JP5395240B2 - Solid-state imaging device - Google Patents

Solid-state imaging device Download PDF

Info

Publication number
JP5395240B2
JP5395240B2 JP2012212863A JP2012212863A JP5395240B2 JP 5395240 B2 JP5395240 B2 JP 5395240B2 JP 2012212863 A JP2012212863 A JP 2012212863A JP 2012212863 A JP2012212863 A JP 2012212863A JP 5395240 B2 JP5395240 B2 JP 5395240B2
Authority
JP
Japan
Prior art keywords
column
output
pixel array
pixel
columns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012212863A
Other languages
Japanese (ja)
Other versions
JP2013017234A (en
Inventor
治通 森
竜次 久嶋
一樹 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2012212863A priority Critical patent/JP5395240B2/en
Publication of JP2013017234A publication Critical patent/JP2013017234A/en
Application granted granted Critical
Publication of JP5395240B2 publication Critical patent/JP5395240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

本発明は、入射した放射線に応じた画像データを生成する固体撮像装置に関するものである。   The present invention relates to a solid-state imaging device that generates image data according to incident radiation.

X線撮影技術において、近年、X線感光フィルムに代えて、固体撮像素子を使用したX線撮像システムが広く用いられるようになってきた。こうしたX線撮像システムは、X線感光フィルムのように現像の必要がなく、リアルタイムにX線画像を確認することができるなど利便性が高く、データの保存性や取扱いの容易性の面でも優位な点を有する。例えば、歯科の診断におけるX線撮影においても、パノラマ、セファロ、CTといった各種の撮像モードにおいてこのようなX線撮像システムが普及しつつある。一例として、特許文献1に開示された歯科用X線撮影装置は、X線源から出力されて被写体を透過したX線を、CCD方式を備えるX線検出素子により撮像する。   In X-ray imaging technology, in recent years, X-ray imaging systems using solid-state imaging devices have been widely used instead of X-ray photosensitive films. Such an X-ray imaging system does not need to be developed like an X-ray photosensitive film, and is highly convenient, such as being able to confirm an X-ray image in real time, and is superior in terms of data storage and ease of handling. It has a point. For example, in X-ray imaging for dental diagnosis, such an X-ray imaging system is becoming widespread in various imaging modes such as panorama, cephalo, and CT. As an example, the dental X-ray imaging apparatus disclosed in Patent Document 1 images X-rays output from an X-ray source and transmitted through a subject using an X-ray detection element having a CCD system.

また、このようなX線撮像システムに用いられる固体撮像装置としては、CMOS技術を用いたものが知られており、その中でもパッシブピクセルセンサ(PPS: Passive PixelSensor)方式のものが知られている。PPS方式の固体撮像装置は、入射光強度に応じた量の電荷を発生するフォトダイオードを含むPPS型の画素がM行N列に2次元配列された画素配列を備え、各画素において光入射に応じてフォトダイオードで発生した電荷を積分回路において電圧値に変換し、更にこの電圧値をディジタル値に変換して出力するものである。   As a solid-state imaging device used in such an X-ray imaging system, a device using CMOS technology is known, and among them, a passive pixel sensor (PPS) type is known. The PPS solid-state imaging device includes a pixel array in which PPS pixels including a photodiode that generates an amount of electric charge according to incident light intensity are two-dimensionally arranged in M rows and N columns. In response, the charge generated in the photodiode is converted into a voltage value by an integration circuit, and the voltage value is further converted into a digital value for output.

一般に、各列のM個の画素それぞれの出力端は、その列に対応して設けられている読出用配線を介して、その列に対応して設けられている積分回路の入力端と接続されている。そして、各画素のフォトダイオードで発生した電荷は、第1行から第M行まで順次に行毎に、当該列に対応する読出用配線を通って積分回路に入力され、その積分回路から電荷量に応じた電圧値が第1列から第N列まで順次にアナログ/ディジタル変換器に入力される。   In general, the output ends of each of the M pixels in each column are connected to the input ends of the integration circuits provided corresponding to the columns via readout wirings provided corresponding to the columns. ing. Then, the charges generated in the photodiodes of each pixel are sequentially input from the first row to the M-th row for each row through the readout wiring corresponding to the corresponding column to the integration circuit. Are sequentially input to the analog / digital converter from the first column to the Nth column.

特開2004−208754号公報JP 2004-208754 A

上述したX線撮像システムにおいて、固体撮像装置の画素配列に要求される大きさはその撮像用途により様々であるが、例えば歯科の診断におけるX線撮影では、セファロ撮影において画素配列の長手方向の幅が22cm以上といった長尺の固体撮像装置が要求される。このような長尺の固体撮像装置が要求されると、該固体撮像装置の生産に用いられる半導体ウェハの直径によっては、単一の基板上に該固体撮像装置を作製することが困難な場合がある。このような場合、固体撮像装置に要求される寸法より短い二枚の基板を長尺方向に並べ、それぞれの画素配列を合わせて一つの固体撮像装置として使用(いわゆるタイリング)することによって、要求寸法を満足することができる。   In the X-ray imaging system described above, the size required for the pixel array of the solid-state imaging device varies depending on the imaging application. For example, in X-ray imaging in dental diagnosis, the width in the longitudinal direction of the pixel array in cephalometric imaging Is required to be a long solid-state imaging device having a length of 22 cm or more. When such a long solid-state imaging device is required, it may be difficult to manufacture the solid-state imaging device on a single substrate depending on the diameter of the semiconductor wafer used for the production of the solid-state imaging device. is there. In such a case, two substrates that are shorter than the dimensions required for the solid-state imaging device are arranged in the longitudinal direction, and the respective pixel arrangements are combined and used as one solid-state imaging device (so-called tiling). The dimensions can be satisfied.

しかしながら、基板の端部と、この基板上に作製される画素配列の端部との間の隙間をなくすことは製造上困難なので、二枚の基板を並べて使用する場合、これらの画素配列同士の境界部分(継ぎ目)にはX線像が撮像されない領域(デッドエリア)が生じてしまう。撮像用途によっては、このようなデッドエリアの位置に制限がある場合がある。例えば、歯科のセファロ撮影においては、固体撮像装置の長尺方向を上下方向(鉛直方向)と一致させた状態で固体撮像装置を横方向(水平方向)に移動させながら撮像を行うが、X線像の中心付近に顎関節が存在する為、タイリングされた画素配列全体の中心付近にデッドエリアが存在すると、診断上重要な部分の画像データが欠損するおそれがある。したがって、このような場合には、二枚の基板における画素配列それぞれの長尺方向の幅を互いに異ならせることにより、デッドエリアの位置を中心付近から外すことが必要になる。   However, since it is difficult to eliminate the gap between the end of the substrate and the end of the pixel array produced on this substrate, when two substrates are used side by side, A region (dead area) where an X-ray image is not captured is generated at the boundary portion (seam). Depending on the imaging application, the position of such a dead area may be limited. For example, in dental cephalometric imaging, imaging is performed while moving the solid-state imaging device in the horizontal direction (horizontal direction) with the longitudinal direction of the solid-state imaging device aligned with the vertical direction (vertical direction). Since the temporomandibular joint exists near the center of the image, if there is a dead area near the center of the entire tiled pixel array, there is a possibility that image data of a part important for diagnosis may be lost. Therefore, in such a case, it is necessary to remove the position of the dead area from the vicinity of the center by making the longitudinal widths of the pixel arrays on the two substrates different from each other.

ここで、上述したPPS方式の固体撮像装置を構成する二枚の基板をそれぞれの画素配列の行方向に並置した場合、各基板の画素配列の長尺方向の幅が互いに異なると、各基板の画素配列の列数が互いに異なることとなり、次の問題が生じる。すなわち、PPS方式の固体撮像装置では各画素のフォトダイオードで発生した電荷が各列毎に電圧値に変換され、更にディジタル値に変換されるが、そのディジタル値を二枚の基板から並行して出力すると、全ての列のディジタル値を出力し終えるまでに要する時間が各基板で異なり、列数の多い方の基板からディジタル値を出力し終えるまでの間、列数の少ない方の基板は待ち状態とならざるを得ず、一フレームの撮像に要する時間が長くなってしまう。   Here, when the two substrates constituting the PPS solid-state imaging device described above are juxtaposed in the row direction of each pixel array, if the widths of the pixel arrays in the longitudinal direction are different from each other, The number of columns in the pixel array is different from each other, causing the following problem. That is, in the solid-state imaging device of the PPS system, the electric charges generated in the photodiodes of each pixel are converted into voltage values for each column and further converted into digital values. The digital values are converted in parallel from two substrates. When output, the time required to finish outputting the digital values for all the columns differs for each board, and the board with the smaller number of columns waits until the digital values are output from the board with the larger number of columns. It must be in a state, and the time required for imaging one frame becomes long.

本発明は、上記問題点を解消する為になされたものであり、二枚の基板上に形成された各画素配列が行方向にタイリングされた構成を備える固体撮像装置において、一フレームの撮像に要する時間を短縮することを目的とする。   The present invention has been made to solve the above problems, and in a solid-state imaging device having a configuration in which each pixel array formed on two substrates is tiled in the row direction, imaging of one frame is performed. The purpose is to shorten the time required for.

本発明に係る固体撮像装置は、入射した放射線に応じた画像データを生成する固体撮像装置であって、フォトダイオードを各々含むM×NA個(M及びNAは2以上の整数)の画素がM行NA列に2次元配列されて成る第1の画素配列を有する第1の基板と、フォトダイオードを各々含むM×NB個(NBはNAより小さい2以上の整数)の画素がM行NB列に2次元配列されて成り、その第1列が第1の画素配列の第NA列に沿って配置された第2の画素配列を有する第2の基板と、第1及び第2の画素配列の各列毎に配設され、対応する列の画素に含まれるフォトダイオードと読出用スイッチを介して接続された(NA+NB)本の読出用配線と、読出用配線を経て入力された電荷の量に応じた信号を保持し、その保持した信号を出力する信号出力部とを備え、信号出力部は、第1の画素配列の第1列から第n列(2≦n<NA)までの各列に対応する信号を順次に出力する第1の出力ポートと第1の出力ポートからの出力と並行して、第1の画素配列の第(n+1)列から、第NA列および第2の画素配列の第1列を経て第NB列までの各列に対応する信号を順次に出力する第2の出力ポートとを有することを特徴とする。 The solid-state imaging device according to the present invention is a solid-state imaging device that generates image data according to incident radiation, and M × NA pixels (M and NA are integers of 2 or more) each including a photodiode are M. A first substrate having a first pixel array that is two-dimensionally arranged in rows and NA columns, and M × NB pixels (NB is an integer of 2 or more smaller than NA) each including photodiodes are arranged in M rows and NB columns. A second substrate having a second pixel array, the first column of which is arranged along the NA column of the first pixel array, and the first and second pixel arrays. (NA + NB) readout wirings arranged for each column and connected to the photodiodes included in the pixels of the corresponding column via the readout switch, and the amount of charge input via the readout wiring Hold the corresponding signal and output the held signal And a signal output unit, the signal output unit, a first output port for outputting a signal corresponding to the respective columns from the first column of the first pixel array to the n-th column (2 ≦ n <NA) sequentially In parallel with the output from the first output port , each column from the (n + 1) th column of the first pixel array to the NB column through the NA column and the first column of the second pixel array And a second output port for sequentially outputting signals corresponding to.

本発明に係る固体撮像装置によれば、列方向の画素配列の長さが互いに異なる二枚の基板がタイリングされることによって、デッドエリアの位置を中心付近から外すことができるので、デッドエリアの位置に制限がある用途にも好適に用いることが可能となる。また、固体撮像装置の製造時に画素配列をウェハに面付けする際、長尺方向の幅が広い複数の画素配列と、長尺方向の幅が狭い複数の画素配列とを組み合わせて面付けすることができるので、長尺方向の幅が等しい複数の画素配列を面付けする場合と比較して、ウェハにおける無駄な部分を少なくし、より効率的に画素配列を取り出すことができる。   According to the solid-state imaging device of the present invention, the dead area can be removed from the vicinity of the center by tiling two substrates having different pixel array lengths in the column direction. It can be suitably used for applications where there is a restriction on the position of the. Also, when imposing a pixel array on a wafer during the manufacture of a solid-state imaging device, imposing a combination of a plurality of pixel arrays having a wide width in the longitudinal direction and a plurality of pixel arrays having a narrow width in the longitudinal direction Therefore, as compared with the case of imposing a plurality of pixel arrays having the same width in the longitudinal direction, wasteful portions on the wafer can be reduced and the pixel array can be extracted more efficiently.

また、本発明に係る固体撮像装置においては、第1の画素配列を有する第1の基板と、第1の画素配列より列数の少ない第2の画素配列を有する第2の基板とが、第1の画素配列の第NA列と第2の画素配列の第1列とが互いに沿うようにタイリングされている。すなわち、この固体撮像装置は、第1の画素配列の第1列から第NA列に第2の画素配列の第1列から第NB(<NA)列を加えた(NA+NB)列の画素配列を有している。   In the solid-state imaging device according to the present invention, the first substrate having the first pixel array and the second substrate having the second pixel array having a smaller number of columns than the first pixel array include The NA column of the one pixel array and the first column of the second pixel array are tiled so as to be along each other. That is, this solid-state imaging device has a pixel arrangement of a (NA + NB) column obtained by adding the NB (<NA) column from the first column of the second pixel arrangement to the NA column of the first pixel arrangement. Have.

そして、信号出力部は、信号をデータバス等へ出力する際、第1の画素配列の第n列以前の各列(すなわち第1列から第n列まで)に対応する信号と、第(n+1)列以降の各列および第2の画素配列の第1列ないし第NB列(すなわち、第1の画素配列の第(n+1)列から、第NA列および第2の画素配列の第1列を経て第NB列まで)に対応する信号とを並行して出力する。このように、列数が多い第1の画素配列の第1列と第NA列との間の列(第n列)を境に出力動作を分割して信号を並行して出力させることにより、分割された一方の領域の列数と他方の領域の列数とを互いに同じか或いは近い列数とすることができる。したがって、本発明に係る固体撮像装置によれば、例えば第1の画素配列の第1列ないし第NA列から信号を出力させ、これと並行して第2の画素配列の第1列ないし第NB列から信号を出力させる方式と比較して、出力動作における待ち時間をゼロに近づけることができ、一フレームの撮像に要する時間を効果的に短縮できる。   The signal output unit outputs a signal corresponding to each column before the n-th column (that is, from the first column to the n-th column) of the first pixel array when outputting the signal to a data bus or the like. ) And subsequent columns and the first column to the NB column of the second pixel array (ie, the (n + 1) th column of the first pixel array, the NA column and the first column of the second pixel array). And the signals corresponding to (up to the NB column) are output in parallel. In this way, by dividing the output operation at the column (nth column) between the first column and the NA column of the first pixel array having a large number of columns and outputting the signals in parallel, The number of columns in one divided region and the number of columns in the other region can be the same or close to each other. Therefore, according to the solid-state imaging device according to the present invention, for example, signals are output from the first column to the NA column of the first pixel array, and in parallel therewith, the first column to the NB of the second pixel array. Compared with the method of outputting a signal from the column, the waiting time in the output operation can be made close to zero, and the time required for imaging one frame can be effectively shortened.

また、本発明に係る固体撮像装置では、第1の画素配列の第1列を含む一又は複数の連続した列、および第2の画素配列の第NB列を含む一又は複数の連続した列が、入射放射線から遮蔽された不感領域となっていてもよい。入射した放射線に応じた画像データを生成する固体撮像装置においては、画素配列の脇に配置されるシフトレジスタ等の回路部分を放射線から保護する為、放射線遮蔽部材によって画素配列の周囲が覆われることが多い。そして、放射線遮蔽部材が画素配列の一部まで掛かると、上記した不感領域が画素配列に生じる。信号出力部から出力される信号のうち、この不感領域に含まれる画素と対応する信号は、放射線像とは関係のない無効データとなる。   In the solid-state imaging device according to the present invention, one or a plurality of continuous columns including the first column of the first pixel array and one or a plurality of continuous columns including the NB column of the second pixel array are provided. The insensitive area may be shielded from incident radiation. In a solid-state imaging device that generates image data according to incident radiation, the periphery of the pixel array is covered with a radiation shielding member in order to protect circuit parts such as a shift register arranged beside the pixel array from radiation. There are many. When the radiation shielding member is applied to a part of the pixel array, the above insensitive area is generated in the pixel array. Of the signals output from the signal output unit, the signals corresponding to the pixels included in the insensitive area are invalid data not related to the radiation image.

このような場合、第n列を境に分割された一方の領域における信号の出力順と、他方の領域における信号の出力順とを同じ順序とすると、次のような不都合が生じる。すなわち、信号出力部から出力された信号はデータバス等を介して他の電子回路(CPU等)へ送られるが、このとき、一方の領域では不感領域に相当する信号(無効データ)が最初に出力され、他方の領域では無効データが最後に出力されることとなる。このように、信号の出力順序における無効データの位置が各領域で異なると、他の電子回路にてリアルタイム処理を行う際の障壁となりうる。   In such a case, if the output order of signals in one area divided by the nth column is the same as the output order of signals in the other area, the following inconvenience occurs. That is, a signal output from the signal output unit is sent to another electronic circuit (CPU or the like) via a data bus or the like. At this time, a signal corresponding to the insensitive area (invalid data) is first in one area. In the other area, invalid data is output last. Thus, if the position of invalid data in the signal output order is different in each region, it can be a barrier when performing real-time processing in other electronic circuits.

このような課題を併せて解決するため、上述した固体撮像装置では、第n列を境に分割された一方の領域における信号の出力順と他方の領域における信号の出力順とが、互いに逆順となっていてもよい。すなわち、信号出力部は、第1の画素配列の第1列から第n列までの各列に対応する信号を、第1列から開始して第n列まで、或いは第n列から開始して第1列まで順次に出力するとともに、第1の画素配列の第(n+1)列から、第NA列および第2の画素配列の第1列を経て第NB列までの各列に対応する信号を、第1の画素配列の第1列ないし第n列とは逆の順序でもって順次に出力してもよい。信号出力部が信号をこのような順序でデータバス等へ出力することにより、信号の出力順序における無効データの位置を各領域で互いに一致させることができ、他の電子回路にてリアルタイム処理を容易に行うことができる。   In order to solve such problems together, in the solid-state imaging device described above, the output order of signals in one region divided by the nth column and the output order of signals in the other region are opposite to each other. It may be. That is, the signal output unit starts a signal corresponding to each column from the first column to the nth column of the first pixel array from the first column to the nth column or from the nth column. The signals corresponding to each column from the (n + 1) th column of the first pixel array to the NB column through the NA column and the first column of the second pixel array are sequentially output up to the first column. The first pixel array may be sequentially output in the reverse order to the first column to the n-th column. The signal output unit outputs signals to the data bus or the like in this order, so that the positions of invalid data in the signal output order can be matched with each other in each region, and real-time processing can be easily performed in other electronic circuits. Can be done.

また、固体撮像装置は、第1の画素配列における第1列ないし第n列の列数が、第1の画素配列における第(n+1)列ないし第NA列の列数と第2の画素配列における第1列ないし第NB列の列数との和に等しいことを特徴としてもよい。すなわち、第n列を境に分割された一方の領域の列数と他方の領域の列数とを等しくすることにより、信号の出力動作における待ち時間がほぼゼロとなり、一フレームの撮像に要する時間をより効果的に短縮できる。   In the solid-state imaging device, the number of columns from the first column to the n-th column in the first pixel array is equal to the number of columns from the (n + 1) -th column to the NA-th column in the first pixel array. It may be equal to the sum of the number of columns in the first column to the NB column. That is, by setting the number of columns in one region divided by the nth column as the boundary and the number of columns in the other region equal to each other, the waiting time in the signal output operation becomes almost zero, and the time required for imaging one frame Can be shortened more effectively.

本発明によれば、二枚の基板上に形成された各画素配列が行方向にタイリングされた構成を備える固体撮像装置において、一フレームの撮像に要する時間を短縮することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the solid-state imaging device provided with the structure by which each pixel arrangement | sequence formed on two board | substrates was tiled in the row direction, the time required for the imaging of one frame can be shortened.

X線撮像システム100の構成図である。1 is a configuration diagram of an X-ray imaging system 100. FIG. 被写体A(被検者の頭部)の上方から見て、固体撮像装置1及びX線発生装置106が被写体Aに対して直線変位する様子を示す図である。It is a figure which shows a mode that the solid-state imaging device 1 and the X-ray generator 106 are linearly displaced with respect to the subject A seeing from the upper side of the subject A (subject's head). 固体撮像装置1の平面図である。1 is a plan view of a solid-state imaging device 1. FIG. (a)図3のIVa−IVa線に沿った固体撮像装置1の側断面図である。(b)図3のIVb−IVb線に沿った固体撮像装置1の側断面図である。(A) It is a sectional side view of the solid-state imaging device 1 along the IVa-IVa line of FIG. (B) It is side sectional drawing of the solid-state imaging device 1 along the IVb-IVb line | wire of FIG. 固体撮像装置1の内部構成を示す図であって、複数の信号読出部21A〜21Lのうち一つの信号読出部に対応する画素配列10A(10B)の部分(画素ブロック)を代表して示している。FIG. 2 is a diagram showing an internal configuration of the solid-state imaging device 1, and representatively shows a portion (pixel block) of a pixel array 10 </ b> A (10 </ b> B) corresponding to one signal readout unit among a plurality of signal readout units 21 </ b> A to 21 </ b> L. Yes. 固体撮像装置1の上記画素ブロックに含まれる画素Pm,j、積分回路Sおよび保持回路Hそれぞれの回路図である。3 is a circuit diagram of each of a pixel P m, j , an integration circuit S j and a holding circuit H j included in the pixel block of the solid-state imaging device 1. FIG. 画素配列10Aの第1列〜第n列に含まれる画素ブロックの動作と、この画素ブロックに対応する信号出力部20の動作とを説明するタイミングチャートである。It is a timing chart explaining operation | movement of the pixel block contained in the 1st column-nth column of 10 A of pixel arrays, and operation | movement of the signal output part 20 corresponding to this pixel block. 画素配列10Aの第(n+1)列〜第NA列、および画素配列10Bの第1列〜第NB列に含まれる画素ブロックの動作と、この画素ブロックに対応する信号出力部20の動作とを説明するタイミングチャートである。The operations of the pixel blocks included in the (n + 1) -th to NA-th columns of the pixel array 10A and the first to NB-th columns of the pixel array 10B and the operation of the signal output unit 20 corresponding to this pixel block will be described. It is a timing chart to do. 画素配列10Aの第1列〜第n列に含まれる画素ブロックに対応して設けられたFIFOデータバッファ23A〜23Fの入出力動作を説明するタイミングチャートである。It is a timing chart explaining the input / output operation of the FIFO data buffers 23A to 23F provided corresponding to the pixel blocks included in the first column to the n-th column of the pixel array 10A. 画素配列10Aの第(n+1)列〜第NA列および画素配列10Bの第1列〜第NB列に含まれる画素ブロックに対応して設けられたFIFOデータバッファ23G〜23Lの入出力動作を説明するタイミングチャートである。The input / output operations of the FIFO data buffers 23G to 23L provided corresponding to the pixel blocks included in the (n + 1) th to NAth columns of the pixel array 10A and the first to NBth columns of the pixel array 10B will be described. It is a timing chart. (a)二つの画素配列110A,110Bが上下方向にタイリングされて水平方向に平行移動しながら撮像を行う様子を示す図である。(b)二つの画素配列120A,120Bが上下方向にタイリングされて水平方向に平行移動しながら撮像を行う様子を示す図である。(A) It is a figure which shows a mode that two pixel arrangement | sequences 110A and 110B are tiled up and down, and it image | photographs, moving in parallel with a horizontal direction. (B) It is a figure which shows a mode that two pixel arrangement | sequences 120A and 120B are tiled up and down, and it image | photographs, moving in parallel in a horizontal direction. (a)シリコンウェハWにおいて、長尺方向の幅が広い複数の画素配列120Aおよび長尺方向の幅が狭い複数の画素配列120Bの面付けを行った様子を示す図である。(b)シリコンウェハWにおいて長尺方向の幅が等しい複数の画素配列110の面付けを行った様子を示す図である。(A) In silicon wafer W, it is a figure which shows a mode that imposition of several pixel arrangement | sequence 120A with a wide width | variety of a longitudinal direction and several pixel arrangement | sequence 120B with a narrow width | variety of a longitudinal direction was performed. (B) It is a figure which shows a mode that the imposition of several pixel arrangement | sequence 110 with the equal width | variety of the elongate direction in the silicon wafer W was performed. (a)〜(h)一方の画素配列の8つの画素ブロックにそれぞれ対応する8個のFIFOデータバッファ(1)〜(8)からディジタル値が出力されるタイミングの一例を示すタイミングチャートである。(i)〜(l)他方の画素配列の4つの画素ブロックにそれぞれ対応する4個のFIFOデータバッファ(9)〜(12)からディジタル値が出力されるタイミングの一例を示すタイミングチャートである。(A)-(h) It is a timing chart which shows an example of the timing when a digital value is output from eight FIFO data buffers (1)-(8) each corresponding to eight pixel blocks of one pixel arrangement. (I)-(l) It is a timing chart which shows an example of the timing at which a digital value is output from four FIFO data buffers (9)-(12) respectively corresponding to four pixel blocks of the other pixel arrangement. (a)〜(h)一方の画素配列の8つの画素ブロックにそれぞれ対応する8個のFIFOデータバッファ(1)〜(8)からディジタル値が出力されるタイミングの一例を示すタイミングチャートである。(i)〜(l)他方の画素配列の4つの画素ブロックにそれぞれ対応する4個のFIFOデータバッファ(9)〜(12)からディジタル値が出力されるタイミングの一例を示すタイミングチャートである。(A)-(h) It is a timing chart which shows an example of the timing when a digital value is output from eight FIFO data buffers (1)-(8) each corresponding to eight pixel blocks of one pixel arrangement. (I)-(l) It is a timing chart which shows an example of the timing at which a digital value is output from four FIFO data buffers (9)-(12) respectively corresponding to four pixel blocks of the other pixel arrangement. 各FIFOデータバッファ23A〜23Lからのディジタル値の出力順を示すタイミングチャートである。It is a timing chart which shows the output order of the digital value from each FIFO data buffer 23A-23L. (a)膜状のシンチレータ4A,4Bが表面にそれぞれ蒸着された半導体基板3A,3Bを同一平面上で隣接させて並べる方式を示す図である。(b)同一平面上に半導体基板3A,3Bを隣接させて並べ、半導体基板3A,3Bが並置された後にシンチレータ4A,4Bが一括して蒸着される方式を示す図である。(c)半導体基板3Aの端部に半導体基板3Bの端部が重なるように半導体基板3A,3Bを並べる方式を示す図である。(A) It is a figure which shows the system which arranges the semiconductor substrates 3A and 3B by which film-like scintillators 4A and 4B were vapor-deposited on the surface, respectively, adjoining on the same plane. (B) It is a figure which shows the system by which scintillator 4A, 4B is vapor-deposited collectively after semiconductor substrate 3A, 3B is arranged adjacently on the same plane and semiconductor substrate 3A, 3B is juxtaposed. (C) It is a figure which shows the system which arrange | positions semiconductor substrate 3A, 3B so that the edge part of semiconductor substrate 3B may overlap with the edge part of semiconductor substrate 3A.

以下、添付図面を参照して、本発明を実施するための最良の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の一実施形態に係る固体撮像装置1を備えた医療用X線撮像システム100の構成を示す図である。本実施形態のX線撮像システム100は、主に歯科医療におけるパノラマ撮影、セファロ撮影、CT撮影といった撮像モードを備えており、被検者の顎部のX線像を撮像する。X線撮像システム100は、固体撮像装置1とX線発生装置106とを備えており、X線発生装置106から出力されて被写体A(すなわち被検者の顎部)を透過したX線を固体撮像装置1により撮像する。   FIG. 1 is a diagram illustrating a configuration of a medical X-ray imaging system 100 including a solid-state imaging device 1 according to an embodiment of the present invention. The X-ray imaging system 100 of this embodiment mainly includes imaging modes such as panoramic imaging, cephalometric imaging, and CT imaging in dental care, and images an X-ray image of a subject's jaw. The X-ray imaging system 100 includes the solid-state imaging device 1 and the X-ray generator 106, and the X-rays output from the X-ray generator 106 and transmitted through the subject A (that is, the subject's jaw) are solid. Imaging is performed by the imaging apparatus 1.

X線発生装置106は、被写体Aに向けてX線を発生する。X線発生装置106から発生したX線の照射野は、一次スリット板106bによって制御される。X線発生装置106にはX線管が内蔵されており、そのX線管の管電圧、管電流および通電時間などの条件が調整されることによって、被写体AへのX線照射量が制御される。また、X線発生装置106は、一次スリット板106bの開口範囲が制御されることで、或る撮像モードのときに所定の拡がり角でX線を出力し、別の撮像モードではこの所定の拡がり角より狭い拡がり角でX線を出力することができる。   The X-ray generator 106 generates X-rays toward the subject A. The irradiation field of X-rays generated from the X-ray generator 106 is controlled by the primary slit plate 106b. The X-ray generator 106 incorporates an X-ray tube, and the amount of X-ray irradiation to the subject A is controlled by adjusting conditions such as tube voltage, tube current, and energization time of the X-ray tube. The The X-ray generator 106 outputs an X-ray at a predetermined divergence angle in a certain imaging mode by controlling the opening range of the primary slit plate 106b, and this predetermined divergence in another imaging mode. X-rays can be output with a divergence angle narrower than the angle.

固体撮像装置1は、2次元配列された複数の画素を有するCMOS型の固体撮像装置であり、被写体Aを通過したX線像を電気的な画像データDに変換する。固体撮像装置1の前方には、X線入射領域を制限する二次スリット板107が設けられる。   The solid-state imaging device 1 is a CMOS solid-state imaging device having a plurality of pixels arranged two-dimensionally, and converts an X-ray image that has passed through the subject A into electrical image data D. A secondary slit plate 107 that restricts the X-ray incident area is provided in front of the solid-state imaging device 1.

X線撮像システム100は、旋回アーム104を更に備えている。旋回アーム104は、X線発生装置106と固体撮像装置1とを互いに対向させるように保持して、CT撮影やパノラマ撮影の際にこれらを被写体Aの周りに旋回させる。また、セファロ撮影やリニア断層撮影の際には、固体撮像装置1及びX線発生装置106を被写体Aに対して直線変位させるためのスライド機構113が設けられる。旋回アーム104は、回転テーブルを構成するアームモータ109によって駆動され、その回転角度が角度センサ112によって検出される。また、アームモータ109は、XYテーブル114の可動部に搭載され、回転中心が水平面内で任意に調整される。   The X-ray imaging system 100 further includes a turning arm 104. The turning arm 104 holds the X-ray generator 106 and the solid-state imaging device 1 so as to face each other, and turns them around the subject A during CT imaging or panoramic imaging. Further, a slide mechanism 113 for linearly displacing the solid-state imaging device 1 and the X-ray generation device 106 with respect to the subject A is provided at the time of cephalometric imaging or linear tomographic imaging. The turning arm 104 is driven by an arm motor 109 constituting a rotary table, and the rotation angle is detected by an angle sensor 112. The arm motor 109 is mounted on the movable part of the XY table 114, and the center of rotation is arbitrarily adjusted in the horizontal plane.

固体撮像装置1から出力される画像データDは、CPU(中央処理装置)121にいったん取り込まれた後、フレームメモリ122に格納される。フレームメモリ122に格納された画像データから、所定の演算処理によって任意の断層面に沿った断層画像やパノラマ画像、セファロ画像等が再生される。再生されたこれらの画像は、ビデオメモリ124に出力され、DA変換器125によってアナログ信号に変換された後、CRT(陰極線管)などの画像表示部126によって表示され、各種診断に供される。   Image data D output from the solid-state imaging device 1 is once captured by a CPU (central processing unit) 121 and then stored in the frame memory 122. From the image data stored in the frame memory 122, a tomographic image, a panoramic image, a cephalo image, or the like along an arbitrary tomographic plane is reproduced by a predetermined calculation process. These reproduced images are output to the video memory 124, converted into analog signals by the DA converter 125, displayed on the image display unit 126 such as a CRT (cathode ray tube), and used for various diagnoses.

CPU121には、信号処理に必要なワークメモリ123が接続され、さらにパネルスイッチやX線照射スイッチ等を備えた操作パネル119が接続されている。また、CPU121は、アームモータ109を駆動するモータ駆動回路111、一次スリット板106b及び二次スリット板107の開口範囲を制御するスリット制御回路115及び116、並びにX線発生装置106を制御するX線制御回路118にそれぞれ接続され、さらに、固体撮像装置1を駆動するためのクロック信号を出力する。X線制御回路118は、固体撮像装置1により撮像された信号に基づいて、被写体へのX線照射量を帰還制御する。   A work memory 123 necessary for signal processing is connected to the CPU 121, and an operation panel 119 provided with a panel switch, an X-ray irradiation switch, and the like is further connected. The CPU 121 also controls the motor drive circuit 111 that drives the arm motor 109, slit control circuits 115 and 116 that control the opening ranges of the primary slit plate 106 b and the secondary slit plate 107, and the X-ray generator 106. Each is connected to the control circuit 118 and further outputs a clock signal for driving the solid-state imaging device 1. The X-ray control circuit 118 feedback-controls the amount of X-ray irradiation to the subject based on the signal imaged by the solid-state imaging device 1.

図2は、被写体A(被検者の頭部)の上方から見て、固体撮像装置1及びX線発生装置106が被写体Aに対して直線変位する様子を示す図である。セファロ撮影の際、固体撮像装置1及びX線発生装置106は、スライド機構113によって、被写体Aを挟んだ両側において互いに対向した状態を維持しつつ同一方向(図中の矢印B)に直線移動しながら、被写体AにX線を照射し、被写体Aを通過したX線像の撮像を連続して行う。   FIG. 2 is a diagram illustrating a state in which the solid-state imaging device 1 and the X-ray generation device 106 are linearly displaced with respect to the subject A when viewed from above the subject A (the subject's head). At the time of cephalometric imaging, the solid-state imaging device 1 and the X-ray generation device 106 move linearly in the same direction (arrow B in the figure) while maintaining a state of being opposed to each other on both sides of the subject A by the slide mechanism 113. However, the subject A is irradiated with X-rays, and X-ray images passing through the subject A are continuously captured.

図3及び図4は、本実施形態における固体撮像装置1の構成を示す図である。図3は固体撮像装置1の平面図である。図4(a)は図3のIVa−IVa線に沿った固体撮像装置1の側断面図であり、図4(b)は図3のIVb−IVb線に沿った固体撮像装置1の側断面図である。なお、図3及び図4には、理解を容易にするためXYZ直交座標系を併せて示している。   3 and 4 are diagrams illustrating the configuration of the solid-state imaging device 1 according to the present embodiment. FIG. 3 is a plan view of the solid-state imaging device 1. 4A is a side sectional view of the solid-state imaging device 1 along the line IVa-IVa in FIG. 3, and FIG. 4B is a side sectional view of the solid-state imaging device 1 along the line IVb-IVb in FIG. FIG. 3 and 4 also show an XYZ orthogonal coordinate system for easy understanding.

図3及び図4(a)に示すように、固体撮像装置1は半導体基板3A(第1の基板)および半導体基板3B(第2の基板)を備えており、この二枚の半導体基板3A,3Bによって一つの撮像領域が構成されている。固体撮像装置1の撮像領域に要求される大きさはその撮像用途により様々であるが、歯科の診断におけるX線撮影では、セファロ撮影において撮像領域の長手方向の幅が22cm以上といった長尺のものが要求される。そこで、本実施形態のように、固体撮像装置1に要求される寸法より短い二枚の半導体基板3A、3Bを長尺方向に並べ、それぞれの画素配列10A,10Bを合わせて一つの撮像領域として使用(いわゆるタイリング)することによって、要求寸法を満足することができる。なお、このように二枚の半導体基板3A、3Bを並べて使用する場合、これらの画素配列の境界部分(継ぎ目)にはX線像が撮像されない領域(デッドエリアC)が生じてしまう。これは、半導体基板3A及び3Bそれぞれの端部と、これらの半導体基板3A,3B上に作製される画素配列10A,10Bそれぞれの端部との隙間をなくすことが製造上困難であることに因る。   3 and 4A, the solid-state imaging device 1 includes a semiconductor substrate 3A (first substrate) and a semiconductor substrate 3B (second substrate), and the two semiconductor substrates 3A, 3A, One imaging area is configured by 3B. The size required for the imaging area of the solid-state imaging device 1 varies depending on the imaging application. However, in X-ray imaging for dental diagnosis, the length of the imaging area in the longitudinal direction is 22 cm or more in cephalometric imaging. Is required. Therefore, as in this embodiment, two semiconductor substrates 3A and 3B shorter than the dimensions required for the solid-state imaging device 1 are arranged in the longitudinal direction, and the pixel arrays 10A and 10B are combined to form one imaging region. By using (so-called tiling), the required dimensions can be satisfied. When two semiconductor substrates 3A and 3B are used side by side in this way, a region (dead area C) where an X-ray image is not captured occurs at the boundary portion (seam) of these pixel arrays. This is because it is difficult to manufacture a gap between the end portions of the semiconductor substrates 3A and 3B and the end portions of the pixel arrays 10A and 10B fabricated on the semiconductor substrates 3A and 3B. The

固体撮像装置1は、半導体基板3Aの主面にそれぞれ作り込まれた画素配列10A(第1の画素配列)および走査シフトレジスタ30Aと、半導体基板3Bの主面にそれぞれ作り込まれた画素配列10B(第2の画素配列)および走査シフトレジスタ30Bとを備えている。また、固体撮像装置1は信号出力部20を更に備えており、この信号出力部20は、半導体基板3Aの主面に作り込まれた複数の信号読出部21A〜21Hと、半導体基板3Bの主面に作り込まれた複数の信号読出部21I〜21Lと、各信号読出部21A〜21Lに対応する複数のアナログ/ディジタル(A/D)変換器22A〜22Lと、各A/D変換器22A〜22Lに対応する複数のFIFO(First-In-First-Out)データバッファ23A〜23Lとを有している。   The solid-state imaging device 1 includes a pixel array 10A (first pixel array) and a scan shift register 30A each formed on the main surface of the semiconductor substrate 3A, and a pixel array 10B formed on the main surface of the semiconductor substrate 3B. (Second pixel array) and a scan shift register 30B. The solid-state imaging device 1 further includes a signal output unit 20, which includes a plurality of signal readout units 21 </ b> A to 21 </ b> H formed on the main surface of the semiconductor substrate 3 </ b> A and the main substrate 3 </ b> B. A plurality of signal reading units 21I to 21L formed on the surface, a plurality of analog / digital (A / D) converters 22A to 22L corresponding to the signal reading units 21A to 21L, and each A / D converter 22A And a plurality of FIFO (First-In-First-Out) data buffers 23A to 23L corresponding to .about.22L.

また、固体撮像装置1は、平板状の基材2、シンチレータ4A,4BおよびX線遮蔽部材5を備えている。上述した半導体基板3A,3Bは基材2に貼り付けられ、シンチレータ4A及び4Bは半導体基板3A上及び半導体基板3B上にそれぞれ配置されている。シンチレータ4A及び4Bは、入射したX線に応じてシンチレーション光を発生してX線像を光像へと変換し、この光像を画素配列10A及び10Bへそれぞれ出力する。シンチレータ4A,4Bは画素配列10A,10Bを覆うようにそれぞれ設置されるか、或いは画素配列10A,10B上に蒸着によりそれぞれ設けられる。X線遮蔽部材5は、X線の透過率が極めて低い鉛等の材料からなる。X線遮蔽部材5は、半導体基板3A,3Bの周縁部、特に走査シフトレジスタ30A,30B並びに信号読出部21A〜21Lが配置された領域を覆っており、走査シフトレジスタ30A,30B並びに信号読出部21A〜21LへのX線の入射を防止する。   The solid-state imaging device 1 includes a flat substrate 2, scintillators 4 </ b> A and 4 </ b> B, and an X-ray shielding member 5. The semiconductor substrates 3A and 3B described above are attached to the base material 2, and the scintillators 4A and 4B are disposed on the semiconductor substrate 3A and the semiconductor substrate 3B, respectively. The scintillators 4A and 4B generate scintillation light according to the incident X-rays, convert the X-ray images into optical images, and output the optical images to the pixel arrays 10A and 10B, respectively. The scintillators 4A and 4B are installed so as to cover the pixel arrays 10A and 10B, respectively, or are provided on the pixel arrays 10A and 10B by vapor deposition. The X-ray shielding member 5 is made of a material such as lead that has an extremely low X-ray transmittance. The X-ray shielding member 5 covers the peripheral portions of the semiconductor substrates 3A and 3B, particularly the regions where the scanning shift registers 30A and 30B and the signal reading units 21A to 21L are arranged, and the scanning shift registers 30A and 30B and the signal reading unit. X-ray incidence to 21A to 21L is prevented.

画素配列10Aは、M×NA個の画素P(図4(a),(b)を参照)がM行NA列に2次元配列されることにより構成されている。また、画素配列10Bは、M×NB個の画素PがM行NB列に2次元配列されることにより構成されている。なお、図3において、列方向はX軸方向と一致し、行方向はY軸方向と一致する。M,NA,NBそれぞれは2以上の整数であり、NA>NBを満たす。また、画素配列10A,10Bにおける行方向の画素Pの数(NA+NB)は、列方向の画素Pの数Mより多いことが好ましい。その場合、画素配列10A及び10Bからなる撮像領域は、行方向(Y軸方向)を長手方向とし、列方向(X軸方向)を短手方向とする長方形状を呈する。各画素Pは、例えば100μmピッチで配列されており、PPS方式のものであって共通の構成を有している。   The pixel array 10A is configured by two-dimensionally arranging M × NA pixels P (see FIGS. 4A and 4B) in M rows and NA columns. Further, the pixel array 10B is configured by two-dimensionally arranging M × NB pixels P in M rows and NB columns. In FIG. 3, the column direction coincides with the X-axis direction, and the row direction coincides with the Y-axis direction. Each of M, NA, and NB is an integer of 2 or more and satisfies NA> NB. The number (NA + NB) of pixels P in the row direction in the pixel arrays 10A and 10B is preferably larger than the number M of pixels P in the column direction. In this case, the imaging region including the pixel arrays 10A and 10B has a rectangular shape in which the row direction (Y-axis direction) is a long direction and the column direction (X-axis direction) is a short direction. The pixels P are arranged at a pitch of 100 μm, for example, and are of the PPS system and have a common configuration.

ここで、図3において、画素配列10Aに含まれるNA列のうち最も左端に位置する列(すなわちY座標が最も小さい列)を第1列とし、反対側の右端に位置する列を第NA列とする。また、同図において、画素配列10Bに含まれるNB列のうち最も左端に位置する列(Y座標が最も小さい列)を第1列とし、反対側の右端に位置する列を第NB列とする。この場合、本実施形態では画素配列10Bの第1列と画素配列10Aの第NA列とが互いに沿うように画素配列10A及び10Bが配置される。   Here, in FIG. 3, among the NA columns included in the pixel array 10A, the column located at the left end (that is, the column with the smallest Y coordinate) is the first column, and the column located at the opposite right end is the NA column. And Also, in the figure, among the NB columns included in the pixel array 10B, the column located at the left end (the column with the smallest Y coordinate) is the first column, and the column located at the opposite right end is the NB column. . In this case, in the present embodiment, the pixel arrays 10A and 10B are arranged so that the first column of the pixel array 10B and the NA column of the pixel array 10A are along each other.

また、画素配列10Aの第1列を含む一又は複数の連続した列はX線遮蔽部材5によって覆われていて、入射X線から遮蔽された不感領域となっている。すなわち、これらの列には光が入射せず電荷が発生しないので、撮像には寄与しない。同様に、画素配列10Bの第NB列を含む一又は複数の連続した列もまたX線遮蔽部材5によって覆われており、不感領域となっている。したがって、画素配列10A,10Bにおいては、X線遮蔽部材5によって覆われたこれらの画素列を除く他の画素列によって撮像の為の有効な領域が構成される。換言すれば、固体撮像装置1における有効撮像領域は、X線遮蔽部材5の開口5aによって規定される。   In addition, one or a plurality of continuous rows including the first row of the pixel array 10A are covered with the X-ray shielding member 5 and are insensitive areas shielded from incident X-rays. That is, no light is incident on these columns and no charge is generated, which does not contribute to imaging. Similarly, one or a plurality of continuous columns including the NB column of the pixel array 10B are also covered with the X-ray shielding member 5 and are insensitive areas. Therefore, in the pixel arrays 10 </ b> A and 10 </ b> B, an effective region for imaging is configured by the other pixel columns except for these pixel columns covered by the X-ray shielding member 5. In other words, the effective imaging area in the solid-state imaging device 1 is defined by the opening 5 a of the X-ray shielding member 5.

信号出力部20は、各画素Pから出力された電荷の量に応じた電圧値を保持し、その保持した電圧値をディジタル値に変換してデータバスDBへ出力する。複数の信号読出部21A〜21Hは、一つの信号読出部につき画素配列10Aにおける二以上の画素列に対応して設けられており、対応する画素列の各画素Pから出力された電荷の量に応じた電圧値を保持し、この電圧値を対応するA/D変換器22A〜22Hへそれぞれ出力する。同様に、複数の信号読出部21I〜21Lは、一つの信号読出部につき画素配列10Bにおける二以上の画素列に対応して設けられており、対応する画素列の各画素Pから出力された電荷の量に応じた電圧値を保持し、この電圧値を対応するA/D変換器22I〜22Lへそれぞれ出力する。このとき、走査シフトレジスタ30A及び30Bは、各画素Pに蓄積された電荷が行毎に信号読出部21A〜21Lへ順次出力されるように各画素Pを制御する。   The signal output unit 20 holds a voltage value corresponding to the amount of charge output from each pixel P, converts the held voltage value into a digital value, and outputs the digital value to the data bus DB. The plurality of signal readout units 21A to 21H are provided corresponding to two or more pixel columns in the pixel array 10A per signal readout unit, and the amount of charge output from each pixel P of the corresponding pixel column is determined. The corresponding voltage value is held, and this voltage value is output to the corresponding A / D converters 22A to 22H. Similarly, the plurality of signal readout units 21I to 21L are provided corresponding to two or more pixel columns in the pixel array 10B per signal readout unit, and the charges output from the respective pixels P of the corresponding pixel column. The voltage value corresponding to the amount of the signal is held, and this voltage value is output to the corresponding A / D converters 22I to 22L. At this time, the scan shift registers 30A and 30B control each pixel P so that the charges accumulated in each pixel P are sequentially output to the signal reading units 21A to 21L for each row.

複数のA/D変換器22A〜22Lは、対応する信号読出部21A〜21Lから出力された電圧値を入力し、その入力した電圧値(アナログ値)に対してA/D変換処理を施し、その入力電圧値に応じたディジタル値を生成する。複数のA/D変換器22A〜22Lは、生成したディジタル値を当該A/D変換器22A〜22Lに対応するFIFOデータバッファ23A〜23Lへ出力する。   The plurality of A / D converters 22A to 22L receive the voltage values output from the corresponding signal reading units 21A to 21L, perform A / D conversion processing on the input voltage values (analog values), A digital value corresponding to the input voltage value is generated. The plurality of A / D converters 22A to 22L output the generated digital values to the FIFO data buffers 23A to 23L corresponding to the A / D converters 22A to 22L.

複数のFIFOデータバッファ23A〜23Lは、画素配列10Aに含まれるNA列、および画素配列10Bに含まれるNB列のそれぞれに対応する全てのディジタル値が揃った後、該ディジタル値をデータバスDBへ出力する。このとき、FIFOデータバッファ23A〜23Fは、画素配列10Aの第1列から第n列(2≦n<NA)までの各列に対応するディジタル値(図3の境界線Eより左側に配置された6個のFIFOデータバッファ23A〜23Fに格納されたディジタル値)を順次にデータバスDBへ出力する。そして、この出力動作と並行して、FIFOデータバッファ23G〜23Lは、画素配列10Aの第(n+1)列から、第NA列および画素配列10Bの第1列を経て第NB列までの各列に対応するディジタル値(図3の境界線Eより右側に配置された6個のFIFOデータバッファ23G〜23Lに格納されたディジタル値)を順次にデータバスDBへ出力する。すなわち、データバスDBを制御するCPU等の処理装置から見た場合、境界線Eより左側に配置された6個のFIFOデータバッファ23A〜23Fが一つの出力ポートを構成し、境界線Eより右側に配置された6個のFIFOデータバッファ23G〜23Lが別の出力ポートを構成する。   The plurality of FIFO data buffers 23A to 23L obtain all the digital values corresponding to the NA column included in the pixel array 10A and the NB column included in the pixel array 10B, and then transfer the digital values to the data bus DB. Output. At this time, the FIFO data buffers 23A to 23F are arranged on the left side of the digital values corresponding to the respective columns from the first column to the n-th column (2 ≦ n <NA) of the pixel array 10A (the boundary line E in FIG. 3). The digital values stored in the six FIFO data buffers 23A to 23F) are sequentially output to the data bus DB. In parallel with this output operation, the FIFO data buffers 23G to 23L are arranged in columns from the (n + 1) th column of the pixel array 10A through the NA column and the first column of the pixel array 10B to the NB column. Corresponding digital values (digital values stored in the six FIFO data buffers 23G to 23L arranged on the right side of the boundary line E in FIG. 3) are sequentially output to the data bus DB. That is, when viewed from a processing device such as a CPU that controls the data bus DB, the six FIFO data buffers 23A to 23F arranged on the left side of the boundary line E constitute one output port, and on the right side of the boundary line E. Six FIFO data buffers 23G to 23L arranged in (1) constitute another output port.

続いて、本実施形態に係る固体撮像装置1の詳細な構成について説明する。図5は、固体撮像装置1の内部構成を示す図であって、複数の信号読出部21A〜21Lのうち一つの信号読出部に対応する画素配列10A(10B)の部分(画素ブロック)を代表して示している。画素配列10A(10B)における当該画素ブロックは、画素P1,i〜PM,kがM行(k−i+1)列に2次元配列されて成る。画素Pm,jは第m行第j列に位置する。ここで、i,kは1以上の整数であり、1≦i<k≦NA(またはNB)を満たす。また、mは1以上M以下の各整数であり、jはi以上k以下の各整数である。第m行の(k−i+1)個の画素Pm,i〜Pm,kそれぞれは、第m行選択用配線LV,mにより走査シフトレジスタ30A(または30B)と接続されている。なお、図5において、走査シフトレジスタ30A及び30Bは制御部6に含まれている。第j列のM個の画素P1,j〜PM,jそれぞれの出力端は、第j列読出用配線LO,jにより、信号読出部21A〜21Lの積分回路Sと接続されている。 Subsequently, a detailed configuration of the solid-state imaging device 1 according to the present embodiment will be described. FIG. 5 is a diagram illustrating an internal configuration of the solid-state imaging device 1, and represents a portion (pixel block) of the pixel array 10A (10B) corresponding to one signal readout unit among the plurality of signal readout units 21A to 21L. As shown. The pixel block in the pixel array 10A (10B) is configured by two-dimensionally arranging pixels P1 , i to PM , k in M rows (k-i + 1) columns. The pixel P m, j is located in the m-th row and the j-th column. Here, i and k are integers of 1 or more and satisfy 1 ≦ i <k ≦ NA (or NB). M is an integer from 1 to M, and j is an integer from i to k. Each of the (k−i + 1) pixels P m, i to P m, k in the m-th row is connected to the scan shift register 30A (or 30B) by the m-th row selection wiring LV , m . In FIG. 5, the scan shift registers 30 </ b> A and 30 </ b> B are included in the control unit 6. The output ends of the M pixels P 1, j to P M, j in the j-th column are connected to the integration circuit S j of the signal reading units 21A to 21L by the j-th column reading wiring L O, j. Yes.

信号読出部21A〜21Lのそれぞれは、(k−i+1)個の積分回路S〜Sおよび(k−i+1)個の保持回路H〜Hを含む。各積分回路Sは共通の構成を有している。また、各保持回路Hは共通の構成を有している。各積分回路Sは、読出用配線LO,jと接続された入力端を有し、この入力端に入力された電荷を蓄積して、その蓄積電荷量に応じた電圧値を出力端から保持回路Hへ出力する。(k−i+1)個の積分回路S〜Sそれぞれは、リセット用配線Lにより制御部6と接続され、また、ゲイン設定用配線Lにより制御部6と接続されている。各保持回路Hは、積分回路Sの出力端と接続された入力端を有し、この入力端に入力される電圧値を保持し、その保持した電圧値を出力端から電圧出力用配線Loutへ出力する。(k−i+1)個の保持回路H〜Hそれぞれは、保持用配線Lにより制御部6と接続されている。また、各保持回路Hは、第j列選択用配線LH,jにより制御部6の読出シフトレジスタ31A(または31B)と接続されている。 Each of the signal readout units 21A to 21L includes (k−i + 1) integration circuits S i to S k and (k−i + 1) holding circuits H i to H k . Each integrating circuit S j has a common configuration. Each holding circuit H j has a common configuration. Each integrating circuit S j has an input terminal connected to the readout wiring L O, j , accumulates electric charge input to this input terminal, and outputs a voltage value corresponding to the amount of accumulated electric charge from the output terminal. Output to the holding circuit Hj . The (k-i + 1) pieces of the integrating circuit S i to S k, respectively, connected to the control unit 6 by a reset wiring L R, and also connected to the control unit 6 by a gain setting wiring L G. Each holding circuit H j has an input terminal connected to the output terminal of the integrating circuit S j , holds a voltage value input to the input terminal, and the held voltage value is connected to the voltage output wiring from the output terminal. Output to L out . Each of the (k−i + 1) holding circuits H i to H k is connected to the control unit 6 by a holding wiring L H. Moreover, each holding circuit H j is the j-th column selecting wiring L H, are connected to the read shift register 31A of the control unit 6 (or 31B) by j.

A/D変換器22A〜22Lは、(k−i+1)個の保持回路H〜Hそれぞれから電圧出力用配線Loutへ出力される電圧値を入力し、その入力した電圧値(アナログ値)に対してA/D変換処理を行い、その入力電圧値に応じたディジタル値をFIFOデータバッファ23A〜23Lへそれぞれ出力する。 Each of the A / D converters 22A to 22L receives a voltage value output from each of the (k−i + 1) holding circuits H i to H k to the voltage output wiring L out and inputs the input voltage value (analog value). A / D conversion processing is performed on the data, and digital values corresponding to the input voltage values are output to the FIFO data buffers 23A to 23L, respectively.

制御部6の走査シフトレジスタ30A(30B)は、第m行選択制御信号Vsel(m)を第m行選択用配線LV,mへ出力して、この第m行選択制御信号Vsel(m)を第m行の(k−i+1)個の画素Pm,i〜Pm,kそれぞれに与える。M個の行選択制御信号Vsel(1)〜Vsel(M)は順次に有意値とされる。また、制御部6の読出シフトレジスタ31A(31B)は、第j列選択制御信号Hsel(j)を第j列選択用配線LH,jへ出力して、この第j列選択制御信号Hsel(j)を保持回路Hに与える。(k−i+1)個の列選択制御信号Hsel(i)〜Hsel(k)も順次に有意値とされる。 The scan shift register 30A (30B) of the control unit 6 outputs the mth row selection control signal Vsel (m) to the mth row selection wiring LV , m , and this mth row selection control signal Vsel (m). Are given to (k−i + 1) pixels P m, i to P m, k in the m -th row. The M row selection control signals Vsel (1) to Vsel (M) are sequentially set to significant values. The read shift register 31A (31B) of the control unit 6 outputs the j-th column selection control signal Hsel (j) to the j-th column selection wiring LH , j , and this j-th column selection control signal Hsel ( j) is applied to the holding circuit H j . The (k−i + 1) column selection control signals Hsel (i) to Hsel (k) are also sequentially set to significant values.

また、制御部6は、リセット制御信号Resetをリセット用配線Lへ出力して、このリセット制御信号Resetを(k−i+1)個の積分回路S〜Sそれぞれに与える。制御部6は、ゲイン設定信号Gainをゲイン設定用配線Lへ出力して、このゲイン設定信号Gainを(k−i+1)個の積分回路S〜Sそれぞれに与える。制御部6は、保持制御信号Holdを保持用配線Lへ出力して、この保持制御信号Holdを(k−i+1)個の保持回路H〜Hそれぞれに与える。さらに、制御部6は、図示してはいないが、A/D変換器22A〜22LにおけるA/D変換処理をも制御する。 The control unit 6 outputs a reset control signal Reset to the reset wiring L R, giving the reset control signal Reset to the (k-i + 1) pieces of the integrating circuit S i to S k, respectively. Control unit 6 outputs a gain setting signal Gain to the gain setting wiring L G, giving the gain setting signal Gain to the (k-i + 1) pieces of the integrating circuit S i to S k, respectively. Control unit 6 outputs a holding control signal Hold to the holding wiring L H, it gives the holding control signal Hold to the (k-i + 1) pieces of the holding circuit H i to H k, respectively. Furthermore, although not shown, the control unit 6 also controls A / D conversion processing in the A / D converters 22A to 22L.

図6は、固体撮像装置1の上記画素ブロックに含まれる画素Pm,j、積分回路Sおよび保持回路Hそれぞれの回路図である。ここでは、画素P1,i〜PM,kを代表して画素Pm,jの回路図を示し、(k−i+1)個の積分回路S〜Sを代表して積分回路Sの回路図を示し、また、(k−i+1)個の保持回路H〜Hを代表して保持回路Hの回路図を示す。すなわち、第m行第j列の画素Pm,jおよび第j列読出用配線LO,jに関連する回路部分を示す。 FIG. 6 is a circuit diagram of each of the pixel P m, j , the integration circuit S j, and the holding circuit H j included in the pixel block of the solid-state imaging device 1. Here, a circuit diagram of the pixel P m, j is shown on behalf of the pixels P 1, i to PM , k , and an integration circuit S j on behalf of the (k−i + 1) number of integration circuits S i to S k. In addition, a circuit diagram of the holding circuit H j is shown as a representative of (k−i + 1) holding circuits H i to H k . That is, a circuit portion related to the pixel P m, j in the m-th row and the j-th column and the j-th column readout wiring L O, j is shown.

画素Pm,jは、フォトダイオードPDおよび読出用スイッチSWを含む。フォトダイオードPDのアノード端子は接地され、フォトダイオードPDのカソード端子は読出用スイッチSWを介して第j列読出用配線LO,jと接続されている。フォトダイオードPDは、入射光強度に応じた量の電荷を発生し、その発生した電荷を接合容量部に蓄積する。読出用スイッチSWは、制御部6から第m行選択用配線LV,mを通った第m行選択制御信号Vsel(m)が与えられる。第m行選択制御信号Vsel(m)は、画素配列10Aにおける第m行のNA個の画素Pm,1〜Pm,NA、および画素配列10Bにおける第m行のNB個の画素Pm,1〜Pm,NBそれぞれの読出用スイッチSWの開閉動作を指示するものである。 Pixel P m, j includes a photodiode PD and a readout switch SW 1. The anode terminal of the photodiode PD is grounded, is connected the cathode terminal of the photodiode PD is the j-th column readout wiring L O via the readout switch SW 1, and j. The photodiode PD generates an amount of charge corresponding to the incident light intensity, and accumulates the generated charge in the junction capacitor. Readout switch SW 1 is the m row selecting wiring L V, m-th row selection control signal Vsel passed through the m (m) is given from the control unit 6. The m-th row selection control signal Vsel (m) includes the NA pixels P m, 1 to P m, NA in the m-th row in the pixel array 10A and the NB pixels P m, m in the m-th row in the pixel array 10B . 1 to P m, is an indication of the NB each opening and closing operation of the readout switch SW 1.

この画素Pm,jでは、第m行選択制御信号Vsel(m)がローレベルであるときに読出用スイッチSWが開いて、フォトダイオードPDで発生した電荷は第j列読出用配線LO,jへ出力されることなく接合容量部に蓄積される。一方、第m行選択制御信号Vsel(m)がハイレベルであるときに読出用スイッチSWが閉じて、それまでフォトダイオードPDで発生して接合容量部に蓄積されていた電荷は、読出用スイッチSWを経て第j列読出用配線LO,jへ出力される。 The pixel P m, the j, the m-th row selection control signal Vsel (m) is read switch SW 1 in the open when a low level, the j-th column readout wiring charges generated in the photodiode PD L O , J without being output to the junction capacitor. On the other hand, the m-th row selection control signal Vsel (m) is the read switch SW 1 in closed when a high level, the electric charge accumulated in the junction capacitance portion is generated in the photodiode PD until it is for reading The signal is output to the j-th column readout wiring L O, j through the switch SW 1 .

第j列読出用配線LO,jは、画素配列10A(または10B)における第j列のM個の画素P1,j〜PM,jそれぞれの読出用スイッチSWと接続されている。第j列読出用配線LO,jは、M個の画素P1,j〜PM,jのうちの何れかの画素のフォトダイオードPDで発生した電荷を、該画素の読出用スイッチSWを介して読み出して、積分回路Sへ転送する。 The j-th column readout wiring L O, j is connected to the readout switch SW 1 of each of the M pixels P 1, j to P M, j in the j-th column in the pixel array 10A (or 10B). The j-th column readout wiring L O, j uses the charge generated in the photodiode PD of any one of the M pixels P 1, j to P M, j as the readout switch SW 1 of the pixel. Is transferred to the integrating circuit S j .

積分回路Sは、アンプA,積分用容量素子C21,積分用容量素子C22,放電用スイッチSW21およびゲイン設定用スイッチSW22を含む。積分用容量素子C21および放電用スイッチSW21は、互いに並列的に接続されて、アンプAの入力端子と出力端子との間に設けられている。また、積分用容量素子C22およびゲイン設定用スイッチSW22は、互いに直列的に接続されて、ゲイン設定用スイッチSW22がアンプAの入力端子側に接続されるようにアンプAの入力端子と出力端子との間に設けられている。アンプAの入力端子は、第j列読出用配線LO,jと接続されている。 The integrating circuit S j includes an amplifier A 2 , an integrating capacitive element C 21 , an integrating capacitive element C 22 , a discharging switch SW 21 and a gain setting switch SW 22 . Integrating capacitive element C 21 and the discharge switch SW 21 is connected in parallel to each other, and provided between an input terminal of the amplifier A 2 and the output terminal. Moreover, the integrating capacitive element C 22 and the gain setting switch SW 22 is connected in series to each other, the input of the amplifier A 2 so that the gain setting switch SW 22 is connected to the input terminal side of the amplifier A 2 It is provided between the terminal and the output terminal. The input terminal of the amplifier A 2, j-th column readout wiring L O, and is connected to the j.

放電用スイッチSW21には、制御部6からリセット用配線Lを経たリセット制御信号Resetが与えられる。リセット制御信号Resetは、画素配列10Aに対応するNA個の積分回路S〜SNA、および画素配列10Bに対応するNB個の積分回路S〜SNBそれぞれの放電用スイッチSW21の開閉動作を指示するものである。ゲイン設定用スイッチSW22は、制御部6からゲイン設定用配線Lを経たゲイン設定信号Gainが与えられる。ゲイン設定信号Gainは、画素配列10Aに対応するNA個の積分回路S〜SNA、および画素配列10Bに対応するNB個の積分回路S〜SNBそれぞれのゲイン設定用スイッチSW22の開閉動作を指示するものである。 The discharge switch SW 21, the reset control signal Reset passing through the resetting wiring L R given from the control unit 6. The reset control signal Reset is an opening / closing operation of the discharge switches SW 21 of the NA integration circuits S 1 to S NA corresponding to the pixel array 10A and the NB integration circuits S 1 to S NB corresponding to the pixel array 10B. Is instructed. Gain setting switch SW 22, the gain setting signal Gain is provided passing through the gain setting wiring L G from the controlling section 6. The gain setting signal Gain is used to open / close the gain setting switch SW 22 of each of the NA integration circuits S 1 to S NA corresponding to the pixel array 10A and the NB integration circuits S 1 to S NB corresponding to the pixel array 10B. The operation is instructed.

この積分回路Sでは、積分用容量素子C21,C22およびゲイン設定用スイッチSW22は、容量値が可変である帰還容量部を構成している。すなわち、ゲイン設定信号Gainがローレベルであってゲイン設定用スイッチSW22が開いているときには、帰還容量部の容量値は積分用容量素子C21の容量値と等しい。一方、ゲイン設定信号Gainがハイレベルであってゲイン設定用スイッチSW22が閉じているときには、帰還容量部の容量値は、積分用容量素子C21,C22それぞれの容量値の和と等しい。リセット制御信号Resetがハイレベルであるときに、放電用スイッチSW21が閉じて、帰還容量部が放電され、積分回路Sから出力される電圧値が初期化される。一方、リセット制御信号Resetがローレベルであるときに、放電用スイッチSW21が開いて、入力端に入力された電荷が帰還容量部に蓄積され、その蓄積電荷量に応じた電圧値が積分回路Sから出力される。 In the integration circuit S j , the integrating capacitive elements C 21 and C 22 and the gain setting switch SW 22 constitute a feedback capacitive unit having a variable capacitance value. That is, when the gain setting signal Gain is at low level the gain setting switch SW 22 is open, the capacitance value of the feedback capacitance section is equal to the capacitance value of the integrating capacitive element C 21. On the other hand, when the gain setting signal Gain is at a high level and the gain setting switch SW 22 is closed, the capacitance value of the feedback capacitance section is equal to the sum of the capacitance values of the integrating capacitive elements C 21 and C 22 . When the reset control signal Reset is at a high level, the discharging switch SW 21 is closed, the feedback capacitor unit is discharged, and the voltage value output from the integrating circuit S j is initialized. On the other hand, when the reset control signal Reset is at a low level, the discharge switch SW 21 is opened, the charge input to the input terminal is accumulated in the feedback capacitor unit, and the voltage value corresponding to the accumulated charge amount is an integration circuit. S j is output.

保持回路Hは、入力用スイッチSW31,出力用スイッチSW32および保持用容量素子Cを含む。保持用容量素子Cの一端は接地されている。保持用容量素子Cの他端は、入力用スイッチSW31を介して積分回路Sの出力端と接続され、出力用スイッチSW32を介して電圧出力用配線Loutと接続されている。入力用スイッチSW31には、制御部6から保持用配線Lを通った保持制御信号Holdが与えられる。保持制御信号Holdは、画素配列10Aに対応するNA個の保持回路H〜HNA、および画素配列10Bに対応するNB個の保持回路H〜HNBそれぞれの入力用スイッチSW31の開閉動作を指示する信号である。出力用スイッチSW32には、制御部6から第j列選択用配線LH,jを通った第j列選択制御信号Hsel(j)が与えられる。第j列選択制御信号Hsel(j)は、保持回路Hの出力用スイッチSW32の開閉動作を指示する信号である。 The holding circuit H j includes an input switch SW 31 , an output switch SW 32, and a holding capacitive element C 3 . One end of the holding capacitive element C 3 is grounded. The other end of the holding capacitive element C 3 is connected via an input switch SW 31 is connected to the output terminal of the integrating circuit S j, and is connected to the voltage output wiring L out via the output switch SW 32. The input switch SW 31, is given holding control signal Hold passed through the holding wiring L H from the controlling section 6. The holding control signal Hold is an opening / closing operation of the input switches SW 31 of the NA holding circuits H 1 to H NA corresponding to the pixel array 10A and the NB holding circuits H 1 to H NB corresponding to the pixel array 10B. Is a signal for instructing. The output switch SW 32 is supplied with the j-th column selection control signal Hsel (j) from the control unit 6 through the j-th column selection wiring L H, j . The j-th column selection control signal Hsel (j) is a signal for instructing the opening / closing operation of the output switch SW 32 of the holding circuit H j .

この保持回路Hでは、保持制御信号Holdがハイレベルからローレベルに転じると、入力用スイッチSW31が閉状態から開状態に転じて、そのときに入力端に入力されている電圧値が保持用容量素子Cに保持される。また、第j列選択制御信号Hsel(j)がハイレベルであるときに、出力用スイッチSW32が閉じて、保持用容量素子Cに保持されている電圧値が電圧出力用配線Loutへ出力される。 In the holding circuit H j , when the holding control signal Hold changes from the high level to the low level, the input switch SW 31 changes from the closed state to the open state, and the voltage value input to the input terminal at that time is held. It is held in the use capacitive element C 3. Further, when the j-th column selection control signal Hsel (j) is at a high level, the output switch SW 32 is closed, and the voltage value held in the holding capacitive element C 3 is supplied to the voltage output wiring L out . Is output.

制御部6は、画素配列10A(または10B)における第m行の(k−i+1)個の画素Pm,i〜Pm,kそれぞれの受光強度に応じた電圧値を出力するに際して、リセット制御信号Resetにより、(k−i+1)個の積分回路S〜Sそれぞれの放電用スイッチSW21を一旦閉じた後に開くよう指示した後、第m行選択制御信号Vsel(m)により、画素配列10A(10B)における第m行の(k−i+1)個の画素Pm,i〜Pm,kそれぞれの読出用スイッチSWを所定期間に亘り閉じるよう指示する。制御部6は、その所定期間に、保持制御信号Holdにより、(k−i+1)個の保持回路H〜Hそれぞれの入力用スイッチSW31を閉状態から開状態に転じるよう指示する。そして、制御部6は、その所定期間の後に、列選択制御信号Hsel(i)〜Hsel(k)により、(k−i+1)個の保持回路H〜Hそれぞれの出力用スイッチSW32を順次に一定期間だけ閉じるよう指示する。制御部6は、以上のような制御を各行について順次に行う。 When the controller 6 outputs a voltage value corresponding to the received light intensity of each of the (k−i + 1) pixels P m, i to P m, k in the m-th row in the pixel array 10A (or 10B), the reset control is performed. After instructing the signal Reset to open the discharge switch SW 21 of each of the (k−i + 1) integration circuits S i to S k once after being closed, the pixel arrangement is performed by the m-th row selection control signal Vsel (m). of the m-th row in the 10A (10B) (k-i + 1) pixels P m, i ~P m, k and instructs each of the readout switch SW 1 in over a predetermined period close as. The control unit 6 instructs the input switch SW 31 of each of the (k−i + 1) holding circuits H i to H k to change from the closed state to the open state by the holding control signal Hold during the predetermined period. Then, after the predetermined period, the control unit 6 sets the output switch SW 32 of each of the (k−i + 1) holding circuits H i to H k by the column selection control signals Hsel (i) to Hsel (k). Instructs to close sequentially for a certain period of time. The control unit 6 sequentially performs the above control for each row.

このように、制御部6は、画素配列10A(10B)の各画素ブロックに含まれる画素P1,i〜PM,kそれぞれの読出用スイッチSWの開閉動作を制御するとともに、信号読出部21A〜21Lにおける電圧値の保持動作および出力動作を制御する。これにより、制御部6は、M×(k−i+1)個の画素P1,i〜PM,kそれぞれのフォトダイオードPDで発生した電荷の量に応じた電圧値を各フレーム毎に信号読出部21A〜21Lから繰り返し出力させる。 Thus, the control unit 6 controls the pixels P 1, i ~P M, k respectively opening and closing operations of the readout switches SW 1 included in each pixel block of the pixel array 10A (10B), the signal readout section The voltage value holding operation and the output operation in 21A to 21L are controlled. As a result, the control unit 6 reads out the voltage value corresponding to the amount of charge generated in each photodiode PD of the M × (k−i + 1) pixels P 1, i to P M, k for each frame. The output is repeated from the units 21A to 21L.

次に、固体撮像装置1の動作について詳細に説明する。固体撮像装置1では、制御部6による制御の下で、M個の行選択制御信号Vsel(1)〜Vsel(M)、(NA+NB)個の列選択制御信号Hsel(1)〜Hsel(NA)及びHsel(1)〜Hsel(NB)、リセット制御信号Reset並びに保持制御信号Holdそれぞれが所定のタイミングでレベル変化することにより、画素配列10A及び10Bに入射された光の像を撮像してフレームデータを得ることができる。なお、以下の説明においては、ゲイン設定用スイッチSW22は、閉じているものとする。   Next, the operation of the solid-state imaging device 1 will be described in detail. In the solid-state imaging device 1, under the control of the control unit 6, M row selection control signals Vsel (1) to Vsel (M), (NA + NB) column selection control signals Hsel (1) to Hsel (NA). And Hsel (1) to Hsel (NB), the reset control signal Reset, and the holding control signal Hold each change in level at a predetermined timing, so that images of light incident on the pixel arrays 10A and 10B are captured and frame data is acquired. Can be obtained. In the following description, it is assumed that the gain setting switch SW22 is closed.

図7は、画素配列10Aの第1列〜第n列(図3に示した境界線Eより左側の画素配列)に含まれる画素ブロックの動作と、この画素ブロックに対応する信号出力部20の動作とを説明するタイミングチャートである。この図には、上から順に、(a)積分回路S〜Sそれぞれの放電用スイッチSW21の開閉動作を指示するリセット制御信号Reset、(b)当該画素ブロックにおける第1行の画素P1,i〜P1,kそれぞれの読出用スイッチSWの開閉動作を指示する第1行選択制御信号Vsel(1)、(c)当該画素ブロックにおける第2行の画素P2,i〜P2,kそれぞれの読出用スイッチSWの開閉動作を指示する第2行選択制御信号Vsel(2)、ならびに、(d)保持回路H〜Hそれぞれの入力用スイッチSW31の開閉動作を指示する保持制御信号Holdが示されている。 FIG. 7 shows the operation of the pixel blocks included in the first column to the n-th column (pixel array on the left side of the boundary line E shown in FIG. 3) of the pixel array 10A, and the signal output unit 20 corresponding to this pixel block. It is a timing chart explaining operation. In this figure, in order from the top, (a) a reset control signal Reset instructing the opening / closing operation of the discharge switch SW 21 of each of the integration circuits S i to S k , (b) the pixel P in the first row in the pixel block. 1, i to P 1, k The first row selection control signal Vsel (1) for instructing the opening / closing operation of the readout switch SW 1 , (c) the second row of pixels P 2, i to P in the pixel block. 2, k each of the second row selection control signal Vsel for instructing opening and closing operations of the readout switches SW 1 (2), and, (d) is opening and closing operation of the holding circuit H i to H k respective input switch SW 31 A holding control signal Hold to be indicated is shown.

また、この図には、更に続いて順に、(e)保持回路Hの出力用スイッチSW32の開閉動作を指示する第i列選択制御信号Hsel(i)、(f)保持回路Hの出力用スイッチSW32の開閉動作を指示する第j列選択制御信号Hsel(j)、(g)保持回路Hk−2の出力用スイッチSW32の開閉動作を指示する第(k−2)列選択制御信号Hsel(k−2)、(h)保持回路Hk−1の出力用スイッチSW32の開閉動作を指示する第(k−1)列選択制御信号Hsel(k−1)、および、(i)保持回路Hの出力用スイッチSW32の開閉動作を指示する第k列選択制御信号Hsel(k)が示されている。 In this figure, (e) the i-th column selection control signal Hsel (i) instructing the opening / closing operation of the output switch SW 32 of the holding circuit H i and (f) the holding circuit H j the j-th column selection control signal Hsel instructing opening and closing operations of the output switch SW 32 (j), the instructing opening and closing operations of the output switch SW 32 of the (g) the holding circuit H k-2 (k-2 ) column Selection control signal Hsel (k-2), (h) the (k-1) th column selection control signal Hsel (k-1) for instructing the opening / closing operation of the output switch SW 32 of the holding circuit H k-1 , and (I) The k-th column selection control signal Hsel (k) for instructing the opening / closing operation of the output switch SW 32 of the holding circuit H k is shown.

第1行の(k−i+1)個の画素P1,i〜P1,kそれぞれのフォトダイオードPDで発生し接合容量部に蓄積された電荷の読出しは、以下のようにして行われる。時刻t10前には、M個の行選択制御信号Vsel(1)〜Vsel(M)、(k−i+1)個の列選択制御信号Hsel(i)〜Hsel(k)、リセット制御信号Resetおよび保持制御信号Holdそれぞれは、ローレベルとされている。 Reading of charges generated in the photodiode PD of each of the (k−i + 1) pixels P 1, i to P 1, k in the first row and accumulated in the junction capacitance portion is performed as follows. Before the time t 10, M row selecting control signals Vsel (1) ~Vsel (M) , (k-i + 1) number of column selection control signal Hsel (i) ~Hsel (k) , the reset control signal Reset, and the Each of the holding control signals Hold is at a low level.

時刻t10から時刻t11までの期間、制御部6からリセット用配線Lに出力されるリセット制御信号Resetがハイレベルとなり、これにより、(k−i+1)個の積分回路S〜Sそれぞれにおいて、放電用スイッチSW21が閉じて、積分用容量素子C21,C22が放電される。また、時刻t11より後の時刻t12から時刻t15までの期間、制御部6から第1行選択用配線LV,1に出力される第1行選択制御信号Vsel(1)がハイレベルとなり、これにより、当該画素ブロックにおける第1行の(k−i+1)個の画素P1,i〜P1,kそれぞれの読出用スイッチSWが閉じる。 Period from the time t 10 to the time t 11, the reset control signal Reset to be output to the reset wiring L R from the controlling section 6 becomes the high level, thereby, (k-i + 1) pieces of the integrating circuit S i to S k In each case, the discharging switch SW 21 is closed, and the integrating capacitive elements C 21 and C 22 are discharged. Further, during a period from the time t 12 after the time t 11 to time t 15, the first row selecting control output from the control unit 6 to the first row selecting wiring L V, 1 signal Vsel (1) a high level next, thereby, the first row in the pixel block (k-i + 1) pixels P 1, i to P 1, k the readout switch SW 1 in each of closed.

この期間(t12〜t15)内において、時刻t13から時刻t14までの期間、制御部6から保持用配線Lへ出力される保持制御信号Holdがハイレベルとなり、これにより、(k−i+1)個の保持回路H〜Hそれぞれにおいて入力用スイッチSW31が閉じる。 Within this period (t 12 to t 15 ), during the period from time t 13 to time t 14 , the holding control signal Hold output from the control unit 6 to the holding wiring L H becomes high level. -i + 1) pieces of the holding circuit H i to H k input switch SW 31 closes in each.

期間(t12〜t15)内では、第1行の各画素P1,jの読出用スイッチSWが閉じており、各積分回路Sの放電用スイッチSW21が開いている。したがって、それまでに画素P1,jのフォトダイオードPDで発生して接合容量部に蓄積されていた電荷は、その画素P1,jの読出用スイッチSWおよび第j列読出用配線LO,jを通って、積分回路Sの積分用容量素子C21,C22に転送されて蓄積される。そして、各積分回路Sの積分用容量素子C21,C22に蓄積されている電荷の量に応じた電圧値が積分回路Sの出力端から出力される。 During the period (t 12 to t 15 ), the readout switch SW 1 of each pixel P 1, j in the first row is closed, and the discharge switch SW 21 of each integration circuit S j is open. Therefore, the charges generated so far in the photodiode PD of the pixel P 1, j and accumulated in the junction capacitance portion are the readout switch SW 1 and the j-th column readout wiring L O of the pixel P 1, j. , J and transferred to the integrating capacitive elements C 21 and C 22 of the integrating circuit S j and stored. Then, a voltage value corresponding to the amount of charges accumulated in the integrating capacitive element C 21, C 22 of each integrating circuit S j is output from the output terminal of the integrating circuit S j.

その期間(t12〜t15)内の時刻t14に、保持制御信号Holdがハイレベルからローレベルに転じることにより、(k−i+1)個の保持回路H〜Hそれぞれにおいて、入力用スイッチSW31が閉状態から開状態に転じ、そのときに積分回路Sの出力端から出力されて保持回路Hの入力端に入力されている電圧値が保持用容量素子Cに保持される。 At time t 14 in the period (t 12 ~t 15) inside, by holding control signal Hold switches from high level to low level, the (k-i + 1) pieces of the holding circuit H i to H k, respectively, for input The switch SW 31 changes from the closed state to the open state, and at this time, the voltage value output from the output terminal of the integrating circuit S j and input to the input terminal of the holding circuit H j is held in the holding capacitive element C 3. The

そして、期間(t12〜t15)の後、制御部6から列選択用配線LH,i〜LH,kに出力される列選択制御信号Hsel(i)〜Hsel(k)が、Hsel(k)から開始して逆順に(すなわち、列番が降順となる順序で)一定期間だけハイレベルとなり、これにより、(k−i+1)個の保持回路H〜Hそれぞれの出力用スイッチSW32が逆順に一定期間だけ閉じて、各保持回路Hの保持用容量素子Cに保持されている電圧値は出力用スイッチSW32を経て電圧出力用配線Loutへ逆順でもって出力される。この電圧出力用配線Loutへ出力される電圧値Voutは、第1行の(k−i+1)個の画素P1,i〜P1,kそれぞれのフォトダイオードPDにおける受光強度を表すものである。(k−i+1)個の保持回路H〜Hそれぞれから逆順で出力された電圧値はA/D変換器22A〜22Lのいずれかに入力されて、その入力電圧値に応じたディジタル値に変換される。 After a period (t 12 to t 15 ), column selection control signals Hsel (i) to Hsel (k) output from the control unit 6 to the column selection wirings L H, i to L H, k are Hsel. Starting from (k), in reverse order (that is, in the order in which the column numbers are in descending order), it is at a high level for a certain period, whereby output switches for each of the (k−i + 1) holding circuits H i to H k The SW 32 is closed in reverse order for a certain period, and the voltage value held in the holding capacitive element C 3 of each holding circuit H j is output in reverse order to the voltage output wiring L out via the output switch SW 32. The Voltage value V out to be output to the voltage output wiring L out is intended to represent the received light intensity in the first row of the (k-i + 1) pixels P 1, i to P 1, k respective photodiodes PD is there. The voltage value output in reverse order from each of the (k−i + 1) holding circuits H i to H k is input to one of the A / D converters 22A to 22L, and converted into a digital value corresponding to the input voltage value. Converted.

続いて、第2行の(k−i+1)個の画素P2,i〜P2,kそれぞれのフォトダイオードPDで発生し接合容量部に蓄積された電荷の読出しが以下のようにして行われる。 Subsequently, the charge generated in the photodiode PD of each of the (k−i + 1) pixels P 2, i to P 2, k in the second row is read as follows. .

前述した動作において列選択制御信号Hsel(k)がハイレベルとなる時刻t20から、列選択制御信号Hsel(i)が一度ハイレベルになってからローレベルとなる時刻より後の時刻t21までの期間、制御部6からリセット用配線Lに出力されるリセット制御信号Resetがハイレベルとなり、これにより、(k−i+1)個の積分回路S〜Sそれぞれにおいて、放電用スイッチSW21が閉じて、積分用容量素子C21,C22が放電される。また、時刻t21より後の時刻t22から時刻t25までの期間、制御部6から第2行選択用配線LV,2に出力される第2行選択制御信号Vsel(2)がハイレベルとなり、これにより、当該画素ブロックにおける第2行の(k−i+1)個の画素P2,i〜P2,kそれぞれの読出用スイッチSWが閉じる。 From time t 20 when the column selection control signal Hsel (k) becomes high level in the above-described operation, to time t 21 after the time when the column selection control signal Hsel (i) once becomes high level and then becomes low level. period, the reset control signal reset to be output to the reset wiring L R from the controlling section 6 becomes the high level, thereby, (k-i + 1) in number of the integrating circuit S i to S k, respectively, the discharge switch SW 21 Is closed, and the integrating capacitive elements C 21 and C 22 are discharged. Further, the period from the time t 22 after the time t 21 to time t 25, the second row selection control signal Vsel (2) a high level output from the control section 6 to the second row selecting wiring L V, 2 next, thereby, the second row in the pixel block (k-i + 1) pixels P 2, i to P 2, k the readout switch SW 1 in each of closed.

この期間(t22〜t25)内において、時刻t23から時刻t24までの期間、制御部6から保持用配線Lへ出力される保持制御信号Holdがハイレベルとなり、これにより、(k−i+1)個の保持回路H〜Hそれぞれにおいて入力用スイッチSW31が閉じる。 Within this period (t 22 to t 25 ), during the period from time t 23 to time t 24 , the holding control signal Hold output from the control unit 6 to the holding wiring L H becomes high level. -i + 1) pieces of the holding circuit H i to H k input switch SW 31 closes in each.

そして、期間(t22〜t25)の後に、制御部6から列選択用配線LH,i〜LH,kに出力される列選択制御信号Hsel(i)〜Hsel(k)がHsel(k)から開始して逆順に一定期間だけハイレベルとなり、これにより、(k−i+1)個の保持回路H〜Hそれぞれの出力用スイッチSW32が逆順で一定期間だけ閉じる。以上のようにして、第2行の(k−i+1)個の画素P2,i〜P2,kそれぞれのフォトダイオードPDにおける受光強度を表す電圧値Voutが電圧出力用配線Loutへ出力される。(k−i+1)個の保持回路H〜Hそれぞれから逆順でもって出力された電圧値はA/D変換器22A〜22Lのいずれかに入力されて、その入力電圧値に応じたディジタル値に変換される。 After the period (t 22 to t 25 ), the column selection control signals Hsel (i) to Hsel (k) output from the control unit 6 to the column selection wirings L H, i to L H, k are Hsel ( The output switch SW 32 of each of the (k−i + 1) holding circuits H i to H k is closed in a reverse order for a fixed period. As described above, in the second row (k-i + 1) pixels P 2, i to P 2, k voltage value V out indicating the received light intensities in the photodiodes PD is output to the voltage output wiring L out Is done. A voltage value output in reverse order from each of the (k−i + 1) holding circuits H i to H k is input to one of the A / D converters 22A to 22L, and a digital value corresponding to the input voltage value Is converted to

図8は、画素配列10Aの第(n+1)列〜第NA列、および画素配列10Bの第1列〜第NB列(図3に示した境界線Eより右側の画素配列)に含まれる画素ブロックの動作と、この画素ブロックに対応する信号出力部20の動作とを説明するタイミングチャートである。この図には、上から順に、(a)リセット制御信号Reset、(b)第1行選択制御信号Vsel(1)、(c)第2行選択制御信号Vsel(2)、及び(d)保持制御信号Holdが示されている。なお、これらの信号の動作は図7(a)〜(d)に示したものと同一であり、画素P1,i〜PM,k、積分回路S〜S、および保持回路H〜Hの動作もまた、保持回路H〜Hの出力順を除いて上述した動作と同様なので、これらに関する詳細な説明を省略する。 FIG. 8 shows pixel blocks included in the (n + 1) th to NAth columns of the pixel array 10A and the first to NBth columns (pixel array on the right side of the boundary line E shown in FIG. 3) of the pixel array 10B. 6 is a timing chart for explaining the operation of the signal output unit 20 corresponding to the pixel block. In this figure, in order from the top, (a) reset control signal Reset, (b) first row selection control signal Vsel (1), (c) second row selection control signal Vsel (2), and (d) held. A control signal Hold is shown. The operations of these signals are the same as those shown in FIGS. 7A to 7D, and the pixels P 1, i to P M, k , the integration circuits S i to S k , and the holding circuit H i. operation of to H k are also the holding circuit H i to H k similar operation as the output order of except for the above, omitted these a detailed description.

また、この図には、更に続いて順に、(e)保持回路Hの出力用スイッチSW32の開閉動作を指示する第i列選択制御信号Hsel(i)、(f)保持回路Hi+1の出力用スイッチSW32の開閉動作を指示する第(i+1)列選択制御信号Hsel(i+1)、(g)保持回路Hi+2の出力用スイッチSW32の開閉動作を指示する第(i+2)列選択制御信号Hsel(i+2)、(h)保持回路Hの出力用スイッチSW32の開閉動作を指示する第j列選択制御信号Hsel(j)、および、(i)保持回路Hの出力用スイッチSW32の開閉動作を指示する第k列選択制御信号Hsel(k)が示されている。 Further, in this figure, in order further Subsequently, (e) the i-th column selection control signal Hsel for instructing opening and closing operations of the output switch SW 32 of the holding circuit H i (i), of the holding circuit H i + 1 (f) the instructing opening and closing operations of the output switch SW 32 (i + 1) column selection controlling signal Hsel (i + 1), first for instructing opening and closing operations of the output switch SW 32 of the (g) holding circuits H i + 2 (i + 2 ) column selection control The signal Hsel (i + 2), (h) the j-th column selection control signal Hsel (j) for instructing the opening / closing operation of the output switch SW 32 of the holding circuit H j , and (i) the output switch SW of the holding circuit H k. A k-th column selection control signal Hsel (k) instructing 32 open / close operations is shown.

第1行の(k−i+1)個の画素P1,i〜P1,kそれぞれのフォトダイオードPDで発生し接合容量部に蓄積された電荷の読出しが行われ、各保持回路Hの保持用容量素子Cに保持される期間(t10〜t15)の後、制御部6から列選択用配線LH,i〜LH,kに出力される列選択制御信号Hsel(i)〜Hsel(k)が、Hsel(i)から開始して正順に(すなわち、列番が昇順となる順序で)一定期間だけハイレベルとなり、これにより、(k−i+1)個の保持回路H〜Hそれぞれの出力用スイッチSW32が正順に一定期間だけ閉じて、各保持回路Hの保持用容量素子Cに保持されている電圧値は出力用スイッチSW32を経て電圧出力用配線Loutへ正順でもって出力される。(k−i+1)個の保持回路H〜Hそれぞれから正順で出力された電圧値はA/D変換器22A〜22Lのいずれかに入力されて、その入力電圧値に応じたディジタル値に変換される。 The charge generated in the photodiode PD of each of the (k−i + 1) pixels P 1, i to P 1, k in the first row and stored in the junction capacitor is read, and held in each holding circuit H j . After the period (t 10 to t 15 ) held in the capacitive element C 3 , the column selection control signals Hsel (i) to output from the control unit 6 to the column selection wirings L H, i to L H, k Hsel (k) starts from Hsel (i) and becomes high level for a certain period in the normal order (that is, in the order in which the column numbers are in ascending order), whereby (k−i + 1) holding circuits H i to The output switch SW 32 of each of the H k is closed in a positive order for a certain period, and the voltage value held in the holding capacitive element C 3 of each holding circuit H j is passed through the output switch SW 32 and the voltage output wiring L Output to out in normal order. A voltage value output in the normal order from each of the (k−i + 1) holding circuits H i to H k is input to one of the A / D converters 22A to 22L, and a digital value corresponding to the input voltage value Is converted to

続いて、第2行の(k−i+1)個の画素P2,i〜P2,kそれぞれのフォトダイオードPDで発生し接合容量部に蓄積された電荷の読出しが行われ、各保持回路Hの保持用容量素子Cに保持される期間(t21〜t25)の後、制御部6から列選択用配線LH,i〜LH,kに出力される列選択制御信号Hsel(i)〜Hsel(k)がHsel(i)から開始して正順に一定期間だけハイレベルとなり、これにより、(k−i+1)個の保持回路H〜Hそれぞれの出力用スイッチSW32が正順で一定期間だけ閉じる。以上のようにして、第2行の(k−i+1)個の画素P2,i〜P2,kそれぞれのフォトダイオードPDにおける受光強度を表す電圧値Voutが電圧出力用配線Loutへ出力される。(k−i+1)個の保持回路H〜Hそれぞれから正順でもって出力された電圧値はA/D変換器22A〜22Lのいずれかに入力されて、その入力電圧値に応じたディジタル値に変換される。 Subsequently, the charge generated in the photodiode PD of each of the (k−i + 1) pixels P 2, i to P 2, k in the second row is read out and accumulated in the junction capacitance portion, and each holding circuit H is read out. After a period (t 21 to t 25 ) held in the holding capacitance element C 3 of j, the column selection control signal Hsel (from the control unit 6 to the column selection wirings L H, i to L H, k i) to Hsel (k) start from Hsel (i) and become high level for a certain period in the forward order, whereby the output switch SW 32 of each of the (k−i + 1) holding circuits H i to H k Close in a regular order for a certain period. As described above, in the second row (k-i + 1) pixels P 2, i to P 2, k voltage value V out indicating the received light intensities in the photodiodes PD is output to the voltage output wiring L out Is done. The voltage value output in the normal order from each of the (k−i + 1) holding circuits H i to H k is input to any of the A / D converters 22A to 22L, and the digital value corresponding to the input voltage value is obtained. Converted to a value.

図7及び図8に示した第1行および第2行についての動作に続いて、以降、第3行から第M行まで同様の動作が行われて、1回の撮像で得られる画像を表すフレームデータが得られる。また、第M行について動作が終了すると、再び第1行から第M行までの範囲で同様の動作が行われて、次の画像を表すフレームデータが得られる。このように、一定周期で同様の動作を繰り返すことで、当該画素ブロックが受光した光像の2次元強度分布を表す電圧値Voutが電圧出力用配線Loutへ出力されて、繰り返してフレームデータが得られる。 Subsequent to the operations for the first row and the second row shown in FIG. 7 and FIG. 8, the same operation is performed from the third row to the M-th row to represent an image obtained by one imaging. Frame data is obtained. When the operation for the Mth row is completed, the same operation is performed again in the range from the first row to the Mth row, and frame data representing the next image is obtained. As described above, by repeating the same operation at a constant cycle, the voltage value Vout representing the two-dimensional intensity distribution of the light image received by the pixel block is output to the voltage output wiring Lout , and the frame data is repeatedly generated. Is obtained.

続いて、FIFOデータバッファ23A〜23Lの動作について説明する。図9は、画素配列10Aの第1列〜第n列(図3に示した境界線Eより左側の画素配列)に含まれる画素ブロックに対応して設けられたFIFOデータバッファ23A〜23Fの入出力動作を説明するタイミングチャートである。この図には、上から順に、(a)A/D変換器22A〜22FからFIFOデータバッファ23A〜23Fにディジタル値が書き込まれるタイミング、(b)FIFOデータバッファ23Aに記憶されたディジタル値が読み出されるタイミング、(c)FIFOデータバッファ23Bに記憶されたディジタル値が読み出されるタイミング、(d)FIFOデータバッファ23Cに記憶されたディジタル値が読み出されるタイミング、(e)FIFOデータバッファ23Dに記憶されたディジタル値が読み出されるタイミング、(f)FIFOデータバッファ23Eに記憶されたディジタル値が読み出されるタイミング、および(g)FIFOデータバッファ23Fに記憶されたディジタル値が読み出されるタイミングが示されている。   Next, the operation of the FIFO data buffers 23A to 23L will be described. FIG. 9 shows the input of FIFO data buffers 23A to 23F provided corresponding to the pixel blocks included in the first to nth columns (pixel array on the left side of the boundary line E shown in FIG. 3) of the pixel array 10A. It is a timing chart explaining output operation. In this figure, in order from the top, (a) timing at which digital values are written from the A / D converters 22A to 22F to the FIFO data buffers 23A to 23F, and (b) digital values stored in the FIFO data buffer 23A are read out. (C) timing when a digital value stored in the FIFO data buffer 23B is read, (d) timing when a digital value stored in the FIFO data buffer 23C is read, (e) stored in the FIFO data buffer 23D The timing at which the digital value is read out, (f) the timing at which the digital value stored in the FIFO data buffer 23E is read out, and (g) the timing at which the digital value stored in the FIFO data buffer 23F is read out are shown.

図9(a)に示すように、A/D変換器22A〜22FからFIFOデータバッファ23A〜23Fへのディジタル値の書き込み動作は、FIFOデータバッファ23A〜23Fのそれぞれにおいて同時に並行して行われる。そして、画素配列10A,10Bを構成する第1行〜第M行のうち、第m行に対応するディジタル値をFIFOデータバッファ23A〜23Fへ書き込む動作が開始されるタイミング(図中の時刻t30)とほぼ同じタイミングで、その前の第(m−1)行に対応するディジタル値が、FIFOデータバッファ23A〜23FからデータバスDB(図3参照)を介して読み出され始める。 As shown in FIG. 9A, the digital value writing operation from the A / D converters 22A to 22F to the FIFO data buffers 23A to 23F is performed in parallel in each of the FIFO data buffers 23A to 23F. The timing at which the operation of writing the digital values corresponding to the m-th row among the first to M-th rows constituting the pixel arrays 10A and 10B to the FIFO data buffers 23A to 23F is started (time t 30 in the figure). The digital value corresponding to the previous (m−1) th row starts to be read out from the FIFO data buffers 23A to 23F via the data bus DB (see FIG. 3) at substantially the same timing as ().

このとき、FIFOデータバッファ23A〜23Fに記憶されたディジタル値は、FIFOデータバッファ23Fから開始してFIFOデータバッファ23Aまで、画素配列10A,10Bの列番号と逆順で読み出される。具体的には、FIFOデータバッファ23Fからの読み出し動作(図9(g))が終了した後にFIFOデータバッファ23Eからの読み出し動作が開始され(図9(f))、FIFOデータバッファ23Eからの読み出し動作が終了した後にFIFOデータバッファ23Dからの読み出し動作が開始され(図9(e))、以降、FIFOデータバッファ23Aの読み出しが終了するまで(図9(b))、各FIFOデータバッファからディジタル値がこの順で読み出される。   At this time, the digital values stored in the FIFO data buffers 23A to 23F are read in the reverse order of the column numbers of the pixel arrays 10A and 10B from the FIFO data buffer 23F to the FIFO data buffer 23A. Specifically, after the read operation from the FIFO data buffer 23F (FIG. 9 (g)) is completed, the read operation from the FIFO data buffer 23E is started (FIG. 9 (f)), and the read from the FIFO data buffer 23E is started. After the operation is completed, a read operation from the FIFO data buffer 23D is started (FIG. 9 (e)). Thereafter, until the reading of the FIFO data buffer 23A is completed (FIG. 9 (b)), a digital operation is performed from each FIFO data buffer. Values are read in this order.

前述したように、信号読出部21A〜21Fのそれぞれにおいて保持されている各列毎の電圧値は、対応するA/D変換器22A〜22Fへ列番号とは逆の順序でもって出力される。そして、A/D変換器22A〜22Fから出力されたディジタル値は同時に並行してFIFOデータバッファ23A〜23Fへ書き込まれ、データバスDBを介してディジタル値が読み出される際にも、この順序でもって(すなわち列番号とは逆順で)読み出される。したがって、上記のようにFIFOデータバッファ23Fから読み出しを開始することにより、信号出力部20は、画素配列10Aの第1列から第n列までの各列に対応するディジタル値を、第n列から開始して第1列まで順次に、列番号とは逆順で出力することとなる。   As described above, the voltage value for each column held in each of the signal reading units 21A to 21F is output to the corresponding A / D converters 22A to 22F in the reverse order of the column numbers. The digital values output from the A / D converters 22A to 22F are simultaneously written in the FIFO data buffers 23A to 23F in parallel and are read in this order when the digital values are read via the data bus DB. (Ie in reverse order of column number). Therefore, by starting reading from the FIFO data buffer 23F as described above, the signal output unit 20 outputs the digital values corresponding to the respective columns from the first column to the n-th column of the pixel array 10A from the n-th column. Starting from the first column to the first column, the column numbers are output in reverse order.

FIFOデータバッファ23A〜23Fは、このようにして第(m−1)行に対応するディジタル値をデータバスDBへ出力したのち、該ディジタル値の出力動作と並行して入力した第m行に対応するディジタル値を、図中の時刻t31(第m+1行に対応するディジタル値をFIFOデータバッファ23A〜23Fへ書き込む動作が開始されるタイミング)とほぼ同じタイミングで、且つ第(m−1)行に対応するディジタル値を出力した際と同じ順序で、データバスDBへ出力する。このような動作が第1行から第M行まで行われることにより、フレームデータがデータバスDBへ出力される。また、第M行について動作が終了すると、再び第1行から第M行までの範囲で同様の動作が行われて、次の画像を表すフレームデータが出力される。 The FIFO data buffers 23A to 23F output the digital value corresponding to the (m-1) th row to the data bus DB in this way, and then correspond to the mth row inputted in parallel with the output operation of the digital value. The digital value to be processed is substantially the same as time t 31 in the figure (timing for starting the operation of writing the digital value corresponding to the (m + 1) th row to the FIFO data buffers 23A to 23F) and the (m−1) th row. Are output to the data bus DB in the same order as when the digital values corresponding to are output. By performing such an operation from the first row to the Mth row, the frame data is output to the data bus DB. When the operation is completed for the Mth row, the same operation is performed again in the range from the first row to the Mth row, and frame data representing the next image is output.

図10は、画素配列10Aの第(n+1)列〜第NA列および画素配列10Bの第1列〜第NB列(図3に示した境界線Eより右側の画素配列)に含まれる画素ブロックに対応して設けられたFIFOデータバッファ23G〜23Lの入出力動作を説明するタイミングチャートである。この図には、上から順に、(a)A/D変換器22G〜22LからFIFOデータバッファ23G〜23Lにディジタル値が書き込まれるタイミング、(b)FIFOデータバッファ23Gに記憶されたディジタル値が読み出されるタイミング、(c)FIFOデータバッファ23Hに記憶されたディジタル値が読み出されるタイミング、(d)FIFOデータバッファ23Iに記憶されたディジタル値が読み出されるタイミング、(e)FIFOデータバッファ23Jに記憶されたディジタル値が読み出されるタイミング、(f)FIFOデータバッファ23Kに記憶されたディジタル値が読み出されるタイミング、および(g)FIFOデータバッファ23Lに記憶されたディジタル値が読み出されるタイミングが示されている。   FIG. 10 shows pixel blocks included in the (n + 1) th to NAth columns of the pixel array 10A and the first to NBth columns (pixel array on the right side of the boundary line E shown in FIG. 3) of the pixel array 10B. It is a timing chart explaining the input / output operation | movement of FIFO data buffer 23G-23L provided correspondingly. In this figure, in order from the top, (a) timing at which digital values are written from the A / D converters 22G to 22L to the FIFO data buffers 23G to 23L, and (b) digital values stored in the FIFO data buffer 23G are read out. (C) timing when the digital value stored in the FIFO data buffer 23H is read, (d) timing when the digital value stored in the FIFO data buffer 23I is read, (e) stored in the FIFO data buffer 23J The timing at which the digital value is read, (f) the timing at which the digital value stored in the FIFO data buffer 23K is read, and (g) the timing at which the digital value stored in the FIFO data buffer 23L is read out are shown.

図10(a)に示すように、A/D変換器22G〜22LからFIFOデータバッファ23G〜23Lへのディジタル値の書き込み動作は、FIFOデータバッファ23G〜23Lのそれぞれにおいて同時に並行して行われる。そして、画素配列10A,10Bを構成する第1行〜第M行のうち、第m行に対応するディジタル値をFIFOデータバッファ23G〜23Lへ書き込む動作が開始されるタイミング(図中の時刻t30)とほぼ同じタイミングで、その前の第(m−1)行に対応するディジタル値が、FIFOデータバッファ23G〜23LからデータバスDB(図3参照)を介して読み出され始める。 As shown in FIG. 10A, the digital value writing operation from the A / D converters 22G to 22L to the FIFO data buffers 23G to 23L is performed in parallel in each of the FIFO data buffers 23G to 23L. Of the first row to the M rows constituting the pixel array 10A, the 10B, timing (time t 30 in FIG operation for writing digital values corresponding to the m-th row into the FIFO data buffer 23G~23L starts The digital value corresponding to the previous (m−1) th row starts to be read out from the FIFO data buffers 23G to 23L via the data bus DB (see FIG. 3) at almost the same timing as ().

このとき、FIFOデータバッファ23G〜23Lに記憶されたディジタル値は、FIFOデータバッファ23Gから開始してFIFOデータバッファ23Lまで、画素配列10A,10Bの列番号に対して正順で読み出される。具体的には、FIFOデータバッファ23Gからの読み出し動作(図10(b))が終了した後にFIFOデータバッファ23Hからの読み出し動作が開始され(図10(c))、FIFOデータバッファ23Hからの読み出し動作が終了した後にFIFOデータバッファ23Iからの読み出し動作が開始され(図10(d))、以降、FIFOデータバッファ23Lの読み出しが終了するまで(図10(g))、各FIFOデータバッファからディジタル値がこの順で読み出される。   At this time, the digital values stored in the FIFO data buffers 23G to 23L are read in the normal order with respect to the column numbers of the pixel arrays 10A and 10B from the FIFO data buffer 23G to the FIFO data buffer 23L. Specifically, after the read operation from the FIFO data buffer 23G (FIG. 10B) is completed, the read operation from the FIFO data buffer 23H is started (FIG. 10C), and the read from the FIFO data buffer 23H is performed. After the operation is completed, a read operation from the FIFO data buffer 23I is started (FIG. 10 (d)). Thereafter, until the reading of the FIFO data buffer 23L is completed (FIG. 10 (g)), the data is digitally read from each FIFO data buffer. Values are read in this order.

前述したように、信号読出部21G〜21Lのそれぞれにおいて保持されている各列毎の電圧値は、対応するA/D変換器22G〜22Lへ列番号に対して正順でもって出力される。そして、A/D変換器22G〜22Lから出力されたディジタル値は同時に並行してFIFOデータバッファ23G〜23Lへ書き込まれ、データバスDBを介してディジタル値が読み出される際にも、この順序でもって(すなわち列番号に対し正順で)読み出される。したがって、上記のようにFIFOデータバッファ23Gから読み出しを開始することにより、信号出力部20は、画素配列10Aの第(n+1)列から、第NA列および画素配列10Bの第1列を経て第NB列までの各列に対応するディジタル値を正順で、すなわち画素配列10Aの第1列ないし第n列の各列に対応するディジタル値の出力順序とは逆の順序でもって順次に出力する。   As described above, the voltage value for each column held in each of the signal reading units 21G to 21L is output to the corresponding A / D converters 22G to 22L in the normal order with respect to the column numbers. The digital values output from the A / D converters 22G to 22L are simultaneously written into the FIFO data buffers 23G to 23L in parallel, and the digital values are read out via the data bus DB in this order. (Ie, in normal order with respect to column number). Therefore, by starting reading from the FIFO data buffer 23G as described above, the signal output unit 20 starts from the (n + 1) th column of the pixel array 10A through the NA column and the first column of the pixel array 10B to the NBth. The digital values corresponding to the columns up to the column are output in the normal order, that is, in the reverse order to the output order of the digital values corresponding to the first to nth columns of the pixel array 10A.

FIFOデータバッファ23G〜23Lは、このようにして第(m−1)行に対応するディジタル値をデータバスDBへ出力したのち、該ディジタル値の出力動作と並行して入力した第m行に対応するディジタル値を、図中の時刻t31(第m+1行に対応するディジタル値をFIFOデータバッファ23G〜23Lへ書き込む動作が開始されるタイミング)とほぼ同じタイミングで、且つ第(m−1)行に対応するディジタル値を出力した際と同じ順序で、データバスDBへ出力する。このような動作が第1行から第M行まで行われることにより、フレームデータがデータバスDBへ出力される。また、第M行について動作が終了すると、再び第1行から第M行までの範囲で同様の動作が行われて、次の画像を表すフレームデータが出力される。 The FIFO data buffers 23G to 23L output the digital value corresponding to the (m-1) th row to the data bus DB in this way, and then correspond to the mth row inputted in parallel with the output operation of the digital value. The digital value to be processed is substantially the same as the time t 31 in the figure (timing at which the operation of writing the digital value corresponding to the (m + 1) th row to the FIFO data buffers 23G to 23L) and the (m−1) th row. Are output to the data bus DB in the same order as when the digital values corresponding to are output. By performing such an operation from the first row to the Mth row, the frame data is output to the data bus DB. When the operation is completed for the Mth row, the same operation is performed again in the range from the first row to the Mth row, and frame data representing the next image is output.

以上に説明した本実施形態の固体撮像装置1により得られる効果について、従来の固体撮像装置における課題とともに説明する。一般的に、固体撮像装置の画素配列に要求される大きさはその撮像用途により様々であるが、例えば歯科の診断におけるセファロ撮影においては、固体撮像装置の画素配列は22cm以上の長尺であることが要求される。セファロ撮影では患者の頭蓋骨及び上下顎骨の位置関係を把握し、どの部位を抜歯するか、或いは患者の矯正治療が簡単か難しいか等の情報を得るが、そのような情報を得るためには画素配列の上下方向の幅が成人の頭部のほぼ全体をカバーする必要があるからである。   The effects obtained by the solid-state imaging device 1 of the present embodiment described above will be described together with the problems in the conventional solid-state imaging device. In general, the size required for the pixel array of the solid-state imaging device varies depending on the imaging application. For example, in cephalometric imaging in dental diagnosis, the pixel array of the solid-state imaging device is 22 cm or longer. Is required. In cephalometric imaging, the positional relationship between the patient's skull and the maxilla and mandible is grasped, and information such as which part is extracted or whether the patient's orthodontic treatment is easy or difficult is obtained. This is because the vertical width of the array needs to cover almost the entire head of an adult.

しかし、このような長尺の画素配列が要求されると、固体撮像装置の生産に用いられる半導体ウェハの直径によっては、単一の基板上に当該画素配列を作製することが困難な場合がある。このような場合、画素配列に要求される寸法より短い二枚の基板を長尺方向に並べ、それぞれの画素配列を合わせて一つの固体撮像装置として使用(いわゆるタイリング)することによって、要求寸法を満足することができる。   However, when such a long pixel arrangement is required, it may be difficult to produce the pixel arrangement on a single substrate depending on the diameter of the semiconductor wafer used for the production of the solid-state imaging device. . In such a case, two substrates that are shorter than the dimensions required for the pixel arrangement are arranged in the longitudinal direction, and the respective pixel arrangements are combined and used as one solid-state imaging device (so-called tiling). Can be satisfied.

しかしながら、二枚の基板を並べて使用する場合、図3に示したように画素配列同士の境界部分(継ぎ目)にデッドエリアCが生じてしまう。そして、撮像用途によっては、このようなデッドエリアCの位置に制限がある場合がある。歯科診断におけるX線撮影の場合、図11(a)に示されるように二つの画素配列110A,110Bが上下方向にタイリングされて水平方向に平行移動しながら撮像を行うが、画素配列110A,110Bの上下方向の幅が互いに等しい場合、同図に示すように画素配列110Aと画素配列110Bとの境界部分が被写体Aの耳の辺りを通過することとなる。なお、図中に示す領域FA及びFBは、それぞれ画素配列110A及び110Bによる撮像範囲を示している。セファロ撮影においては、図11(a)に示した被写体Aの顎から耳を含む辺りまでの領域Gに関する情報が重要であるが、画素配列110Aと画素配列110Bとの境界部分が領域Gの内部を通過することはこの領域Gに関する情報の欠落に繋がり、好ましくない。したがって、このような場合には、図11(b)に示すように、二つ画素配列120A,120Bそれぞれの長尺方向の幅を互いに異ならせることにより、画素配列同士の境界部分すなわちデッドエリアの移動経路を領域Gから除くことができる。   However, when two substrates are used side by side, a dead area C occurs at the boundary portion (seam) between the pixel arrays as shown in FIG. And depending on the imaging application, there are cases where there is a restriction on the position of such a dead area C. In the case of X-ray imaging in dental diagnosis, as shown in FIG. 11A, the two pixel arrays 110A and 110B are tiled in the vertical direction and imaged while being translated in the horizontal direction. When the vertical widths of 110B are equal to each other, the boundary between the pixel array 110A and the pixel array 110B passes through the ear of the subject A as shown in FIG. Note that areas FA and FB shown in the figure indicate imaging ranges by the pixel arrays 110A and 110B, respectively. In cephalometric imaging, information regarding the region G from the jaw of the subject A to the vicinity including the ears shown in FIG. 11A is important, but the boundary between the pixel array 110A and the pixel array 110B is the interior of the region G. Passing through this leads to lack of information regarding the region G, and is not preferable. Therefore, in such a case, as shown in FIG. 11B, the widths of the two pixel arrays 120A and 120B in the longitudinal direction are made different from each other, so that the boundary portion between the pixel arrays, that is, the dead area The movement path can be removed from the region G.

また、タイリングされる二つの画素配列の長尺方向の幅を互いに異ならせることには、次のような利点もある。図12(a)は、シリコンウェハWにおいて、長尺方向の幅が広い複数の画素配列120Aおよび長尺方向の幅が狭い複数の画素配列120Bの面付けを行った様子を示す図である。また、図12(b)は、シリコンウェハWにおいて長尺方向の幅が等しい複数の画素配列110の面付けを行った様子を示す図である。これらの図から明らかなように、長尺方向の幅が等しい複数の画素配列110を面付けするよりも、長尺方向の幅が広い複数の画素配列120Aと、長尺方向の幅が狭い複数の画素配列120Bとを組み合わせて面付けするほうが、シリコンウェハWにおける無駄な部分を少なくし、より効率的に画素配列を取り出すことができる。   Further, making the widths of the two pixel arrays to be tiled different in the longitudinal direction also has the following advantages. FIG. 12A is a diagram illustrating a state in which a plurality of pixel arrays 120A having a wide width in the longitudinal direction and a plurality of pixel arrays 120B having a narrow width in the longitudinal direction are impositioned on the silicon wafer W. FIG. 12B is a diagram showing a state in which a plurality of pixel arrays 110 having the same width in the longitudinal direction are impositioned on the silicon wafer W. As is apparent from these drawings, a plurality of pixel arrays 120A having a longer width in the longitudinal direction and a plurality of narrower widths in the longitudinal direction than imposing a plurality of pixel arrays 110 having the same width in the longitudinal direction. The imposition in combination with the pixel array 120B reduces the useless portion of the silicon wafer W and allows the pixel array to be extracted more efficiently.

ここで、上述したタイリング方式を実現する為に、PPS方式の固体撮像装置を構成する二枚の基板をそれぞれの画素配列の行方向に並置した場合、各基板の画素配列の長尺方向の幅が互いに異なると、各基板の画素配列の列数が互いに異なることとなり、以下に説明する問題が生じる。   Here, in order to realize the above-described tiling method, when two substrates constituting a PPS solid-state imaging device are juxtaposed in the row direction of each pixel array, the longitudinal direction of the pixel array of each substrate is When the widths are different from each other, the number of columns of the pixel array on each substrate is different from each other, resulting in the following problem.

いま、長尺方向の幅が広い一方の画素配列が、列数が互いに等しい8つの画素ブロックを有するものとし、長尺方向の幅が狭い他方の画素配列が、列数が互いに等しい4つの画素ブロックを有するものとする。図13(a)〜(h)は、一方の画素配列の8つの画素ブロックにそれぞれ対応する8個のFIFOデータバッファ(1)〜(8)からディジタル値が出力されるタイミングの一例を示すタイミングチャートであり、図13(i)〜(l)は、他方の画素配列の4つの画素ブロックにそれぞれ対応する4個のFIFOデータバッファ(9)〜(12)からディジタル値が出力されるタイミングの一例を示すタイミングチャートである。通常、一方の基板上に形成された画素配列に対応するFIFOデータバッファ(1)〜(8)によって一つの出力ポートPa1を構成し、他方の基板上に形成された画素配列に対応するFIFOデータバッファ(9)〜(12)によって他の一つの出力ポートPa2を構成することが一般的であるが、そのような構成とした場合、各出力ポートPa1,Pa2から並行してディジタル値を出力する際に、全てのディジタル値を出力し終えるまでに要する時間が各出力ポートPa1,Pa2で異なる。図13に示す例では、時刻t40において出力ポートPa1のFIFOデータバッファ(1)および出力ポートPa2のFIFOデータバッファ(9)が出力動作を開始しているが、出力ポートPa1の方が出力ポートPa2よりFIFOデータバッファの数が多い為、出力ポートPa1の出力動作が終了する時刻t42は出力ポートPa2の出力動作が終了する時刻t41より遅くなる。したがって、時刻t41〜t42の間、出力ポートPa2は待ち状態とならざるを得ず、一フレームの撮像に要する時間が長くなってしまう。 It is assumed that one pixel array having a wide width in the longitudinal direction has eight pixel blocks having the same number of columns, and the other pixel array having a narrow width in the length direction has four pixels having the same number of columns. It shall have a block. FIGS. 13A to 13H are timings showing examples of timings at which digital values are output from the eight FIFO data buffers (1) to (8) respectively corresponding to the eight pixel blocks of one pixel array. FIGS. 13 (i) to (l) are timing charts at which digital values are output from the four FIFO data buffers (9) to (12) respectively corresponding to the four pixel blocks of the other pixel array. It is a timing chart which shows an example. Usually, one FIFO data buffer (1) to (8) corresponding to the pixel array formed on one substrate constitutes one output port Pa1, and the FIFO data corresponding to the pixel array formed on the other substrate. In general, another output port Pa2 is configured by the buffers (9) to (12). In such a configuration, digital values are output in parallel from the output ports Pa1 and Pa2. At this time, the time required to complete the output of all the digital values differs between the output ports Pa1 and Pa2. In the example shown in FIG. 13, but FIFO data buffer FIFO data buffer (1) and the output port Pa2 output port Pa1 at time t 40 (9) is starting the output operation, the output port towards the output port Pa1 Pa2 for the number of FIFO data buffer is greater than, the time t 42 in which the output operation of the output port Pa1 ends is slower than the time t 41 in which the output operation of the output port Pa2 is completed. Thus, between time t 41 ~t 42, the output port Pa2 is inevitably a wait state, the time required for imaging of one frame becomes long.

このような問題点は、一方の出力ポートに含まれる画素配列の列数(FIFOデータバッファの数)と、他方の出力ポートに含まれる画素配列の列数(FIFOデータバッファの数)とを近づける(好ましくは、等しくする)ことにより解決される。例えば、図14に示すように、一方の出力ポートPb1に6個のFIFOデータバッファ(1)〜(6)を割り付け、これと同数のFIFOデータバッファ(7)〜(12)を他方の出力ポートPb2に割り付けることにより、全てのディジタル値を出力し終えるまでに要する時間を各出力ポートPb1,Pb2で等しくすることができる。図14に示す例では、時刻t50において出力ポートPb1のFIFOデータバッファ(1)および出力ポートPb2のFIFOデータバッファ(7)が出力動作を開始しており、出力ポートPb1の出力動作が終了する時刻t51は出力ポートPb2の出力動作が終了する時刻と同じになる。 Such a problem makes the number of columns of the pixel array (number of FIFO data buffers) included in one output port close to the number of columns of the pixel array (number of FIFO data buffers) included in the other output port. (Preferably equal). For example, as shown in FIG. 14, six FIFO data buffers (1) to (6) are allocated to one output port Pb1, and the same number of FIFO data buffers (7) to (12) are allocated to the other output port. By assigning to Pb2, the time required to finish outputting all digital values can be made equal for each of the output ports Pb1 and Pb2. In the example shown in FIG. 14, has begun FIFO data buffer (7) the output operation of the FIFO data buffer (1) and the output port Pb2 of the output port Pb1 at time t 50, the output operation of the output port Pb1 ends time t 51 is the same as the time the output operation of the output port Pb2 ends.

このような点に鑑み、本実施形態の固体撮像装置1においては、信号出力部20のFIFOデータバッファ23A〜23Lが、各画素Pで発生した電荷の量に応じたディジタル値をデータバスDBへ出力する際、画素配列10Aの第n列以前の各列(すなわち第1列から第n列まで)に対応するディジタル値をFIFOデータバッファ23A〜23Fから、第(n+1)列以降の各列および画素配列10Bの第1列ないし第NB列(すなわち、画素配列10Aの第(n+1)列から第NA列および画素配列10Bの第1列を経て第NB列まで)に対応するディジタル値をFIFOデータバッファ23G〜23Lから、それぞれ並行して出力する。このように、列数が多い画素配列10Aの第1列と第NA列との間の列(第n列)を境に出力動作を分割してディジタル値を並行して出力させることにより、分割された一方の領域(図3における境界線Eより左側の領域)の列数と、分割された他方の領域(図3における境界線Eより右側の領域)の列数とを互いに同じか或いは近い列数とすることができる。   In view of such a point, in the solid-state imaging device 1 of the present embodiment, the FIFO data buffers 23A to 23L of the signal output unit 20 send digital values corresponding to the amount of charges generated in each pixel P to the data bus DB. When outputting, digital values corresponding to the columns before the n-th column of the pixel array 10A (that is, from the first column to the n-th column) are read from the FIFO data buffers 23A to 23F and the columns after the (n + 1) -th column and The digital values corresponding to the first column to the NB column of the pixel array 10B (that is, from the (n + 1) th column of the pixel array 10A to the NA column and the first column of the pixel array 10B to the NB column) are used as FIFO data. The data is output in parallel from the buffers 23G to 23L. In this manner, the output operation is divided at the column (n-th column) between the first column and the NA-th column of the pixel array 10A having a large number of columns, and the digital value is output in parallel. The number of columns in one region (the region on the left side of the boundary line E in FIG. 3) and the number of columns in the other region (the region on the right side of the boundary line E in FIG. 3) are the same or close to each other It can be the number of columns.

したがって、本実施形態に係る固体撮像装置1によれば、例えば画素配列10Aの第1列ないし第NA列からディジタル値を出力させ、これと並行して画素配列10Bの第1列ないし第NB列からディジタル値を出力させる方式と比較して、出力動作における待ち時間をゼロに近づけることができ、一フレームの撮像に要する時間を効果的に短縮できる。   Therefore, according to the solid-state imaging device 1 according to the present embodiment, for example, digital values are output from the first column to the NA column of the pixel array 10A, and in parallel, the first column to the NB column of the pixel array 10B. Compared with the method of outputting a digital value from the output time, the waiting time in the output operation can be made close to zero, and the time required for imaging one frame can be effectively shortened.

このような効果は、画素配列10Aにおける第1列ないし第n列の列数が、画素配列10Aにおける第(n+1)列ないし第NA列の列数と画素配列10Bにおける第1列ないし第NB列の列数との和に等しい場合に、特に顕著となる。すなわち、第n列を境に分割された一方の領域(図3における境界線Eより左側の領域)の列数と、他方の領域(図3における境界線Eより右側の領域)の列数とを等しくすることにより、ディジタル値の出力動作における待ち時間がほぼゼロとなり、一フレームの撮像に要する時間をより効果的に短縮できる。   Such an effect is that the number of columns from the first column to the n-th column in the pixel array 10A is the number of columns from the (n + 1) -th column to the NA-th column in the pixel array 10A and the first to NB-th columns in the pixel array 10B. This is particularly noticeable when it is equal to the sum of the number of columns. That is, the number of columns in one region (region on the left side of the boundary line E in FIG. 3) divided by the nth column and the number of columns in the other region (region on the right side of the boundary line E in FIG. 3) Since the waiting time in the digital value output operation becomes substantially zero, the time required for imaging one frame can be more effectively shortened.

また、本実施形態に係る固体撮像装置1では、画素配列10Aの第1列を含む一又は複数の連続した列、および画素配列10Bの第NB列を含む一又は複数の連続した列が、X線遮蔽部材5によって入射X線から遮蔽された不感領域となっている(例えば図4(b)を参照)。信号出力部20から出力されるディジタル値のうち、この不感領域に含まれる画素と対応するディジタル値は、X線像とは関係のない無効データとなる。   In the solid-state imaging device 1 according to the present embodiment, one or a plurality of continuous columns including the first column of the pixel array 10A and one or a plurality of continuous columns including the NB column of the pixel array 10B are X The insensitive area is shielded from incident X-rays by the line shielding member 5 (see, for example, FIG. 4B). Of the digital values output from the signal output unit 20, the digital values corresponding to the pixels included in the insensitive area are invalid data not related to the X-ray image.

このような場合、第n列を境に分割された一方の領域におけるディジタル値の出力順と、他方の領域におけるディジタル値の出力順とを同じ順序とすると、次のような不都合が生じる。すなわち、図14において、X線遮蔽部材5に起因する無効データは符号Q1,Q2で示される箇所に存在するが、同図のように各列のディジタル値の出力順を双方共に正順(昇順)とすると、一方のポートPb1からは無効データQ1が最初に出力され、他方のポートPb2からは無効データQ2が最後に出力されることとなる。このように、ディジタル値の出力順序における無効データQ1,Q2の位置が各出力ポートPb1,Pb2で互いに異なると、他の電子回路にてリアルタイム処理を行う際の障壁となりうる。   In such a case, if the output order of the digital values in one region divided by the nth column is the same as the output order of the digital values in the other region, the following inconvenience occurs. In other words, in FIG. 14, invalid data resulting from the X-ray shielding member 5 exists at the locations indicated by reference numerals Q1 and Q2. However, as shown in FIG. ), Invalid data Q1 is output first from one port Pb1, and invalid data Q2 is output last from the other port Pb2. As described above, if the positions of the invalid data Q1 and Q2 in the output order of the digital values are different from each other at the output ports Pb1 and Pb2, it may become a barrier when performing real-time processing in another electronic circuit.

このような問題点に対し、本実施形態に係る固体撮像装置1では、第n列を境に分割された一方の領域(図3における境界線Eより左側の領域)におけるディジタル値の出力順と他方の領域(図3における境界線Eより右側の領域)におけるディジタル値の出力順とが、互いに逆順となっている(図7(e)〜(i)、図8(e)〜(i)、図9(b)〜(g)、および図10(b)〜(g)を参照)。すなわち、信号出力部20は、画素配列10Aの第1列から第n列までの各列に対応するディジタル値を、第n列から開始して第1列まで順次に出力させるとともに、画素配列10Aの第(n+1)列から、第NA列および画素配列10Bの第1列を経て第NB列までの各列に対応するディジタル値を、画素配列10Aの第1列ないし第n列とは逆の順序でもって順次に出力させている。   For such a problem, in the solid-state imaging device 1 according to the present embodiment, the output order of the digital values in one region (region on the left side of the boundary line E in FIG. 3) divided by the nth column is The output order of the digital values in the other region (the region on the right side of the boundary line E in FIG. 3) is opposite to each other (FIGS. 7 (e) to (i) and FIGS. 8 (e) to (i)). FIG. 9 (b) to (g) and FIG. 10 (b) to (g)). That is, the signal output unit 20 sequentially outputs the digital values corresponding to the first to n-th columns of the pixel array 10A from the n-th column to the first column, and the pixel array 10A. The digital values corresponding to the columns from the (n + 1) th column to the NB column through the NA column and the first column of the pixel array 10B are reversed from the first column to the nth column of the pixel array 10A. Output sequentially in order.

図15は、各FIFOデータバッファ23A〜23Lからのこのようなディジタル値の出力順を示すタイミングチャートである。図15(a)〜(f)はFIFOデータバッファ23A〜23Fにおける出力タイミングを示しており、図9(b)〜(g)と対応している。また、図15(g)〜(l)はFIFOデータバッファ23G〜23Lにおける出力タイミングを示しており、図10(b)〜(g)と対応している。同図を参照すると、時刻t60において出力ポートPc1のFIFOデータバッファ23Fおよび出力ポートPc2のFIFOデータバッファ23Gが出力動作を開始しており、時刻t61において、FIFOデータバッファ23Aおよび23Lの読み出しが完了することにより出力ポートPc1,Pc2の出力動作が終了している。このような順序でもって信号出力部20がディジタル値を出力することにより、各出力ポートPc1,Pc2からの無効データQ1,Q2の出力タイミングを互いに一致させることができるので、他の電子回路にてリアルタイム処理を容易に行うことができる。 FIG. 15 is a timing chart showing the output order of such digital values from the FIFO data buffers 23A to 23L. FIGS. 15A to 15F show output timings in the FIFO data buffers 23A to 23F, and correspond to FIGS. 9B to 9G. FIGS. 15G to 15L show output timings in the FIFO data buffers 23G to 23L, and correspond to FIGS. 10B to 10G. Referring to the figure, at time t 60 and the start of FIFO data buffer 23G is output operation of FIFO data buffers 23F and the output port Pc2 output ports Pc1, at time t 61, the FIFO data buffers 23A and 23L read When completed, the output operation of the output ports Pc1 and Pc2 is completed. Since the signal output unit 20 outputs digital values in this order, the output timings of the invalid data Q1 and Q2 from the output ports Pc1 and Pc2 can be made to coincide with each other. Real-time processing can be easily performed.

なお、本実施形態に係る固体撮像装置1では、半導体基板3Aおよび3Bを並置することで画素配列10A,10Bのタイリングを行っているが、タイリングの方式としては例えば次のようなものがある。例えば図16(a)に示すように、膜状のシンチレータ4A,4Bが表面にそれぞれ蒸着された半導体基板3A,3Bを同一平面上で隣接させて並べる。この方式では、シンチレータ4A,4Bは半導体基板3A,3Bの側面(エッジ)に少し回り込むので、デッドエリアCの幅は、画素配列10A,10Bそれぞれの最も端に位置する画素Pから半導体基板3A,3Bそれぞれのエッジまでの距離と、半導体基板3A,3Bのエッジにそれぞれ回り込んだシンチレータ4A,4Bの当該部分の厚さと、半導体基板3A,3Bの間に確保される隙間(クリアランス)とによって決定される。   In the solid-state imaging device 1 according to the present embodiment, the pixel arrays 10A and 10B are tiled by juxtaposing the semiconductor substrates 3A and 3B. As a tiling method, for example, the following is possible. is there. For example, as shown in FIG. 16A, the semiconductor substrates 3A and 3B on which film-like scintillators 4A and 4B are respectively deposited are arranged adjacent to each other on the same plane. In this method, since the scintillators 4A and 4B slightly wrap around the side surfaces (edges) of the semiconductor substrates 3A and 3B, the width of the dead area C is changed from the pixel P located at the end of each of the pixel arrays 10A and 10B to the semiconductor substrates 3A and 3B. 3B is determined by the distances to the respective edges of the 3B, the thicknesses of the portions of the scintillators 4A and 4B that have wrapped around the edges of the semiconductor substrates 3A and 3B, and the clearance (clearance) secured between the semiconductor substrates 3A and 3B. Is done.

また、図16(b)は、図16(a)と同様に同一平面上に半導体基板3A,3Bを隣接させて並べる方式を示しているが、半導体基板3A,3Bが並置された後にシンチレータ4A,4Bが一括して蒸着されている点で図16(a)に示した方式とは異なる。図16(b)に示す方式では、半導体基板3A,3Bを並べた後にシンチレータ4A,4Bを蒸着するので、図16(a)に示した方式と比較して、半導体基板3A,3Bのエッジへのシンチレータ4A,4Bの回り込みがない分だけデッドエリアCの幅を狭くすることができる。   FIG. 16B shows a system in which the semiconductor substrates 3A and 3B are arranged adjacent to each other on the same plane as in FIG. 16A, but the scintillator 4A is disposed after the semiconductor substrates 3A and 3B are juxtaposed. , 4B are different from the method shown in FIG. In the method shown in FIG. 16B, since the scintillators 4A and 4B are deposited after the semiconductor substrates 3A and 3B are arranged, compared with the method shown in FIG. 16A, the edge of the semiconductor substrates 3A and 3B is reached. The width of the dead area C can be reduced by the amount that the scintillators 4A and 4B do not wrap around.

また、図16(c)は、半導体基板3Aの端部に半導体基板3Bの端部が重なるように半導体基板3A,3Bを並べる方式を示している。この方式では、半導体基板3A,3Bの画素配列10A,10Bの一端の水平方向位置が互いに一致するように半導体基板3A,3Bを配置するとよい。これにより、デッドエリアCを極めて狭くすることができる。   FIG. 16C shows a method in which the semiconductor substrates 3A and 3B are arranged so that the end of the semiconductor substrate 3B overlaps the end of the semiconductor substrate 3A. In this method, the semiconductor substrates 3A and 3B are preferably arranged so that the horizontal positions of one ends of the pixel arrays 10A and 10B of the semiconductor substrates 3A and 3B coincide with each other. Thereby, the dead area C can be made very narrow.

本発明による固体撮像装置は、上記した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上記実施形態では、信号出力部20が画素配列10Aの第1列から第n列までの各列に対応するディジタル値を逆順でもって順次に出力させ、画素配列10Aの第(n+1)列から画素配列10Bの第NB列までの各列に対応するディジタル値を正順でもって順次に出力させている。画素配列10A,10Bの各列に対応するディジタル値の出力順はこれに限られず、画素配列10Aの第1列から第n列までの各列に対応するディジタル値を正順でもって順次に出力させるとともに、画素配列10Aの第(n+1)列から画素配列10Bの第NB列までの各列に対応するディジタル値を逆順でもって順次に出力させてもよい。この場合、図15に示した無効データQ1,Q2の出力タイミングは共に各行毎のデータの先頭(時刻t60の直後)となるが、各出力ポートPc1,Pc2からの無効データQ1,Q2の出力タイミングが互いに一致するので、本発明の固体撮像装置による効果を好適に得ることができる。また、各出力ポートからのデータを、一のデータバスに同時に流すように記述しているが、各出力ポート毎に分離したデータバスを設けてもよいし、それぞれが各出力ポートに接続された2本のデータバスを並列して設けてもよい。 The solid-state imaging device according to the present invention is not limited to the above-described embodiment, and various other modifications are possible. For example, in the above embodiment, the signal output unit 20 sequentially outputs the digital values corresponding to the first to nth columns of the pixel array 10A in reverse order, and the (n + 1) th column of the pixel array 10A. To the NB column of the pixel array 10B, digital values corresponding to each column are sequentially output in the normal order. The output order of the digital values corresponding to each column of the pixel arrays 10A and 10B is not limited to this, and the digital values corresponding to the respective columns from the first column to the nth column of the pixel array 10A are sequentially output in the normal order. In addition, digital values corresponding to the respective columns from the (n + 1) th column of the pixel array 10A to the NB column of the pixel array 10B may be sequentially output in reverse order. In this case, although the head of the data of the invalid data Q1, Q2 each row together the output timing shown in FIG. 15 (immediately after time t 60), the invalid data Q1, Q2 outputs of from the output ports Pc1, Pc2 Since the timings coincide with each other, the effect of the solid-state imaging device of the present invention can be suitably obtained. In addition, the data from each output port is described to flow simultaneously on one data bus. However, a separate data bus may be provided for each output port, and each data port is connected to each output port. Two data buses may be provided in parallel.

1…固体撮像装置、2…基材、3A,3B…半導体基板、4A,4B…シンチレータ、5…X線遮蔽部材、6…制御部、10A,10B…画素配列、20…信号出力部、21A〜21L…信号読出部、22A〜22L…A/D変換器、23A〜23L…FIFOデータバッファ、30A,30B…走査シフトレジスタ、31A,31B…読出シフトレジスタ、100…X線撮像システム、104…旋回アーム、106…X線発生装置、113…スライド機構、A…被写体、A…アンプ、B…移動方向、C…デッドエリア、C21,C22…積分用容量素子、C…保持用容量素子、DB…データバス、H〜HNA,H〜HNB…保持回路、L…ゲイン設定用配線、L…保持用配線、LH,j…第j列選択用配線、LO,j…第j列読出用配線、Lout…電圧出力用配線、L…リセット用配線、LV,m…第m行選択用配線、P,Pm,j…画素、Pa1,Pa2,Pb1,Pb2,Pc1,Pc2…出力ポート、PD…フォトダイオード、Q1,Q2…無効データ、Reset…リセット制御信号、S〜SNA,S〜SNB…積分回路、SW…読出用スイッチ、SW21…放電用スイッチ、SW22…ゲイン設定用スイッチ、SW31…入力用スイッチ、SW32…出力用スイッチ、W…シリコンウェハ。
DESCRIPTION OF SYMBOLS 1 ... Solid-state imaging device, 2 ... Base material, 3A, 3B ... Semiconductor substrate, 4A, 4B ... Scintillator, 5 ... X-ray shielding member, 6 ... Control part, 10A, 10B ... Pixel arrangement, 20 ... Signal output part, 21A ˜21L... Signal readout unit, 22A to 22L... A / D converter, 23A to 23L... FIFO data buffer, 30A and 30B... Scan shift register, 31A and 31B. pivot arm, 106 ... X-ray generator, 113 ... slide mechanism, A ... subject, A 2 ... amplifier, B ... moving direction, C ... dead area, C 21, C 22 ... integrating capacitive element, C 3 ... holding Capacitance element, DB ... data bus, H 1 to H NA , H 1 to H NB ... holding circuit, L G ... gain setting wiring, L H ... holding wiring, L H, j ... jth column selection wiring, L O, j ... j-th column readout wiring, L out ... voltage output wiring, L R ... reset wiring, L V, m ... m-th row selection wiring, P, P m, j ... pixel, Pa1, Pa2 , Pb1, Pb2, Pc1, Pc2 ... output port, PD ... photodiode, Q1, Q2 ... invalid data, reset ... reset control signal, S 1 ~S NA, S 1 ~S NB ... integrating circuit, SW 1 ... for reading Switch, SW 21 ... Discharge switch, SW 22 ... Gain setting switch, SW 31 ... Input switch, SW 32 ... Output switch, W ... Silicon wafer.

Claims (2)

入射した放射線に応じた画像データを生成する固体撮像装置であって、
フォトダイオードを各々含むM×NA個(M及びNAは2以上の整数)の画素がM行NA列に2次元配列されて成る第1の画素配列を有する第1の基板と、
フォトダイオードを各々含むM×NB個(NBはNAより小さい2以上の整数)の画素がM行NB列に2次元配列されて成り、その第1列が前記第1の画素配列の第NA列に沿って配置された第2の画素配列を有する第2の基板と、
前記第1及び第2の画素配列の各列毎に配設され、対応する列の前記画素に含まれる前記フォトダイオードと読出用スイッチを介して接続された(NA+NB)本の読出用配線と、
前記読出用配線を経て入力された電荷の量に応じた信号を保持し、その保持した信号を出力する信号出力部と
を備え、
前記信号出力部は、前記第1の画素配列の第1列から第n列(2≦n<NA)までの各列に対応する前記信号を順次に出力する第1の出力ポートと前記第1の出力ポートからの出力と並行して、前記第1の画素配列の第(n+1)列から、第NA列および前記第2の画素配列の第1列を経て第NB列までの各列に対応する前記信号を順次に出力する第2の出力ポートとを有する、ことを特徴とする固体撮像装置。
A solid-state imaging device that generates image data according to incident radiation,
A first substrate having a first pixel arrangement in which M × NA pixels each including a photodiode (M and NA are integers of 2 or more) are two-dimensionally arranged in M rows and NA columns;
M × NB pixels (NB is an integer of 2 or more smaller than NA) each including photodiodes are two-dimensionally arranged in M rows and NB columns, and the first column is the NA column of the first pixel array. A second substrate having a second pixel array disposed along
(NA + NB) readout wirings arranged for each column of the first and second pixel arrays and connected to the photodiodes included in the pixels of the corresponding columns via readout switches;
A signal output unit that holds a signal corresponding to the amount of charge input through the readout wiring and outputs the held signal;
The signal output unit includes a first output port for outputting the signals corresponding to the respective columns from the first column of the first pixel array to the n-th column (2 ≦ n <NA) sequentially, the first In parallel with the output from one output port, each column from the (n + 1) th column of the first pixel array to the NB column through the NA column and the first column of the second pixel array And a second output port that sequentially outputs the corresponding signals.
前記第1の画素配列における第1列ないし第n列の列数が、前記第1の画素配列における第(n+1)列ないし第NA列の列数と前記第2の画素配列における第1列ないし第NB列の列数との和に等しい、ことを特徴とする請求項1に記載の固体撮像装置。
The number of columns from the first column to the n-th column in the first pixel array is the number of columns from the (n + 1) -th column to the NA-th column in the first pixel array and the first column to the n-th column in the second pixel array. The solid-state imaging device according to claim 1, wherein the solid-state imaging device is equal to a sum of the number of columns of the NB column.
JP2012212863A 2012-09-26 2012-09-26 Solid-state imaging device Active JP5395240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012212863A JP5395240B2 (en) 2012-09-26 2012-09-26 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012212863A JP5395240B2 (en) 2012-09-26 2012-09-26 Solid-state imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008159363A Division JP5101402B2 (en) 2008-06-18 2008-06-18 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2013017234A JP2013017234A (en) 2013-01-24
JP5395240B2 true JP5395240B2 (en) 2014-01-22

Family

ID=47689379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012212863A Active JP5395240B2 (en) 2012-09-26 2012-09-26 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP5395240B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4557763B2 (en) * 1995-09-05 2010-10-06 キヤノン株式会社 Photoelectric conversion device and radiation imaging device
JP3235717B2 (en) * 1995-09-28 2001-12-04 キヤノン株式会社 Photoelectric conversion device and X-ray imaging device
JP2000032357A (en) * 1998-07-08 2000-01-28 Hamamatsu Photonics Kk Solid-state image pickup device
JP2000184282A (en) * 1998-12-15 2000-06-30 Canon Inc Image pickup device, drive method for the image pickup device, image processing method, information recording medium and image processing system
JP2002214351A (en) * 2001-01-12 2002-07-31 Canon Inc Radiation detector
JP3988114B2 (en) * 2001-10-25 2007-10-10 日本ビクター株式会社 Imaging device
US7834323B2 (en) * 2004-05-11 2010-11-16 Hamamatsu Photonics K.K. Radiation imaging device

Also Published As

Publication number Publication date
JP2013017234A (en) 2013-01-24

Similar Documents

Publication Publication Date Title
JP5101402B2 (en) Solid-state imaging device
JP5368817B2 (en) Medical X-ray imaging system
JP5058057B2 (en) Medical X-ray imaging system
US8953745B2 (en) Solid-state image pickup apparatus and X-ray inspection system
JP5027728B2 (en) Solid-state imaging device and X-ray inspection system
JP5650349B1 (en) Medical X-ray imaging system
JP5395240B2 (en) Solid-state imaging device
JP5337281B2 (en) X-ray inspection system
CN109561874B (en) Solid-state imaging device, radiation imaging system, and solid-state imaging device control method
JP5468114B2 (en) Medical X-ray imaging system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131017

R150 Certificate of patent or registration of utility model

Ref document number: 5395240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150