JP5426651B2 - Marine engine control apparatus and method - Google Patents

Marine engine control apparatus and method Download PDF

Info

Publication number
JP5426651B2
JP5426651B2 JP2011283318A JP2011283318A JP5426651B2 JP 5426651 B2 JP5426651 B2 JP 5426651B2 JP 2011283318 A JP2011283318 A JP 2011283318A JP 2011283318 A JP2011283318 A JP 2011283318A JP 5426651 B2 JP5426651 B2 JP 5426651B2
Authority
JP
Japan
Prior art keywords
control
value
ship
secular change
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011283318A
Other languages
Japanese (ja)
Other versions
JP2012091786A (en
Inventor
淳也 宮田
昭一 稲見
辻  康之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2011283318A priority Critical patent/JP5426651B2/en
Publication of JP2012091786A publication Critical patent/JP2012091786A/en
Application granted granted Critical
Publication of JP5426651B2 publication Critical patent/JP5426651B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、船舶主機の運転を制御するエンジン制御装置に関する。   The present invention relates to an engine control device that controls the operation of a ship main engine.

船舶主機のガバナ制御では、プロペラ回転数(主機回転数)を一定値に維持するPID制御が広く採用される。また、レーシング時における過回転を防止するために機関のシミュレーションモデルに基づきPID制御パラメータを変更する構成も知られている(特許文献1)。   In the governor control of the main ship, PID control that maintains the propeller rotation speed (main engine rotation speed) at a constant value is widely adopted. A configuration is also known in which PID control parameters are changed based on a simulation model of an engine in order to prevent overspeed during racing (Patent Document 1).

特開平8−200131号公報Japanese Patent Laid-Open No. 8-200231

特許文献1では、外乱による回転数変動をシミュレーションで予測しPID制御パラメータを変更することは提案されているものの、経年的な船体抵抗の増加、プロペラ効率の低下、エンジン性能の劣化等に対応して制御を変更する構成は採られていない。   In Patent Document 1, although it has been proposed to change the PID control parameter by predicting the rotational speed fluctuation due to the disturbance by simulation, it responds to the increase in hull resistance over time, the decrease in propeller efficiency, the deterioration in engine performance, etc. Therefore, the configuration for changing the control is not adopted.

本発明は、船舶の経年変化に合わせた効率のよい主機の運転を行うことを目的としている。   The object of the present invention is to operate the main engine efficiently in accordance with the secular change of the ship.

本発明の舶用エンジン制御装置は、船舶の主機の運転を制御する制御部と、主機および船体を含む船舶を制御対象とし、制御部からの操作量を入力とするオブザーバと、制御対象の経年変化の影響を受ける物理量をオブザーバで推定し、物理量の経年変化前の値と経年変化後の値に基づいて制御部の制御パラメータを変更する補正手段とを備えたことを特徴としている。   A marine engine control device according to the present invention includes a control unit that controls the operation of a main engine of a ship, an observer that includes a ship including the main engine and a hull, an operation amount input from the control unit, and a secular change of the control target. It is characterized by comprising a correcting means for estimating a physical quantity affected by the observer with an observer and changing a control parameter of the control unit based on a value before the aging of the physical quantity and a value after the aging.

補正手段は、物理量の経年変化前の値と、経年変化後の値に基づいてオブザーバのシミュレータを経年変化後の制御対象に対応した数値モデルに変更することが好ましい。これにより、より正確に制御対象の経年変化を推定できる。   The correcting means preferably changes the simulator of the observer to a numerical model corresponding to the control target after the aging based on the value before the aging of the physical quantity and the value after the aging. Thereby, the secular change of a control object can be estimated more correctly.

また、船舶のエンジン制御装置は、物理量の経年変化前の値を記録するメモリを備えることが好ましく、補正手段は、このメモリに記録された物理量の値と、経年変化後に推定される物理量の値に基づいて制御パラメータの変更を行う。物理量は例えば船速であり、補正手段は経年変化前後の船速の差に対応して制御パラメータを変更する。制御部は例えばPID制御を行い、補正手段は上記船速差が大きいほどPゲインおよび/またはDゲインを大きい値に変更する。また、補正手段は、例えば上記船速差が大きいほど、Iゲインを小さい値に変更する。またエンジン制御装置では、例えば主機の回転数が検出され、オブザーバにフィードバックされる。   Further, the ship engine control device preferably includes a memory that records a value before physical change of the physical quantity, and the correcting means includes the value of the physical quantity recorded in the memory and the value of the physical quantity estimated after the temporal change. The control parameter is changed based on the above. The physical quantity is, for example, the ship speed, and the correction means changes the control parameter in accordance with the difference in ship speed before and after aging. For example, the control unit performs PID control, and the correction unit changes the P gain and / or D gain to a larger value as the ship speed difference is larger. For example, the correction means changes the I gain to a smaller value as the boat speed difference increases. In the engine control device, for example, the rotational speed of the main engine is detected and fed back to the observer.

本発明の船舶は、上記エンジン制御装置を備えたことを特徴としている。   A ship according to the present invention includes the engine control device.

本発明の舶用エンジン制御方法は、主機および船体を含む船舶を制御対象とし、主機の運転を制御する制御部からの操作量を入力とするオブザーバにおいて制御対象の経年変化の影響を受ける物理量を推定し、物理量の経年変化前の値と経年変化後の値に基づいて主機の運転を制御する制御部の制御パラメータを変更することを特徴としている。   The marine engine control method according to the present invention estimates a physical quantity that is affected by a secular change of a control target in an observer that receives an operation amount from a control unit that controls the operation of the main engine as a control target for a ship including a main engine and a hull. In addition, the control parameter of the control unit that controls the operation of the main engine is changed based on the value before the aging of the physical quantity and the value after the aging change.

本発明によれば、船舶の経年変化に合わせた効率のよい主機の運転を行うことができる。   ADVANTAGE OF THE INVENTION According to this invention, the driving | operation of the efficient main machine according to the secular change of a ship can be performed.

本発明の実施形態であるエンジン制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the engine control apparatus which is embodiment of this invention. 制御対象とオブザーバの関係を示すブロック図である。It is a block diagram which shows the relationship between a control object and an observer.

以下、本発明の実施形態について添付図面を参照して説明する。
図1は、本発明の一実施形態である舶用エンジン制御装置の構成を示す制御ブロック図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a control block diagram showing a configuration of a marine engine control apparatus according to an embodiment of the present invention.

制御対象10には、主機、プロペラ、船体などが含まれ、主機には制御部11からガバナ指令uが与えられる。制御部11は、例えば回転数一定とするPID制御を行うガバナである。また、主機の出力軸(図示せず)には、主機の実回転数Neを計測するセンサ(図示せず)が設けられ、実回転数Neは制御部11の入力側に負フィードバックされる。すなわち、制御部11には目標回転数Noと実回転数Neの偏差が入力され、PID演算を経てガバナ指令uが出力される。   The control target 10 includes a main machine, a propeller, a hull, and the like, and a governor command u is given to the main machine from the control unit 11. The control unit 11 is a governor that performs PID control, for example, with a constant rotation speed. A sensor (not shown) for measuring the actual rotational speed Ne of the main machine is provided on the output shaft (not shown) of the main machine, and the actual rotational speed Ne is negatively fed back to the input side of the control unit 11. That is, the deviation between the target rotational speed No and the actual rotational speed Ne is input to the control unit 11, and the governor command u is output through the PID calculation.

また、本実施形態のエンジン制御装置は、制御対象10を数値モデル化したオブザーバ12を備える。図2は、制御対象10とオブザーバ12の詳細な関係を示すブロック図である。図2に示されるように、オブザーバ12は、ガバナ指令uを入力とし、回転数Nや船速(対水船速)Vなどを状態変数とする。本実施形態では、実回転数Neが計測されているので、オブザーバ12では、実回転数Neとシミュレータの出力である回転数Nmの差がシミュレータにフィードバックされて各状態変数が推定される。なお、図2のA、B、C、Kは各変数に作用する演算子である。   Further, the engine control apparatus of the present embodiment includes an observer 12 in which the control object 10 is numerically modeled. FIG. 2 is a block diagram showing a detailed relationship between the controlled object 10 and the observer 12. As shown in FIG. 2, the observer 12 receives the governor command u and uses the rotational speed N, the ship speed (vs. water speed) V, and the like as state variables. In this embodiment, since the actual rotational speed Ne is measured, the observer 12 feeds back the difference between the actual rotational speed Ne and the rotational speed Nm that is the output of the simulator to the simulator, and estimates each state variable. Note that A, B, C, and K in FIG. 2 are operators that operate on each variable.

また、エンジン制御装置は、メモリ13と補正演算部14を備える。補正演算部14はオブザーバ12からの出力とメモリ13に保存されたデータを用いて制御部11の制御パラメータを実船の経年変化に対応して補正する補正量を算出する演算部である。本実施形態では、制御部11がPID制御を行うことから、補正対象となる制御パラメータは、PIDゲインであり、制御部11のPIDゲインは補正演算部14で算出された補正量に基づいて更新される。   Further, the engine control device includes a memory 13 and a correction calculation unit 14. The correction calculation unit 14 is a calculation unit that calculates a correction amount for correcting the control parameter of the control unit 11 in accordance with the secular change of the actual ship by using the output from the observer 12 and the data stored in the memory 13. In the present embodiment, since the control unit 11 performs PID control, the control parameter to be corrected is a PID gain, and the PID gain of the control unit 11 is updated based on the correction amount calculated by the correction calculation unit 14. Is done.

メモリ13には、前回の制御パラメータ更新時にオブザーバ12で算出された船速Vmoが記録されている。次に制御パラメータの更新を行うときには、船速Vmoが算出されたときと同じ条件の下、例えば回転数や燃料投入量を前回と同じ値にして船を航行させ、現在の船速Vmをオブザーバで算出する。補正演算部14には、オブザーバ12で推定される現在の船速Vmとメモリ13に記憶されている過去の船速Vmoが入力され、これらの値に基づいて制御部11の制御パラメータの補正量が算出される。   The memory 13 records the ship speed Vmo calculated by the observer 12 at the previous control parameter update. Next, when the control parameter is updated, the ship is navigated under the same conditions as when the ship speed Vmo is calculated, for example, with the same rotation speed and fuel input as the previous time, and the current ship speed Vm is observed. Calculate with The correction calculation unit 14 receives the current ship speed Vm estimated by the observer 12 and the past ship speed Vmo stored in the memory 13, and the correction amount of the control parameter of the control unit 11 based on these values. Is calculated.

経年的に船体抵抗は増大し、プロペラ効率は低下するので、海象や燃料供給量が同一であっても、船速は前回の更新時(例えば新造時)よりも遅くなる。したがって、オブザーバ12で推定される現在船速Vmは、過去の船速Vmoよりも遅くなる。   Over time, the hull resistance increases and the propeller efficiency decreases, so even if the sea conditions and the fuel supply amount are the same, the ship speed becomes slower than the previous update (for example, at the time of new construction). Therefore, the current ship speed Vm estimated by the observer 12 is slower than the past ship speed Vmo.

補正演算部14では、例えば過去の船速Vmoと現在の船速Vmの差(Vmo−Vm)が補正量として算出され、制御部11では、(Vmo−Vm)の値が大きいほどPゲイン、Dゲインが大きく設定され、かつ/またはIゲインは小さく設定される。すなわち、経年変化が起こると船体抵抗が増大しプロペラ効率が低下するので、新造時と同様の応答性を得るには、差(Vmo−Vm)の値が大きいほどPおよび/またはDのゲインを大きく取る必要がある。例えばP、Dのゲインは(Vmo−Vm)の増大に比例して増大され、Iゲインは逆比例して低減される。   In the correction calculation unit 14, for example, a difference (Vmo−Vm) between the past boat speed Vmo and the current boat speed Vm is calculated as a correction amount. In the control unit 11, as the value of (Vmo−Vm) increases, the P gain, The D gain is set large and / or the I gain is set small. That is, when the secular change occurs, the hull resistance increases and the propeller efficiency decreases. Therefore, in order to obtain the same responsiveness as in the new construction, the gain of P and / or D is increased as the difference (Vmo−Vm) is larger. It is necessary to take big. For example, the gains of P and D are increased in proportion to the increase of (Vmo−Vm), and the I gain is decreased in inverse proportion.

また、このとき補正演算部14では、入力されたVmo、Vmに基づきオブザーバ12における状態方程式についても制御対象の経年変化に合わせて補正が行われ、オブザーバ12のシミュレータ(数値モデル)が現在の制御対象に対応するものに更新される。   At this time, the correction calculation unit 14 also corrects the state equation in the observer 12 based on the input Vmo and Vm according to the secular change of the control target, and the simulator (numerical model) of the observer 12 performs the current control. Updated to the one corresponding to the target.

例えば、(N,V)を回転数Nおよび速度Vを成分とする状態ベクトル(tは転置を表す)、(N’,V’)を(N,V)の時間に関する一階微分、ガバナ指令uを入力とするとともに、状態ベクトル(N,V)、入力uにそれぞれ演算される2×2行列、2×1行列の要素を{Aij},{B}としてシステムの状態方程式(一部)を

Figure 0005426651

と表すとき、A12がプロペラ回転の抵抗を含む要素、A22が船体抵抗を含む要素となる。このときA12およびA22は、例えばそれぞれA12・Vmo/VmおよびA22・Vmo/Vmに更新される。なお、その他の要素はそのままの値に維持される。また、上記状態方程式において主機等に関わる変数は省略されているが、主機バルブの劣化なども考慮する構成とすることもできる。 For example, (N, V) t is a state vector whose components are rotation speed N and speed V (t represents transposition), and (N ′, V ′) t is a first-order derivative with respect to time of (N, V) t. , With the governor command u as input, the state vector (N, V) t , and the 2 × 2 matrix and 2 × 1 matrix elements calculated for the input u as {A ij } and {B i }, respectively. Equation of state (part)
Figure 0005426651

, A 12 is an element including propeller rotation resistance, and A 22 is an element including hull resistance. In this case A 12 and A 22 are, for example, is updated to A 12 · Vmo / Vm and A 22 · Vmo / Vm, respectively. Other elements are maintained as they are. Further, in the above state equation, variables relating to the main engine and the like are omitted, but a configuration in which deterioration of the main engine valve and the like are taken into consideration can also be adopted.

以上のように、本実施形態によれば、船速を実測することなく船体やプロペラ等の経年変化を推定し、これに合わせて制御パラメータを更新することができるので、船舶の経年変化に合わせた効率のよい主機の運転を常時行うことができる。また、これによりシーマージンを小さくすることができ、新造時の燃費も改善される。   As described above, according to the present embodiment, it is possible to estimate the secular change of the hull, the propeller, etc. without actually measuring the ship speed, and to update the control parameters in accordance with this, so that it matches the secular change of the ship. The main engine can be operated efficiently at all times. This can also reduce the sea margin and improve the fuel efficiency at the time of new construction.

なお、ガバナ指令uから経年変化前の船速が十分な精度でシミュレートできる場合には、メモリに保存された過去の船速ではなく、シミュレートされた経年変化前の船速と、本実施形態のオブザーバで推定される現在の船速を比較して制御部やオブザーバの更新を行うこともできる。   If the ship speed before the secular change can be simulated with sufficient accuracy from the governor command u, this is not the past ship speed stored in the memory, but the simulated ship speed before the aging It is also possible to update the control unit and the observer by comparing the current ship speed estimated by the form observer.

また、観測される状態変数は回転数に限定されず、例えばプロペラシャフトのトルクなどであってもよいし、複数の物理量であってもよい。また、経年変化を推定するための物理量として、本実施形態では船速の推定値を用いたが、例えばトルクやスラストをオブザーバで推定し、これに基づいて経年変化を推定して制御パラメータを更新することも可能である。   Further, the observed state variable is not limited to the rotation speed, and may be, for example, the torque of the propeller shaft, or may be a plurality of physical quantities. In this embodiment, the estimated value of the ship speed is used as the physical quantity for estimating the secular change. For example, the torque and thrust are estimated by the observer, and the control parameter is updated by estimating the secular change based on the estimated value. It is also possible to do.

本実施形態ではPID制御を例に説明を行ったが、それ以外の制御方式において、推定される船体やプロペラの経年変化に合わせて、経年変化前の応答性が得られるように制御パラメータを更新することも可能である。   In this embodiment, PID control has been described as an example. However, in other control methods, control parameters are updated so that responsiveness before aging can be obtained according to the estimated aging of the hull and propeller. It is also possible to do.

10 制御対象
11 制御部(PID演算部)
12 オブザーバ
13 メモリ
14 補正演算部
10 Controlled object 11 Control part (PID calculating part)
12 Observer 13 Memory 14 Correction Operation Unit

Claims (7)

船舶の主機の運転を制御する制御部と、
前記主機および船体を含む船舶を制御対象とし、前記制御部からの操作量を入力とするオブザーバと、
前記制御対象の経年変化の影響を受ける船速を前記オブザーバで推定し、前記船速の経年変化前の値と経年変化後の値に基づいて前記制御部の制御パラメータを変更する補正手段とを備え、
前記補正手段が前記経年変化前後の船速の差に対応して前記制御パラメータを変更し、
前記制御部がPID制御を行い、前記補正手段は前記差が大きいほど、Pゲインおよび/またはDゲインを大きい値に変更する
ことを特徴とする船舶のエンジン制御装置。
A control unit for controlling the operation of the main engine of the ship;
An observer that controls a ship including the main engine and the hull, and receives an operation amount from the control unit;
A correction means for estimating a ship speed affected by the secular change of the control object by the observer and changing a control parameter of the control unit based on a value before the secular change of the ship speed and a value after the secular change; Prepared,
The correction means changes the control parameter corresponding to the difference in ship speed before and after the secular change,
The marine engine control device, wherein the control unit performs PID control, and the correction unit changes the P gain and / or the D gain to a larger value as the difference is larger.
前記補正手段は前記差が大きいほど、Iゲインを小さい値に変更することを特徴とする請求項1に記載の船舶のエンジン制御装置。   The marine engine control device according to claim 1, wherein the correction means changes the I gain to a smaller value as the difference is larger. 前記補正手段は、前記船速の経年変化前の値と、経年変化後の値に基づいて前記オブザーバのシミュレータを経年変化後の制御対象に対応した数値モデルに変更することを特徴とする請求項2に記載の船舶のエンジン制御装置。   The correction means changes the simulator of the observer to a numerical model corresponding to a control target after aging based on a value before aging of the boat speed and a value after aging. 2. The marine engine control device according to 2. 前記船速の経年変化前の値を記録するメモリを備え、前記補正手段は、前記メモリに記録された前記船速の値と、経年変化後に推定される前記船速の値に基づいて前記制御パラメータの変更を行うことを特徴とする請求項1または請求項2の何れか一項に記載の船舶のエンジン制御装置。   A memory for recording a value of the boat speed before the secular change; and the correction means controls the control based on the value of the boat speed recorded in the memory and the value of the boat speed estimated after the secular change. The engine control device for a ship according to any one of claims 1 and 2, wherein a parameter is changed. 前記主機の回転数が検出され、前記オブザーバにフィードバックされることを特徴とする請求項1〜4の何れか一項に記載の船舶のエンジン制御装置。   The marine engine control device according to any one of claims 1 to 4, wherein a rotational speed of the main engine is detected and fed back to the observer. 請求項1〜5の何れか一項に記載のエンジン制御装置を備えることを特徴とする船舶。   A ship comprising the engine control device according to any one of claims 1 to 5. 主機および船体を含む船舶を制御対象とし、前記主機の運転を制御する制御部からの操作量を入力とするオブザーバにおいて前記制御対象の経年変化の影響を受ける船速を推定し、前記船速の経年変化前の値と経年変化後の値に基づいて前記主機の運転を制御する制御部の制御パラメータを前記経年変化前後の船速の差に対応して変更し、前記制御部がPID制御を行い、前記補正手段は前記差が大きいほど、Pゲインおよび/またはDゲインを大きい値に変更することを特徴とする船舶のエンジン制御方法。   A ship including a main engine and a hull is controlled, and an observer that receives an operation amount from a control unit that controls the operation of the main engine is used to estimate a ship speed that is affected by the secular change of the control object. Based on the value before the secular change and the value after the secular change, the control parameter of the control unit that controls the operation of the main engine is changed according to the difference in the ship speed before and after the secular change, and the control unit performs the PID control. And the correction means changes the P gain and / or the D gain to a larger value as the difference is larger.
JP2011283318A 2011-12-26 2011-12-26 Marine engine control apparatus and method Expired - Fee Related JP5426651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011283318A JP5426651B2 (en) 2011-12-26 2011-12-26 Marine engine control apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011283318A JP5426651B2 (en) 2011-12-26 2011-12-26 Marine engine control apparatus and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010082161A Division JP4934736B2 (en) 2010-03-31 2010-03-31 Marine engine control apparatus and method

Publications (2)

Publication Number Publication Date
JP2012091786A JP2012091786A (en) 2012-05-17
JP5426651B2 true JP5426651B2 (en) 2014-02-26

Family

ID=46385639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011283318A Expired - Fee Related JP5426651B2 (en) 2011-12-26 2011-12-26 Marine engine control apparatus and method

Country Status (1)

Country Link
JP (1) JP5426651B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235688A1 (en) * 2019-05-22 2020-11-26 国立研究開発法人 海上・港湾・航空技術研究所 Ship main engine monitoring method, main engine monitoring system, main engine state prediction system, and operation status prediction system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226502A (en) * 1985-07-26 1987-02-04 Nippon Kokan Kk <Nkk> Adaptive control device
JPS62279195A (en) * 1986-05-29 1987-12-04 Mitsubishi Heavy Ind Ltd Integrated navigation device
JPH0832523B2 (en) * 1989-07-14 1996-03-29 川崎重工業株式会社 Vessel speed controller for hydrofoil
JPH08200131A (en) * 1995-01-26 1996-08-06 Mitsubishi Heavy Ind Ltd Load fluctuation control unit of electronic governor for marine use
JP3272566B2 (en) * 1995-04-26 2002-04-08 三菱重工業株式会社 Aging monitoring device for marine propulsion plant
JP2001132478A (en) * 1999-11-09 2001-05-15 Sanshin Ind Co Ltd Fuel injection type four-cycle engine
JP3436722B2 (en) * 2000-03-17 2003-08-18 川崎重工業株式会社 Control device
JP4085996B2 (en) * 2004-03-16 2008-05-14 トヨタ自動車株式会社 Power output apparatus, automobile equipped with the same, and control method of power output apparatus
JP5090957B2 (en) * 2008-02-15 2012-12-05 日本郵船株式会社 Marine engine control method and control device thereof
JP4970346B2 (en) * 2008-05-28 2012-07-04 三井造船株式会社 Ship operation support system and ship operation support method

Also Published As

Publication number Publication date
JP2012091786A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
JP4934736B2 (en) Marine engine control apparatus and method
JP5296753B2 (en) Marine engine control system and method
WO2006049252A1 (en) Method and device for controlling injection of fuel for marine diesel engine
US20160108732A1 (en) Switch gain scheduled explicit model predictive control of diesel engines
JP2002115565A (en) Method and device for trimming engine control system
KR20170066268A (en) Adaptive engine model torque splitting optimization
US6959691B2 (en) Device and method for controlling air volume during idle operation
CN103454915B (en) The method and apparatus that adaptive location for the adjusting apparatus of execution position transmitter is adjusted
JP6900034B2 (en) Engine control method using engine state observer, engine control program and engine control device
KR20120138822A (en) Ship engine control device and ship engine control method
JP5426651B2 (en) Marine engine control apparatus and method
WO2020235689A1 (en) Engine control method, engine control system, and ship
JP2009150345A (en) Controller for internal combustion engine
WO2009107372A1 (en) Apparatus for controlling fuel injection amount for internal combustion engine
CN110199102A (en) Gas turbine engine fuel control system and method
WO2010113655A1 (en) Marine engine control system
JP4790072B1 (en) Marine engine control apparatus and method
KR101280764B1 (en) Method and apparatus for controlling wind turbine using wind speed feedforward control
JP5230996B2 (en) Engine fuel injection control method and fuel injection control apparatus therefor
JP2009121315A (en) Control device for internal combustion engine
JP5265903B2 (en) Engine air-fuel ratio control method and air-fuel ratio control apparatus therefor
JP5152400B2 (en) Control device for internal combustion engine
FR3048229A1 (en) TURBOPROPOWER CONTROL SYSTEM AND PARAMETERING METHOD THEREOF
JP2687430B2 (en) Intake air amount estimation device for internal combustion engine
JP2013200779A (en) Feedforward control method and feedforward control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees