JP5392936B1 - Radar signal processing method and apparatus - Google Patents

Radar signal processing method and apparatus Download PDF

Info

Publication number
JP5392936B1
JP5392936B1 JP2013107540A JP2013107540A JP5392936B1 JP 5392936 B1 JP5392936 B1 JP 5392936B1 JP 2013107540 A JP2013107540 A JP 2013107540A JP 2013107540 A JP2013107540 A JP 2013107540A JP 5392936 B1 JP5392936 B1 JP 5392936B1
Authority
JP
Japan
Prior art keywords
radar
data
interpolation
observation
temperature profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013107540A
Other languages
Japanese (ja)
Other versions
JP2014202740A (en
Inventor
哲也 田川
Original Assignee
哲也 田川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哲也 田川 filed Critical 哲也 田川
Priority to JP2013107540A priority Critical patent/JP5392936B1/en
Application granted granted Critical
Publication of JP5392936B1 publication Critical patent/JP5392936B1/en
Publication of JP2014202740A publication Critical patent/JP2014202740A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】従来のデータ補間方法では、レーダから同一距離の受信電力値を用いてスイープライン間のデータを補間するため、一般に大気の温度プロファイル等に従ってレーダ反射因子が変化する気象目標を観測対象にする場合には正確にデータを補間することが難しい。
【解決手段】レーダから同一距離の観測データに限定せず、大気の温度プロファイル等を基に観測データを選択し、補間処理を行う。複数の周波数帯の電波を送受信するレーダの場合には、異なる周波数間で異なる重み付けを掛けた上で、大気の温度プロファイル等によって観測データを選択し、補間処理を行う。
【選択図】図1
In a conventional data interpolation method, since data between sweep lines is interpolated using received power values at the same distance from a radar, generally a weather target whose radar reflection factor changes according to an atmospheric temperature profile or the like is set as an observation target. It is difficult to accurately interpolate the data.
The observation data is not limited to the observation data at the same distance from the radar, but the observation data is selected based on the temperature profile of the atmosphere, and interpolation processing is performed. In the case of a radar that transmits and receives radio waves in a plurality of frequency bands, after applying different weights between different frequencies, observation data is selected according to an atmospheric temperature profile or the like, and interpolation processing is performed.
[Selection] Figure 1

Description

本発明は、レーダの信号処理における、データ補間方法及び装置に関する。   The present invention relates to a data interpolation method and apparatus in radar signal processing.

気象レーダ装置は、アンテナビームを走査しながら電波を送信し、降水などの気象目標からの反射波を受信し、その受信電力から降水分布を推定することを可能にする。受信電力値はビーム走査角とレーダからの距離の関数、つまりレーダ位置を原点とする極座標系で表すことができる。受信電力値の分布を直交座標系に変換し画面表示する際に画素欠けが生じる場合について特許文献1では、隣接するスイープラインの観測データを用いて、レーダから同一距離の受信電力値に基づいてスイープライン間でデータの補間を行っている。   The weather radar apparatus transmits radio waves while scanning an antenna beam, receives a reflected wave from a weather target such as precipitation, and makes it possible to estimate a precipitation distribution from the received power. The received power value can be expressed in a polar coordinate system with the origin being the function of the beam scanning angle and the distance from the radar, that is, the radar position. In the case where pixel dropout occurs when the received power value distribution is converted into the orthogonal coordinate system and displayed on the screen, in Patent Document 1, the observation data of the adjacent sweep line is used and the received power value at the same distance from the radar is used. Data interpolation is performed between sweep lines.

地上に設置されるレーダの場合、レーダと観測対象(気象目標など)の位置関係がレーダから見て水平方向もしくは上空の方向にあり、アンテナビームを走査する方向は水平方向よりも上空方向となる(特許文献4の場合)。それに対して航空機や人工衛星に搭載されるレーダの場合には、水平方向よりも下方にアンテナビームを走査する。航空機や人工衛星に搭載されるレーダは地上設置のレーダに比べて広範囲を観測することができる。 In the case of a radar installed on the ground, the positional relationship between the radar and the observation target (meteorological target, etc.) is in the horizontal direction or the sky direction when viewed from the radar, and the direction of scanning the antenna beam is above the horizontal direction. (In the case of Patent Document 4). On the other hand, in the case of a radar mounted on an aircraft or an artificial satellite, the antenna beam is scanned below the horizontal direction. Radars mounted on aircraft and artificial satellites can observe a wider area than radars installed on the ground.

従来のデータ補間方法では、レーダから同一距離の受信電力値を用いてスイープライン間のデータを補間するため、大気の状態によってレーダ反射因子が変化する気象目標を観測対象にする場合には正確にデータを補間することが難しい。アンテナビーム走査により観測範囲が数百km以上に及ぶ場合には、地球の丸みのため地表面からの高度変化の影響が大きくなり一層難しくなる。 In the conventional data interpolation method, the data between sweep lines is interpolated using the received power value at the same distance from the radar. Therefore, when the weather target whose radar reflection factor changes depending on the atmospheric condition is to be observed accurately It is difficult to interpolate data. When the observation range reaches several hundred km or more by antenna beam scanning, the influence of the altitude change from the ground surface becomes larger due to the roundness of the earth, and it becomes more difficult.

また、人工衛星や航空機搭載のレーダでは、機体の姿勢変動や機械的・熱的な環境の変動のためにアンテナビームの指向精度が低下するため、ビーム指向誤差を補償するためのデータ補間又は補正を行う必要性がある。自動車等の移動体に搭載されるレーダでも同様である。 In addition, satellite radar and airborne radar reduce antenna beam pointing accuracy due to changes in the attitude of the aircraft and changes in the mechanical and thermal environment, so data interpolation or correction to compensate for beam pointing errors There is a need to do. The same applies to a radar mounted on a moving body such as an automobile.

以上の課題を解決するために、第一発明はレーダデータ処理の際に、レーダから同一距離の観測データに限定せず、大気の温度プロファイルを基準にして観測データを選択し、補間処理を行う。
In order to solve the above problems, the first invention is not limited to the observation data at the same distance from the radar , but the observation data is selected on the basis of the atmospheric temperature profile , and interpolation processing is performed. .

第二発明は、アンテナビームの指向誤差データに基づいて本来のビーム方向を求め、そのビーム方向について、大気の温度プロファイルを基準にして観測データを選択し、データ補間処理を行う。
The second invention obtains the original beam direction based on the pointing error data of the antenna beam, selects the observation data with reference to the atmospheric temperature profile for the beam direction, and performs data interpolation processing.

第三発明は、複数の周波数帯(C,X,Ku,Ka,W帯ごとに降水などによる電波の減衰量・レーダ反射因子が異なる)の電波を送受信する気象レーダの場合には、異なる周波数間で減衰量・レーダ反射因子を補正する重み付けを掛けた上で、大気の温度プロファイルを基準にして観測データを選択し、補間処理を行う。複数の周波数帯を用いるレーダでは、異なる周波数間で観測データを換算して利用することができる。Ka,W帯のように降雨減衰が強い周波数帯の観測データで減衰により反射波が受信機のノイズレベル以下となる場合には、低い周波数(C,X,Ku帯)の同時観測データを換算して利用する。
In the case of a weather radar that transmits / receives radio waves in multiple frequency bands (C, X, Ku, Ka, W bands have different radio attenuation and radar reflection factors for each band), the third invention has different frequencies. After applying weighting to correct the attenuation and radar reflection factor, the observation data is selected based on the atmospheric temperature profile , and interpolation processing is performed. In a radar using a plurality of frequency bands, observation data can be converted and used between different frequencies. If the reflected data is below the noise level of the receiver due to the observation data in the frequency band with strong rain attenuation such as Ka and W bands, the simultaneous observation data of the low frequency (C, X, Ku band) is converted. And use it.

本発明によれば、気象レーダによる観測において、広範囲に及ぶ気象目標からのレーダ反射波の補間を精度良く行うことができる。また、アンテナビームの指向精度が低下しやすい人工衛星や航空機搭載の気象レーダによる観測データの処理において、データ補間とビームの指向誤差の補正を精度良く行うことができる。 According to the present invention, in observation by a weather radar, it is possible to accurately interpolate radar reflected waves from a wide range of weather targets. In addition, in the processing of observation data by an artificial satellite or an airborne weather radar in which the pointing accuracy of the antenna beam is likely to be lowered, it is possible to accurately perform data interpolation and correction of the beam pointing error.

以下、本発明の実施の形態について図面を参照して説明する。
図1は各種プラットフォーム上の気象レーダと気象目標の位置関係を示す図、図2は本発明に係る気象レーダの信号処理における、データ補間方法及び装置の実施形態を示す図である。図3はデータ補間方法を説明するフローチャートである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a positional relationship between weather radars and weather targets on various platforms, and FIG. 2 is a diagram showing an embodiment of a data interpolation method and apparatus in signal processing of the weather radar according to the present invention. FIG. 3 is a flowchart for explaining the data interpolation method.

図1は、各種プラットフォーム上の気象レーダ1〜3のいずれかにより広範囲を観測する場合の模式図であり、特に飛翔体搭載型レーダによる観測の場合について、空中線4による観測方向21,22とデータ補間処理を行う方向20の位置関係を示す。従来技術(特許文献1)では、補間値10を得るにはレーダから等距離Rの位置の観測データ11、12を基に補間処理を行うが、本発明では、大気の温度プロファイルによって選択した観測データ13,14を元に補間処理を行う。
FIG. 1 is a schematic diagram in the case of observing a wide area by any one of the weather radars 1 to 3 on various platforms. In particular, in the case of observation by an airborne radar, the observation directions 21 and 22 and data by the antenna 4 are shown. The positional relationship of the direction 20 which performs an interpolation process is shown. In the prior art (Patent Document 1), the interpolation value 10 is obtained by performing an interpolation process based on the observation data 11 and 12 at a position R equidistant from the radar. In the present invention, the observation selected by the atmospheric temperature profile is performed. Interpolation processing is performed based on the data 13 and 14.

図2に示すように、空中線と送受信機を通して電波を送受信し、信号処理装置によりアンテナビーム走査角度ごと並びにレンジビンごとの観測データとそのデータの座標を得る。 As shown in FIG. 2, radio waves are transmitted and received through an antenna and a transmitter / receiver, and observation data for each antenna beam scanning angle and each range bin and coordinates of the data are obtained by a signal processing device.

データ補間部における処理は、まずビーム方向と観測データ・観測データの座標を入力し、補間処理する方向を与える。ビーム指向誤差が0でない場合には、補間処理する方向を本来のビーム方向とし、その方向のデータを補間処理によって求めることもできる(ビーム指向誤差の補正処理)。 In the processing in the data interpolation unit, first, the beam direction and the observation data / coordinates of the observation data are input, and the direction for the interpolation processing is given. When the beam pointing error is not 0, the direction in which interpolation processing is performed can be made the original beam direction, and data in that direction can also be obtained by interpolation processing (beam pointing error correction processing).

図1に示すように、大気の温度プロファイルに基づいてレンジビンを求め(同時にΔR1、ΔR2が求まる)、観測データ13,14に重み付けw1,w2をかけて、データ補間処理を行う方向20の補間値10を得る。この処理をレンジビンごとに繰り返し行う。
As shown in FIG. 1, the range bin is obtained based on the atmospheric temperature profile (ΔR1 and ΔR2 are obtained simultaneously), and the weights w1 and w2 are applied to the observation data 13 and 14, and the interpolation value in the direction 20 in which the data interpolation process is performed. Get 10. This process is repeated for each range bin.

図1では、観測方向として2方向のみ(21,22)を図示しているが、飛翔体搭載のレーダの場合、レーダ位置の移動に従って、またアンテナビーム走査によって、補間対象の方向の周囲に多くの観測方向を有することになる。複数の周波数(C,X,Ku,Ka,W帯など)の観測データを用いる場合も含めて周辺の観測方向の数をnとする。重み付けw1,w2,…wnを距離加重法、クリギング(Kriging)法、動径基底関数法などによって求める。 In FIG. 1, only two directions (21, 22) are shown as observation directions, but in the case of a radar mounted on a flying object, there are many around the direction of the interpolation target according to the movement of the radar position and by antenna beam scanning. Will have the observation direction. The number of surrounding observation directions is n, including the case of using observation data of a plurality of frequencies (C, X, Ku, Ka, W band, etc.). Weights w1, w2,... Wn are obtained by a distance weighting method, a kriging method, a radial basis function method, or the like.

現実の観測データでは、レンジ方向の分解能関数・アンテナパターン等の影響により観測データはレンジ方向に広がっているので、それに応じて観測データに重み付けを加える場合もある。その場合、重み付けはw1(r),w2(r),…wn(r)という距離rの関数として表せる。 In actual observation data, the observation data spreads in the range direction due to the influence of the resolution function in the range direction, the antenna pattern, and the like, so that the observation data may be weighted accordingly. In that case, the weight can be expressed as a function of the distance r, w1 (r), w2 (r),... Wn (r).

気象目標からの反射波(観測データ)は特許文献2の式(1)と同様に表せる。

Figure 0005392936

ここでRはレーダからの距離、P(R)は受信電力(Watt)、Cはレーダのシステム定数、Z(R)は途中降雨減衰補正定数と大気減衰補正定数を含むレーダ反射因子(mm6/m3)である。Cはレーダの校正等により予め決められた値である。Z(R)は数1とP(R)の測定値から求められる。 The reflected wave (observation data) from the weather target can be expressed in the same manner as Equation (1) in Patent Document 2.
Figure 0005392936

Where R is the distance from the radar, P (R) is the received power (Watt), C is the radar system constant, Z (R) is the radar reflection factor (mm 6 / m 3 ). C is a value determined in advance by radar calibration or the like. Z (R) is obtained from the measured value of Equation 1 and P (R).

補間処理に利用する観測データとして、まずZ(R)を考える。図1のように雨域の上空に氷粒の層がある状態を気象レーダにより観測する場合について、図4にZ(R)の鉛直プロファイルの例を示す。簡単の為に方向20〜22のZ(R)の鉛直プロファイルが同じ場合を図示する。0℃高度近傍では降水の融解層からの強い散乱のピークが現れる。地表面近傍では地表面クラッタが一定の高度25まで及ぶ。 First, Z (R) is considered as observation data used for interpolation processing. FIG. 4 shows an example of the vertical profile of Z (R) in the case of observing a state where there is a layer of ice particles in the sky above the rain zone as shown in FIG. For simplicity, the case where the vertical profiles of Z (R) in the directions 20 to 22 are the same is illustrated. Near the 0 ° C altitude, a strong scattering peak from the melting layer of precipitation appears. Near the ground surface, ground surface clutter reaches a certain altitude of 25.

従来技術(特許文献1)では、レーダから同一距離のデータを補間に利用するため、例えばデータ10を得るために観測データ11,12に基づいて補間処理を行う。気象目標からのレーダ反射因子は、気象目標(降水など)の状態の変化に従って地表面からの高度(大気の温度プロファイル)によって変化するという特徴に着目して、大気の温度プロファイルを基準にして補間に用いる観測データ(例では13,14)を選択する。計算は数2または、その対数(dB値)での計算式(数3)により補間処理を行う。
In the prior art (Patent Document 1), since data at the same distance from the radar is used for interpolation, for example, in order to obtain data 10, interpolation processing is performed based on observation data 11 and 12. The radar reflection factor from the weather target is interpolated based on the atmospheric temperature profile , paying attention to the feature that it changes with the altitude (atmospheric temperature profile) from the ground surface according to the change of the state of the weather target (such as precipitation) Select the observation data (13, 14 in the example) used for. In the calculation, interpolation processing is performed according to Formula 2 or a calculation formula (Formula 3) of its logarithm (dB value).

ここでhは地上からの高度(m)、t0は地上付近の温度(℃)、Γは標準大気の気温減率(0.0065℃/m)である。大気の0℃高度は海面上でも緯度・経度によって分布にばらつきがある。0℃高度や大気の温度プロファイルを基準にして補間処理することでも、気象目標の状態(降雨・降雪等の固体降水)に合わせて補間を行うことができる。 Here, h is the altitude (m) from the ground, t0 is the temperature near the ground (° C.), and Γ is the temperature reduction rate (0.0065 ° C./m) of the standard atmosphere . The distribution of the 0 ° C altitude of the atmosphere varies depending on the latitude and longitude on the sea surface. Interpolation can also be performed according to the state of the weather target (solid precipitation such as rainfall and snowfall) by performing interpolation processing based on the 0 ° C. altitude and the atmospheric temperature profile.

以上では、補間処理に利用する観測データとしてZ(R)を基にしているが、受信電力P(R)、Z(R)に減衰補正を行った後のZe(R)、Ze(R)から求めた降水強度(mm/h)も同様に補間処理に利用できる。 The above is based on Z (R) as the observation data used for the interpolation process, but Ze (R), Ze (R) after performing attenuation correction on received power P (R), Z (R) The precipitation intensity (mm / h) obtained from the above can also be used for interpolation processing.

複数の周波数(C,X,Ku,Ka,W帯など)の観測データを用いる場合には、特許文献3と同様に受信品質の良い周波数のデータを利用する。図4の鉛直プロファイルの例では、融解層近傍からの強い受信エコーの相互相関を複数の周波数帯間で求め、相関が最大となる位置を補間処理を行うレンジビンの基準とする。複数の周波数帯のデータが利用できる場合には、相関が最大となる位置を利用することで地表面位置のデータベースに依存せずに補間処理を行うことができる。 When using observation data of a plurality of frequencies (C, X, Ku, Ka, W band, etc.), data of a frequency with good reception quality is used as in Patent Document 3. In the example of the vertical profile of FIG. 4, the cross correlation of strong received echoes from the vicinity of the melted layer is obtained between a plurality of frequency bands, and the position where the correlation is maximum is used as the reference of the range bin for performing interpolation processing. When data of a plurality of frequency bands can be used, interpolation processing can be performed without depending on the database of the ground surface position by using the position where the correlation is maximum.

以下に、本件分割出願における原出願(特願2013−075637)の分割直前の特許請求の範囲に記載された発明を付記する。
[1] アンテナビームを走査して電波を送受信する手段と、
ビーム走査ごとに受信信号を測定する手段と、
そのビーム走査間で受信信号を線形又は非線形の関数により補間する手段を備える、飛翔体搭載のレーダ装置において、
前記補間手段は、地表面からの高度に基づいて、補間する受信信号のレンジビンを選択する手段を有することを特徴とする飛翔体搭載レーダ装置。
[2] 飛翔体搭載のレーダ装置により求められた受信信号をアンテナビーム走査間で線形又は非線形の関数により補間する際に、地表面からの高度に基づいて補間する受信信号のレンジビンを選択することを特徴とする補間方法。
[3]請求項1の飛翔体搭載レーダ装置は、アンテナビームの指向誤差データに基づいて本来のビーム方向の受信信号を前記補間手段により得ることを特徴とする飛翔体搭載レーダ装置。
The invention described in the claims immediately before the division of the original application (Japanese Patent Application No. 2013-075637) in the divisional application will be appended below.
[1] means for scanning and transmitting radio waves by scanning an antenna beam;
Means for measuring the received signal for each beam scan;
In a radar apparatus equipped with a flying object , comprising means for interpolating a received signal between the beam scans with a linear or nonlinear function ,
The flying object mounted radar apparatus, wherein the interpolation means includes means for selecting a range bin of a received signal to be interpolated based on an altitude from the ground surface.
[2] Selecting the range bin of the received signal to be interpolated based on the altitude from the ground surface when the received signal obtained by the radar device mounted on the flying object is interpolated between the antenna beam scans by a linear or nonlinear function. An interpolation method characterized by
[3] projectile mounted radar apparatus according to claim 1, projectile mounted radar apparatus, characterized in that the received signal of the original beam direction based on the directional error data of the antenna beam obtained by said interpolation means.

本発明の産業上の利用可能性は、レーダの特に、航空機、人工衛星等の移動体に搭載される気象レーダの、アンテナビーム走査間のデータを補間処理する装置として役立つ。 The industrial applicability of the present invention is useful as an apparatus for interpolating data between antenna beam scans of a radar, particularly a weather radar mounted on a moving body such as an aircraft or an artificial satellite.

各種プラットフォーム上の気象レーダと気象目標の位置関係を示す図である。It is a figure which shows the positional relationship of the weather radar and weather target on various platforms. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. データ補間方法を説明するフローチャートである。It is a flowchart explaining a data interpolation method. ビーム方向毎のレーダ反射因子の鉛直プロファイルとその位置関係を示す図である。It is a figure which shows the vertical profile of the radar reflection factor for every beam direction, and its positional relationship.

1〜3:レーダ装置
4:飛翔体搭載レーダの空中線
10:補間して求めるデータ
11〜14:観測するビーム方向のデータ
20:補間対象の方向
21、22:観測するビーム方向
23:レーダからの距離Rの等レンジ線
24:地表面からの等高度線
25:地表面クラッタが及ぶ高度
31:送受信機
32:信号処理装置
33:データ補間部
1-3: Radar equipment
4: Airborne radar of the airborne radar 10: Data obtained by interpolation 11-14: Data of the beam direction to be observed
20: Direction of interpolation target 21, 22: Observation beam direction 23: Equidistant line of distance R from radar 24: Contour line from ground surface 25: Altitude covered by ground clutter 31: Transceiver 32: Signal processing Device 33: Data interpolation unit

特許3734619号 「レーダー装置及び類似装置並びに同装置でのデータ補間方法」Patent 3734619 "Radar device and similar device and data interpolation method using the same device" 特許2617673号 「気象レーダ装置」Patent 2616773 "Meteorological radar equipment" 特許3408943号 「2周波計測方法及び多周波レーダ装置」Patent 3408943 "Dual-frequency measurement method and multi-frequency radar device" 特開平9-257929 「レーダ装置」JP-A-9-257929 "Radar equipment"

Claims (4)

アンテナビームを走査して電波を送受信する手段と、
ビーム走査により得られる観測方向ごとの受信信号を測定する手段と、
そのビーム走査間で受信信号を線形又は非線形の関数により補間する補間手段を備えるレーダ装置において、
前記補間手段は、大気の温度プロファイルとレンジビンの位置関係に基づいて、補間する受信信号のレンジビンを選択する手段を有することを特徴とするレーダ装置。
Means for transmitting and receiving radio waves by scanning an antenna beam;
Means for measuring a received signal for each observation direction obtained by beam scanning;
In a radar apparatus comprising interpolation means for interpolating a received signal between the beam scans by a linear or nonlinear function,
The radar apparatus according to claim 1, wherein the interpolation means includes means for selecting a range bin of a reception signal to be interpolated based on a positional relationship between an atmospheric temperature profile and a range bin .
請求項1のレーダ装置は複数の周波数帯の電波を送受信し、受信信号を周波数間で補間することを特徴とするレーダ装置。 2. The radar apparatus according to claim 1, wherein the radar apparatus transmits and receives radio waves in a plurality of frequency bands, and interpolates a received signal between frequencies. レーダ装置によりビーム走査して求められた観測方向ごとの受信信号を補間する際に、大気の温度プロファイルとレンジビンの位置関係に基づいて補間する受信信号のレンジビンを選択することを特徴とする補間方法。 An interpolation method comprising: selecting a range bin of a reception signal to be interpolated based on a positional relationship between an atmospheric temperature profile and a range bin when interpolating a reception signal for each observation direction obtained by beam scanning by a radar apparatus . 請求項1のレーダ装置は、アンテナビームの指向誤差データに基づいて本来のビーム方向の受信信号を前記補間手段により得ることを特徴とするレーダ装置。
The radar apparatus according to claim 1, wherein the interpolation means obtains a received signal in an original beam direction based on antenna beam pointing error data.
JP2013107540A 2013-05-22 2013-05-22 Radar signal processing method and apparatus Expired - Fee Related JP5392936B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013107540A JP5392936B1 (en) 2013-05-22 2013-05-22 Radar signal processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013107540A JP5392936B1 (en) 2013-05-22 2013-05-22 Radar signal processing method and apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013075637 Division 2013-04-01 2013-04-01

Publications (2)

Publication Number Publication Date
JP5392936B1 true JP5392936B1 (en) 2014-01-22
JP2014202740A JP2014202740A (en) 2014-10-27

Family

ID=50112269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013107540A Expired - Fee Related JP5392936B1 (en) 2013-05-22 2013-05-22 Radar signal processing method and apparatus

Country Status (1)

Country Link
JP (1) JP5392936B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014163069A1 (en) * 2013-04-01 2014-10-09 株式会社次世代技術研究所 Radar signal processing method and device
CN111487623A (en) * 2019-01-25 2020-08-04 中国科学院国家空间科学中心 Satellite-borne terahertz atmosphere profile detector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101760826B1 (en) * 2015-11-19 2017-07-25 한국건설기술연구원 Apparatus for Compressing the Reflectivity Data of Weather Radar and Method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014163069A1 (en) * 2013-04-01 2014-10-09 株式会社次世代技術研究所 Radar signal processing method and device
CN111487623A (en) * 2019-01-25 2020-08-04 中国科学院国家空间科学中心 Satellite-borne terahertz atmosphere profile detector

Also Published As

Publication number Publication date
JP2014202740A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
JP5354705B1 (en) Radar signal processing method and apparatus
CN110426690B (en) Automatic calibration method for airborne weather radar beam pointing
Angulo et al. Impact analysis of wind farms on telecommunication services
JP6099318B2 (en) Water vapor observation device and weather radar
De la Vega et al. Software tool for the analysis of potential impact of wind farms on radiocommunication services
CN112034459B (en) Linear synthetic aperture radar imaging method and system based on antenna pattern compensation
CN112363185B (en) Satellite-borne iGNSS-R height measurement precision evaluation method
AU2009276874B2 (en) Radar tracking system
JP5392936B1 (en) Radar signal processing method and apparatus
JP3437091B2 (en) Weather radar equipment
Bazin et al. A general presentation about the OTH-Radar NOSTRADAMUS
JP6445145B2 (en) Precipitation intensity calculation apparatus, weather radar apparatus, precipitation intensity calculation method, and precipitation intensity calculation program
Bredemeyer et al. Comparison of principles for measuring the reflectivity values from wind turbines
Takahashi Surface echo characteristics derived from the wide swath experiment of the precipitation radar onboard TRMM satellite during its end-of-mission operation
KR102408991B1 (en) High resolution image decoding system based on squint sar and method of decoding image using the same
WO2014163069A1 (en) Radar signal processing method and device
Yoshikawa et al. A study of comb beam transmission on phased array weather radars
JP3292679B2 (en) Radar equipment
WO2015129842A1 (en) Radar device
Yang et al. The vertical ionosphere parameters inversion for high frequency surface wave radar
JP3195901B2 (en) Radar equipment
CN113009428B (en) C-band NGSO spaceborne radar ground radar same-frequency interference judging method
KR102494079B1 (en) Image decoding apparatus for correcting skewed image and method of decoding image using the same
CA3045206A1 (en) Synthetic aperture radar method and synthetic aperture radar system
KR102289433B1 (en) Image decoding apparatus based on squint sar and method of decoding image using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees