JP5376173B2 - Radiation pattern estimation method, apparatus and program thereof - Google Patents

Radiation pattern estimation method, apparatus and program thereof Download PDF

Info

Publication number
JP5376173B2
JP5376173B2 JP2010174272A JP2010174272A JP5376173B2 JP 5376173 B2 JP5376173 B2 JP 5376173B2 JP 2010174272 A JP2010174272 A JP 2010174272A JP 2010174272 A JP2010174272 A JP 2010174272A JP 5376173 B2 JP5376173 B2 JP 5376173B2
Authority
JP
Japan
Prior art keywords
radiation directivity
observation
radiation
directivity characteristic
observation points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010174272A
Other languages
Japanese (ja)
Other versions
JP2012034312A (en
Inventor
陽一 羽田
澄宇 阪内
健太 丹羽
拓磨 岡本
幸雄 岩谷
陽一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nippon Telegraph and Telephone Corp
Original Assignee
Tohoku University NUC
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nippon Telegraph and Telephone Corp filed Critical Tohoku University NUC
Priority to JP2010174272A priority Critical patent/JP5376173B2/en
Publication of JP2012034312A publication Critical patent/JP2012034312A/en
Application granted granted Critical
Publication of JP5376173B2 publication Critical patent/JP5376173B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Description

この発明は、指向性を持つ音源の放射指向特性を推定する方法とその装置とプログラムに関する。   The present invention relates to a method, apparatus, and program for estimating a radiation directivity characteristic of a sound source having directivity.

指向性のある音源、例えば人間が話した声は正面で聞くとはっきり聞こえるが、後頭部側からでは発話内容を明瞭に聞き取ることは難しい。これは、人間が発する声に指向特性があり、正面方向には強く、後頭部方向には弱い音が出ているためである。また、聞こえて来る声の様子が正面でははっきりしているが、後頭部方向ではこもって聞こえる。これは、高音域が聞こえ難く低音域が聞こえ易いからである。この現象は、音の指向特性に周波数依存性があることを示している。   A directional sound source, for example, a voice spoken by a human, can be clearly heard when heard in front, but it is difficult to clearly hear the utterance content from the back of the head. This is because a voice uttered by a human has directional characteristics, and a strong sound is produced in the front direction and a weak sound is produced in the occipital region. In addition, the voice that is heard is clearly seen in the front, but it can be heard in the back of the head. This is because it is difficult to hear the high sound range and the low sound range is easy to hear. This phenomenon indicates that the sound directivity has frequency dependency.

このような指向性を持つ音源の放射指向特性を正確に把握できれば、例えば、コンピュータグラフィックス等の音源の臨場感を向上させることができる。音源の放射指向特性は、音の反射の無い無響室内において、図1に示すように音源1を囲むように配置された複数のマイクロホン2iで観測された観測信号Yi(w)と、音源の源信号S(w)と用いて、例えば、Hi(w)=Yi(w)/S(w)として求める。このHi(w)は反射成分を含まない放射指向特性である。ここで、iは放射方向、wは周波数を表しY,S,Hは一般に複素数である。 If the radiation directivity characteristics of a sound source having such directivity can be accurately grasped, for example, the realistic sensation of a sound source such as computer graphics can be improved. The radiation directivity characteristics of the sound source are the observation signal Y i (w) observed by a plurality of microphones 2 i arranged so as to surround the sound source 1 as shown in FIG. Using the source signal S (w) of the sound source, for example, H i (w) = Y i (w) / S (w) is obtained. This H i (w) is a radiation directivity characteristic that does not include a reflection component. Here, i represents the radiation direction, w represents the frequency, and Y, S, and H are generally complex numbers.

しかしながら、測定に用いる無響室は高価なため、通常の部屋で放射指向特性が測定できた方が好ましい。そこで非特許文献1に、残響の有る部屋において音源S(w)の放射指向特性が分からない状態からでもその放射特性を抽出する方法が開示されている。その方法は次の通りである。   However, since the anechoic chamber used for measurement is expensive, it is preferable that the radiation directivity characteristics can be measured in a normal room. Therefore, Non-Patent Document 1 discloses a method of extracting the radiation characteristic even from a state in which the radiation directivity characteristic of the sound source S (w) is unknown in a room with reverberation. The method is as follows.

最初に、図2に示すように部屋の壁から離れた位置にマイクロホンを複数配置し、音源S(w)から放射された音Yi(w)を観測する。そして、観測されたマイクロホン信号Yi(w)から残響抑圧手法(例えば、非特許文献2)を利用してS(w)を推定する。推定したS(w)とYi(w)とから音源1からマイクロホン2iまでの伝達関数Gi(w)をGi(w)=Yi(w)/S(w)として求める。図3に示すように、Gi(w)には部屋の残響特性や壁からの反射音成分も含まれる。図3の横軸は時間、縦軸はマイクロホン信号の振幅であり、Gi(w)を逆フーリエ変換して時間領域の信号に変換したものであり、インパルス応答と呼ばれる。このインパルス応答から、残響や反射の影響を受けていない前半部分L<(P)のみを切り出し、フーリエ変換して残響や反射の影響を受けていない放射指向特性Hi(w)とする。 First, as shown in FIG. 2, a plurality of microphones are arranged at positions away from the wall of the room, and the sound Y i (w) radiated from the sound source S (w) is observed. Then, S (w) is estimated from the observed microphone signal Y i (w) using a dereverberation technique (for example, Non-Patent Document 2). From the estimated S (w) and Y i (w), a transfer function G i (w) from the sound source 1 to the microphone 2 i is obtained as G i (w) = Y i (w) / S (w). As shown in FIG. 3, G i (w) includes the reverberation characteristics of the room and the reflected sound component from the wall. The horizontal axis in FIG. 3 is time, the vertical axis is the amplitude of the microphone signal, and G i (w) is inverse Fourier transformed into a signal in the time domain, which is called an impulse response. From this impulse response, only the first half L <(P) that is not affected by reverberation or reflection is cut out and subjected to Fourier transform to obtain a radiation directivity H i (w) that is not affected by reverberation or reflection.

岡本ほか、「包囲型マイクロホンを用いた音源放射指向特性抽出に関する基礎的検討」、信学技法、EA200-48(2009-08)pp.31-36.Okamoto et al., `` Fundamental study on sound source radiation pattern extraction using a surrounding microphone '', IEICE Tech., EA200-48 (2009-08) pp.31-36. 岡本ほか、「観測信号の白色化フィルタによる線形予測ブライント残響除去の高精度化」、音講論(春)、pp.675-676,Mar,2009.Okamoto et al., “High accuracy of linear prediction blind reverberation removal by whitening filter of observation signal”, Sound lecture (Spring), pp.675-676, Mar, 2009.

音源の放射指向特性を測定する方法として、無響室で測定する方法と残響の有る部屋で測定する2つの従来手法を示したが、どちらの方法も、あらゆる方向に対する放射特性を求めようとした場合には、多数のマイクロホンを用意して観測信号を得る必要があり、手間がかかる。   As a method of measuring the radiation directivity characteristics of a sound source, two conventional methods for measuring in an anechoic room and in a room with reverberation were shown, but both methods tried to find radiation characteristics in all directions. In this case, it is necessary to prepare a large number of microphones and obtain an observation signal, which is troublesome.

この発明は、このような課題に鑑みてなされたものであり、従来法よりも少ない数のマイクロホンで観測した観測信号を元に放射指向特性を推定する放射指向特性推定方法とその装置とプログラムを提供することを目的とする。   The present invention has been made in view of such problems. A radiation directivity characteristic estimation method, an apparatus, and a program for estimating a radiation directivity characteristic based on observation signals observed with a smaller number of microphones than the conventional method are provided. The purpose is to provide.

この発明の放射指向特性推定方法は、周囲の長さがQである音源の放射指向特性を推定する放射指向特性推定方法であって、収音過程と、最低観測点数算出過程と、補間点数算出過程と、放射指向特性推定過程と、を含む。収音過程は、音源を中心に、所定の間隔を空けてL個配置されるマイクロホンの収音信号を用いて上記音源からの観測信号を必要な周波数毎に得る。最低観測点数算出過程は、音源の周囲の長さQを、周波数毎の波長の8分の1以下の波長で除した数から1を引いた数を最低観測点数Mとして必要な周波数毎に求める。補間点数算出過程は、マイクロホンの数Lを最低観測点数M+1で除した値に1を加えた値を、放射指向特性を補間する補間に用いる観測点の個数Nとして求める。放射指向特性推定過程は、補間に用いる観測点の個数Nの観測信号を用いて補間して観測点の間の位置の放射指向特性を推定する。   The radiation directivity characteristic estimation method according to the present invention is a radiation directivity characteristic estimation method for estimating the radiation directivity characteristic of a sound source having a perimeter length of Q. The sound collection process, the minimum observation point calculation process, and the interpolation point calculation And a radiation directivity characteristic estimation process. In the sound collection process, an observation signal from the sound source is obtained for each necessary frequency using sound collection signals of L microphones arranged at a predetermined interval around the sound source. In the process of calculating the minimum number of observation points, the number obtained by subtracting 1 from the length Q of the circumference of the sound source divided by a wavelength equal to or less than one-eighth of the wavelength for each frequency is obtained as the minimum number of observation points M for each necessary frequency. . In the interpolation point number calculation process, a value obtained by adding 1 to the value obtained by dividing the number L of microphones by the minimum number of observation points M + 1 is obtained as the number N of observation points used for interpolation for interpolating the radiation directivity characteristics. In the radiation directivity characteristic estimation process, interpolation is performed using observation signals of the number N of observation points used for interpolation to estimate the radiation directivity characteristics at positions between observation points.

この発明の放射指向特性推定方法は、音源の周囲の長さQよりも大きい波長の周波数の放射指向特性の変化は全方位にわたって穏やか、また、周囲の長さQよりも小さい波長の放射指向特性の変化は大きいと考え、周波数に応じて補間に利用する観測信号の数を変えて放射指向特性を推定する。よって、得たい放射指向特性の全ての方向にマイクロホンを配置する必要が無く、従来法よりも少ないマイクロホンの数で放射指向特性を正確に推定することを可能にする。   According to the radiation directivity characteristic estimation method of the present invention, the change in the radiation directivity characteristic of a frequency having a wavelength larger than the peripheral length Q of the sound source is gentle in all directions, and the radiation directivity characteristic having a wavelength smaller than the peripheral length Q The radiation directivity characteristics are estimated by changing the number of observation signals used for interpolation according to the frequency. Therefore, there is no need to arrange microphones in all directions of the desired radiation directivity, and the radiation directivity can be accurately estimated with fewer microphones than in the conventional method.

