共に、ガラス基板の端面の面性状と、当該端面の表面側および/または裏面側の境界部の面性状との関係を適切なものとして、ガラス基板の欠損や破損を効果的に抑止し、且つ、ガラスパーティクル等の問題をも回避してガラス基板の品位向上を図ることを技術的課題とする。   In view of the above circumstances, the present invention improves productivity and reliably forms an appropriate chamfered portion at the boundary between the polished end surface and the front surface and / or the back surface of the glass substrate. Appropriate relationship between the surface properties of the end surface and the surface properties of the front and / or back side boundary portions of the end surface, effectively preventing defects and breakage of the glass substrate, and glass particles, etc. The technical problem is to improve the quality of the glass substrate while avoiding the problems.

上記技術的課題を解決するために創案された本発明に係る装置は、表面と、裏面と、表面および裏面の外周端相互間に存する端面とを有し、該端面に対して研磨処理を施すことにより表面および裏面のそれぞれの外周端から板厚方向中央部にかけて外方に突出する研磨面が形成されたガラス基板に対して、前記研磨処理後の端面と前記表面および前記裏面とのそれぞれの境界部の少なくとも一方に、前記研磨処理とは異なる特定研磨処理を施すことにより特定研磨面からなる面取り部が形成されると共に、前記面取り部の特定研磨面の十点平均粗さRz2が、前記特定研磨処理が施されていない前記端面の研磨面の十点平均粗さRz1よりも小さく、且つ、前記面取り部の特定研磨面の粗さ曲線要素の平均長さRSm2が、前記特定研磨処理が施されていない前記端面の研磨面の粗さ曲線要素の平均長さRSm1よりも大きいことに特徴づけられる。ここで、上記の「表面および裏面のそれぞれの外周端から板厚方向中央部にかけて外方に突出する研磨面」としては、断面が略円弧状の研磨面(端面)や、端面の一部としてC面取り部が形成されている場合を挙げることができる。なお、表面粗さについては、東京精密社製サーフコム590Aを用いて測定を行い、JIS B0601:2001にて、十点平均粗さRzjis(Rz1、Rz2)、および粗さ曲線要素の平均長さRSm(RSm1、RSm2)を算出するものとする(以下、同様)。 An apparatus according to the present invention, created to solve the above technical problem, has a front surface, a back surface, and an end surface existing between outer peripheral ends of the front surface and the back surface, and performs a polishing process on the end surface. With respect to the glass substrate on which the polished surface protruding outward from the outer peripheral edge of each of the front surface and the back surface to the central portion in the plate thickness direction is formed, each of the end surface after the polishing treatment and each of the front surface and the back surface at least one of the boundary portion, wherein with the chamfered portion comprising a specific polishing surface by applying different specific grinding process and the polishing process is formed, ten-point average roughness Rz 2 of the particular polished surface of the chamfer, The specific length RSm 2 of the roughness curve element of the specific polished surface of the chamfered portion is smaller than the ten-point average roughness Rz 1 of the polished surface of the end face not subjected to the specific polishing treatment, Polishing process Characterized in that greater than the average length RSm 1 of the roughness curve element of the polished surface of the end face that is not a. Here, as the “polishing surface projecting outward from the outer peripheral edge of each of the front surface and the back surface to the center portion in the plate thickness direction”, a polishing surface (end surface) having a substantially arc-shaped cross section or a part of the end surface A case where a chamfered portion is formed can be mentioned. Note that the surface roughness was measured by using a Tokyo Seimitsu Co. Surfcom 590A, JIS B0601: at 2001, the ten-point average roughness Rzjis (Rz 1, Rz 2) , and average length of roughness curve element RSm (RSm 1 , RSm 2 ) is calculated (hereinafter the same).

このような構成によれば、先ずガラス基板の端面のみを研磨処理することによって、当該端面と表面および裏面とのそれぞれの境界部が、平面視で凹凸状をなし且つ表面の中央側および裏面の中央側に偏倚して形成されていても、これらの少なくとも一方の境界部、すなわち必要とされる境界部には、特定研磨処理が施されることにより特定研磨面からなる面取り部が完全な態様で形成されている。したがって、従来のように実際の境界部が平面視で凹凸状をなし且つ表面および裏面の中央側に偏倚しているにも拘わらず、本来存在すべき境界部の位置に45°程度の傾斜をもって砥石を接触させていたが故に、実際の境界部に特定研磨面からなる面取り部を形成できないという不具合、特に生産性を高めた場合の当該不具合が効果的に回避される。詳述すると、境界部を起点として欠けやクラックが発生してガラス基板が欠損或いは破損すること、境界部からガラス片やガラスパーティクルが剥離除去すること、洗浄工程で境界部にガラスパーティクル等が滞留すること、および、乾燥工程でガラスパーティクル等がガラス基板の表面に付着して品位低下を招くこと等の不具合が回避される。しかも、境界部に形成された特定研磨面からなる面取り部の十点平均粗さが、特定研磨処理が施されていない端面の十点平均粗さよりも小さいのみならず、その面取り部の粗さ曲線要素の平均長さが、当該端面の粗さ曲線要素の平均長さよりも大きくされているので、上記と同様に、境界部を起点としてガラス基板が破損することや、境界部が原因となってガラスパーティクル等がガラス基板の品位を低下させる等の問題が回避される。   According to such a configuration, by first polishing only the end surface of the glass substrate, each boundary portion between the end surface, the front surface, and the back surface has an uneven shape in a plan view, and the center side and the back surface of the front surface. Even if it is formed to be deviated toward the center side, at least one of these boundary portions, that is, the required boundary portion, is a completely chamfered portion made of a specific polishing surface by performing a specific polishing process. It is formed with. Therefore, even though the actual boundary portion is uneven in plan view and is biased toward the center side of the front and back surfaces as in the prior art, the position of the boundary portion that should originally exist has an inclination of about 45 °. Since the grindstone is in contact, the problem that a chamfered part made of a specific polishing surface cannot be formed at the actual boundary part, particularly the problem when the productivity is increased, is effectively avoided. In detail, chipping or cracking occurs from the boundary, and the glass substrate is chipped or damaged, glass pieces or glass particles are peeled and removed from the boundary, and glass particles stay in the boundary during the cleaning process. And problems such as glass particles and the like adhering to the surface of the glass substrate in the drying step and degrading the quality are avoided. Moreover, not only is the 10-point average roughness of the chamfered portion formed of the specific polished surface formed at the boundary portion smaller than the 10-point average roughness of the end surface not subjected to the specific polishing treatment, but also the roughness of the chamfered portion. Since the average length of the curved element is larger than the average length of the roughness curve element of the end face, the glass substrate is damaged starting from the boundary as described above, or the boundary is the cause. Thus, problems such as glass particles degrading the quality of the glass substrate can be avoided.

この場合、前記特定研磨面の十点平均粗さRz2およびRz1は、Rz2≦1.5μmであり、且つ、1.5≦Rz1/Rz2≦10.0の関係を満たすことが好ましい。 In this case, the ten-point average roughnesses Rz 2 and Rz 1 of the specific polished surface satisfy Rz 2 ≦ 1.5 μm and satisfy the relationship of 1.5 ≦ Rz 1 / Rz 2 ≦ 10.0. preferable.

このようにすれば、上記の境界部に形成された面取り部の特定研磨面に、研磨前に存在していた微小な欠けやクラック等が残存することを効率よく排除することができ、当該境界部を起点とするガラス基板の破損等がより確実に抑止されて端面周辺の破壊強度が上昇すると共に、当該境界部でのガラスパーティクルの発生や滞留等の問題もより一層効果的に回避される。特に、Rz2≦1.5μmとして当該面取り部を略鏡面とすることにより、端面の研磨処理後に残存した凹凸の大きい部分が除去され、応力集中が生じ易い境界部の特定研磨面からなる面取り部が平坦化される。そして、端面は面取り部に比して粗面であるため、端面から面取り部を経て表面および/または裏面に至る部位の面性状は、端面側から順に、粗面、研磨鏡面、成形面等の完全鏡面となって、徐々に粗さおよび平滑度が変化することから、効果的に応力集中が抑制され、端面周辺の破壊強度が著しく向上する。そして、Rz1/Rz2が1.5未満であると、面取り部の研磨が不十分であり、面取り部を形成したことによる端面周辺の破壊強度の上昇効果が少なくなる。これに対して、Rz1/Rz2が10.0を超えると、面取り部の特定研磨処理に要する時間が長期化され、生産性が低下すると共に、面取り部と端面との粗さの差が大きくなり、この両面の境界に新たな応力集中による破損が誘起されるおそれがある。したがって、Rz1/Rz2が上記の数値範囲内にあれば、これらの不具合は生じない。 In this way, it is possible to efficiently eliminate the presence of minute chips, cracks, etc. that existed before polishing on the specific polished surface of the chamfered portion formed at the above-described boundary portion. Breakage of the glass substrate starting from the portion is more reliably suppressed, the breaking strength around the end face is increased, and problems such as generation and retention of glass particles at the boundary are further effectively avoided. . In particular, by making Rz 2 ≦ 1.5 μm and making the chamfered portion substantially a mirror surface, a chamfered portion comprising a specific polished surface at a boundary portion where a large uneven portion remaining after polishing of the end surface is removed and stress concentration easily occurs Is flattened. And since the end surface is rougher than the chamfered portion, the surface properties of the part from the end surface to the front surface and / or back surface through the chamfered portion are, in order from the end surface side, rough surface, polished mirror surface, molding surface, etc. Since it becomes a perfect mirror surface and the roughness and smoothness gradually change, stress concentration is effectively suppressed, and the fracture strength around the end face is remarkably improved. When Rz 1 / Rz 2 is less than 1.5, the chamfered portion is not sufficiently polished, and the effect of increasing the breaking strength around the end surface due to the formation of the chamfered portion is reduced. In contrast, when the Rz 1 / Rz 2 exceeds 10.0, the time required for the particular polishing of the chamfered portion is prolonged, the productivity is lowered, the roughness difference between the chamfered portion and the end face There is a risk that damage due to a new stress concentration is induced at the boundary between both surfaces. Therefore, if Rz 1 / Rz 2 is within the above numerical range, these problems do not occur.

また、前記特定研磨面の粗さ曲線要素の平均長さRSm2は、RSm2≧100μmの関係を満たすことが好ましい。 Moreover, it is preferable that the average length RSm 2 of the roughness curve element of the specific polished surface satisfies the relationship of RSm 2 ≧ 100 μm.

このようにした場合にも、上記と同様に、当該境界部に形成された面取り部の特定研磨面には、研磨前に存在していた微小な欠けやクラック等が適切に除去され、当該境界部を起点とするガラス基板の破損等、および当該境界部でのガラスパーティクルの発生や滞留等の問題がより一層効果的に回避される。特に、RSm2≧100μmであることにより、面取り部のうねりの凹凸の間隔(周期)が大きくなり、表面積が抑えられるため、ガラスパーティクルを多く含んだ研削液の残存量が減少し、後工程でガラスパーティクルが有効面(表面)に付着するという不具合が効果的に回避される。この場合、粗さ曲線要素の平均長さの比つまりRSm1/RSm2は、0.1以上で且つ0.7以下であることが好ましい。すなわち、RSm1/RSm2が、0.1未満であると、うねりの凹凸の間隔が極めて小さい端面と、それが極めて大きい面取り部とが隣接した状態となり、両者の面性状の差が大きくなって、その両者の境界で面性状が急激に変化するため、その境界に新たな破損起点が発生する。これに対して、RSm1/RSm2が、0.7を超えると、端面と面取り部との間で、うねりの凹凸の間隔の差が小さくなり、結論的には特定研磨処理によって凹凸が効率よく除去されていないことになり、破壊強度の上昇効果が不十分となる。したがって、RSm1/RSm2が上記の数値範囲内にあれば、これらの不具合は生じない。 Even in such a case, in the same manner as described above, the microscopic chips and cracks existing before the polishing are appropriately removed on the specific polished surface of the chamfered portion formed in the boundary portion, and the boundary Problems such as breakage of the glass substrate starting from the portion and generation and retention of glass particles at the boundary portion can be more effectively avoided. In particular, when RSm 2 ≧ 100 μm, the crevice unevenness interval (cycle) of the chamfered portion is increased and the surface area is suppressed, so that the remaining amount of grinding fluid containing a large amount of glass particles is reduced, and the post-process The problem that glass particles adhere to the effective surface (surface) is effectively avoided. In this case, the ratio of the average lengths of the roughness curve elements, that is, RSm 1 / RSm 2 is preferably 0.1 or more and 0.7 or less. That is, when RSm 1 / RSm 2 is less than 0.1, an end face having a very small interval between the undulations and an extremely large chamfered portion are adjacent to each other, and the difference in surface properties between the two becomes large. Since the surface properties change abruptly at the boundary between the two, a new breakage starting point occurs at the boundary. On the other hand, when RSm 1 / RSm 2 exceeds 0.7, the difference in waviness unevenness between the end face and the chamfered portion is reduced, and as a result, the unevenness is efficiently made by the specific polishing process. It is not removed well, and the effect of increasing the breaking strength is insufficient. Therefore, if RSm 1 / RSm 2 is within the above numerical range, these problems do not occur.

さらに、前記端面の長手方向と直交する断面において、表面側の境界部に形成される前記特定研磨面の表面側への接線と、前記表面とのなす角度α、および、裏面側の境界部に形成される前記特定研磨面の裏面側への接線と、前記裏面とのなす角度βは、それぞれ、10°≦α≦30°および10°≦β≦30°の関係を満たすことが好ましい。   Further, in a cross section orthogonal to the longitudinal direction of the end surface, an angle α formed between a tangent to the front surface side of the specific polishing surface formed on the front surface side boundary portion and the front surface side, and a rear surface side boundary portion. It is preferable that the angle β formed between the tangent to the back surface side of the specific polishing surface to be formed and the back surface satisfies the relationship of 10 ° ≦ α ≦ 30 ° and 10 ° ≦ β ≦ 30 °, respectively.

すなわち、既述の図7および図8に示すように、端面の研磨処理のみを行うことにより、当該端面と表面および裏面とのそれぞれの境界部が、平面視で凹凸状をなし且つ表面の中央側および裏面の中央側に偏倚して形成されていても、上記の角度α、βが10°以上で且つ30°以下であれば、生産性を高めるべく僅かな研磨量で確実に特定研磨面からなる面取り部を形成することができる。この場合、上記の角度α、βが10°よりも小さいと、面取り部における当該端面側の研磨領域が狭くなり、当該端面部と表面および裏面とのそれぞれの境界部に残存している欠けやクラック或いはチッピングの特定研磨による除去が不十分となる。これに対して、上記の角度α、βが30°を超えると、境界部を含む態様で特定研磨処理を施すことが困難になる。したがって、角度α、βが上記の数値範囲内にあれば、このような不具合は生じない。このような観点から、角度α、βの下限値は15°であって、上限値は20°であることがより好ましい。   That is, as shown in FIG. 7 and FIG. 8 described above, by performing only the polishing of the end surface, the boundary between the end surface, the front surface, and the back surface has an uneven shape in plan view and the center of the surface. Even if it is formed biased to the center side of the side and the back side, if the above-mentioned angles α and β are not less than 10 ° and not more than 30 °, the specific polishing surface is surely ensured with a small amount of polishing so as to increase productivity. A chamfered portion can be formed. In this case, if the above-mentioned angles α and β are smaller than 10 °, the polishing region on the end face side in the chamfered portion is narrowed, and the chipping remaining on each boundary portion between the end face portion and the front surface and the back surface is reduced. Removal of cracks or chipping by specific polishing becomes insufficient. On the other hand, when the above angles α and β exceed 30 °, it is difficult to perform the specific polishing process in a manner including the boundary portion. Therefore, if the angles α and β are within the above numerical range, such a problem does not occur. From such a viewpoint, it is more preferable that the lower limits of the angles α and β are 15 ° and the upper limit is 20 °.

また、板厚Tおよび前記面取り部の長手方向と直交する方向の幅Wは、200μm≦T≦1500μmおよび0.07≦W/T≦0.30の関係を満たすことが好ましい。   The plate thickness T and the width W in the direction perpendicular to the longitudinal direction of the chamfered portion preferably satisfy the relationship of 200 μm ≦ T ≦ 1500 μm and 0.07 ≦ W / T ≦ 0.30.

すなわち、例えばFPD用のガラス基板は、表示面の要求品位が高く、特にガラスパーティクルは表示画像形成時の表示不良を誘起するので、数μm〜数十μmのガラスパーティクルの付着が問題となる。そのため、特に洗浄時にガラスパーティクルが発生し易い研磨後の端面と表裏面とのそれぞれの境界部の面取りによる微細化が重要となる。一方、本発明者等は、ガラス基板が端面周辺から破損する場合に、その破損起点(オリジン)が、端面のみを研磨した場合の当該端面と表裏面とのそれぞれの境界部周辺、特に境界部より端面側に100μm以内(さらには50μm以内)に集中していることを知見した。これは、その範囲内に欠けやクラック或いはチッピングが集中しているためであり、したがってこの範囲を優先的に特定研磨により除去する必要がある。その場合、W/Tが0.07未満であると、面取り部の特定研磨が不十分であり、面取り部の形成による端面強度の上昇効果が少なくなる。これに対して、W/Tが0.30を超えると、面取り部の形成に要する時間が長期化され、生産性が低下する。したがって、W/Tが上記の数値範囲内にあれば、このような不具合は生じない。このような観点から、より好ましくは、例えば板厚Tが700μmのFPD用(特にLCD用)のガラス基板の場合、上記の面取り部の幅Wは70〜140μm(0.10≦W/T≦0.20)となる。さらに、端面のみを研磨した場合の当該端面と表裏面とのそれぞれの境界部を基準位置として、その後に形成される面取り部の長手方向と直交する方向の両端の位置関係は、その基準位置から端面側の面取り端までの寸法をW1とし、その基準位置から表裏面の中央側の面取り端までの寸法をW2とした場合、W1>W2>0とすることが好ましい。このようにすれば、上記の境界部を含み且つ破損を誘起し易い端面側の研磨量が増加することになるため、効率よく端面周辺の強度を上昇させることができる。このような観点から、より好ましくは、1.3≦W1/W2≦9.0とされる。   That is, for example, a glass substrate for FPD has a high required quality of the display surface. In particular, glass particles induce a display defect when forming a display image, so that adhesion of glass particles of several μm to several tens of μm becomes a problem. Therefore, miniaturization by chamfering each boundary portion between the end face after polishing and the front and back surfaces, where glass particles are likely to be generated during cleaning, is important. On the other hand, when the glass substrate breaks from the periphery of the end surface, the inventors have determined that the origin of breakage (origin) is around the boundary portion between the end surface and the front and back surfaces when only the end surface is polished, particularly the boundary portion. It was found that it was concentrated on the end face side within 100 μm (and further within 50 μm). This is because chips, cracks or chipping are concentrated in the range, and therefore it is necessary to preferentially remove this range by specific polishing. In that case, if W / T is less than 0.07, the specific polishing of the chamfered portion is insufficient, and the effect of increasing the end face strength due to the formation of the chamfered portion is reduced. On the other hand, when W / T exceeds 0.30, the time required for forming the chamfered portion is prolonged, and the productivity is lowered. Therefore, if W / T is within the above numerical range, such a problem does not occur. From such a viewpoint, more preferably, for example, in the case of a glass substrate for FPD (particularly for LCD) having a plate thickness T of 700 μm, the width W of the chamfered portion is 70 to 140 μm (0.10 ≦ W / T ≦ 0.20). Furthermore, the positional relationship between both ends in the direction perpendicular to the longitudinal direction of the chamfered portion formed thereafter is determined from the reference position, with the respective boundary portions between the end surface and the front and back surfaces when only the end surface is polished as the reference position. It is preferable that W1> W2> 0, where W1 is the dimension to the chamfered end on the end face side, and W2 is the dimension from the reference position to the chamfered end on the center side of the front and back surfaces. By doing so, the amount of polishing on the end face side including the boundary portion and easily inducing damage increases, so that the strength around the end face can be increased efficiently. From such a viewpoint, it is more preferable that 1.3 ≦ W1 / W2 ≦ 9.0.

なお、以上の構成を備えたガラス基板は、面取り部が全辺に亘って形成されていることが好ましいが、板厚の薄いガラス基板等については、面取り部の特定研磨処理の困難性を考慮して、コーナー部近傍を面取り部の形成箇所から除外してもよい。そして、端面の研磨後に面取り部の特定研磨処理を終えたガラス基板は、その後、搬送を伴って洗浄工程および検査工程に送られ、ガラスメーカーでは最終的に梱包される。また、梱包されたガラス基板は、例えばディスプレイメーカー等でFPDを製造するパネル製造工程に移送されるが、この工程においてもガラス基板の搬送を伴う。これらの搬送過程においては、ガラス基板の端面と裏面との間に上記所定の面取り部を形成しておけば、当該ガラス基板が搬送ローラ等に載せられて搬送される際に、裏面と端面との境界部を起点として欠損や破損が生じるという事態が有効に回避される。   In addition, it is preferable that the chamfered portion is formed over the entire side of the glass substrate having the above configuration. However, for a glass substrate having a thin plate thickness, considering the difficulty of the specific polishing treatment of the chamfered portion. Then, the vicinity of the corner portion may be excluded from the chamfered portion. And the glass substrate which finished the specific grinding | polishing process of the chamfering part after grinding | polishing of an end surface is sent to a washing | cleaning process and an inspection process with conveyance after that, and is finally packed in a glass maker. In addition, the packed glass substrate is transferred to a panel manufacturing process for manufacturing an FPD by a display manufacturer or the like, for example, and the glass substrate is also transported in this process. In these transport processes, if the predetermined chamfered portion is formed between the end surface and the back surface of the glass substrate, when the glass substrate is transported on a transport roller or the like, the back surface and the end surface The situation that a defect or breakage occurs starting from the boundary portion of is effectively avoided.

さらに、ガラス基板の端面と裏面との間のみならず、端面と表面との間にも上記所定の面取り部を形成しておくことが、既述のガラスパーティクル対策以外に、搬送の観点からも好ましい。すなわち、搬送過程においては、複数のフォークやピン等を用いてガラス基板を持ち上げ、移載することが行われるが、特に大板の場合には、ガラス基板が重量により撓み、端面の表面側および裏面側の双方に応力集中が生じて破損に至るおそれがある。また、ガラス基板が高温になる場合には、熱応力に起因して、最も強度が小さい端面周辺、特に端面と表裏面とのそれぞれの境界部に熱応力集中が生じ易く、破損の原因となり得る。これらの事情を勘案すれば、ガラス基板の端面と表面および裏面との双方の間に上記所定の面取り部を形成することの意義が大きくなる。   Furthermore, it is possible to form the predetermined chamfered portion not only between the end surface and the back surface of the glass substrate but also between the end surface and the surface, from the viewpoint of conveyance in addition to the measures against the glass particles described above. preferable. That is, in the transport process, the glass substrate is lifted and transferred using a plurality of forks, pins, etc., but particularly in the case of a large plate, the glass substrate is bent by weight, and the surface side of the end surface and There is a risk of stress concentration on both sides of the back surface, leading to breakage. In addition, when the glass substrate is at a high temperature, due to thermal stress, thermal stress concentration is likely to occur around the edge surface with the lowest strength, particularly the boundary between the edge surface and the front and back surfaces, which may cause damage. . Considering these circumstances, the significance of forming the predetermined chamfered portion between both the end surface of the glass substrate and the front surface and the back surface is increased.

一方、上記技術的課題を解決するために創案された本発明に係る方法は、上述の本発明に係るガラス基板を製造する方法であって、ガラス基板の端面に対して粗研磨処理を施した後に仕上げ研磨処理を施すことにより表面および裏面のそれぞれの外周端から板厚方向中央部にかけて外方に突出する研磨面を形成し、然る後、前記端面と前記表面および前記裏面とのそれぞれの境界部の少なくとも一方に、前記仕上げ研磨処理よりも細かい粒度を有する研磨具を用いて特定研磨処理を施すことに特徴づけられる。   On the other hand, the method according to the present invention created in order to solve the above technical problem is a method of manufacturing the glass substrate according to the present invention described above, and a rough polishing process is performed on the end surface of the glass substrate. A finish polishing process is performed later to form a polishing surface that protrudes outward from the outer peripheral edge of each of the front and back surfaces to the central portion in the plate thickness direction, and then each of the end surface, the front surface, and the back surface is formed. It is characterized in that at least one of the boundary portions is subjected to a specific polishing process using a polishing tool having a finer particle size than the final polishing process.

このような方法によれば、ガラス基板の端面を粗研磨と仕上げ研磨とによって効率よく短時間で例えば断面略円弧状等に研磨できると共に、その後の研磨として、さらにその端面をより細かい粒度の研磨具で同形状に研磨するのではなく、その端面と表面および裏面とのそれぞれの境界部の少なくとも一方に、より細かい粒度の研磨具で面取り部を形成するものである。そのため、端面と、面取り部と、表面および/または裏面との3種の面性状を、最適なものとして、端面強度を効率よく向上させることができる。そして、好ましくは、端面の粗研磨処理を行う研磨具と、端面の仕上げ研磨処理を行う研磨具と、特定研磨処理を行う研磨具とを、同一の経路上に配設しておくことにより、各研磨具が連続して相対的に直線移動しながら各研磨処理を行っていくことができ、各面取り処理を別々に行う場合と比較して、処理時間を大幅に短縮して生産性の向上を図ることが可能となる。さらに、好ましくは、特定研磨処理を行う研磨具をスプリング等の弾性体を用いて弾性支持した状態で、上述のガラス基板の境界部に圧接させることにより、面取り部の面性状を好適なものとすることができる。   According to such a method, the end face of the glass substrate can be polished efficiently in a short time by rough polishing and finish polishing, for example, in a substantially arc-shaped cross section, and the end face is further polished at a finer grain size as subsequent polishing. The chamfered portion is not polished to the same shape with a tool, but a chamfered portion is formed with a finer-grained polishing tool at at least one of the boundary portions between the end surface and the front and back surfaces. Therefore, the end face strength can be efficiently improved by optimizing the three kinds of surface properties of the end face, the chamfered portion, and the front surface and / or the back surface. And, preferably, by arranging a polishing tool for performing rough polishing processing of the end surface, a polishing tool for performing final polishing processing of the end surface, and a polishing tool for performing specific polishing processing on the same path, Each polishing tool can perform each polishing process while continuously moving relatively linearly, and compared with the case where each chamfering process is performed separately, the processing time is greatly shortened and productivity is improved. Can be achieved. Furthermore, preferably, the surface property of the chamfered portion is made suitable by pressing the polishing tool for performing a specific polishing treatment with the boundary portion of the glass substrate in a state where the polishing tool is elastically supported using an elastic body such as a spring. can do.

さらに、上記技術的課題を解決するために創案された本発明に係る方法は、上述の本発明に係るガラス基板を製造する方法であって、前記特定研磨処理用の研磨具として、回転軸と直交する研磨面を有する回転研磨具を使用し、且つ前記研磨面の外周部の粗度を内周部の粗度よりも小さく形成すると共に、研磨処理後の端面とガラス基板の表面および裏面とのそれぞれの境界部の少なくとも一方に対して、前記回転研磨具がその長手方向に相対的に直線移動しながら前記回転軸廻りに回転することにより、前記研磨面の外周部および内周部の双方によって前記特定研磨面からなる面取り部を形成することに特徴づけられる。   Furthermore, a method according to the present invention created to solve the above technical problem is a method of manufacturing the glass substrate according to the present invention described above, and a rotating shaft is used as the polishing tool for the specific polishing process. Using a rotary polishing tool having an orthogonal polishing surface, and forming the roughness of the outer peripheral portion of the polishing surface smaller than the roughness of the inner peripheral portion, and the end surface after polishing and the front and back surfaces of the glass substrate The rotary polishing tool rotates about the rotation axis while relatively linearly moving in the longitudinal direction with respect to at least one of the boundary portions of both of the outer peripheral portion and the inner peripheral portion of the polishing surface. Is characterized by forming a chamfered portion comprising the specific polished surface.

このような方法によれば、回転研磨具の研磨面(砥面)が回転軸と直交し且つ該研磨面の外周部の粗度が内周部の粗度よりも小さくされているので、この回転研磨具を上述のガラス基板の境界部に対して相対的に直線移動させつつ回転軸廻りに回転させて該境界部の特定研磨処理を行う場合には、先ず研磨面における粗度の小さい外周部によって、当該境界部の微細削り(微細研磨)が行われていわゆる「ならし」効果が得られる。これにより、ガラス基板の境界部に対する特定面取り処理の初期段階において、不当な応力集中が抑制され、且つガラス基板のばたつきに起因する欠け(初期チッピング)やクラック等の発生が抑制された上で、当該境界部に初期段階に相当する面取り面が形成される。この後、次段階として、回転研磨具が相対的に直線移動することにより、研磨面における粗度の大きい内周部が、上記の初期段階に相当する面取り面に当接して、相対的な粗研磨が行われる。この相対的粗研磨によって、研磨の進行速度が高められるため、面取り処理時間が短縮されると共に、相対的粗研磨の開始時には当該境界部が微細研磨されて上述の「ならし」が行われていることから、欠けやクラック等の発生或いはそれらの伸展を招くことなく、円滑に相対的粗研磨が開始されて進行していく。この後、最終段階として、回転研磨具がさらに相対的に直線移動することにより、研磨面における上述の粗度の小さい外周部が、相対的粗研磨を施された面取り面に当接して、仕上げ研磨が行われる。これにより、回転研磨具の振動が研磨面の移動方向後端から面取り面に作用することによる該面取り面の後端への欠けやクラック等の発生が抑止されると共に、相対的粗研磨に起因して面取り面に残存した微小な研削粉或いはガラス粉が除去されることになる。このように、単一の回転研磨具の相対的な直線移動に伴って、微細研磨(ならし)と、相対的粗研磨と、仕上げ研磨とからなる一連の研磨処理が、ガラス基板の境界部に対して順次施されることにより、欠けやクラック等の発生を抑止しつつ短時間で特定面取り処理を行うことが可能となるため、装置の簡素化および面取り部周辺の良好な品位を確保した上で、大幅な生産性の向上が図られる。なお、回転研磨具とガラス基板とは、何れか一方または双方が直線移動すればよいが、ガラス基板の境界部の長手方向の寸法が、1000mm以上という大型のガラス基板の場合には、ガラス基板を作業台上等に固定した状態で回転研磨具をその境界部の長手方向に移動させるのが有利であり、その逆の小型のガラス基板の場合には、回転研磨具を定置設置してガラス基板が研磨面を横切るように直線移動させるのが有利である。そして、好ましくは、回転研磨具をスプリング等の弾性体を用いて弾性支持した状態で、上述のガラス基板の境界部に圧接させることにより、面取り部の面性状を好適なものとすることができる。   According to such a method, the polishing surface (abrasive surface) of the rotary polishing tool is orthogonal to the rotation axis, and the roughness of the outer peripheral portion of the polishing surface is smaller than the roughness of the inner peripheral portion. When the specific polishing process for the boundary portion is performed by rotating the rotary polishing tool around the rotation axis while linearly moving relative to the boundary portion of the glass substrate, first, the outer periphery having a small roughness on the polishing surface. By the portion, the boundary portion is finely cut (fine polishing) to obtain a so-called “running” effect. Thereby, in the initial stage of the specific chamfering process for the boundary portion of the glass substrate, unreasonable stress concentration is suppressed, and occurrence of chipping (initial chipping) or cracks due to flapping of the glass substrate is suppressed, A chamfered surface corresponding to the initial stage is formed at the boundary portion. Thereafter, as the next stage, the rotary polishing tool relatively linearly moves, so that the inner peripheral portion having a large roughness on the polished surface comes into contact with the chamfered surface corresponding to the initial stage described above, and the relative roughening is performed. Polishing is performed. Since this relative rough polishing increases the speed of polishing, the chamfering processing time is shortened, and at the start of the relative rough polishing, the boundary portion is finely polished to perform the above-described “running”. Therefore, the relative rough polishing is smoothly started and proceeds without causing the occurrence of cracks, cracks, or the like or the extension thereof. After this, as a final step, the rotary polishing tool further moves relatively linearly, so that the outer peripheral portion having the above-mentioned small roughness on the polishing surface comes into contact with the chamfered surface that has been subjected to relative rough polishing, and finishes. Polishing is performed. As a result, the occurrence of chipping or cracking at the rear end of the chamfered surface due to the vibration of the rotary polishing tool acting on the chamfered surface from the rear end in the moving direction of the polishing surface is suppressed, and due to relative rough polishing. Thus, the fine grinding powder or glass powder remaining on the chamfered surface is removed. As described above, a series of polishing processes including fine polishing (relative polishing), relative rough polishing, and final polishing are performed along the relative linear movement of a single rotary polishing tool. Since it is possible to perform specific chamfering processing in a short time while suppressing the occurrence of chipping, cracks, etc., it is possible to simplify the equipment and ensure good quality around the chamfered part. As a result, productivity can be greatly improved. It should be noted that either one or both of the rotary polishing tool and the glass substrate may be linearly moved. However, in the case of a large glass substrate having a longitudinal dimension of the boundary portion of the glass substrate of 1000 mm or more, the glass substrate It is advantageous to move the rotating polishing tool in the longitudinal direction of the boundary portion while the tool is fixed on the work table or the like. It is advantageous to move the substrate linearly across the polishing surface. And preferably, the surface property of the chamfered portion can be made suitable by bringing the rotary polishing tool into elastic contact with an elastic body such as a spring and pressing it against the boundary portion of the glass substrate. .

以上のように本発明によれば、生産性の向上が図られた上で、ガラス基板の研磨後の端面と表面および/または裏面との境界部に適正な面取り部が確実に形成されると共に、ガラス基板の端面の面性状と、当該端面の表面側および/または裏面側の境界部に形成された面取り部の面性状との関係が適切化されて、ガラス基板の欠損や破損が効果的に抑止され、且つ、ガラスパーティクル等の問題も回避されてガラス基板の品位向上が図られる。   As described above, according to the present invention, the productivity is improved and an appropriate chamfered portion is reliably formed at the boundary between the polished end surface of the glass substrate and the front surface and / or the back surface. The relationship between the surface properties of the end surface of the glass substrate and the surface properties of the chamfered portion formed at the front surface and / or back surface side of the end surface is optimized, and the glass substrate is effectively damaged or broken. In addition, problems such as glass particles are avoided, and the quality of the glass substrate is improved.

本発明の実施形態に係るガラス基板を端面の長手方向と直交する方向で切断した要部拡大縦断面図である。It is the principal part expanded vertical sectional view which cut | disconnected the glass substrate which concerns on embodiment of this invention in the direction orthogonal to the longitudinal direction of an end surface. ガラス原板を切断して得られたガラス基板と、そのガラス基板の端面部を研磨する研磨具とを示す概略図である。It is the schematic which shows the glass substrate obtained by cut | disconnecting a glass original plate, and the polishing tool which grind | polishes the end surface part of the glass substrate. 端面研磨処理のみを行ったガラス基板の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the glass substrate which performed only the end surface grinding | polishing process. 端面処理後のガラス基板に対して面取り処理を行っている状態を示す概略正面図である。It is a schematic front view which shows the state which is performing the chamfering process with respect to the glass substrate after an end surface process. 端面処理後のガラス基板に対して面取り処理を行っている状態を示す概略平面図である。It is a schematic plan view which shows the state which is performing the chamfering process with respect to the glass substrate after an end surface process. 面取り処理後のガラス基板の要部を示す概略平面図である。It is a schematic plan view which shows the principal part of the glass substrate after a chamfering process. 従来の問題点を示すガラス基板の要部を示す概略平面図である。It is a schematic plan view which shows the principal part of the glass substrate which shows the conventional problem. 従来の問題点を示すガラス基板の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the glass substrate which shows the conventional problem. 従来の問題点を示すグラフである。It is a graph which shows the conventional problem.

以下、本発明の実施形態を添付図面を参照して説明する。なお、以下の実施形態においては、LCD用に代表されるFPD用のガラス基板を対象とする。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In the following embodiments, a glass substrate for FPD typified by LCD is targeted.

図1は、本実施形態に係るガラス基板1の要部を拡大した縦断面図である。なお、同図は、ガラス基板1の表面2a側部分の形態のみを図示しているが、裏面側部分も板厚方向中心線Xを挟んで対称となる形態をなしている。同図に示すように、このガラス基板1は、平面状の表面2aと、縦断面が凸状の円弧形状をなす端面3と、表面2aと端面3との間に形成された平面状の面取り部4とを有する。   FIG. 1 is an enlarged longitudinal sectional view of a main part of the glass substrate 1 according to the present embodiment. In addition, although the figure has shown only the form of the surface 2a side part of the glass substrate 1, the back side part has also comprised the form which becomes symmetrical on both sides of the plate | board thickness direction center line X. As shown in the figure, the glass substrate 1 has a planar surface 2a, an end surface 3 having a convex arcuate cross section, and a planar chamfer formed between the surface 2a and the end surface 3. Part 4.

ガラス基板1の端面3は、本実施形態では粗研磨処理が施された後に仕上げ研磨処理が施された研磨面であると共に、表面2aは、成形面つまり未研磨面であり、且つ、面取り部4は、端面3の仕上げ研磨処理後に特定研磨処理が施された特定研磨面である。そして、面取り部4の特定研磨面の十点平均粗さRz2は、端面3の十点平均粗さRz1よりも小さく、且つ、面取り部4の特定研磨面の粗さ曲線要素の平均長さRSm2は、端面3の研磨面の粗さ曲線要素の平均長さRSm1よりも大きくされている。なお、表面2aは、鏡面であることから、その十点平均粗さは、面取り部4の特定研磨面の十点平均粗さRz2よりも小さく、且つ、その粗さ曲線要素の平均長さは、面取り部4の特定研磨面の粗さ曲線要素の平均長さRSm2よりも大きい。 In this embodiment, the end surface 3 of the glass substrate 1 is a polished surface that has been subjected to a final polishing process after being subjected to a rough polishing process, and the surface 2a is a molded surface, that is, an unpolished surface, and a chamfered portion. Reference numeral 4 denotes a specific polished surface that has been subjected to a specific polishing process after the finish polishing of the end face 3. The ten-point average roughness Rz 2 of the specific polished surface of the chamfered portion 4 is smaller than the ten-point average roughness Rz 1 of the end surface 3 and the average length of the roughness curve elements of the specific polished surface of the chamfered portion 4 The thickness RSm 2 is set larger than the average length RSm 1 of the roughness curve element of the polished surface of the end face 3. The surface 2a, since a mirror surface, the average roughness thereof ten-point is smaller than the ten-point average roughness Rz 2 of the particular polished surface of the chamfered portion 4, and an average length of roughness curve element of Is larger than the average length RSm 2 of the roughness curve element of the specific polished surface of the chamfered portion 4.

この場合、面取り部4の特定研磨面の十点平均粗さRz2は、1.5μm以下であると共に、端面3の研磨面の十点平均粗さRz1との比であるRz1/Rz2は、1.5以上で且つ10.0以下である。また、面取り部4の特定研磨面の粗さ曲線要素の平均長さRSm2は、100μm以上であると共に、端面3の研磨面の粗さ曲線要素の平均長さRSm1との比であるRSm1/RSm2は、0.1以上で且つ0.7以下である。 In this case, the 10-point average roughness Rz 2 of the specific polished surface of the chamfered portion 4 is 1.5 μm or less, and Rz 1 / Rz which is a ratio to the 10-point average roughness Rz 1 of the polished surface of the end face 3. 2 is 1.5 or more and 10.0 or less. Further, the average length RSm 2 of the roughness curve element of the specific polished surface of the chamfered portion 4 is 100 μm or more, and is the ratio RSm 1 to the average length RSm 1 of the roughness curve element of the polished surface of the end face 3. 1 / RSm 2 is and 0.7 or less 0.1 or more.

さらに、図1に示す断面(端面3の長手方向と直交する断面)においては、面取り部4の表面2a側への接線Aと表面2aとのなす角度αは、10°以上で且つ30°以下(本実施形態では18°)であると共に、図示しないが、裏面側の面取り部も、その裏面側への接線と裏面とのなす角度が、10°以上で且つ30°以下(本実施形態では18°)である。   Furthermore, in the cross section shown in FIG. 1 (cross section perpendicular to the longitudinal direction of the end face 3), the angle α formed between the tangent line A to the surface 2a side of the chamfered portion 4 and the surface 2a is 10 ° or more and 30 ° or less. (In this embodiment, the angle between the tangent to the back surface side and the back surface is 10 ° or more and 30 ° or less (not illustrated). 18 °).

この場合、面取り部4は、端面3の研磨処理が行われたのみの状態での表面2aと端面3との境界部z周辺(図1に破線で示す部位)を、特定研磨処理により除去してなるものであり、その除去部は、境界部zから端面3側への幅W1が70μmで且つ境界部zから表面2a側への幅W2が30μmの領域である。なお、この境界部zの接線Bと表面2aとのなす角度γは、本実施形態では25°である。   In this case, the chamfered portion 4 removes the periphery of the boundary portion z between the surface 2a and the end surface 3 (part indicated by a broken line in FIG. 1) in a state where the polishing process of the end surface 3 has been performed by a specific polishing process. The removal portion is a region having a width W1 from the boundary portion z to the end face 3 side of 70 μm and a width W2 from the boundary portion z to the surface 2a side of 30 μm. The angle γ formed between the tangent line B of the boundary z and the surface 2a is 25 ° in the present embodiment.

さらに、このガラス基板1は、その板厚Tが、200μm以上で且つ1500μm以下であると共に、面取り部4の幅W(面取り部4の長手方向(辺に沿う方向)と直交する方向の寸法)と板厚Tとの比であるW/Tは、0.07以上で且つ0.30以下となるように設定されている。   Further, the glass substrate 1 has a thickness T of 200 μm or more and 1500 μm or less, and a width W of the chamfered portion 4 (a dimension in a direction orthogonal to the longitudinal direction (direction along the side) of the chamfered portion 4). W / T, which is the ratio of the thickness to the plate thickness T, is set to be 0.07 or more and 0.30 or less.

以上のような構成を備えたガラス基板1は、以下のようにして製造される。   The glass substrate 1 having the above configuration is manufactured as follows.

図2は、成形後におけるガラス原板の表面の四箇所にスクライブを入れ、且つそのスクライブ痕を起点としてガラス原板を折り割ることにより得られた略矩形のガラス基板1と、そのガラス基板1の折り割られた端面部3aを研磨処理する研磨具5とを例示している。このガラス基板1の端面部3aは、先ず第1の研磨具により粗研磨処理が行われ、次いで第2の研磨具により仕上げ研磨処理が行われる。第1の研磨具は、図2に示すように、正面視で凹状の略円弧形状をなす外周面に、メタルボンドで保持されたダイヤモンド砥粒層を取り付けてなる粗研磨用回転砥石ホイール(メタルボンドダイヤモンドホイール)である。そして、この第1研磨具を、ガラス基板1の端面部3aに押し当てた状態で、第1研磨具をガラス基板1の端面部3aの長手方向(辺に沿う方向)に相対移動させることにより粗研磨処理を行う。第2研磨具は、第1研磨具と同形状をなし、その外周面に、炭化珪素等の細かい砥粒をポリウレタン樹脂等で結合した仕上げ研磨用回転砥石ホイール(レジンボンドホイール)である。この第2研磨具は、ガラス基板1の粗研磨処理した端面部に押し当てられた状態で、上記と同様に相対移動することにより仕上げ研磨処理が行われ、その結果として図3に示すように、ガラス基板1に十点平均粗さRzjisが約1〜3μmの断面略円弧状の端面3が形成される。なお、ガラス基板1の端面3の形成は、上記のように二段階に亘る研磨処理に限らず、三段階以上に亘る研磨処理により行うようにしてもよい。   FIG. 2 shows a substantially rectangular glass substrate 1 obtained by putting scribes at four locations on the surface of the glass original plate after molding, and folding the glass original plate starting from the scribe marks, and folding the glass substrate 1 A polishing tool 5 for polishing the cracked end surface portion 3a is illustrated. The end surface portion 3a of the glass substrate 1 is first subjected to a rough polishing process using a first polishing tool, and then a final polishing process using a second polishing tool. As shown in FIG. 2, the first polishing tool is a rough polishing rotary grindstone wheel (metal) that is formed by attaching a diamond abrasive grain layer held by a metal bond to an outer peripheral surface having a concave arc shape when viewed from the front. Bond diamond wheel). Then, with the first polishing tool pressed against the end surface portion 3a of the glass substrate 1, the first polishing tool is relatively moved in the longitudinal direction (direction along the side) of the end surface portion 3a of the glass substrate 1. Rough polishing is performed. The second polishing tool is a grinding wheel for finishing polishing (resin bond wheel) having the same shape as the first polishing tool, and fine abrasive grains such as silicon carbide bonded to the outer peripheral surface thereof with polyurethane resin or the like. The second polishing tool is subjected to a final polishing process by moving in the same manner as described above while being pressed against the end surface of the glass substrate 1 subjected to the rough polishing process. As a result, as shown in FIG. The glass substrate 1 is formed with an end face 3 having a substantially arc-shaped cross section having a ten-point average roughness Rzjis of about 1 to 3 μm. The formation of the end face 3 of the glass substrate 1 is not limited to the two-stage polishing process as described above, and may be performed by a three-stage or more polishing process.

以上のようにして、ガラス基板1に断面略円弧状の端面3bが形成された場合には、その端面3bと表面2aとの境界部z、および端面3bと裏面2bとの境界部zが、平面視で既述の図7に符号z1で示すような凹凸形状となる。このような形態となった後は、ガラス基板1の境界部zに、第3研磨具6を用いて特定研磨処理を施すことにより面取り部4を形成する。この第3研磨具6は、図4に示すように、回転軸6aと直交する平面状の研磨面(砥面)6bを有し、この研磨面6bは、上記の第2研磨具よりも細かい砥粒で形成されている。なお、ガラス基板1は、端面3の周辺がせり出した状態で、作業台(定盤)7の上面にセットされる。   As described above, when the end surface 3b having a substantially arc-shaped cross section is formed on the glass substrate 1, the boundary portion z between the end surface 3b and the surface 2a, and the boundary portion z between the end surface 3b and the back surface 2b, In a plan view, the concave and convex shape is as indicated by reference numeral z1 in FIG. After becoming such a form, the chamfered portion 4 is formed by performing a specific polishing process on the boundary portion z of the glass substrate 1 using the third polishing tool 6. As shown in FIG. 4, the third polishing tool 6 has a flat polishing surface (abrasive surface) 6b orthogonal to the rotation shaft 6a. The polishing surface 6b is finer than the second polishing tool. It is made of abrasive grains. The glass substrate 1 is set on the upper surface of the work table (surface plate) 7 with the periphery of the end surface 3 protruding.

そして、ガラス基板1の表面2a側の境界部zと裏面2b側の境界部zとに対して、同時に2つの第3研磨具6の研磨面6bを押し当てて回転させながら、第3研磨具6をガラス基板1の境界部zの長手方向に相対移動させることにより特定研磨処理が行われる。これにより、ガラス基板1の境界部zに残存していた多数のガラスチッピング等が除去される。この場合、2つの第3研磨具6の研磨面6bと、ガラス基板1の表面2aおよび裏面2bとなす角度はそれぞれ10°以上で且つ30°以下(本実施形態では18°)に設定される。好ましくは、第3研磨具6は、図5に示すように、中央部が円形の凹部であり、その凹部を取り囲むように、粗度が相対的に小さい内周側研磨部6baと、粗度が相対的に大きい外周側研磨部6bbとが配列され、この双方の研磨部6ba、6bbによってガラス基板1の境界部zが特定研磨処理を受ける。なお、2つの第3研磨具6は、相対移動方向に対して離隔して配置される。   Then, while simultaneously pressing and rotating the polishing surface 6b of the two third polishing tools 6 against the boundary z on the front surface 2a side and the boundary z on the back surface 2b side of the glass substrate 1, the third polishing tool The specific polishing process is performed by relatively moving 6 in the longitudinal direction of the boundary portion z of the glass substrate 1. Thereby, a large number of glass chippings and the like remaining at the boundary z of the glass substrate 1 are removed. In this case, the angles formed between the polishing surfaces 6b of the two third polishing tools 6 and the front surface 2a and the back surface 2b of the glass substrate 1 are each set to 10 ° or more and 30 ° or less (18 ° in this embodiment). . Preferably, as shown in FIG. 5, the third polishing tool 6 is a concave portion having a circular central portion, and an inner peripheral side polishing portion 6 ba having a relatively small roughness so as to surround the concave portion, and the roughness Are arranged with a relatively large outer peripheral side polishing portion 6bb, and the boundary portion z of the glass substrate 1 is subjected to a specific polishing treatment by both of the polishing portions 6ba and 6bb. Note that the two third polishing tools 6 are spaced apart from each other in the relative movement direction.

そして、この特定研磨処理を終えることにより、図6(および図1)に示すように、ガラス基板1の表面2aと端面3との間に境界部zを完全に除去してなる面取り部4が形成される。この面取り部4が形成されることにより、端面3の破壊強度が上昇すると共に、ガラスパーティクル或いはガラスチッピング等の問題も回避される。   Then, by completing this specific polishing treatment, as shown in FIG. 6 (and FIG. 1), a chamfered portion 4 formed by completely removing the boundary portion z between the surface 2a and the end surface 3 of the glass substrate 1 is obtained. It is formed. By forming the chamfered portion 4, the breaking strength of the end surface 3 is increased, and problems such as glass particles or glass chipping are avoided.

本発明者等は、上述の図1に例示したガラス基板についての効果を確認すべく、本発明の実施例1〜5と比較例1〜3との対比を、以下に示すようにして行った。これらの実施例および比較例は何れについても、ガラス原板として、オーバーフローダウンドロー法で成形された日本電気硝子株式会社製OA−10を用いた。   In order to confirm the effects of the glass substrate illustrated in FIG. 1, the present inventors performed comparison between Examples 1 to 5 of the present invention and Comparative Examples 1 to 3 as follows. . In each of these Examples and Comparative Examples, OA-10 manufactured by Nippon Electric Glass Co., Ltd., which was molded by the overflow downdraw method, was used as the glass original plate.

下記の表1に示す本発明の実施例1〜3および比較例1、2については、用いる試料として、板厚が700μmのガラス原板をスクライブ痕に沿って折り割り分割することにより、短辺寸法が1500mmおよび長辺寸法が1800mmのガラス基板を得た。また、同様に、実施例4、5および比較例3については、用いる試料として、板厚が500μmのガラス原板をスクライブ痕に沿って折り割り分割することにより、短辺寸法が550mmおよび長辺寸法が670mmのガラス基板を得た。そして、これらのガラス基板の端面部に対して、断面が凸状の円弧形状をなす端面を形成するための研磨処理と、その研磨後の端面と表面および裏面とのそれぞれの境界部に面取り部を形成するための特定研磨処理とを、以下に示す手順で行った。   For Examples 1 to 3 and Comparative Examples 1 and 2 of the present invention shown in Table 1 below, as a sample to be used, a glass original plate having a plate thickness of 700 μm is folded and divided along a scribe mark, whereby a short side dimension is obtained. A glass substrate having a length of 1500 mm and a long side dimension of 1800 mm was obtained. Similarly, in Examples 4 and 5 and Comparative Example 3, as a sample to be used, a glass original plate having a thickness of 500 μm is folded and divided along a scribe mark so that the short side dimension is 550 mm and the long side dimension. Obtained a glass substrate of 670 mm. Then, with respect to the end surface portions of these glass substrates, a polishing process for forming an end surface having a circular arc shape with a convex cross section, and a chamfered portion at each boundary portion between the end surface, the front surface, and the back surface after the polishing The specific polishing treatment for forming the film was performed according to the following procedure.

本発明の実施例1〜3および比較例1、2については、先ず、ガラス基板を定盤上に載置して吸着固定した状態で、図2に示す形態をなす第1研磨具としての粗研磨用回転砥石(砥粒#400)の外周面を、ガラス基板の端面部に圧接させると共に、表1に示す研削速度で直線移動させることにより、断面略円弧形状の粗面である端面部を形成した。次いで、同様に、図2に示す形態をなす第2研磨具としての仕上げ研磨用回転砥石(砥粒#1000)の外周面を、ガラス基板の粗研磨後の端面部に圧接させると共に、表1に示す研削速度で直線移動させることにより、断面略円弧形状に仕上げ研磨された端面を形成した。また、本発明の実施例4、5および比較例3については、先ず、ガラス基板を表2に示す研削速度で直線移動させながら、定位置に固定配置された図2に示す形態をなす第1研磨具としての粗研磨用回転砥石(砥粒#400)の外周面を、ガラス基板の端面部に圧接させることにより、断面略円弧形状の粗面である端面部を形成した。次いで、同様に、ガラス基板を表2に示す研削速度で直線移動させながら、定位置に固定設置された図2に示す形態をなす第2研磨具としての仕上げ研磨用回転砥石(砥粒#1000)の外周面を、ガラス基板の粗研磨後の端面部に圧接させることにより、断面略円弧形状に仕上げ研磨された端面を形成した。   Regarding Examples 1 to 3 and Comparative Examples 1 and 2 of the present invention, first, a rough polishing as a first polishing tool having the form shown in FIG. 2 in a state where a glass substrate is placed on a surface plate and fixed by suction. The outer peripheral surface of the polishing grindstone (abrasive grain # 400) is brought into pressure contact with the end surface portion of the glass substrate and linearly moved at the grinding speed shown in Table 1 to obtain an end surface portion that is a rough surface having a substantially arc-shaped cross section. Formed. Next, similarly, the outer peripheral surface of the rotary grindstone for finishing polishing (abrasive grain # 1000) as the second polishing tool having the form shown in FIG. 2 is brought into pressure contact with the end surface portion after rough polishing of the glass substrate, and Table 1 The end face finished and polished into a substantially circular arc shape was formed by linear movement at the grinding speed shown in FIG. Further, in Examples 4 and 5 and Comparative Example 3 of the present invention, first, the glass substrate is linearly moved at the grinding speed shown in Table 2 while being fixedly arranged at a fixed position as shown in FIG. The outer peripheral surface of the rotating grindstone for rough polishing (abrasive grain # 400) as a polishing tool was brought into pressure contact with the end surface portion of the glass substrate, thereby forming an end surface portion that was a rough surface having a substantially arc-shaped cross section. Next, similarly, while rotating the glass substrate linearly at the grinding speed shown in Table 2, the final polishing rotary grindstone (abrasive grain # 1000) as the second polishing tool having the form shown in FIG. ) Was pressed into contact with the end surface of the glass substrate after rough polishing to form an end surface that was finished and polished into a substantially circular arc cross section.

この後、ガラス基板の端面と表面および裏面とのそれぞれの境界部に対して、第3研磨具で特定研磨処理を行った。第3研磨具としては、円形の基盤上に、樹脂材料にダイヤモンド砥粒を分散させてなる平板状のダイヤモンド研磨板を固定したものを使用した。なお、上記の砥粒の大きさおよび表1、2に示す砥粒の大きさは、JIS R6001:1998に準拠している。   Thereafter, a specific polishing process was performed with a third polishing tool on each boundary portion between the end surface, the front surface, and the back surface of the glass substrate. As the third polishing tool, there was used a flat diamond polishing plate in which diamond abrasive grains were dispersed in a resin material on a circular base. In addition, the magnitude | size of said abrasive grain and the magnitude | size of the abrasive grain shown to Table 1, 2 are based on JISR6001: 1998.

特定研磨処理の実行に際しては、ガラス基板の表面および裏面と面取り部の接線とのそれぞれがなす角度(図1の角度α:裏面側も同様)が18°〜22°になるように、適宜第3研磨具の角度を調整した上で、第3研磨具とガラス基板との接触面に研削液(研削水)を供給した。そして、所望の面取り寸法が得られるように、第3研磨具(研磨板)を周速2000m/minで回転させながら、表1、2に示すように異なる研削速度で直線移動させ、コーナー部近傍を除くガラス基板の全外周に亘り、特定研磨処理を行った。以上のようにして、実施例1〜3および実施例4、5のガラス基板を得た。   When performing the specific polishing process, the angle formed by the front and back surfaces of the glass substrate and the tangent line of the chamfered portion (angle α in FIG. 1; the same applies to the back surface side) is 18 ° to 22 ° as appropriate. After adjusting the angle of the 3 polishing tool, a grinding liquid (grinding water) was supplied to the contact surface between the third polishing tool and the glass substrate. Then, while rotating the third polishing tool (polishing plate) at a peripheral speed of 2000 m / min so as to obtain a desired chamfer dimension, it is linearly moved at different grinding speeds as shown in Tables 1 and 2, and near the corner portion. A specific polishing treatment was performed over the entire outer periphery of the glass substrate except for. As described above, glass substrates of Examples 1 to 3 and Examples 4 and 5 were obtained.

実施例1、2、4では、第3研磨具の砥粒が#3000、実施例3、5では、第3研磨具の砥粒が#2000であるのに対して、比較例1〜3では、第3研磨具による特定研磨処理を行わずに、ガラス基板の端面部に、第1研磨具による粗研磨処理および第2研磨具による仕上げ研磨処理を行うに留めた。また、全ての実施例においては、面取り寸法(面取り幅)が60〜200μmの範囲内になるように、第3研磨具の移動速度や研削条件を選定し、試料であるガラス基板の全ての端面の表面および裏面との境界部に略平坦な面取り部を形成した。   In Examples 1, 2, and 4, the abrasive grains of the third polishing tool are # 3000, and in Examples 3 and 5, the abrasive grains of the third polishing tool are # 2000, whereas in Comparative Examples 1 to 3. Without performing the specific polishing process with the third polishing tool, only the rough polishing process with the first polishing tool and the final polishing process with the second polishing tool were performed on the end surface portion of the glass substrate. In all the examples, the moving speed and grinding conditions of the third polishing tool are selected so that the chamfer dimension (chamfer width) is in the range of 60 to 200 μm, and all the end surfaces of the glass substrate as a sample are selected. A substantially flat chamfered portion was formed at the boundary between the front surface and the back surface.

なお、以上の実施例では、ガラス基板の端面部に略円弧状の研磨面を形成した後に、第3研磨具を使用して、端面の表面および裏面との境界部に面取り部を形成する方法を用いたが、ガラス基板を定盤上に吸着固定した状態で、同一の走行レール上に、第1研磨具、第2研磨具および第3研磨具を設置し、その走行レールに沿って同時に三種の研磨具を走行させることにより、連続的に研磨動作を完了させるようにしてもよい。このようにすれば、より短時間で全ての研磨処理が完了するため、加工効率を著しく上昇させることができ、且つ、各辺の寸法が1000mm以上である大型サイズのガラス基板の研磨処理工程において、その取り扱いが容易となる。また、サイズの小さなガラス基板については、3種の研磨具をガラス基板の辺と平行になるように設置し、ガラス基板を搬送ベルト等の搬送手段を用いて搬送させながら連続して各研磨処理を行う方法を用いてもよい。   In addition, in the above Example, after forming a substantially circular-arc-shaped grinding | polishing surface in the end surface part of a glass substrate, the method of forming a chamfering part in the boundary part with the surface of an end surface, and a back surface using a 3rd polishing tool. However, the first polishing tool, the second polishing tool, and the third polishing tool are installed on the same traveling rail in a state where the glass substrate is sucked and fixed on the surface plate, and simultaneously along the traveling rail. You may make it complete | finish polishing operation | movement continuously by making 3 types of grinding | polishing tools drive | work. In this way, since all polishing processes are completed in a shorter time, the processing efficiency can be remarkably increased, and in the polishing process step of a large-sized glass substrate having a dimension of each side of 1000 mm or more. The handling becomes easy. For glass substrates with small sizes, three types of polishing tools are installed so as to be parallel to the sides of the glass substrate, and each glass substrate is continuously polished while being transported using a transport means such as a transport belt. You may use the method of performing.

一方、実施例1〜5および比較例1〜3の各ガラス基板については、東京精密社製サーフコム590Aを用いて、測定長5.0mmにて粗さ測定を行い、JIS B0601:2001にてガラス基板の端面および面取り部の十点平均粗さRzjis(Rz1、Rz2)、および粗さ曲線要素の平均長さRSm(RSm1、RSm2)値の各粗さパラメータを算出した。この十点平均粗さRz1、Rz2および粗さ曲線要素の平均長さRSm1、RSm2については、同一の条件で面取り処理を10枚のガラス基板に施した上で、それぞれについて10回測定し、その平均値を算出することによって評価した。その結果を下記の表1、2に示す。 On the other hand, about each glass substrate of Examples 1-5 and Comparative Examples 1-3, roughness measurement is performed with a measurement length of 5.0 mm using a surfcom 590A manufactured by Tokyo Seimitsu Co., Ltd., and glass is measured according to JIS B0601: 2001. The roughness parameters of the ten-point average roughness Rzjis (Rz 1 , Rz 2 ) and the average length RSm (RSm 1 , RSm 2 ) value of the roughness curve element of the end face and chamfered portion of the substrate were calculated. The ten-point average roughness Rz 1 and Rz 2 and the average lengths RSm 1 and RSm 2 of the roughness curve elements were subjected to chamfering treatment on 10 glass substrates under the same conditions, and 10 times for each. Measurements were made and evaluated by calculating the average value. The results are shown in Tables 1 and 2 below.

研磨後のガラス基板の強度については、Orientec社製Tensilon RTA−250を用いた三点曲げ試験法により破壊強度を測定した。曲げ試験のサンプルには、ガラス基板の端面部の辺の中央部を80×15mmのサイズに切り出した試験片を用い、さらに、端面部の頂点(断面略円弧の頂点)を上にして荷重を負荷し、その破損時の荷重を測定し、下記の数1で示される式で計算することにより、破壊応力(端面強度)σを測定した。   About the intensity | strength of the glass substrate after grinding | polishing, the fracture strength was measured by the three-point bending test method using Orientec Tensilon RTA-250. For the sample of the bending test, a test piece obtained by cutting out the central part of the side of the end face of the glass substrate into a size of 80 × 15 mm is used, and the load is applied with the apex of the end face (the apex of the substantially arc of the cross section) facing upward. The fracture stress (end face strength) σ was measured by applying the load, measuring the load at the time of breakage, and calculating by the equation shown in the following formula 1.

Figure 0005440786
Figure 0005440786

なお、上記の数1で示される式中、Pは破壊荷重、Lは支点間距離、Bはサンプル幅、hはガラス厚みである。   In the equation expressed by the above equation 1, P is a breaking load, L is a distance between fulcrums, B is a sample width, and h is a glass thickness.

下記の表1、2には、ガラス基板の破壊応力を記載しているが、これらは各実施例および各比較例のそれぞれの破壊応力を10枚測定し、その最小値(最も強度が小さいもの)を示すものである。さらに、ガラス基板の表面に付着または残存したガラスパーティクルの付着特性を評価するために、各実施例および各比較例のそれぞれのガラス基板を洗浄および乾燥させた後に、ガラス基板の表面に残存したガラスシートあたりの表面のパーティクル値を測定した。パーティクル値は、日立ハイテクノロジーズ社製パーティクル測定装置GI−7200を用いて1μm以上の粒子数の測定を行い、その数値を1平方メートル当りの個数に換算した。その結果を下記の表1、2に示す。また、各実施例および各比較例のそれぞれのガラス基板について、端面の表面および裏面との境界部分におけるチッピングによる段差の残存状態を、顕微鏡にて拡大観察した。その結果を下記の表1、2に示す。この場合、表1、2中、『○』はチッピング段差の存在が認められないものを示し、『△』は微小の段差の残存が観察されるものを示し、『×』は大きな段差の残存が観察されるものを示している。   In Tables 1 and 2 below, the breaking stress of the glass substrate is described, and these are measured for 10 breaking stresses of each Example and each Comparative Example, and the minimum value (the one with the smallest strength) is measured. ). Furthermore, in order to evaluate the adhesion characteristics of the glass particles adhering to or remaining on the surface of the glass substrate, the glass remaining on the surface of the glass substrate after washing and drying each glass substrate of each Example and each Comparative Example The surface particle value per sheet was measured. For the particle value, the number of particles of 1 μm or more was measured using a particle measuring device GI-7200 manufactured by Hitachi High-Technologies Corporation, and the numerical value was converted to the number per square meter. The results are shown in Tables 1 and 2 below. Further, with respect to each glass substrate of each example and each comparative example, the remaining state of the step due to chipping at the boundary portion between the front surface and the back surface of the end face was magnified and observed with a microscope. The results are shown in Tables 1 and 2 below. In this case, in Tables 1 and 2, “○” indicates that no chipping level difference is observed, “Δ” indicates that a small level difference is observed, and “×” indicates a large level level remaining. Indicates what is observed.

Figure 0005440786
Figure 0005440786

Figure 0005440786
Figure 0005440786

なお、面取り部の特定研磨処理時におけるガラス基板の表面とこれに隣接する面取り部の表面側への接線とのなす角度α(図1参照)、およびガラス基板の裏面とこれに隣接する面取り部の裏面側への接線とのなす角βの実測値と、面取り部の幅Wの測定値とを、下記の表3に示す。   Note that the angle α (see FIG. 1) between the surface of the glass substrate and the tangent to the surface side of the chamfer adjacent to the surface of the glass substrate during the specific polishing process of the chamfered portion, and the back surface of the glass substrate and the chamfered portion adjacent thereto. Table 3 below shows the actual measurement value of the angle β formed by the tangent to the back surface side and the measured value of the width W of the chamfered portion.

Figure 0005440786
Figure 0005440786

上記の表1、2によれば、本発明の実施例1〜5の何れもが、ガラス基板の端面の表面および裏面との境界部に、十点平均粗さが小さく鏡面に近いのは勿論のこと、十分な幅を有する面取り部が形成されており、比較例の場合のように面取り部を形成していないガラス基板に比して、著しく高い破壊強度(すなわち端面強度が160MPa超)を有することが確認された。また、各実施例の面取り部においては、チッピングによる研磨境界部の段差や微小クラックが確認されず、さらにはガラスパーティクルの付着等の全てにおいて良好または極めて良好な結果を示すことが確認された。   According to Tables 1 and 2 above, it is obvious that any of Examples 1 to 5 of the present invention has a small ten-point average roughness at the boundary between the front surface and the back surface of the glass substrate and is close to a mirror surface. That is, a chamfered portion having a sufficient width is formed, and a remarkably high fracture strength (that is, the end surface strength exceeds 160 MPa) as compared with a glass substrate not formed with a chamfered portion as in the comparative example. It was confirmed to have. Further, in the chamfered portion of each example, no step or minute crack at the polishing boundary due to chipping was confirmed, and it was confirmed that good or extremely good results were exhibited in all of the adhesion of glass particles and the like.

したがって、本発明の実施例に係るガラス基板は、後工程での破損を誘起し難く、極めて高強度なものになると共に、端面に起因するガラスパーティクルの発生が極めて少なく、液晶ディスプレイやプラズマディスプレイさらには有機EL等のように、高解像度の表示ディスプレイに使用される場合でも、ガラス基板上に表示素子やデバイスを形成する際に発生する断線不良等を効果的に抑制することができる。   Therefore, the glass substrate according to the embodiment of the present invention hardly induces breakage in the post-process, becomes extremely high strength, and generates very little glass particles due to the end face. Even when used in a high-resolution display such as an organic EL, it is possible to effectively suppress a disconnection defect or the like that occurs when a display element or device is formed on a glass substrate.

また、本発明の実施例の場合、研削速度を100mm/minから400mm/minまで増大させても、適宜研磨具の研磨板を選択して研削条件を設定すれば、同様の面取り部を効率よく得ることができ、工程の高効率化が可能となる。   In the case of the embodiment of the present invention, even if the grinding speed is increased from 100 mm / min to 400 mm / min, the same chamfered portion can be efficiently formed by appropriately selecting the polishing plate of the polishing tool and setting the grinding conditions. Can be obtained, and the efficiency of the process can be improved.

一方、比較例では、研磨具の移動速度が200mm/secや400mm/secである場合のみならず、100mm/secまで低速にしても、端面部の最低破壊強度は比較的低く、強度の低い端面部への搬送手段の接触や熱応力集中に起因して、破損を誘発するおそれがある。また、何れの比較例についても、パーティクル値は比較的高く、しかも境界部のチッピング段差が大きいため、例えば洗浄時および乾燥時や搬送時および梱包時等の工程において、境界部のチッピング部よりガラスパーティクルがガラス基板上に剥離付着して、表示素子やデバイスを形成する際に断線不良を起こすおそれがある。したがって、本発明の各実施例に係るガラス基板は、これらの比較例に係るガラス基板に比して、破壊強度とガラスパーティクルとの何れの点においても極めて優れていることが確認された。   On the other hand, in the comparative example, not only when the moving speed of the polishing tool is 200 mm / sec or 400 mm / sec, but even when the polishing tool is slowed down to 100 mm / sec, the minimum fracture strength of the end face is relatively low, and the end face with low strength There is a risk of causing breakage due to contact of the conveying means to the part or concentration of thermal stress. In any of the comparative examples, since the particle value is relatively high and the chipping level difference at the boundary is large, for example, in the process such as cleaning, drying, transporting, and packing, the glass is higher than the chipping part at the boundary. Particles may peel off and adhere to the glass substrate, causing a disconnection failure when forming a display element or device. Therefore, it was confirmed that the glass substrate according to each example of the present invention was extremely excellent in both the breaking strength and the glass particle as compared with the glass substrate according to these comparative examples.

1 ガラス基板
2a 表面
2b 裏面
3 端面
4 面取り部
5 研磨具(第1、第2研磨具)
6 第3研磨具
6a 第3研磨具の回転軸
6b 第3研磨具の研磨面(砥面)
6ba 第3研磨具の研磨面(砥面)の内周部
6bb 第3研磨具の研磨面(砥面)の外周部
A 面取り部の表面側への接線
z 境界部
DESCRIPTION OF SYMBOLS 1 Glass substrate 2a Front surface 2b Back surface 3 End surface 4 Chamfer part 5 Polishing tool (1st, 2nd polishing tool)
6 Third polishing tool 6a Rotating shaft 6b of third polishing tool Polishing surface (abrasive surface) of third polishing tool
6ba Inner peripheral part 6bb of the polishing surface (abrasive surface) of the third polishing tool Ab Outer peripheral part A of the polishing surface (the abrasive surface) of the third polishing tool A Tangent line z to the surface side of the chamfered part Boundary part

Claims (7)

表面と、裏面と、表面および裏面の外周端相互間に存する端面とを有し、該端面に対して研磨処理を施すことにより表面および裏面のそれぞれの外周端から板厚方向中央部にかけて外方に突出する研磨面が形成されたガラス基板に対して、
前記研磨処理後の端面と前記表面および前記裏面とのそれぞれの境界部の少なくとも一方に、前記研磨処理とは異なる特定研磨処理を施すことにより特定研磨面からなる面取り部が形成されると共に、
前記面取り部の特定研磨面の十点平均粗さRz2が、前記特定研磨処理が施されていない前記端面の研磨面の十点平均粗さRz1よりも小さく、且つ、
前記面取り部の特定研磨面の粗さ曲線要素の平均長さRSm2が、前記特定研磨処理が施されていない前記端面の研磨面の粗さ曲線要素の平均長さRSm1よりも大きい
ことを特徴とするガラス基板。
It has a front surface, a back surface, and an end surface existing between the outer peripheral edges of the front surface and the back surface. For a glass substrate on which a polished surface protruding to
A chamfered portion made of a specific polished surface is formed by performing a specific polishing process different from the polishing process on at least one of the boundary portions between the end face after the polishing process and the front surface and the back surface,
The chamfer ten-point average roughness Rz 2 of the particular polished surface of the particular polishing process is smaller than the ten-point average roughness Rz 1 of the polishing surface of said end faces have not been subjected and,
The average length RSm 2 of the roughness curve element of the specific polishing surface of the chamfered portion is larger than the average length RSm 1 of the roughness curve element of the polishing surface of the end face not subjected to the specific polishing treatment. Characteristic glass substrate.
前記特定研磨面の十点平均粗さRz2およびRz1は、Rz2≦1.5μmであり、且つ、1.5≦Rz1/Rz2≦10.0の関係を満たすことを特徴とする請求項1に記載のガラス基板。 The ten-point average roughnesses Rz 2 and Rz 1 of the specific polished surface satisfy Rz 2 ≦ 1.5 μm and satisfy a relationship of 1.5 ≦ Rz 1 / Rz 2 ≦ 10.0. The glass substrate according to claim 1. 前記特定研磨面の粗さ曲線要素の平均長さRSm2は、RSm2≧100μmの関係を満たすことを特徴とする請求項1または2に記載のガラス基板。 3. The glass substrate according to claim 1, wherein an average length RSm 2 of the roughness curve element of the specific polished surface satisfies a relationship of RSm 2 ≧ 100 μm. 前記端面の長手方向と直交する断面において、表面側の境界部に形成される前記特定研磨面の表面側への接線と、前記表面とのなす角度α、および、裏面側の境界部に形成される前記特定研磨面の裏面側への接線と、前記裏面とのなす角度βは、それぞれ、10°≦α≦30°および10°≦β≦30°の関係を満たすことを特徴とする請求項1〜3の何れかに記載のガラス基板。   In a cross section orthogonal to the longitudinal direction of the end face, an angle α formed between the tangent to the front surface side of the specific polishing surface formed at the front surface side boundary portion and the front surface, and a rear surface side boundary portion are formed. The angle β formed between the tangent to the back surface side of the specific polishing surface and the back surface satisfies a relationship of 10 ° ≦ α ≦ 30 ° and 10 ° ≦ β ≦ 30 °, respectively. The glass substrate in any one of 1-3. 板厚Tおよび前記面取り部の長手方向と直交する方向の幅Wは、200μm≦T≦1500μmおよび0.07≦W/T≦0.30の関係を満たすことを特徴とする請求項1〜4の何れかに記載のガラス基板。   The thickness W and the width W in the direction perpendicular to the longitudinal direction of the chamfered portion satisfy the relationship of 200 μm ≦ T ≦ 1500 μm and 0.07 ≦ W / T ≦ 0.30. The glass substrate in any one of. 請求項1〜5の何れかに記載のガラス基板を製造する方法であって、ガラス基板の端面に対して粗研磨処理を施した後に仕上げ研磨処理を施すことにより表面および裏面のそれぞれの外周端から板厚方向中央部にかけて外方に突出する研磨面を形成し、然る後、前記端面と前記表面および前記裏面とのそれぞれの境界部の少なくとも一方に、前記仕上げ研磨処理よりも細かい粒度を有する研磨具を用いて特定研磨処理を施すことを特徴とするガラス基板の製造方法。   A method for producing the glass substrate according to any one of claims 1 to 5, wherein the outer peripheral edge of each of the front surface and the rear surface is subjected to a final polishing treatment after performing a rough polishing treatment on the end surface of the glass substrate. Forming a polishing surface that protrudes outward from the central portion in the plate thickness direction, and then, at least one of the boundary portions between the end surface, the front surface, and the back surface, has a finer particle size than the finish polishing treatment. A method for producing a glass substrate, comprising performing a specific polishing treatment using a polishing tool having the same. 請求項1〜5の何れかに記載のガラス基板を製造する方法であって、前記特定研磨処理用の研磨具として、回転軸と直交する研磨面を有する回転研磨具を使用し、且つ前記研磨面の外周部の粗度を内周部の粗度よりも小さく形成すると共に、研磨処理後の端面とガラス基板の表面および裏面とのそれぞれの境界部の少なくとも一方に対して、前記回転研磨具がその長手方向に相対的に直線移動しながら前記回転軸廻りに回転することにより、前記研磨面の外周部および内周部の双方によって前記特定研磨面からなる面取り部を形成することを特徴とするガラス基板の製造方法。   A method for producing a glass substrate according to any one of claims 1 to 5, wherein a rotating polishing tool having a polishing surface orthogonal to a rotation axis is used as the polishing tool for the specific polishing process, and the polishing is performed. The rotary polishing tool is formed so that the roughness of the outer peripheral portion of the surface is smaller than the roughness of the inner peripheral portion, and at least one of the boundary portions between the end surface after polishing and the front and back surfaces of the glass substrate. Is rotated around the rotation axis while linearly moving in the longitudinal direction thereof, thereby forming a chamfered portion made of the specific polishing surface by both the outer peripheral portion and the inner peripheral portion of the polishing surface. A method for manufacturing a glass substrate.
JP2010022112A 2009-03-10 2010-02-03 Glass substrate and manufacturing method thereof Expired - Fee Related JP5440786B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010022112A JP5440786B2 (en) 2009-03-10 2010-02-03 Glass substrate and manufacturing method thereof
CN201080010281.9A CN102341214B (en) 2009-03-10 2010-03-08 Glass substrate and method for manufacturing same
KR1020117014792A KR101707056B1 (en) 2009-03-10 2010-03-08 Glass substrate and method for manufacturing same
PCT/JP2010/053800 WO2010104039A1 (en) 2009-03-10 2010-03-08 Glass substrate and method for manufacturing same
TW099106957A TWI480127B (en) 2009-03-10 2010-03-10 Glass substrate and its production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009056939 2009-03-10
JP2009056939 2009-03-10
JP2010022112A JP5440786B2 (en) 2009-03-10 2010-02-03 Glass substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010234518A JP2010234518A (en) 2010-10-21
JP5440786B2 true JP5440786B2 (en) 2014-03-12

Family

ID=43089357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010022112A Expired - Fee Related JP5440786B2 (en) 2009-03-10 2010-02-03 Glass substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5440786B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5516940B2 (en) * 2009-10-19 2014-06-11 日本電気硝子株式会社 Glass substrate and manufacturing method thereof
JP5516952B2 (en) * 2010-01-05 2014-06-11 日本電気硝子株式会社 Glass substrate and manufacturing method thereof
JP5516941B2 (en) * 2009-10-19 2014-06-11 日本電気硝子株式会社 Glass substrate and manufacturing method thereof
JP5868577B2 (en) * 2010-05-20 2016-02-24 日本電気硝子株式会社 Glass substrate and manufacturing method thereof
KR101719588B1 (en) * 2010-11-17 2017-03-27 삼성디스플레이 주식회사 Touch Screen Panel and Fabricating Method for the Same
EP3421232B1 (en) 2011-05-13 2021-12-15 Nippon Electric Glass Co., Ltd. Method for processing a laminate
JP5904456B2 (en) * 2011-05-13 2016-04-13 日本電気硝子株式会社 Laminated body
US8986072B2 (en) * 2011-05-26 2015-03-24 Corning Incorporated Methods of finishing an edge of a glass sheet
KR101511593B1 (en) * 2013-09-16 2015-04-13 (주)에스에이티 Glass For Cellular Phone, Grinding Wheel And Apparatus For Grinding That Glass
WO2024086026A1 (en) * 2022-10-18 2024-04-25 Corning Incorporated Apparatus for removing particulate on display glass edges

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5020603B2 (en) * 2006-11-15 2012-09-05 ショーダテクトロン株式会社 Glass substrate chamfering equipment
JP2009099250A (en) * 2007-09-28 2009-05-07 Hoya Corp Method of manufacturing glass substrate for magnetic disk and method of manufacturing magnetic disk
JP2009134802A (en) * 2007-11-29 2009-06-18 Furukawa Electric Co Ltd:The Glass substrate for magnetic disk and magnetic disk apparatus
WO2009084683A1 (en) * 2007-12-28 2009-07-09 Hoya Corporation Magnetic disk manufacture supporting method, magnetic disk manufacturing method, package of magnetic disk glass substrate, method for packaging the magnetic disk glass substrate, and method for manufacturing the magnetic disk glass substrate

Also Published As

Publication number Publication date
JP2010234518A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5440786B2 (en) Glass substrate and manufacturing method thereof
TWI480127B (en) Glass substrate and its production method
WO2010104039A1 (en) Glass substrate and method for manufacturing same
JP5516941B2 (en) Glass substrate and manufacturing method thereof
TWI589402B (en) Grinding method and grinding apparatus for flat plate glass and edge part of flat glass by grinding edge part
JP5454180B2 (en) Manufacturing method of glass substrate for magnetic recording medium and glass substrate for magnetic recording medium
JP5516940B2 (en) Glass substrate and manufacturing method thereof
US20110107894A1 (en) Brittle Material Substrate Chamfering Method
WO2003094215A1 (en) Semiconductor wafer manufacturing method and wafer
JP5494552B2 (en) Double-head grinding method and double-head grinding apparatus
JP5456942B2 (en) Manufacturing method of glass plate, manufacturing method of glass substrate for display, and glass plate
WO2014027546A1 (en) Glass substrate and method for manufacturing glass substrate
JP5516952B2 (en) Glass substrate and manufacturing method thereof
JP6484468B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
EP3888846A1 (en) Semiconductor substrate and method for manufacturing same
JP5370913B2 (en) Glass substrate end surface polishing apparatus and end surface polishing method thereof
TWI637811B (en) Method for manufacturing glass substrate and magnetic fluid for glass substrate honing
JP5868577B2 (en) Glass substrate and manufacturing method thereof
TW202126427A (en) Glass plate manufacturing method and glass plate
JP6368364B2 (en) Manufacturing method of glass substrate
WO2001035450A1 (en) Compound semiconductor wafer
JPH11265928A (en) Wafer sticking plate and method for polishing semiconductor wafer while using the plate
JP2010153844A (en) Method of producing wafer for active layer
JP2013095649A (en) Method for producing brittle material substrate from mother brittle material substrate
WO2011083667A1 (en) Method and apparatus for processing compound semiconductor wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees