JP5410651B2 - Surface degradation detection apparatus and method - Google Patents

Surface degradation detection apparatus and method Download PDF

Info

Publication number
JP5410651B2
JP5410651B2 JP2007042152A JP2007042152A JP5410651B2 JP 5410651 B2 JP5410651 B2 JP 5410651B2 JP 2007042152 A JP2007042152 A JP 2007042152A JP 2007042152 A JP2007042152 A JP 2007042152A JP 5410651 B2 JP5410651 B2 JP 5410651B2
Authority
JP
Japan
Prior art keywords
ultrasonic
wave
ultrasonic excitation
inspected
detection apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007042152A
Other languages
Japanese (ja)
Other versions
JP2008203185A (en
Inventor
浦 崇 広 三
方 深 長
合 誠 落
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007042152A priority Critical patent/JP5410651B2/en
Publication of JP2008203185A publication Critical patent/JP2008203185A/en
Application granted granted Critical
Publication of JP5410651B2 publication Critical patent/JP5410651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明は、構造物の表面劣化を検出する装置およびその方法に関する。   The present invention relates to an apparatus and a method for detecting surface deterioration of a structure.

原子力プラントおよびその他各種プラントにおける構造物の非破壊検査において、構造材に生じる劣化および腐食を早期に検知することは重要である。一般的な構造物の劣化、腐食の多くは、母材部より溶接部およびその近傍に生じ易いことが知られている。   In the non-destructive inspection of structures in nuclear power plants and other various plants, it is important to detect deterioration and corrosion occurring in structural materials at an early stage. It is known that most of the deterioration and corrosion of general structures are more likely to occur in the welded part and its vicinity than the base material part.

例えば原子力プラントにおける炉内構造物の多くは、溶接部またはその近傍から劣化が生じる可能性が高いことはよく知られており、当該箇所を検査する技術の開発が進められている。また、万一、構造材料に劣化、腐食が生じた場合、構造材に対して溶接を行うことで健全性を保つ補修溶接が行われている。   For example, it is well known that many in-furnace structures in a nuclear power plant are likely to be deteriorated from a welded portion or the vicinity thereof, and the development of a technique for inspecting the portion is underway. In the unlikely event that deterioration or corrosion occurs in the structural material, repair welding is performed to maintain soundness by welding the structural material.

一般に、溶接を行った後には、溶接の健全性を確認するために、目視試験(VT)や放射線透過探傷試験(RT)、浸透探傷試験(PT)、磁粉探傷試験(MT)、超音波探傷試験(UT)などを行うことになっている(非特許文献1参照)。ここで、溶接表層部に生じる溶接不良を検出するには、PTまたはMTを使用することが一般的である。   In general, after welding, in order to confirm the soundness of welding, visual inspection (VT), radiographic inspection (RT), penetration inspection (PT), magnetic particle inspection (MT), ultrasonic inspection A test (UT) or the like is to be performed (see Non-Patent Document 1). Here, it is common to use PT or MT in order to detect a welding failure occurring in the weld surface layer.

構造物の表層部の劣化状態を検査する技術として、漏洩表面波を使用した材料の劣化状態を検出する方法が挙げられる。図10に、その装置体系図を示す。   As a technique for inspecting the deterioration state of the surface layer portion of the structure, there is a method of detecting the deterioration state of the material using a leaky surface wave. FIG. 10 shows the device system diagram.

この技術によれば、音響レンズ100や曲率表面に圧電高分子PVDF(ポリフッ化ビニリデン)センサ101を設置するなどの方法により、音響レンズ100から発せられた入射超音波ISが被検査対象物1の表層部を伝播する表面波Sを励起させ、伝播中に表層部の材料から受けた影響の情報を有した表面波が水中へ漏洩する漏洩表面波LSを検出することで、被検査対象物1の表層部の劣化状態を検出することが可能である(非特許文献2参照)。また、音響レンズ100からは縦波超音波LLが発せられこの音響レンズ100と被検査対象物1との距離を測定し、上記劣化状態の検出に反映させている。   According to this technique, the incident ultrasonic wave IS emitted from the acoustic lens 100 by the acoustic lens 100 or a method of installing a piezoelectric polymer PVDF (polyvinylidene fluoride) sensor 101 on the curvature surface of the object 1 to be inspected. The object 1 to be inspected is detected by exciting the surface wave S propagating through the surface layer and detecting the leaked surface wave LS in which the surface wave having information on the influence received from the material of the surface layer leaks into the water during propagation. It is possible to detect the deterioration state of the surface layer portion (see Non-Patent Document 2). Further, longitudinal acoustic wave LL is emitted from the acoustic lens 100, and the distance between the acoustic lens 100 and the object 1 to be inspected is measured and reflected in the detection of the deterioration state.

上述した検査方法においては、一般に現場での使用が難しい問題がある。例えば、非特許文献3に示す方法は、マクロ割れに至る前の微細な粒界侵食を検出する目的で漏洩表面波を発生させるための臨界角が、粒界侵食による音速変化によって検出するものである。   The above-described inspection methods generally have a problem that is difficult to use on site. For example, the method shown in Non-Patent Document 3 detects a critical angle for generating a leaky surface wave for the purpose of detecting fine grain boundary erosion before macro cracking is detected by a change in sound velocity due to grain boundary erosion. is there.

このような方法の場合、超音波を送受信するプローブと被検査対象物のなす角度が非常に重要になる。被検査対象物の面が完全に平坦である場合、このような計測手法は比較的容易である。   In the case of such a method, the angle formed between the probe for transmitting and receiving ultrasonic waves and the inspection object is very important. Such a measurement technique is relatively easy when the surface of the object to be inspected is completely flat.

しかし、例えば溶接金属部などにおいて被検査体の表面に凹凸が存在する場合などは、検査箇所の凹凸に応じて臨界角が変化してしまい、正確な計測が困難になる問題がある。   However, for example, when unevenness exists on the surface of the object to be inspected in a weld metal part or the like, there is a problem that the critical angle changes according to the unevenness of the inspection location, and accurate measurement becomes difficult.

また、特許文献1には、非特許文献2で示した方法を現場適用するための技術が記載されている。そして、特許文献1においては、特定の1方向からの計測のみでなく、複数方向からの計測を行うことで、劣化が一定の広がりを有する場合の検査性能を向上させることを目的にしている。また、特許文献2では、表層欠陥を高精度で検出する技術を提案している。   Patent Document 1 describes a technique for applying the method shown in Non-Patent Document 2 on site. And in patent document 1, it aims at improving the inspection performance in case deterioration has fixed spread by not only measuring from one specific direction but measuring from several directions. Patent Document 2 proposes a technique for detecting surface layer defects with high accuracy.

上述した検査方法においては、実際の検査対象が平面である場合には適用が可能であるが、実際の被検査対象面の多くは、例えば図11に示したように、被検査対象物1に溶接面102があるなどにより、平面でない場合が多く存在するため、適用が難しい場合が多い。   The above-described inspection method can be applied when the actual inspection target is a plane, but many of the actual inspection target surfaces are applied to the inspection target object 1 as shown in FIG. Since there are many cases where the surface is not a flat surface due to the presence of the welding surface 102, the application is often difficult.

これは、上述の検査方法が、被検査対象面を伝播する表面波を使用することに起因している。表面波を被検査対象面に励起させるために、臨界角で被検査対象面に超音波を出射するが、この際に表面形状が複雑な形状を有していると、表面波の励起効率が低下、または表面波が励起できないなどの問題が生じる。
溶接技術の基礎、溶接学会編、p.186(産報出版) 超音波便覧、超音波便覧編集委員会編、p.380(丸善) 「漏洩弾性表面波(LSAW)による材料表面の微細粒界侵食の検出(第1報)水浸臨界角法の適用」、横野泰和他著、非破壊検査、第51巻5号(2002) 特開2005−55200号公報 特開2001−208729号公報
This is because the above-described inspection method uses a surface wave propagating on the surface to be inspected. In order to excite the surface wave on the surface to be inspected, ultrasonic waves are emitted to the surface to be inspected at a critical angle. If the surface shape has a complicated shape at this time, the excitation efficiency of the surface wave is increased. Problems such as reduction or inability to excite surface waves occur.
Basics of welding technology, edited by the Japan Welding Society, p. 186 (Industry Bulletin Publishing) Ultrasonic Handbook, Ultrasonic Handbook Editing Committee, p. 380 (Maruzen) "Detection of fine grain boundary erosion on material surface by leaky surface acoustic wave (LSAW) (1st report) Application of water immersion critical angle method", Yasukazu Yokono et al., Nondestructive inspection, Vol. 51, No. 5 (2002) JP 2005-55200 A JP 2001-208729 A

このように、従来の表面劣化検査装置では、表面形状が非平面であると表面波を励起できないとか、被検査対象面に痕跡を残す可能性がある、という不具合がある。   As described above, the conventional surface deterioration inspection apparatus has a problem that if the surface shape is non-planar, the surface wave cannot be excited or a trace may be left on the surface to be inspected.

本発明は上述の点を考慮してなされたもので、被検査対象面が平面でない形状においても適用可能な表面劣化検出装置および方法を提供することを目的とする。   The present invention has been made in consideration of the above-described points, and an object thereof is to provide a surface degradation detection apparatus and method that can be applied even when a surface to be inspected is not a plane.

上記課題を解決するため、本発明は、
超音波励起点を線状に形成し、当該線状の超音波励起点から、等方的に伝播する超音波および衝撃波の少なくとも一方を発生させる超音波励起機構と、この超音波励起機構により前記超音波励起点から発生した前記超音波または衝撃波により被検査対象物の表面に励起した表面波の漏洩による漏洩表面波、衝撃波を検出する受信機構と、を備えることを特徴とする表面劣化検出装置、
および
超音波励起点を線状に形成し、当該線状の超音波励起点から、等方的に伝播する超音波および衝撃波の少なくとも一方を発生させ、前記超音波励起点から発生した前記超音波または衝撃波により被検査対象物の表面に励起した表面波の漏洩による漏洩表面波、衝撃波を検出することを特徴とする表面劣化検出方法、
を提供する。
In order to solve the above problems, the present invention provides:
An ultrasonic excitation point is formed in a linear shape, and an ultrasonic excitation mechanism that generates at least one of an isotropically propagated ultrasonic wave and a shock wave from the linear ultrasonic excitation point, and the ultrasonic excitation mechanism A surface deterioration detection device comprising: a receiving mechanism for detecting leakage surface waves and shock waves due to leakage of surface waves excited on the surface of an object to be inspected by the ultrasonic waves or shock waves generated from an ultrasonic excitation point. ,
And forming an ultrasonic excitation point in a linear shape, generating at least one of an isotropically propagated ultrasonic wave and a shock wave from the linear ultrasonic excitation point, and generating the ultrasonic wave generated from the ultrasonic excitation point Or a surface degradation detection method characterized by detecting a leaky surface wave or shock wave due to leakage of a surface wave excited on the surface of the object to be inspected by the shock wave,
I will provide a.

本発明は上述のように、等方的に伝播する超音波および衝撃波の少なくとも一方を、
被検査対象物の被検査対象面以外の場所に照射することとしたため、被検査対象物の形状に依存せず、表面波を励起することができ、被検査対象面が平面でない形状においても適用可能な表面劣化検出手段を提供することができる。
As described above, the present invention provides at least one of isotropically propagating ultrasonic waves and shock waves,
Irradiating to a place other than the inspection target surface of the inspection target object, so that it can be excited regardless of the shape of the inspection target object, and can be excited even when the inspection target surface is not flat. Possible surface degradation detection means can be provided.

以下、まず図1を参照して本発明の適用対象である欠陥検出装置の全体構成を説明し、次いで図2ないし図9を参照して、本発明に係る実施例につき説明する。   Hereinafter, the overall configuration of a defect detection apparatus to which the present invention is applied will be described first with reference to FIG. 1, and then an embodiment according to the present invention will be described with reference to FIGS.

(欠陥検出装置)
図1は、本発明の適用対象である欠陥検出装置の全体構成を示している。この装置では、被検査対象物1の表面に対して超音波励起機構2から表面励起波を照射すると、被検査対象物1の表面から超音波受信機構3の反射体4に衝撃波SWが伝達され、また、被検査対象物1の表面を伝わった表面波Sから漏洩波LSが反射体4に伝達される。
(Defect detection device)
FIG. 1 shows the overall configuration of a defect detection apparatus to which the present invention is applied. In this apparatus, when the surface excitation wave is irradiated from the ultrasonic excitation mechanism 2 to the surface of the inspection object 1, the shock wave SW is transmitted from the surface of the inspection object 1 to the reflector 4 of the ultrasonic reception mechanism 3. Further, the leaky wave LS is transmitted to the reflector 4 from the surface wave S transmitted through the surface of the inspection object 1.

超音波受信機構3は、レーザ光伝送機構105を介して受信レーザ光源106、ならびに計測機構107および信号収録機構108に接続されており、これら機器と反射体4との間でレーザ光の送受が行われる。   The ultrasonic reception mechanism 3 is connected to the reception laser light source 106, the measurement mechanism 107, and the signal recording mechanism 108 via the laser light transmission mechanism 105, and laser light can be transmitted and received between these devices and the reflector 4. Done.

反射体4は、これら衝撃波SWおよび漏洩波LSが与えられて振動し、レーザ光の反射に変化を生じる。これにより、計測機構107および信号収録機構108が被検査対象物1における欠陥状況に応じた信号を受信、収録する。   The reflector 4 is vibrated by the shock wave SW and the leakage wave LS, and changes the reflection of the laser light. As a result, the measurement mechanism 107 and the signal recording mechanism 108 receive and record a signal corresponding to the defect status of the inspection object 1.

このように構成された欠陥検出装置における超音波励起機構2および超音波受信機構3の周辺に関して実施例の説明を行う。   Examples of the periphery of the ultrasonic excitation mechanism 2 and the ultrasonic reception mechanism 3 in the defect detection apparatus configured as described above will be described.

(実施例1)
(構成)
図2は、本発明の第1の実施例の構成を示したものである。この第1の実施例は、被検査対象物1の表面に超音波を励起させる超音波励起機構2と、この超音波励起機構2によって出射された超音波励起源、例えばレーザ光LWが超音波励起点5に集束することで発生した衝撃波SW、衝撃波SWが被検査対象物1に入射し反射することによって発生した反射衝撃波SW’、および衝撃波SWが被検査対象物1に入射することで発生した表面波Sの漏洩による漏洩波LSを検出する受信機構3とを備える。
Example 1
(Constitution)
FIG. 2 shows the configuration of the first embodiment of the present invention. In the first embodiment, an ultrasonic excitation mechanism 2 that excites ultrasonic waves on the surface of the object 1 to be inspected, and an ultrasonic excitation source emitted by the ultrasonic excitation mechanism 2, for example, laser light LW, is ultrasonic. The shock wave SW generated by focusing on the excitation point 5, the reflected shock wave SW ′ generated when the shock wave SW is incident on the object 1 to be inspected and reflected, and the shock wave SW is incident on the object 1 to be inspected. And a receiving mechanism 3 that detects a leakage wave LS due to leakage of the surface wave S.

ここで、図2における超音波励起機構2は、
(1)図3に示すように、2つの電極6間で放電させて超音波励起点5を形成し、発生した超音波USを被検査対象物1に与えたときの反射波(漏洩波LS、衝撃波SW、反射衝撃波SW’)を受信機構3により受信する構成、
(2)図4に示すように、超音波励起機構2を複数個設置し、励起源LWを集束して複数個の超音波励起点5を形成し衝撃波SWを発生させる構成、
(3)図5に示すように、超音波励起点5を線上に集束させて発生させた衝撃波SWを劣化個所7に与え、劣化個所7により影響を受けた衝撃波SWRや反射衝撃波SW’を受信機構3により受信する構成、または他の超音波USや衝撃波SWを励起させる手段、などが考えられる。
Here, the ultrasonic excitation mechanism 2 in FIG.
(1) As shown in FIG. 3, an ultrasonic excitation point 5 is formed by discharging between two electrodes 6, and a reflected wave (leakage wave LS) when the generated ultrasonic wave US is applied to the inspection object 1. , Shock wave SW, reflected shock wave SW ′) received by the receiving mechanism 3,
(2) As shown in FIG. 4, a configuration in which a plurality of ultrasonic excitation mechanisms 2 are installed, the excitation source LW is focused to form a plurality of ultrasonic excitation points 5 and shock waves SW are generated,
(3) As shown in FIG. 5, the shock wave SW generated by converging the ultrasonic excitation point 5 on the line is given to the deteriorated portion 7, and the shock wave SWR and the reflected shock wave SW ′ affected by the deteriorated portion 7 are received. A configuration for receiving by the mechanism 3 or a means for exciting other ultrasonic waves US or shock waves SW can be considered.

特に、超音波励起機構2から発生させる超音波励起源4がレーザ光の場合、使用するレーザ光源としては、例えば、Nd:YAGレーザ、Nd:YLFレーザ、COレーザ、Er:YAGレーザ、チタンサファイアレーザ、アレキサンドライトレーザ、ルビーレーザ、色素(ダイ)レーザ、エキシマレーザなどが挙げられ、これ以外のパルスレーザ光源も考えられる。 In particular, when the ultrasonic excitation source 4 generated from the ultrasonic excitation mechanism 2 is laser light, examples of laser light sources to be used include Nd: YAG laser, Nd: YLF laser, CO 2 laser, Er: YAG laser, and titanium. Examples include sapphire lasers, alexandrite lasers, ruby lasers, dye (die) lasers, excimer lasers, and other pulse laser light sources.

また発生した衝撃波や超音波を検出するための超音波受信機構3の受信要素としては、圧電素子やレーザ光の受信素子などが考えられる。特に、超音波受信機構3がレーザ光を発生するものである場合(図2)、干渉計測などが考えられ、使用する干渉計測機構7としては、マイケルソン干渉計やホモダイン干渉計、ヘテロダイン干渉計、フィゾー干渉計、マッハツェンダー干渉計、ファブリー−ペロー干渉計、フォトリフラクティブ干渉計であり、他のレーザ干渉計も考えられる。また干渉計測以外の方法として、ナイフエッジ法も考えられる。   Further, as a receiving element of the ultrasonic receiving mechanism 3 for detecting the generated shock wave or ultrasonic wave, a piezoelectric element, a laser light receiving element, or the like can be considered. In particular, when the ultrasonic receiving mechanism 3 generates laser light (FIG. 2), interference measurement or the like can be considered. As the interference measuring mechanism 7 to be used, a Michelson interferometer, a homodyne interferometer, or a heterodyne interferometer is used. Fizeau interferometer, Mach-Zehnder interferometer, Fabry-Perot interferometer, photorefractive interferometer, and other laser interferometers are also conceivable. As a method other than the interference measurement, a knife edge method is also conceivable.

(作用)
図2および図6ないし図8を参照して、本発明の第1の実施例における作用を説明する。上述の手法において、被検査対象物1と超音波励起機構2との間の超音波励起源4を超音波励起点5に集束(レーザ光の場合は集光)させると、キャビテーションやブレイクダウンが発生し、音波や超音波、衝撃波など各種の波(SW)が発生する。発生した超音波や衝撃波は超音波励起点5から等方的に伝播し、被検査対象物1の表面に到達する。
(Function)
The operation of the first embodiment of the present invention will be described with reference to FIG. 2 and FIGS. In the above-described method, when the ultrasonic excitation source 4 between the object to be inspected 1 and the ultrasonic excitation mechanism 2 is focused on the ultrasonic excitation point 5 (condensed in the case of laser light), cavitation and breakdown occur. And various waves (SW) such as sound waves, ultrasonic waves, and shock waves are generated. The generated ultrasonic wave or shock wave isotropically propagates from the ultrasonic excitation point 5 and reaches the surface of the inspection object 1.

ここで、到達した超音波や衝撃波の多くの成分は、被検査対象面で反射される(SW’)。一方で、被検査対象物の内部や表面を伝播するモードに変化する成分もある。被検査対象物を伝播する超音波に変化したもののうち、例えば表面波Sは被検査対象物1の表面を伝播するが、被検査対象物1が設置されている環境の音響インピーダンスに応じた臨界角で被検査対象物1の設置環境へ漏洩していく漏洩波LSとなる。   Here, many components of the reached ultrasonic waves and shock waves are reflected by the surface to be inspected (SW ′). On the other hand, there is also a component that changes to a mode that propagates inside or on the surface of the inspection object. Among the changes in the ultrasonic wave propagating through the inspection object, for example, the surface wave S propagates on the surface of the inspection object 1, but the criticality according to the acoustic impedance of the environment where the inspection object 1 is installed. A leakage wave LS leaks to the installation environment of the inspection object 1 at the corner.

ここで、図6に示したように、被検査対象物1に劣化箇所7が存在すると、伝播する表面波Sは、劣化個所7の状態により表面波の振幅や周波数などが変化した表面波S’となる。この変化を受けた表面波S’は、被検査対象物1が置かれている環境媒質および被検査対象物1のそれぞれの音速から算出される臨界角で、環境媒質中へ漏洩する漏洩波LS’となる。   Here, as shown in FIG. 6, when the deteriorated part 7 exists in the inspection object 1, the surface wave S that propagates is the surface wave S in which the amplitude, frequency, etc. of the surface wave are changed depending on the state of the deteriorated part 7. 'Become. The surface wave S ′ subjected to this change is a leaky wave LS that leaks into the environmental medium at a critical angle calculated from the sound velocity of the environmental medium on which the inspection object 1 is placed and the inspection object 1. 'Become.

ここで、環境媒質とは一般的には水であるが、この他に空気、油や液体金属など被検査対象物1の材料と異なる媒質であり、超音波や衝撃波が伝播する媒質であれば何でも可能である。   Here, the environmental medium is generally water, but in addition to this, it is a medium different from the material of the object 1 to be inspected, such as air, oil, or liquid metal, and any medium that can transmit ultrasonic waves and shock waves. Anything is possible.

この漏洩波LS’を超音波受信機構3で検出することで、被検査対象物1の劣化情報を検出することができる。なお、ここで劣化箇所7とは、例えば開口欠陥、閉口欠陥、表層内在欠陥、腐食、マイクロクラック、転位、滑りなどであり、また他の劣化状態も考えられる。   By detecting this leaky wave LS ′ by the ultrasonic receiving mechanism 3, it is possible to detect deterioration information of the inspection object 1. Here, the deteriorated portion 7 is, for example, an opening defect, a closing defect, a surface layer intrinsic defect, corrosion, a microcrack, a dislocation, a slip, and the like, and other deterioration states are also conceivable.

また、図7に示したように、発生させた表面波Sは、被検査対象物1に生じている劣化が特に開口欠陥7の場合、その開口部7で表面波Sが環境媒質中に伝播する水中伝播音波SORに変換される。この水中伝播音波SORを検出することで、被検査対象物1の特に開口欠陥等の表面状態に起因する劣化情報を検出することができる。   As shown in FIG. 7, the generated surface wave S is propagated into the environmental medium through the opening 7 when the deterioration occurring in the inspection object 1 is an opening defect 7. Is converted into an underwater propagating sound wave SOR. By detecting this underwater propagating sound wave SOR, it is possible to detect deterioration information caused by the surface state of the inspection object 1 such as an opening defect.

また、超音波励起点5から発生する衝撃波SWは、照射点から半球状に放射していく。このとき、図8に示したように被検査対象物1の表面に開口欠陥7が発生している場合、伝播する衝撃波SWは表面開口欠陥の開口部7で変化を受け、健全部における衝撃波の反射とは異なる波形成分を持つ衝撃波SWRに変換される。この劣化個所7により影響を受けた衝撃波SWRを検出することで、被検査対象物1の特に開口欠陥7等の表面状態に起因する劣化情報を検出することができる。   Further, the shock wave SW generated from the ultrasonic excitation point 5 is emitted hemispherically from the irradiation point. At this time, as shown in FIG. 8, when the opening defect 7 is generated on the surface of the inspection object 1, the propagating shock wave SW is changed at the opening 7 of the surface opening defect, and the shock wave in the healthy portion is changed. It is converted into a shock wave SWR having a waveform component different from the reflection. By detecting the shock wave SWR affected by the deterioration portion 7, it is possible to detect deterioration information caused by the surface state of the inspection object 1, particularly the opening defect 7.

(効果)
図2ないし図8に示した第1の実施例においては、超音波励起機構2から出射される超音波励起源4により超音波励起点5から発生する超音波や衝撃波は等方的に伝播する。
(effect)
In the first embodiment shown in FIGS. 2 to 8, ultrasonic waves and shock waves generated from the ultrasonic excitation point 5 are propagated isotropically by the ultrasonic excitation source 4 emitted from the ultrasonic excitation mechanism 2. .

これにより、被検査対象物1が図11に示した溶接面のような凹凸を有していても、等方的に伝播している超音波や衝撃波は、必ず被検査対象物1に表面波Sを励起させることができる臨界角を有した成分を持つ。このため、被検査対象物1の形状に依存せず、表面波を励起することが可能である。   As a result, even if the inspection object 1 has irregularities such as the welded surface shown in FIG. 11, the isotropically propagated ultrasonic waves and shock waves are always transmitted to the inspection object 1. It has a component having a critical angle capable of exciting S. For this reason, it is possible to excite surface waves without depending on the shape of the inspection object 1.

また、表面の開口欠陥などを等方的に伝播してきた衝撃波の反射成分から検出することが可能になる。このように、第1の実施例により、本発明による第1の課題である、被検査対象面が平面でない形状にも適用可能な表面劣化検出手段を提供することができる。   Further, it becomes possible to detect the surface opening defect or the like from the reflection component of the shock wave propagating isotropically. As described above, according to the first embodiment, it is possible to provide surface deterioration detection means that can be applied to a shape in which the surface to be inspected is not a flat surface, which is a first problem of the present invention.

また、第1の実施例においては、例えば図1に示した試験方法の場合、超音波励起機構2から出射されるレーザ光は被検査対象物1の表面に集光され、超音波や衝撃波が励起されるが、集光されたレーザ光のエネルギー密度は非常に高いため、被検査対象物1の表面が酸化し、照射による痕跡が残る場合がある。   In the first embodiment, for example, in the case of the test method shown in FIG. 1, the laser light emitted from the ultrasonic excitation mechanism 2 is collected on the surface of the inspection object 1, and ultrasonic waves and shock waves are generated. Although excited, the energy density of the focused laser beam is very high, so the surface of the object 1 to be inspected may oxidize and leave traces from irradiation.

しかし、第1の実施例においては、レーザ光の集光は被検査対象物1の表面でなく被検査対象物1から離れた箇所とし、集光後のレーザ光は再び拡散していくため、被検査対象物1にレーザ光が到達しても、そのエネルギー密度は十分低く、被検査対象物1の表面上に痕跡を残すことはない。   However, in the first embodiment, the laser beam is focused on a place away from the inspection target 1 instead of the surface of the inspection target 1, and the focused laser light diffuses again. Even if the laser beam reaches the inspection object 1, the energy density is sufficiently low, and no trace is left on the surface of the inspection object 1.

(実施例2)
(構成)
図9は、本発明の第2の実施例の構成を示している。この第2の実施例においては、第1の実施例における超音波励起機構2から出射される超音波励起源4の超音波励起点5に、超音波発生機構8を設置する。
(Example 2)
(Constitution)
FIG. 9 shows the configuration of the second embodiment of the present invention. In the second embodiment, an ultrasonic generation mechanism 8 is installed at the ultrasonic excitation point 5 of the ultrasonic excitation source 4 emitted from the ultrasonic excitation mechanism 2 in the first embodiment.

このような構成とすることで、超音波励起点5で超音波や衝撃波SWが発生し、被検査対象物1に表面波Sを励起し、また衝撃波により被検査対象物1の表面の開口欠陥などを検査できる一方で、被検査対象物1に直接レーザ光を照射しないことから、被検査対象物1の表面に痕跡を残す恐れがない。   With such a configuration, an ultrasonic wave or a shock wave SW is generated at the ultrasonic excitation point 5, the surface wave S is excited on the inspection object 1, and an opening defect on the surface of the inspection object 1 is generated by the shock wave. While the inspection object 1 is not directly irradiated with laser light, there is no fear of leaving a trace on the surface of the inspection object 1.

本発明の適用対象である欠陥検出装置の構成を示す説明図。Explanatory drawing which shows the structure of the defect detection apparatus which is an application object of this invention. 本発明の第1の実施例における超音波励起機構の作用説明図。Explanatory drawing of an effect | action of the ultrasonic excitation mechanism in 1st Example of this invention. 本発明の第1の実施例における超音波励起機構の作用説明図。Explanatory drawing of an effect | action of the ultrasonic excitation mechanism in 1st Example of this invention. 本発明の第1の実施例における超音波励起機構の作用説明図。Explanatory drawing of an effect | action of the ultrasonic excitation mechanism in 1st Example of this invention. 本発明の第1の実施例における被検査物の劣化個所についての作用説明図。Action | operation explanatory drawing about the degradation location of the to-be-inspected object in 1st Example of this invention. 本発明の第1の実施例における被検査物の劣化個所についての作用説明図。Action | operation explanatory drawing about the degradation location of the to-be-inspected object in 1st Example of this invention. 本発明の第1の実施例における被検査物の劣化個所についての作用説明図。Action | operation explanatory drawing about the degradation location of the to-be-inspected object in 1st Example of this invention. 本発明の第1の実施例における被検査物の劣化個所についての作用説明図。Action | operation explanatory drawing about the degradation location of the to-be-inspected object in 1st Example of this invention. 本発明の第2の実施例に関する作用説明図。Action explanatory drawing regarding the 2nd Example of this invention. 従来の表面劣化検査のための装置構成を示す説明図。Explanatory drawing which shows the apparatus structure for the conventional surface deterioration test | inspection. 検査対象物の表面状態の一例を示す説明図。Explanatory drawing which shows an example of the surface state of a test target object.

符号の説明Explanation of symbols

1・・・被検査対象物
2・・・超音波励起機構
3・・・受信機構
4・・・超音波励起源
5・・・超音波励起点
6・・・電極
7・・・劣化
8・・・超音波発生機構
100・・・音響レンズ
101・・・圧電素子
102・・・凹凸を有した溶接金属面
105・・・レーザ光伝送機構
106・・・受信レーザ光源
107・・・計測機構
108・・・信号収録機構
S・・・表面波
S’・・・劣化により影響を受けた表面波
LS・・・漏洩波
LS’・・・劣化により影響を受けた漏洩波
LW・・・レーザ光
SW・・・衝撃波
SW’・・・反射された衝撃波
SWR・・・劣化により影響を受けた衝撃波
SOR・・・開口部で回折し環境媒質中を伝播する音波
DESCRIPTION OF SYMBOLS 1 ... Test object 2 ... Ultrasonic excitation mechanism 3 ... Reception mechanism 4 ... Ultrasonic excitation source 5 ... Ultrasonic excitation point 6 ... Electrode 7 ... Degradation 8. ..Ultrasonic generation mechanism 100 ... acoustic lens 101 ... piezoelectric element 102 ... welded metal surface with irregularities 105 ... laser light transmission mechanism 106 ... received laser light source 107 ... measuring mechanism 108 ... Signal recording mechanism S ... Surface wave S '... Surface wave affected by deterioration LS ... Leakage wave LS' ... Leakage wave affected by deterioration LW ... Laser Light SW ... Shock wave SW '... Reflected shock wave SWR ... Shock wave affected by deterioration SOR ... Sound wave diffracted at the opening and propagating in the environmental medium

Claims (8)

超音波励起点を線状に形成し、当該線状の超音波励起点から、等方的に伝播する超音波および衝撃波の少なくとも一方を発生させる超音波励起機構と、この超音波励起機構により前記超音波励起点から発生した前記超音波または衝撃波により被検査対象物の表面に励起した表面波の漏洩による漏洩表面波、衝撃波を検出する受信機構と、を備えることを特徴とする表面劣化検出装置。   An ultrasonic excitation point is formed in a linear shape, and an ultrasonic excitation mechanism that generates at least one of an isotropically propagated ultrasonic wave and a shock wave from the linear ultrasonic excitation point, and the ultrasonic excitation mechanism A surface deterioration detection device comprising: a receiving mechanism for detecting leakage surface waves and shock waves due to leakage of surface waves excited on the surface of an object to be inspected by the ultrasonic waves or shock waves generated from an ultrasonic excitation point. . 請求項1記載の表面劣化検出装置において、
前記超音波励起機構は、前記線状の超音波励起点を被検査対象面以外の場所に形成することを特徴とする表面劣化検出装置。
In the surface degradation detection apparatus according to claim 1,
The ultrasonic excitation mechanism forms the linear ultrasonic excitation point at a place other than the surface to be inspected.
請求項1または2記載の表面劣化検出装置において、
前記超音波励起機構が、パルスレーザ光源であることを特徴とする表面劣化検出装置。
In the surface degradation detection apparatus of Claim 1 or 2,
The apparatus for detecting surface degradation, wherein the ultrasonic excitation mechanism is a pulse laser light source.
請求項3記載の表面劣化検出装置において、
前記超音波励起機構から出射されるレーザ光を、超音波および衝撃波の少なくとも一方を発生させるための発生機構へ照射することを特徴とする表面劣化検出装置。
In the surface degradation detection apparatus according to claim 3,
A surface deterioration detection apparatus that irradiates a generation mechanism for generating at least one of an ultrasonic wave and a shock wave with laser light emitted from the ultrasonic excitation mechanism.
請求項1記載の表面劣化検出装置において、
前記超音波励起機構が、圧電素子であることを特徴とする表面劣化検出装置。
In the surface degradation detection apparatus according to claim 1,
The surface deterioration detection apparatus, wherein the ultrasonic excitation mechanism is a piezoelectric element.
請求項1ないし5の何れかに記載の表面劣化検出装置において、
前記超音波励起機構を2つ以上備えることを特徴とする表面劣化検出装置。
In the surface degradation detection apparatus in any one of Claims 1 thru | or 5,
A surface deterioration detection apparatus comprising two or more ultrasonic excitation mechanisms.
超音波励起点を線状に形成し、当該線状の超音波励起点から、等方的に伝播する超音波および衝撃波の少なくとも一方を発生させ、前記超音波励起点から発生した前記超音波または衝撃波により被検査対象物の表面に励起した表面波の漏洩による漏洩表面波、衝撃波を検出することを特徴とする表面劣化検出方法。   An ultrasonic excitation point is formed in a linear shape, and at least one of an isotropically propagated ultrasonic wave and a shock wave is generated from the linear ultrasonic excitation point, and the ultrasonic wave generated from the ultrasonic excitation point or A surface deterioration detection method characterized by detecting a leaky surface wave or shock wave due to leakage of a surface wave excited on the surface of an object to be inspected by a shock wave. 請求項7記載の表面劣化検出方法において、
前記超音波励起点を、前記被検査対象物における被検査対象面以外の場所に集束させることを特徴とする表面劣化検出方法。
In the surface degradation detection method of Claim 7,
A method for detecting surface deterioration, wherein the ultrasonic excitation point is focused on a place other than a surface to be inspected in the object to be inspected.
JP2007042152A 2007-02-22 2007-02-22 Surface degradation detection apparatus and method Active JP5410651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007042152A JP5410651B2 (en) 2007-02-22 2007-02-22 Surface degradation detection apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007042152A JP5410651B2 (en) 2007-02-22 2007-02-22 Surface degradation detection apparatus and method

Publications (2)

Publication Number Publication Date
JP2008203185A JP2008203185A (en) 2008-09-04
JP5410651B2 true JP5410651B2 (en) 2014-02-05

Family

ID=39780846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007042152A Active JP5410651B2 (en) 2007-02-22 2007-02-22 Surface degradation detection apparatus and method

Country Status (1)

Country Link
JP (1) JP5410651B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4962461B2 (en) * 2008-10-03 2012-06-27 株式会社豊田中央研究所 Ultrasonic measuring device
KR20120002535A (en) * 2009-04-15 2012-01-05 디트마르 오베르호프 Ultrasonic test system
JP2013036927A (en) * 2011-08-10 2013-02-21 Kobe Steel Ltd Surface defect detection device and surface defect detection method
JP6358735B2 (en) * 2014-02-26 2018-07-18 オリンパス株式会社 Photoacoustic microscope

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134349A (en) * 1979-04-06 1980-10-20 Inoue Japax Res Inc Sound wave microscope
JP2502184B2 (en) * 1990-10-09 1996-05-29 動力炉・核燃料開発事業団 Laser ultrasonic flaw detection method and device
JPH0572186A (en) * 1991-09-13 1993-03-23 Shimadzu Corp Ultrasonic wave generating/detecting device for ultrasonic microscope
JP3261827B2 (en) * 1993-09-27 2002-03-04 凸版印刷株式会社 Ultrasound spectrum microscope
JP3379166B2 (en) * 1993-09-27 2003-02-17 凸版印刷株式会社 Ultrasound spectrum microscope
JPH09145822A (en) * 1995-11-29 1997-06-06 Denshi Kogyo Kk Flying movement body position measuring device
JP3735650B2 (en) * 1998-12-10 2006-01-18 株式会社東芝 Surface inspection device
JP2001208729A (en) * 2000-01-24 2001-08-03 Toshiba Corp Defect detector
JP3868724B2 (en) * 2000-07-18 2007-01-17 独立行政法人科学技術振興機構 Ultrasound angioscope system
JP2002257793A (en) * 2001-02-28 2002-09-11 Toshiba Corp Lasor ultrasonic inspection device
JP2005055200A (en) * 2003-08-05 2005-03-03 Non-Destructive Inspection Co Ltd Ultrasonic inspection device and inspection method using the device
JP2005300273A (en) * 2004-04-08 2005-10-27 Tama Tlo Kk Measuring device

Also Published As

Publication number Publication date
JP2008203185A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
US7900516B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
Yamamoto et al. Defect detection in thick weld structure using welding in-process laser ultrasonic testing system
US10578586B2 (en) Weld analysis using Lamb waves and a neural network
JP4386709B2 (en) Material nondestructive inspection method and apparatus by laser ultrasonic wave
WO2016090589A1 (en) Nondestructive measurement method and device for residual stress of laser ultrasonic metal material
Yang et al. Measurement of weld penetration depths in thin structures using transmission coefficients of laser-generated Lamb waves and neural network
JP5410651B2 (en) Surface degradation detection apparatus and method
JP5285845B2 (en) Defect detection apparatus and defect detection method
JP5391375B2 (en) Plate thickness measuring method and plate thickness measuring apparatus
JP2016035399A (en) Method for inspecting remaining life of welded part of heat resistant member
JP2017116285A (en) Laser ultrasonic inspection method, joining method, laser ultrasonic inspection device, and joining device
KR101191364B1 (en) System and apparatus for measuring non-linearity of ultrasonic wave
JP2005351660A (en) Ultrasonic flaw detection method and ultrasonic flaw detector
Hasanian et al. Laser Ultrasonics for Remote Detection of Stress Corrosion Cracking in Harsh Environments
Kim et al. Rail inspection using noncontact laser ultrasonics
JP3761883B2 (en) Ultrasonic flaw detection method
JP2012093247A (en) Method for detecting defect using leakage surface acoustic wave, and defect detecting device
RU2397489C1 (en) Ultrasonic flaw detection device and ultrasonic flaw detection method
JP4761147B2 (en) Ultrasonic flaw detection method and apparatus
JP7258792B2 (en) Laser ultrasonic measuring device and laser ultrasonic measuring method
Hasanian et al. Laser ultrasonics toward remote detection of stress corrosion cracking
Choi et al. Imaging and Sizing of Surface Defects Using Synthetic Aperture Focusing of Laser-generated Surface Waves
Fang et al. Characteristics of spiral Lamb wave triggered by CL-MPT and its application to the detection of limited circumferential extent defects and axial extent evaluation within pipes
JP2022074781A (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
Hayashi et al. Remote defect imaging for plate-like structures based on the scanning laser source technique

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131107

R151 Written notification of patent or utility model registration

Ref document number: 5410651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151