従来方法の、無響室内で音源1の放射指向特性を測定する音源1とマイクロホン2iの配置の例を示す図。Conventional method, shows an example of the arrangement of the sound source 1 and the microphone 2 i which measures the radiation directivity characteristic of the sound source 1 in an anechoic chamber. 非特許文献1に開示された残響の有る部屋において残響除去して放射指向特性を測定する方法の音源1とマイクロホン2iの配置の例を示す図。It shows an example of the arrangement of the sound source 1 and the microphone 2 i of the method in a room with a reverberation disclosed in Non-Patent Document 1 and dereverberation measuring the radiation patterns. 音源の放射特性に関わる部分と、反射・残響成分に関わる部分を示す時間領域の観測信号の例を示す図。The figure which shows the example of the observation signal of the time domain which shows the part in connection with the radiation | emission characteristic of a sound source, and the part in connection with a reflection and reverberation component. 異なる周波数の放射指向特性を示す図であり、(a)は低い周波数の放射指向特性の例を示す、(b)は高い周波数の放射指向特性の例を示す図である。It is a figure which shows the radiation directivity characteristic of a different frequency, (a) shows the example of the radiation directivity characteristic of a low frequency, (b) is a figure which shows the example of the radiation directivity characteristic of a high frequency. 正弦波の波形の波長の8分の1以下の範囲では振幅が直線的に変化している様子を示す図。The figure which shows a mode that the amplitude is changing linearly in the range below 1/8 of the wavelength of the waveform of a sine wave. この発明の放射指向特性推定装置100の機能構成例を示す図。The figure which shows the function structural example of the radiation directivity characteristic estimation apparatus 100 of this invention. 放射指向特性推定装置100の動作フローを示す図。The figure which shows the operation | movement flow of the radiation directivity characteristic estimation apparatus 100. 16個のマイクロホンで音源1の放射指向特性を測定する場合の、音源1とマイクロホン2iの配置の例を示す図。When measuring the directional characteristics of radiation source 1 with 16 microphones, shows an example of the arrangement of the sound source 1 and the microphone 2 i. この発明の放射指向特性推定装置100′の機能構成例を示す図。The figure which shows the function structural example of the radiation directivity characteristic estimation apparatus 100 'of this invention. 放射指向特性推定装置100′の動作フローを示す図。The figure which shows the operation | movement flow of radiation | emission directivity characteristic estimation apparatus 100 '.

以下、この発明の実施の形態を図面を参照して説明する。複数の図面中同一のものには同じ参照符号を付し、説明は繰り返さない。実施例の説明の前に、この発明の基本的な考えについて説明する。   Embodiments of the present invention will be described below with reference to the drawings. The same reference numerals are given to the same components in a plurality of drawings, and the description will not be repeated. Prior to the description of the embodiments, the basic idea of the present invention will be described.

〔この発明の基本的な考え〕
この発明の基本的な考えは、観測点の間の放射指向特性を補間するときに、低域と高域の波長の違いに着目し、補間に利用する周辺の既知の観測信号の利用個数を変えて推定するものである。
[Basic idea of the present invention]
The basic idea of the present invention is that, when interpolating the radiation directivity characteristics between observation points, pay attention to the difference between the low-frequency and high-frequency wavelengths and determine the number of known observation signals used in the surroundings for interpolation. It is estimated by changing.

図4に、音源の周囲の長さQと放射指向特性との関係を定性的に示す。図4(a)は、音源の周囲の長さQよりも大きな波長、つまり、音源の周囲の長さQの波長に相当する周波数以下の周波数の放射指向特性の一例を示す。図4(b)は、音源の周囲の長さQよりも小さな波長、つまり、音源の周囲の長さQの波長に相当する周波数以上の周波数の放射指向特性の一例を示す。どちらも極座標で放射指向特性を示す。   FIG. 4 qualitatively shows the relationship between the circumference Q of the sound source and the radiation directivity characteristics. FIG. 4A shows an example of the radiation directivity characteristic of a wavelength larger than the length Q around the sound source, that is, a frequency equal to or lower than the frequency corresponding to the wavelength of the length Q around the sound source. FIG. 4B shows an example of radiation directivity characteristics of a wavelength smaller than the length Q around the sound source, that is, a frequency equal to or higher than the frequency corresponding to the wavelength of the length Q around the sound source. Both exhibit radiation directivity in polar coordinates.

音は、低い周波数ほど波長が長く、高い周波数ほど波長が短い。音源の大きさが、波長に比べて小さい場合には、その音源からの音の放射指向特性の方向による変化は少ないと考えられる(図4(a))。これは、低い周波数の音を、移動しながら聞いた時に同じ音圧で聞こえる経験からも明らかである。逆に、音源の大きさが波長に比べて大きい場合の周波数の高い音の放射指向特性は、方向による変化が大きい(図4(b))。   The sound has a longer wavelength at lower frequencies and a shorter wavelength at higher frequencies. When the size of the sound source is smaller than the wavelength, it is considered that the change due to the direction of the radiation directivity characteristic of the sound from the sound source is small (FIG. 4A). This is clear from the experience of hearing low-frequency sounds with the same sound pressure when moving and listening. On the other hand, the radiation directivity characteristic of a sound with a high frequency when the size of the sound source is larger than the wavelength varies greatly depending on the direction (FIG. 4B).

また、音波を周波数ごとに分解すれば、各周波数の波形は正弦波である。放射指向特性の各周波数の正弦波も波長の8分の1以下の間隔で観測すると、その特性の変化が緩やかであると考えられる。図5に、正弦波の波長の8分の1の変化を破線で示す。図5の横軸は時間、縦軸は振幅である。波長の8分の1以下の間隔で正弦波をみると、傾きの変化がなく、直線近似しても誤差が少ない。   If the sound wave is decomposed for each frequency, the waveform of each frequency is a sine wave. When the sine wave of each frequency of the radiation directivity characteristic is also observed at an interval of 1/8 or less of the wavelength, the change of the characteristic is considered to be gradual. In FIG. 5, the change of 1/8 wavelength of the sine wave is shown by a broken line. The horizontal axis in FIG. 5 is time, and the vertical axis is amplitude. When a sine wave is viewed at an interval equal to or less than one-eighth of the wavelength, there is no change in inclination, and there is little error even if linear approximation is performed.

この発明は、上記した2つの特性に着目して放射指向特性を推定する。半径rの音源では、音源の周囲の長さQの8分の1波長に対応する周波数以下の放射指向特性の変化は穏やかである。そのため、式(1)に示す周波数f以下の周波数であれば、音源の放射指向特性を観測する観測点は半径Rの円周上の1点でも良いことになる。   In the present invention, the radiation directivity characteristic is estimated by paying attention to the above two characteristics. In the sound source with the radius r, the change of the radiation directivity characteristic below the frequency corresponding to the eighth wavelength of the length Q around the sound source is gentle. Therefore, if the frequency is equal to or lower than the frequency f shown in the equation (1), the observation point for observing the radiation directivity characteristic of the sound source may be one point on the circumference of the radius R.

Figure 0005376173
Figure 0005376173

ここでcは音速であり約340mである。   Here, c is the speed of sound and is about 340 m.

一方、周波数が高くなると波長が短くなるため、音源の放射指向特性の変化も激しくなり、波長の8分の1の間隔で観測するためには観測点の最低観測点数Mは、式(2)で表すように増加させる必要がある。−1は、円周の起点(0)と終点(2πr)が同じなのでその数を減ずるものである。   On the other hand, since the wavelength becomes shorter as the frequency becomes higher, the change in the radiation directivity characteristic of the sound source becomes severe. In order to observe at an interval of 1/8 wavelength, the minimum number M of observation points is expressed by the equation (2). It is necessary to increase as represented by. Since −1 has the same starting point (0) and end point (2πr), the number is reduced.

Figure 0005376173
Figure 0005376173

なお、8は、音波の特性の変化が穏やかであることから決められた値なので、8以上の実数であれば何でも良いことになる。しかし、その値は、単純に増加させるとMも増えるのでマイクロホンの数Lとのバランスで決められる。   Note that 8 is a value determined because the change in the characteristics of the sound wave is gentle, so any value that is a real number equal to or greater than 8 is acceptable. However, if the value is simply increased, M also increases, so that the value is determined by the balance with the number L of microphones.

このように最低観測点数Mは周波数fによって変化する値である。観測点の数が一定である場合、放射指向特性を推定するための最低観測点数Mは、周波数fが高いほど増加する関係になる。そして、観測点の間の放射指向特性は、推定する位置を挟む2点の観測信号から求めることになる。   Thus, the minimum number of observation points M is a value that varies with the frequency f. When the number of observation points is constant, the minimum observation point number M for estimating the radiation directivity characteristic increases as the frequency f increases. The radiation directivity characteristic between the observation points is obtained from the two observation signals sandwiching the estimated position.

一方、周波数fが低い場合は最低観測点数Mは減少する関係にある。しかし、観測信号は最低観測点数Mよりも多く存在する。少ないM個の観測信号から放射指向特性を推定することが可能であるが、その観測信号に雑音が含まれることも考えられる。よって、隣接する2点以外の観測点の観測信号も含めて補間するほうが、放射指向特性の推定誤差を少なくすることができる。   On the other hand, when the frequency f is low, the minimum number of observation points M is in a decreasing relationship. However, there are more observation signals than the minimum number M of observation points. Although it is possible to estimate the radiation directivity characteristics from a small number of M observation signals, it is conceivable that the observation signals include noise. Therefore, it is possible to reduce the estimation error of the radiation directivity characteristic by interpolating including observation signals at observation points other than two adjacent points.

この補間に用いる点数Nは、式(3)に示すように定式化することができる。   The number N of points used for this interpolation can be formulated as shown in Equation (3).

Figure 0005376173
Figure 0005376173

最低観測点数Mが、実観測点数L(マイクロホンの数)と同等以上の場合には、隣接した2点の観測点の観測信号を用いて補間すれば良く、少ないマイクロホンの数で放射指向特性を正確に推定することができる。詳しくは後述する。   When the minimum number of observation points M is equal to or greater than the actual number of observation points L (number of microphones), it is sufficient to interpolate using observation signals at two adjacent observation points, and the radiation directivity characteristics can be obtained with a small number of microphones. It can be estimated accurately. Details will be described later.

図6にこの発明の放射指向特性推定装置100の機能構成例を示す。図7にその動作フローを示す。放射指向特性推定装置100は、L個のマイクロホン21〜2Lと、収音部10と、最低観測点数算出部20と、補間点数算出部30と、放射指向特性推定部40と、を具備する。 FIG. 6 shows a functional configuration example of the radiation directivity characteristic estimation apparatus 100 of the present invention. FIG. 7 shows the operation flow. The radiation directivity characteristic estimation apparatus 100 includes L microphones 2 1 to 2 L , a sound collection unit 10, a minimum observation point number calculation unit 20, an interpolation point calculation unit 30, and a radiation directivity characteristic estimation unit 40. To do.

図8に、音源1とL個のマイクロホンの配置の例を示す。図8は、半径rの音源1を中心とした所定の半径Rの円周上に例えば16個のマイクロホン21〜216が配置される例を示す。16個のマイクロホンで収音された収音信号は収音部10に入力される。マイクロホンの数は16個に限定されない。また、音源1を中心に中心角22.5°で等間隔に配置する例を示したが、等間隔である必要もない。また、図2に示したようにマイクロホンを音源1を中心に四角形状に配置しても良い。マイクロホンの数L個は、音源1の周囲の長さQと求める放射指向特性の上限周波数fmaxによって、式(2)で決まるM以上の数である。例えば、上限周波数fmaxを1280Hzとした場合はL=32個となる。 FIG. 8 shows an example of the arrangement of the sound source 1 and L microphones. FIG. 8 shows an example in which, for example, 16 microphones 2 1 to 2 16 are arranged on the circumference of a predetermined radius R around the sound source 1 having a radius r. The sound collection signals collected by the 16 microphones are input to the sound collection unit 10. The number of microphones is not limited to 16. In addition, although the example in which the sound source 1 is arranged at equal intervals with a central angle of 22.5 ° has been shown, it is not necessary to have equal intervals. Further, as shown in FIG. 2, the microphones may be arranged in a square shape with the sound source 1 as the center. The number L of microphones is a number equal to or greater than M determined by Expression (2), based on the length Q around the sound source 1 and the upper limit frequency f max of the radiation directivity to be obtained. For example, when the upper limit frequency f max is 1280 Hz, L = 32.

収音部10は、L個の収音信号を周波数分析して音源1からの観測信号を必要な周波数毎に得る(ステップS10)。収音部10はディジタル信号処理を行うものであるが、図においてアナログ信号である収音信号を、ディジタル信号に変換するA/D変換器等の表記は省略している。   The sound collection unit 10 performs frequency analysis on the L sound collection signals and obtains an observation signal from the sound source 1 for each necessary frequency (step S10). The sound collection unit 10 performs digital signal processing. In the figure, an A / D converter or the like for converting the sound collection signal, which is an analog signal, into a digital signal is omitted.

収音部10は、周波数分析手段11と、記憶手段12と、を含み16個の収音信号は周波数分析手段11で必要な周波数ごとに周波数分析され、その分析された観測信号は記憶手段12に記録される。周波数分析手段11には、例えば高速フーリエ変換等が用いられる。周波数分析手段11は、所望の周波数分解能が得られるサンプル数の単位で周波数分析を行う(ステップS11)。周波数分析した観測信号は、記憶手段12に記憶される(ステップS12)。   The sound collection unit 10 includes a frequency analysis unit 11 and a storage unit 12. Sixteen sound collection signals are subjected to frequency analysis for each frequency required by the frequency analysis unit 11, and the analyzed observation signals are stored in the storage unit 12. To be recorded. For the frequency analysis means 11, for example, fast Fourier transform or the like is used. The frequency analysis means 11 performs frequency analysis in units of the number of samples from which a desired frequency resolution can be obtained (step S11). The observation signal subjected to frequency analysis is stored in the storage unit 12 (step S12).

最低観測点数算出部20は、音源1の周囲の長さQを、周波数毎の波長の8分の1以下の波長で除した数から1を引いた数を最低観測点数Mとして周波数毎に求める(ステップS20)。補間点数算出部30は、マイクロホンの数Lを最低観測点数M+1で除した値に1を加えた値を、放射指向特性を補間する補間に用いる観測点の個数Nとして求める(ステップS30)。音源1の周囲の長さQとマイクロホンの数Lは、予め定数として設定されていても良いし、外部から与えても良い。   The minimum observation point number calculation unit 20 obtains the number obtained by subtracting 1 from the number obtained by dividing the circumference Q of the sound source 1 by a wavelength equal to or less than one-eighth of the wavelength for each frequency as the minimum observation point number M for each frequency. (Step S20). The interpolation point calculation unit 30 obtains a value obtained by adding 1 to the value obtained by dividing the number L of microphones by the minimum number of observation points M + 1 as the number N of observation points used for interpolation for interpolating the radiation directivity characteristic (step S30). The peripheral length Q of the sound source 1 and the number L of microphones may be set as constants in advance or may be given from the outside.

放射指向特性推定部40は、補間に用いる観測点の個数Nの観測信号を用いて補間して観測点間の位置の放射特性を推定する(ステップS40)。放射指向特性推定部40は、記憶手段12に記憶された補間に用いる観測点の周波数分析結果を読み出して観測点間の位置の放射特性を推定する。推定した放射特性は、周波数毎のパワーでも良いし、推定した周波数成分を時間領域の信号に逆フーリエ変換して求めたパワーでも良い。   The radiation directivity estimator 40 interpolates using the observation signals of the number N of observation points used for interpolation, and estimates the radiation characteristic of the position between the observation points (step S40). The radiation directivity characteristic estimation unit 40 reads the frequency analysis result of the observation points used for interpolation stored in the storage unit 12 and estimates the radiation characteristic of the position between the observation points. The estimated radiation characteristic may be a power for each frequency, or may be a power obtained by inverse Fourier transforming the estimated frequency component into a time domain signal.

次に具体例を示して放射指向特性推定部40の動作を更に詳しく説明する。音源1の半径rをr=0.17m、マイクロホンの数LをL=32とすると、最低観測点数算出部20と補間点数算出部30とが、最低観測点数Mと補間に用いる観測点の個数Nを、表1に示すように計算する。   Next, the operation of the radiation directivity characteristic estimation unit 40 will be described in more detail with a specific example. When the radius r of the sound source 1 is r = 0.17 m and the number L of microphones is L = 32, the minimum observation point number calculation unit 20 and the interpolation point number calculation unit 30 have the minimum observation point number M and the number N of observation points used for interpolation. Is calculated as shown in Table 1.

Figure 0005376173
周波数f=80Hzの場合、最低観測点数MはM=1である。これは、放射指向特性が方向によって変動しないためである。したがって、例えば5°方向の放射指向特性を推定する場合、0°の観測点の観測信号と同じ値にして良い。しかし、その0°の観測信号に雑音が含まれている可能性もある。一方、観測信号は32個存在するので、推定する位置を含むその方向の16個の観測信号の例えば平均値を、その位置の放射指向特性の値とする。このように複数の観測信号を平均するので、放射指向特性の推定精度を向上させることができる。
Figure 0005376173
When the frequency f = 80 Hz, the minimum observation point number M is M = 1. This is because the radiation directivity characteristic does not vary depending on the direction. Therefore, for example, when estimating the radiation directivity characteristic in the 5 ° direction, it may be the same value as the observation signal at the 0 ° observation point. However, there is a possibility that the observed signal at 0 ° contains noise. On the other hand, since 32 observation signals exist, for example, an average value of 16 observation signals in the direction including the estimated position is set as a value of the radiation directivity characteristic at the position. Since the plurality of observation signals are averaged in this way, the estimation accuracy of the radiation directivity characteristics can be improved.

周波数f=160Hzの場合、最低観測点数MはM=3である。周波数が少し高い分、補間に必要な最低観測点数Mが増加する。この場合、推定する位置を含む3個の観測信号の例えば平均値を、その位置の放射指向特性の推定値としても良いが、推定精度を向上させるために、推定する位置を含む8個の観測信号の平均値を推定値とする。   When the frequency f = 160 Hz, the minimum number of observation points M is M = 3. As the frequency is slightly higher, the minimum number of observation points M required for interpolation increases. In this case, for example, an average value of three observation signals including the estimated position may be used as an estimated value of the radiation directivity characteristic at the position, but in order to improve estimation accuracy, eight observations including the estimated position are included. Let the average value of the signal be the estimated value.

周波数f=1280Hzの場合、最低観測点数MはM=31である。各観測点の間の放射指向特性は、その間の位置を挟む2点の観測信号の平均値を推定値とする。   When the frequency f = 1280 Hz, the minimum number of observation points M is M = 31. For the radiation directivity characteristics between the observation points, the average value of the two observation signals sandwiching the position between them is an estimated value.

以上述べたように、低い周波数領域、つまり、最低観測点数Mより実観測点数が多くなる周波数域においては隣接する2点より多い数の観測信号を使って補間することができ、最低観測点数Mが実観測点数Lと同等以上の場合は隣接した2点の観測信号を用いて補間すれば良いことが分かる。   As described above, in the low frequency region, that is, the frequency region where the actual number of observation points is larger than the minimum number of observation points M, interpolation can be performed using more observation signals than two adjacent points. Is equal to or greater than the number of actual observation points L, it can be understood that interpolation may be performed using observation signals at two adjacent points.

なお、推定値を平均値で求める方法で説明したが、他の方法で推定値を求めても良い。例えば、最小自乗法で近似直線を求め、その近似直線を用いて直線補間して求めても良い。また、N≧4のときは、推定する位置の放射指向特性をスプライン補間して推定しても良い。スプライン補間は、滑らかな曲線で補間する周知の補間方法である。   Although the method for obtaining the estimated value by the average value has been described, the estimated value may be obtained by another method. For example, an approximate straight line may be obtained by the least square method, and the approximate straight line may be used for linear interpolation. When N ≧ 4, the radiation directivity characteristic at the estimated position may be estimated by spline interpolation. Spline interpolation is a well-known interpolation method that performs interpolation with a smooth curve.

また、放射指向特性推定装置100では、残響成分の除去について触れなかったが、従来技術で説明したのと同じように、収音部10に残響除去手段を設けて部屋の反射・残響成分を除去するようにしても良い。図9に、インパルス応答の前半の部分のみの信号を抽出する残響除去手段13を設けた放射指向特性推定装置100′の機能構成例を示す。その動作フローを図10に示す。放射指向特性推定装置100′は、残響除去手段13を備える収音部10′のみが放射指向特性推定装置100と異なる。残響除去手段13の動作は、従来技術で説明済みの動作と同じである。   In addition, although the radiation directivity estimation apparatus 100 did not touch on the removal of the reverberation component, the reverberation removing means is provided in the sound collection unit 10 to remove the reflection / reverberation component of the room as described in the prior art. You may make it do. FIG. 9 shows a functional configuration example of the radiation directivity characteristic estimation apparatus 100 ′ provided with the dereverberation means 13 for extracting the signal of only the first half of the impulse response. The operation flow is shown in FIG. The radiation directivity estimation apparatus 100 ′ is different from the radiation directivity characteristic estimation apparatus 100 only in the sound collection unit 10 ′ provided with the dereverberation means 13. The operation of the dereverberation means 13 is the same as that already described in the prior art.

以上述べたように、この発明の放射指向特性推定方法は、観測点の間の放射指向特性を補間するときに、低域と高域の波長の違いに着目し、補間に利用する周辺の既知の観測信号の利用個数を変えるものである。この方法によれば、従来は音源の放射指向特性を知るためには多くの観測点を用意する必要が有ったのに対して、少ない数の観測点からあらゆる方向の放射指向特性を推定することが可能になり効率的である。   As described above, the radiation directivity characteristic estimation method of the present invention pays attention to the difference between the low and high wavelengths when interpolating the radiation directivity characteristics between observation points, and knows the surroundings used for interpolation. This changes the number of observation signals used. According to this method, in order to know the radiation directivity characteristics of a sound source, it was necessary to prepare many observation points, but the radiation directivity characteristics in all directions were estimated from a small number of observation points. It is possible and efficient.

上記方法における処理過程をコンピュータによって実現する場合、各過程が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、各過程における処理手段がコンピュータ上で実現される。   When the processing steps in the above method are realized by a computer, the processing contents of the functions that each step should have are described by a program. Then, by executing this program on the computer, the processing means in each process is realized on the computer.

この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。具体的には、例えば、磁気記録装置として、ハードディスク装置、フレキシブルディスク、磁気テープ等を、光ディスクとして、DVD(Digital Versatile Disc)、DVD−RAM(Random Access Memory)、CD−ROM(Compact Disc Read Only Memory)、CD−R(Recordable)/RW(ReWritable)等を、光磁気記録媒体として、MO(Magneto Optical disc)等を、半導体メモリとしてEEP−ROM(Electronically Erasable and Programmable-Read Only Memory)等を用いることができる。   The program describing the processing contents can be recorded on a computer-readable recording medium. As the computer-readable recording medium, for example, any recording medium such as a magnetic recording device, an optical disk, a magneto-optical recording medium, and a semiconductor memory may be used. Specifically, for example, as a magnetic recording device, a hard disk device, a flexible disk, a magnetic tape or the like, and as an optical disk, a DVD (Digital Versatile Disc), a DVD-RAM (Random Access Memory), a CD-ROM (Compact Disc Read Only). Memory), CD-R (Recordable) / RW (ReWritable), etc., magneto-optical recording medium, MO (Magneto Optical disc), etc., semiconductor memory, EEP-ROM (Electronically Erasable and Programmable-Read Only Memory), etc. Can be used.

また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD−ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記録装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。   The program is distributed by selling, transferring, or lending a portable recording medium such as a DVD or CD-ROM in which the program is recorded. Further, the program may be distributed by storing the program in a recording device of a server computer and transferring the program from the server computer to another computer via a network.

また、各手段は、コンピュータ上で所定のプログラムを実行させることにより構成することにしてもよいし、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。   Each means may be configured by executing a predetermined program on a computer, or at least a part of these processing contents may be realized by hardware.

Claims (6)

周囲の長さがQである音源の放射指向特性を推定する放射指向特性推定方法であって、
上記音源を中心に、所定の間隔を空けてL個配置されるマイクロホンの収音信号を用いて上記音源からの観測信号を必要な周波数毎に得る収音過程と、
最低観測点数算出部が、上記音源の周囲の長さQを、上記周波数毎の波長の8分の1以下の波長で除した数から1を引いた数を最低観測点数Mとして周波数毎に求める最低観測点数算出過程と、
補間点数算出部が、上記マイクロホンの数Lを最低観測点数M+1で除した値に1を加えた値を、放射指向特性を補間する補間に用いる観測点の個数Nとして求める補間点数算出過程と、
放射指向特性推定部が、上記補間に用いる観測点の個数Nの観測信号を用いて補間して上記観測点の間の位置の放射指向特性を推定する放射指向特性推定過程と、
を含む放射指向特性推定方法。
A radiation directivity characteristic estimation method for estimating a radiation directivity characteristic of a sound source having a circumference length of Q,
A sound collection process for obtaining an observation signal from the sound source for each necessary frequency using sound collection signals of L microphones arranged at predetermined intervals around the sound source,
The lowest observation point number calculation unit obtains a number obtained by subtracting 1 from the number obtained by dividing the circumference Q of the sound source by a wavelength equal to or less than one-eighth of the wavelength for each frequency as the minimum observation point number M for each frequency The process of calculating the minimum number of observation points,
An interpolation point number calculating step for obtaining a value obtained by adding 1 to a value obtained by dividing the number L of the microphones by the minimum number of observation points M + 1 as the number N of observation points used for interpolation for interpolating the radiation directivity characteristics;
A radiation directivity estimation section in which a radiation directivity estimation section interpolates using observation signals of the number N of observation points used for the interpolation to estimate the radiation directivity characteristics at positions between the observation points;
A radiation directivity characteristic estimation method including:
請求項1に記載した放射指向特性推定方法において、
上記放射指向特性推定過程は、上記観測点の間の位置の放射特性を直線補間して推定する過程であることを特徴とする放射指向特性推定方法。
In the radiation directivity characteristic estimation method according to claim 1,
The radiation directivity characteristic estimation method, wherein the radiation directivity characteristic estimation process is a process of estimating a radiation characteristic at a position between the observation points by linear interpolation.
請求項1に記載した放射指向特性推定方法において、
上記放射指向特性推定過程は、上記個数N≧4のとき、上記観測点の間の位置の放射特性をスプライン補間して推定する過程であることを特徴とする放射指向特性推定方法。
In the radiation directivity characteristic estimation method according to claim 1,
The radiation directivity estimation method, wherein the radiation directivity estimation process is a process of estimating the radiation characteristics at positions between the observation points by spline interpolation when the number N ≧ 4.
請求項1乃至3の何れかに記載した放射指向特性推定方法において、
上記収音過程は、
インパルス応答の前半の部分のみの信号を抽出する残響除去ステップを含むことを特徴とする放射指向特性推定方法。
In the radiation directivity characteristic estimation method according to any one of claims 1 to 3,
The above sound collection process
A radiation directivity characteristic estimation method comprising a dereverberation step of extracting a signal of only the first half of an impulse response.
周囲の長さがQである音源の放射指向特性を推定する放射指向特性推定装置であって、
上記音源を中心に所定の間隔を空けてL個配置されるマイクロホンと、
上記マイクロホンのL個の収音信号を入力として上記音源からの観測信号を必要な周波数毎に得る収音部と、
観測周波数の波長を、当該波長の8分の1以下の波長で除した数から1を引いた数を最低観測点数Mとして求める最低観測点数算出部と、
観測点の放射指向特性を補間する補間に用いる観測点の個数Nを、上記マイクロホンの数Lを最低観測点数M+1で除した値に1を加えた値として求める補間点数算出部と、
上記観測点の放射特性を、上記補間に用いる観測点の個数Nの観測信号を用いて補間して上記観測点の間の位置の放射指向特性を推定する放射指向特性推定部と、
を具備する放射指向特性推定装置。
A radiation directivity characteristic estimation apparatus for estimating a radiation directivity characteristic of a sound source having a circumference length of Q,
L microphones arranged at predetermined intervals around the sound source;
A sound collection unit that receives L sound collection signals of the microphone as input and obtains an observation signal from the sound source for each necessary frequency;
A minimum observation point number calculation unit for obtaining a number obtained by subtracting 1 from the number obtained by dividing the wavelength of the observation frequency by a wavelength equal to or less than one-eighth of the wavelength as the minimum observation point number M;
An interpolation point calculation unit for obtaining the number N of observation points used for interpolation for interpolating the radiation directivity characteristics of observation points as a value obtained by adding 1 to a value obtained by dividing the number L of the microphones by the minimum number of observation points M + 1;
A radiation directivity estimation unit that estimates the radiation directivity at positions between the observation points by interpolating the radiation characteristics of the observation points using observation signals of the number N of observation points used for the interpolation;
A radiation directivity characteristic estimation apparatus comprising:
請求項1乃至4の何れかに記載した放射指向特性推定方法を、コンピュータに実行させるための放射指向特性推定方法プログラム。   A radiation directivity characteristic estimation method program for causing a computer to execute the radiation directivity characteristic estimation method according to any one of claims 1 to 4.
JP2010174272A 2010-08-03 2010-08-03 Radiation pattern estimation method, apparatus and program thereof Expired - Fee Related JP5376173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010174272A JP5376173B2 (en) 2010-08-03 2010-08-03 Radiation pattern estimation method, apparatus and program thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010174272A JP5376173B2 (en) 2010-08-03 2010-08-03 Radiation pattern estimation method, apparatus and program thereof

Publications (2)

Publication Number Publication Date
JP2012034312A JP2012034312A (en) 2012-02-16
JP5376173B2 true JP5376173B2 (en) 2013-12-25

Family

ID=45847155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010174272A Expired - Fee Related JP5376173B2 (en) 2010-08-03 2010-08-03 Radiation pattern estimation method, apparatus and program thereof

Country Status (1)

Country Link
JP (1) JP5376173B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888011B2 (en) * 2012-03-08 2016-03-16 日産自動車株式会社 Transmission characteristic generation method for sound insulation measurement, transmission characteristic generation apparatus for sound insulation measurement, sound insulation measurement method, and sound insulation measurement apparatus
JP5841986B2 (en) 2013-09-26 2016-01-13 本田技研工業株式会社 Audio processing apparatus, audio processing method, and audio processing program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06245300A (en) * 1992-12-21 1994-09-02 Victor Co Of Japan Ltd Sound image localization controller
JP3552244B2 (en) * 1993-05-21 2004-08-11 ソニー株式会社 Sound field playback device
JP3681511B2 (en) * 1997-06-11 2005-08-10 松下電器産業株式会社 Three-dimensional speaker directivity prediction method
US7333622B2 (en) * 2002-10-18 2008-02-19 The Regents Of The University Of California Dynamic binaural sound capture and reproduction
JP2007065204A (en) * 2005-08-30 2007-03-15 Nippon Telegr & Teleph Corp <Ntt> Reverberation removing apparatus, reverberation removing method, reverberation removing program, and recording medium thereof

Also Published As

Publication number Publication date
JP2012034312A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
RU2717895C2 (en) Apparatus and method for generating filtered audio signal realizing angle elevation rendering
JP5079761B2 (en) Direct ratio estimation device, sound source distance measurement device, noise removal device, method of each device, and device program
JP5606234B2 (en) Sound equipment
JP4552016B2 (en) Impulse response measuring method and apparatus
JP4274949B2 (en) Audio feedback processing system
CN104937659B (en) Car engine sound is extracted and is reproduced
KR100856246B1 (en) Apparatus And Method For Beamforming Reflective Of Character Of Actual Noise Environment
JP2008197284A (en) Filter coefficient calculation device, filter coefficient calculation method, control program, computer-readable recording medium, and audio signal processing apparatus
CN103621110A (en) Room characterization and correction for multi-channel audio
JP2015502524A (en) Computationally efficient broadband filter and sum array focusing
RU2007142625A (en) METHOD FOR CORRECTION OF ACOUSTIC PARAMETERS OF ELECTRO-ACOUSTIC CONVERTERS AND DEVICE FOR ITS IMPLEMENTATION
JP5738218B2 (en) Acoustic signal emphasizing device, perspective determination device, method and program thereof
JP5376173B2 (en) Radiation pattern estimation method, apparatus and program thereof
JP5077847B2 (en) Reverberation time estimation apparatus and reverberation time estimation method
US10805727B2 (en) Filter generation device, filter generation method, and program
JP2012128207A (en) Acoustic device, control method thereof, and program
JP6886890B2 (en) Decay time analysis methods, instruments, and programs
JP2018077139A (en) Sound field estimation device, sound field estimation method and program
JP5698166B2 (en) Sound source distance estimation apparatus, direct ratio estimation apparatus, noise removal apparatus, method thereof, and program
JP5815489B2 (en) Sound enhancement device, method, and program for each sound source
JP2017083566A (en) Noise suppression device, noise suppression method, and program
JP2004274234A (en) Reverberation eliminating method for sound signal, apparatus therefor, reverberation eliminating program for sound signal and recording medium with record of the program
Deboy et al. Tangential intensity algorithm for acoustic centering
JP2015169901A (en) Acoustic processing device
JP2019032446A (en) Acoustic simulation method, device, and program

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130910

R150 Certificate of patent or registration of utility model

Ref document number: 5376173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees