JP5357845B2 - Polarization mode dispersion stress generation method and apparatus - Google Patents

Polarization mode dispersion stress generation method and apparatus Download PDF

Info

Publication number
JP5357845B2
JP5357845B2 JP2010194007A JP2010194007A JP5357845B2 JP 5357845 B2 JP5357845 B2 JP 5357845B2 JP 2010194007 A JP2010194007 A JP 2010194007A JP 2010194007 A JP2010194007 A JP 2010194007A JP 5357845 B2 JP5357845 B2 JP 5357845B2
Authority
JP
Japan
Prior art keywords
polarization
light
orthogonal
incident
delay means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010194007A
Other languages
Japanese (ja)
Other versions
JP2012054673A (en
Inventor
隆生 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2010194007A priority Critical patent/JP5357845B2/en
Publication of JP2012054673A publication Critical patent/JP2012054673A/en
Application granted granted Critical
Publication of JP5357845B2 publication Critical patent/JP5357845B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To generate any PMD without the need of complicated control at low cost. <P>SOLUTION: A light signal which is incident to a light incidence part 21 is separated into two cross polarization components by polarized-wave separation means 23, and one of the components is given to first delay means 25 while the other is given to second delay means 26. The cross polarization components delayed by both of the delay means 25 and 26 are multiplexed by polarized-wave multiplexing means 28 to be emitted from a light emitting part 29. At least one of the delay means (the second delay means 26) rotates, by a rotating device 52, a mirror array 51 where a plurality of orthogonal mirrors 50 are integrated to respectively receive and return the polarized and separated light by separating it in the width direction of the light. The delay means then changes and transmits a delay time difference given to the light component respectively returned by each of the orthogonal mirrors 50, and changes a group delay time difference of the polarized components of the light multiplexed by the polarized-wave multiplexing means 28. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、高速光通信において問題となる光の偏波モード分散(PMD:Polarization Mode
Dispersion)に対する光伝送システム、光部品などの耐力測定に必要な偏波モード分散ストレス発生装置に関し、特に、低コストに任意のPMDが設定できるようにするための技術に関する。
The present invention relates to polarization mode dispersion (PMD: Polarization Mode) of light, which is a problem in high-speed optical communication.
More particularly, the present invention relates to a polarization mode dispersion stress generating apparatus necessary for measuring the proof strength of an optical transmission system, optical components, etc., and more particularly, to a technique for enabling an arbitrary PMD to be set at a low cost.

光通信システムに対するPMD耐力試験に用いる装置として従来からPMDエミュレータが用いられており、このPMDエミュレータで試験対象に入射する光にPMDストレスを加え、試験対象から出射される光信号についてのビット誤り率(BER)の測定を行い、加えるPMDストレスの大きさとBERとの関連付けにより耐力評価を行っている。   Conventionally, a PMD emulator has been used as a device used in a PMD tolerance test for an optical communication system. A PMD stress is applied to light incident on a test object by the PMD emulator, and a bit error rate for an optical signal emitted from the test object. (BER) is measured, and the strength evaluation is performed by associating the magnitude of PMD stress to be applied with BER.

なお、PMDは光信号が光コンポーネントを通過する際の直交する2つの偏波間における伝達速度の差と定義され、PMDについて議論するとき、実際に信号劣化に影響を及ぼすのは特定波長におけるある時間での二つの偏波間の群遅延時間差DGD(Differential Group Delay )であり、PMDは波長と時間に対するDGDの平均値となる。   PMD is defined as a difference in transmission speed between two orthogonal polarizations when an optical signal passes through an optical component. When discussing PMD, it is a certain time at a specific wavelength that actually affects signal degradation. Is a group delay time difference DGD (Differential Group Delay) between the two polarizations in FIG. 2, and PMD is an average value of DGD with respect to wavelength and time.

PMDは、光の直交偏波成分間の速度差であり、これを発生させる方式としてこれまでに以下に示す3つの方式が提案されている。   PMD is a speed difference between orthogonal polarization components of light, and the following three methods have been proposed so far to generate this.

第1方式は、特許文献1に開示されているように、光路に対して直列に並んだ複数の複屈折素子の間に偏波コントローラを配置し、それらの偏波コントローラにより通過する光の偏波をランダムに変化させて、直交する偏波成分にDGDを与えて、PMDを発生させる方式である。この方式は、複屈折素子の数を増やしていくことで、DGDの分布を理想とされるマクスウェル分布に近づけることができ、また高次PMDの発生も可能である。   In the first method, as disclosed in Patent Document 1, a polarization controller is arranged between a plurality of birefringent elements arranged in series with respect to an optical path, and the polarization of light passing through these polarization controllers is reduced. In this method, PMD is generated by randomly changing a wave and applying DGD to orthogonal polarization components. In this method, by increasing the number of birefringent elements, the distribution of DGD can be made close to the ideal Maxwell distribution, and higher order PMD can be generated.

しかし、この第1方式では、DGDの量が複屈折素子で与えられる位相差によって決まるため、任意のDGDを与えることが難しい。また、瞬時変化するDGDを発生させることが難しく、さらに、複数の複屈折素子と偏波コントローラが必要となることから、小型化および低コスト化が困難である。   However, in this first method, since the amount of DGD is determined by the phase difference given by the birefringent element, it is difficult to give an arbitrary DGD. In addition, it is difficult to generate DGD that changes instantaneously, and moreover, since a plurality of birefringent elements and a polarization controller are required, it is difficult to reduce the size and cost.

また、第2方式としては、特許文献2(特に図10)に開示されているように、光路に対して直列に並んだ複数の複屈折素子を機械的に回転させて、各複屈折素子によって位相差を変化させることで、PMDを発生させるものであり、この方式も高次PMDの発生が可能である。   As the second method, as disclosed in Patent Document 2 (particularly FIG. 10), a plurality of birefringent elements arranged in series with respect to the optical path are mechanically rotated, and each birefringent element is used. By changing the phase difference, PMD is generated, and this method can also generate higher-order PMD.

しかし、第1方式同様に、任意のPMD量を与えることが難しく、複数の複屈折素子およびこれらを回転させる機構が必要となり、小型化および低コスト化が困難であった。   However, as in the first method, it is difficult to give an arbitrary amount of PMD, and a plurality of birefringent elements and a mechanism for rotating these elements are required, which makes it difficult to reduce the size and cost.

また、第3方式としては、特許文献3に開示されているように、光を直交偏波成分に分離してその一方の光を可変遅延器で遅延させて、他方の光と合波することで、PMD(DGD)を発生させるものであり、この方式は、可変遅延器の遅延量に対応した任意で且つ正確なDGDを発生させることができる。   As a third method, as disclosed in Patent Document 3, the light is separated into orthogonal polarization components, one of the lights is delayed by a variable delay device, and combined with the other light. Thus, PMD (DGD) is generated. This method can generate an arbitrary and accurate DGD corresponding to the delay amount of the variable delay device.

特許第4098630号公報Japanese Patent No. 4098630 特開2006−086955号公報JP 2006-086955 A 特開2003−143088号公報JP 2003-143088 A

しかしながら、上記第3方式は、原理的に高次PMDを発生させることができない。また、第3方式の構成で、DGDを経時変化させる場合、可変遅延器の遅延量を周期関数(例えば一定振幅の正弦関数)で変化させることが想定されるが、その場合のDGD発生分布は、図11のように両端の発生確率が高く、中央部が低い凹型分布となり、凸型のマクスウェル分布に程遠くなってしまう。つまり、可変遅延器を用いてマクスウェル分布に近い発生確率でDGDを発生させるためには、可変遅延器に対して極めて複雑な遅延量可変制御が必要となり、実現が困難である。   However, the third method cannot generate higher order PMD in principle. In addition, when the DGD is changed with time in the configuration of the third method, it is assumed that the delay amount of the variable delay device is changed by a periodic function (for example, a sine function having a constant amplitude). In this case, the DGD generation distribution is As shown in FIG. 11, a concave distribution with a high probability of occurrence at both ends and a low central portion is obtained, which is far from a convex Maxwell distribution. That is, in order to generate DGD with an occurrence probability close to the Maxwell distribution using a variable delay device, extremely complicated delay amount variable control is required for the variable delay device, which is difficult to realize.

本発明は、上記事情を鑑みて、複雑な制御が不要で低コストに任意のPMDを発生させることができる偏波モード分散ストレス発生方法および装置を提供することを目的としている。   In view of the above circumstances, an object of the present invention is to provide a polarization mode dispersion stress generation method and apparatus capable of generating an arbitrary PMD at low cost without requiring complicated control.

前記目的を達成するために、本発明の請求項1の偏波モード分散ストレス発生方法は、
偏波モード分散の付与対象となる光信号を二つの直交偏波成分に分離し、
前記分離された一方の直交偏波成分を第1の光路を伝搬させ、他方の直交偏波成分を第2の光路を伝搬させるととともに、前記第1の光路と第2の光路のうち少なくとも一方の光路に、偏波分離された光をその幅方向に分けて複数の直交ミラー(50)でそれぞれ受けて折り返す折り返し光路を形成して幅方向で異なる遅延を与え、前記複数の直交ミラーを該直交ミラーを形成する一対の直交反射面が交わる境界線に平行な軸で一体的に回動させることで、各直交ミラーによりそれぞれ折り返された光成分に付与される遅延時間差を変動させて伝搬させ、
前記第1の光路と第2の光路を伝搬した直交偏波成分を合波して、互いに直交する偏波成分の群遅延時間差が、前記複数の直交ミラーの回動角に応じて変化する光を生成することを特徴とする。
In order to achieve the above object, a polarization mode dispersion stress generation method according to claim 1 of the present invention comprises:
Separates the optical signal to be given polarization mode dispersion into two orthogonal polarization components,
The separated one orthogonal polarization component is propagated in the first optical path, the other orthogonal polarization component is propagated in the second optical path, and at least one of the first optical path and the second optical path In this optical path, the polarization-separated light is divided in the width direction, and each of the plurality of orthogonal mirrors (50) receives and folds back the optical path to give different delays in the width direction. By rotating integrally with an axis parallel to the boundary line where a pair of orthogonal reflecting surfaces forming an orthogonal mirror intersects, the delay time difference given to the light component folded by each orthogonal mirror is changed and propagated. ,
Light in which the orthogonal polarization components propagated through the first optical path and the second optical path are combined, and the group delay time difference between the orthogonal polarization components changes according to the rotation angles of the plurality of orthogonal mirrors. Is generated.

また、本発明の請求項2の偏波モード分散ストレス発生装置は、
偏波モード分散の付与対象となる光信号を入射させるための光入射部(21)と、
前記光入射部に入射された光信号を二つの直交偏波成分に分離する偏波分離手段(22、23)と、
前記二つの直交偏波成分の一方を受けて第1の光路を経由させ、該第1の光路の長さ相当の遅延を与えて出射する第1遅延手段(25)と、
前記二つの直交偏波成分の他方を受けて第2の光路を経由させ、該第2の光路の長さ相当の遅延を与えて出射する第2遅延手段(26)と、
前記第1遅延手段によって遅延された一方の直交偏波成分と、前記第2遅延手段によって遅延された他方の直交偏波成分を合波する偏波合波手段(22、28)と、
前記偏波合波手段で合波された光を外部へ出射するための光出射部(29)と備え、
前記第1遅延手段と第2遅延手段の少なくとも一方は、
偏波分離された光をその幅方向に分けてそれぞれ受けて折り返す複数の直交ミラー(50)と、該複数の直交ミラーを該直交ミラーを形成する一対の直交反射面が交わる境界線に平行な軸で一体的に回動させる回動装置(52)とを含み、前記各直交ミラーによりそれぞれ折り返された光成分に付与される遅延時間差を変動させつつ伝搬させて、前記偏波合波手段で合波された光の偏波成分の群遅延時間差を、前記複数の直交ミラーの回動角に応じて変化させることを特徴とする。
The polarization mode dispersion stress generator according to claim 2 of the present invention is
A light incident part (21) for causing an optical signal to be given polarization mode dispersion to be incident;
Polarization separation means (22, 23) for separating the optical signal incident on the light incident portion into two orthogonal polarization components;
First delay means (25) for receiving one of the two orthogonally polarized components, passing through the first optical path, and emitting with a delay corresponding to the length of the first optical path;
Second delay means (26) for receiving the other of the two orthogonally polarized components, passing through the second optical path, and emitting with a delay corresponding to the length of the second optical path;
Polarization multiplexing means (22, 28) for combining one orthogonal polarization component delayed by the first delay means and the other orthogonal polarization component delayed by the second delay means;
A light emitting section (29) for emitting the light combined by the polarization multiplexing means to the outside,
At least one of the first delay means and the second delay means is:
A plurality of orthogonal mirrors (50) that receive and fold the polarization-separated light separately in the width direction, and the plurality of orthogonal mirrors are parallel to a boundary line where a pair of orthogonal reflecting surfaces forming the orthogonal mirror intersect. A rotation device (52) that rotates integrally with a shaft, and propagates while varying a delay time difference imparted to each light component folded by each orthogonal mirror, and the polarization multiplexing means The group delay time difference of the polarization components of the combined light is changed according to the rotation angles of the plurality of orthogonal mirrors.

また、本発明の請求項3の偏波モード分散ストレス発生装置は、請求項2記載の偏波モード分散ストレス発生装置において、
単一の偏光ビームスプリッタ(22)が、前記偏波分離手段と前記偏波合波手段とを兼ね、
前記偏光ビームスプリッタと前記第1遅延手段との間および前記偏光ビームスプリッタと前記第2遅延手段との間に、それぞれ1/4波長板(31、32)が挿入されており、
前記第1遅延手段と第2遅延手段は、前記偏光ビームスプリッタで分離された直交偏波成分を前記各1/4波長板を介して受けてこれを同一光軸で逆向きに折り返して再度前記1/4波長板に入射させて、分離時と偏光方向がそれぞれ90度異なる直交偏波成分に変えて分離時と同一光軸で前記偏光ビームスプリッタに戻し、それらを直交成分とする光を、前記偏光ビームスプリッタに対する前記光信号の入射光軸と直交する光軸に沿って出射させることを特徴とする。
A polarization mode dispersion stress generator according to claim 3 of the present invention is the polarization mode dispersion stress generator according to claim 2,
A single polarization beam splitter (22) serves as both the polarization separation means and the polarization multiplexing means,
Quarter wavelength plates (31, 32) are inserted between the polarization beam splitter and the first delay means and between the polarization beam splitter and the second delay means, respectively.
The first delay means and the second delay means receive the orthogonal polarization components separated by the polarization beam splitter through the quarter wavelength plates, and fold them in the opposite directions around the same optical axis, and again Incident light into a quarter-wave plate, converted into orthogonal polarization components whose polarization directions are 90 degrees different from those at the time of separation, and returned to the polarization beam splitter with the same optical axis as that at the time of separation, The optical beam is emitted along an optical axis orthogonal to an incident optical axis of the optical signal to the polarizing beam splitter.

本発明の請求項4の偏波モード分散ストレス発生装置は、請求項2記載の偏波モード分散ストレス発生装置において、
前記偏波分離手段と前記偏波合波手段は、それぞれ個別の偏光ビームスプリッタ(23、28)によって構成されていることを特徴とする。
The polarization mode dispersion stress generator according to claim 4 of the present invention is the polarization mode dispersion stress generator according to claim 2,
The polarization separation means and the polarization multiplexing means are each constituted by individual polarization beam splitters (23, 28).

本発明の請求項5の偏波モード分散ストレス発生装置は、請求項2〜4のいずれかに記載の偏波モード分散ストレス発生装置において、
前記複数の直交ミラーに入射される光のビーム幅を広げるビームエキスパンダ(53)を、前記偏波分離手段と前記複数の直交ミラーの間に配置したことを特徴とする。
The polarization mode dispersion stress generator according to claim 5 of the present invention is the polarization mode dispersion stress generator according to any one of claims 2 to 4.
A beam expander (53) for expanding the beam width of light incident on the plurality of orthogonal mirrors is disposed between the polarization separating means and the plurality of orthogonal mirrors.

また、本発明の請求項6の偏波モード分散ストレス発生装置は、請求項2〜5のいずれかに記載の偏波モード分散ストレス発生装置において、
前記光入射部には、入射光のビーム幅を広げて平行光にするコリメータ(21b)が設けられ、前記光出射部には、合波光を集光するための集光レンズ(29a)が設けられており、
前記光入射部のコリメータと前記光出射部の集光レンズが、ビーム幅拡張方向が互いに直交する二組のシリンドリカルレンズによってそれぞれ形成されていることを特徴とする。
A polarization mode dispersion stress generator according to claim 6 of the present invention is the polarization mode dispersion stress generator according to any one of claims 2 to 5,
The light incident part is provided with a collimator (21b) that widens the beam width of incident light to make parallel light, and the light emitting part is provided with a condenser lens (29a) for condensing the combined light. And
The collimator of the light incident part and the condensing lens of the light emission part are respectively formed by two sets of cylindrical lenses whose beam width expansion directions are orthogonal to each other.

また、本発明の請求項7の偏波モード分散ストレス発生装置は、請求項2〜5のいずれかに記載の偏波モード分散ストレス発生装置において、
前記光入射部には、入射光の偏波状態をランダム化する偏波スクランブラ(21c)が設けられていることを特徴とする。
A polarization mode dispersion stress generator according to claim 7 of the present invention is the polarization mode dispersion stress generator according to any one of claims 2 to 5,
The light incident portion is provided with a polarization scrambler (21c) for randomizing the polarization state of incident light.

また、本発明の請求項8の偏波モード分散ストレス発生装置は、請求項2〜6のいずれかに記載の偏波モード分散ストレス発生装置において、
前記偏波合波手段によって合波されて前記光出射部に出射される光の一部を分岐する分岐器(56)と、
前記分岐器によって分岐された光から両偏波成分を取り出すように、両偏光方向に対して偏光軸を45度傾けた検光子(57)と、
前記検光子によって検出された両偏波成分を受光する受光器(58)と、
前記第1遅延手段と第2遅延手段の少なくとも一方に含まれる光反射手段(25a)を、その入射光軸と平行な方向にスライド移動させて該光反射手段によって折り返される光路長を均一に変化させるスライド駆動手段(25b)とを含み、
前記光入射部から広帯域光源を入射させて、前記複数のミラーの角度を所定角度に固定した状態で、前記スライド駆動手段を制御したときの前記受光器の出力に基づいて、前記第1遅延手段と第2遅延手段の光路長合わせを行い、該光路長が合った状態から前記複数のミラーを前記所定角度から回動させることを特徴とする。
A polarization mode dispersion stress generator according to claim 8 of the present invention is the polarization mode dispersion stress generator according to any one of claims 2 to 6,
A branching device (56) for branching a part of the light combined by the polarization multiplexing unit and output to the light output unit;
An analyzer (57) having a polarization axis inclined by 45 degrees with respect to both polarization directions so as to extract both polarization components from the light branched by the splitter;
A light receiver (58) for receiving both polarization components detected by the analyzer;
The light reflection means (25a) included in at least one of the first delay means and the second delay means is slid in a direction parallel to the incident optical axis, and the optical path length turned back by the light reflection means is uniformly changed. Slide driving means (25b)
The first delay means based on the output of the light receiver when the slide driving means is controlled in a state where a broadband light source is incident from the light incident portion and the angles of the plurality of mirrors are fixed to a predetermined angle. And adjusting the optical path lengths of the second delay means, and rotating the plurality of mirrors from the predetermined angle when the optical path lengths are matched.

このように、本発明は、偏波モード分散の付与対象となる光信号を二つの直交偏波成分に分離し、その一方の直交偏波成分を第1の光路を伝搬させ、他方の直交偏波成分を第2の光路を伝搬させるととともに、両光路のうち少なくとも一方に、偏波分離された光をその幅方向に分けて複数の直交ミラー(50)でそれぞれ受けて折り返す折り返し光路を形成し、その複数の直交ミラーを直交ミラーを形成する一対の直交反射面が交わる境界線に平行な軸で一体的に回動させることで、各直交ミラーによりそれぞれ折り返された光成分に付与される遅延時間差を変動させて伝搬させ、第1の光路と第2の光路を伝搬した直交偏波成分を合波して、互いに直交する偏波成分の群遅延時間差が、複数の直交ミラーの回動角に応じて変化する光を生成している。   As described above, the present invention separates an optical signal to be applied with polarization mode dispersion into two orthogonal polarization components, propagates one orthogonal polarization component in the first optical path, and transmits the other orthogonal polarization component. A wave component is propagated through the second optical path, and at least one of the two optical paths is formed with a folded optical path that divides the polarization-separated light into its width direction and receives it by a plurality of orthogonal mirrors (50). Then, by rotating the plurality of orthogonal mirrors integrally with an axis parallel to the boundary line where the pair of orthogonal reflecting surfaces forming the orthogonal mirrors intersects, the light components respectively given back by the orthogonal mirrors are given. Propagating by changing the delay time difference, and combining the orthogonal polarization components propagated through the first optical path and the second optical path, the group delay time difference between the orthogonal polarization components is the rotation of the plurality of orthogonal mirrors Produces light that changes with angle To have.

このため、複数の直交ミラーの回動角に基づいて任意のDGDを与えることができ、また、シングルモード光ファイバによって光を入射した場合、光ファイバから出射される光強度がガウス分布であるため、ガウス分布をもったDGDを発生させることができる。   For this reason, arbitrary DGD can be given based on the rotation angles of a plurality of orthogonal mirrors, and when light is incident through a single mode optical fiber, the light intensity emitted from the optical fiber has a Gaussian distribution. DGD having a Gaussian distribution can be generated.

さらに、装置として機械的に駆動される部分は、複数の直交ミラーを一体的に回動させる機構だけなので、小型化および低コストが可能である。   Further, since the part mechanically driven as the apparatus is only a mechanism for integrally rotating a plurality of orthogonal mirrors, it is possible to reduce the size and cost.

また、複数の直交ミラーに入射される光のビーム幅を広げるビームエキスパンダ(53)を、偏波分離手段と複数の直交ミラーの間に配置した場合、小型の光学系で、より大きな遅延時間差を付与することができる。   Further, when the beam expander (53) for expanding the beam width of the light incident on the plurality of orthogonal mirrors is disposed between the polarization separating means and the plurality of orthogonal mirrors, a larger delay time difference can be achieved with a small optical system. Can be granted.

また、光入射部のコリメータと光出射部の集光レンズが、ビーム幅拡張方向が互いに直交する二組のシリンドリカルレンズによってそれぞれ形成されている場合も、より大きな遅延時間差を付与することができる。   Further, when the collimator of the light incident part and the condensing lens of the light emission part are respectively formed by two sets of cylindrical lenses whose beam width expansion directions are orthogonal to each other, a larger delay time difference can be given.

また、光入射部に偏波スクランブラを設けたものでは、入射光の偏波依存性を排除できる。   Further, in the case where a polarization scrambler is provided in the light incident part, the polarization dependency of incident light can be eliminated.

本発明の基本構成図Basic configuration diagram of the present invention 偏波成分に幅方向に異なる遅延時間差を付与するための説明図Explanatory drawing for giving different delay time differences in the width direction to polarization components 本発明の第1実施形態の構成図Configuration diagram of the first embodiment of the present invention ビームエキスパンダを用いた第2実施形態の構成図Configuration diagram of second embodiment using beam expander ビームエキスパンダの構成例を示す図The figure which shows the structural example of a beam expander シリンドリカルレンズを用いた第3実施形態の構成図The block diagram of 3rd Embodiment using a cylindrical lens 第1遅延手段25にスライド駆動装置25bを設けた第4実施形態の構成図The block diagram of 4th Embodiment which provided the slide drive device 25b in the 1st delay means 25 偏波分離手段と偏波合波手段を独立したPBSで構成した第5実施形態の構成図Configuration diagram of the fifth embodiment in which the polarization separating means and the polarization multiplexing means are configured by independent PBSs. 光入射部に偏波スクランブラを設けた第6実施形態の構成例を示す図The figure which shows the structural example of 6th Embodiment which provided the polarization scrambler in the light-incidence part. 両方の遅延手段にミラーアレーによる折り返し光路を設けた第7実施形態の構成例を示す図The figure which shows the structural example of 7th Embodiment which provided the return optical path by the mirror array in both the delay means. DGD発生分布の例を示す図The figure which shows the example of DGD generation distribution

以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明の偏波モード分散ストレス発生装置20の基本構成図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a basic configuration diagram of a polarization mode dispersion stress generator 20 according to the present invention.

図1において、光入射部21は、偏波モード分散の付与対象となる光信号Pin(ここでは直線偏光とする)を入射させるためのものであり、一般的に光ファイバにより入射させる場合には、その光ファイバ接続用のコネクタやコネクタから入射された光を平行光にするコリメータレンズ等が含まれる。   In FIG. 1, a light incident part 21 is for making an optical signal Pin (here, linearly polarized light) to be given polarization mode dispersion incident. , A connector for connecting the optical fiber, and a collimator lens that collimates light incident from the connector.

光入射部21に入射された光信号Pinは、偏波分離手段23に入射され、二つの直交偏波成分(P波、S波)Pp、Psに分離される。この偏波分離手段23としては主に偏光ビームスプリッタが用いられる。   The optical signal Pin incident on the light incident portion 21 is incident on the polarization separation means 23 and separated into two orthogonal polarization components (P wave and S wave) Pp and Ps. As the polarization separation means 23, a polarization beam splitter is mainly used.

分離された直交偏波成分の一方Ppは第1遅延手段25に入射され、他方Psは第2遅延手段26に入射される。第1遅延手段25と第2遅延手段26は、入射光を受けてそれぞれ第1の光路、第2の光路を経由させ、その光路長相当の遅延を与えて出射するものである。   One of the separated orthogonal polarization components Pp is incident on the first delay means 25, and the other Ps is incident on the second delay means 26. The first delay means 25 and the second delay means 26 receive incident light, pass through the first optical path and the second optical path, respectively, and emit with a delay corresponding to the optical path length.

ただし、第1遅延手段25と第2遅延手段26の少なくとも一方(この図では第2遅延手段26)は、光路内に遅延時間差を与え、且つその遅延時間差が変動するように制御している。   However, at least one of the first delay means 25 and the second delay means 26 (second delay means 26 in this figure) gives a delay time difference in the optical path and is controlled so that the delay time difference fluctuates.

それを実現するために、第2遅延手段26には、ミラーアレー51とそれを回動する回動装置52を含んでいる。   In order to realize this, the second delay means 26 includes a mirror array 51 and a rotating device 52 that rotates the mirror array 51.

図2に示すように、ミラーアレー51は、互いに直交する一対の反射面50a、50bをもち、その一方の反射面に入射された光を他方の反射面を介して入射光軸と平行な光軸で折り返して出射する直交ミラーユニット50が、偏波分離手段23からの光Psの幅の寸法内に複数段連続的に平行に並ぶ状態で一体的に形成されたものであり、回動装置52は、各直交ミラーユニット50を形成する一対の反射面が交わる境界線に平行な軸A(紙面に直交する軸)を中心にミラーアレー51全体を回動させて、ミラーアレー51に対する光の入射角を変動させる。   As shown in FIG. 2, the mirror array 51 has a pair of reflecting surfaces 50a and 50b orthogonal to each other, and the light incident on one of the reflecting surfaces is light parallel to the incident optical axis through the other reflecting surface. The orthogonal mirror unit 50 that is folded back and emitted from the shaft is integrally formed in a state where the light Ps from the polarization beam splitting unit 23 is continuously arranged in a plurality of stages within the width dimension. 52, the entire mirror array 51 is rotated around an axis A (axis orthogonal to the paper surface) parallel to the boundary line where the pair of reflecting surfaces that form each orthogonal mirror unit 50 intersect, and light to the mirror array 51 is transmitted. Vary incident angle.

第2遅延手段26には、このミラーアレー51による折り返し光路が含まれており、偏波分離手段23からの光をその幅方向に分けてミラーアレー51の複数の直交ミラーユニット50でそれぞれ受けて折り返すことになる。   The second delay means 26 includes a return optical path by the mirror array 51. The second delay means 26 receives the light from the polarization separation means 23 in the width direction and receives it by a plurality of orthogonal mirror units 50 of the mirror array 51, respectively. It will be folded.

ここで、図2に示すように、ミラーアレー51に対する光の入射角度をθ、隣あう直交ミラーユニット間の光路差をdとすると、n個離れた直交ミラーユニット間に生じる光路差は、nd=2×W×sin θとなり、この光路差を回動装置52により変動させることで、折り返された光Ps′の幅方向の各成分に変動する遅延時間差が付与され、後述する偏波合波手段28で合波された光の偏波成分の群遅延時間差を変化させることができる。   Here, as shown in FIG. 2, assuming that the incident angle of light to the mirror array 51 is θ and the optical path difference between adjacent orthogonal mirror units is d, the optical path difference generated between n orthogonal mirror units is nd = 2 × W × sin θ, and by varying this optical path difference by the rotation device 52, a varying delay time difference is given to each component in the width direction of the folded light Ps ′. The group delay time difference between the polarization components of the light combined by the means 28 can be changed.

第1遅延手段25によって遅延された一方の直交偏波成分Pp′と、第2遅延手段26によって遅延された他方の直交偏波成分Ps′は、偏波合波手段28によって一つの光の直交成分として合波される。この偏波合波手段28は、偏波分離手段23と同様に偏光ビームスプリッタで構成される。   One orthogonal polarization component Pp ′ delayed by the first delay means 25 and the other orthogonal polarization component Ps ′ delayed by the second delay means 26 are orthogonalized by a polarization multiplexing means 28. Combined as a component. The polarization beam combining means 28 is composed of a polarization beam splitter, like the polarization separation means 23.

偏波合波手段28で合波された光Poutは、光出射部29を介して出射される。この光出射部29としては、出射用のコネクタや偏波合波手段28から平行光で出射された光をコネクタの入射部に収束する集光レンズ等が含まれる。   The light Pout combined by the polarization multiplexing unit 28 is emitted through the light emitting unit 29. The light emitting section 29 includes an output connector, a condensing lens that converges the light emitted from the polarization multiplexing means 28 as parallel light on the incident section of the connector, and the like.

制御部30は、第1遅延手段25と第2遅延手段26のうち、前記したようにミラーアレー51と回動装置52を含む遅延手段の回動装置52の制御を行い、所定の初期角度、回動振幅でミラーアレー51を回動させて、偏波合波手段28で合波された光Poutの偏波成分の群遅延時間差を変化させる。   The control unit 30 controls the rotation device 52 of the delay means including the mirror array 51 and the rotation device 52, as described above, of the first delay means 25 and the second delay means 26, and has a predetermined initial angle, The mirror array 51 is rotated with the rotation amplitude to change the group delay time difference of the polarization component of the light Pout combined by the polarization multiplexing means 28.

このような基本構成を有する偏波モード分散ストレス発生装置20では、偏波分離された二つの直交偏波成分Pp、Psを、それぞれの遅延手段25、26に入射させてその少なくとも一方の遅延手段に入射された光の幅方向成分にミラーアレー51の回動による遅延時間差を付与して、他方と合波して出射する構造であるので、そのミラーアレー51の回動量に応じた任意のDGD(即ち、その平均値としての任意のPMD)を与えることができる。   In the polarization mode dispersion stress generator 20 having such a basic configuration, two orthogonally polarized components Pp and Ps that have undergone polarization separation are made incident on the respective delay means 25 and 26, and at least one of the delay means. Since a delay time difference due to the rotation of the mirror array 51 is given to the width direction component of the light incident on the light beam and combined with the other and emitted, any DGD corresponding to the rotation amount of the mirror array 51 is obtained. (Ie, any PMD as its average value).

また、少なくとも一方の偏波成分の光を幅方向に分けてそれぞれ異なる遅延時間差を付与する方式であるから、一方の偏波成分全体の遅延時間を一律に且つ正弦的に変動させる方式に比べて、より複雑な遅延時間変動を実現することができ、ミラーアレー51に入射される光の強度分布に応じて所望分布(例えばマックスウェル分布やガウス分布のような)のDGDを発生させることができる。   In addition, since the light of at least one polarization component is divided in the width direction to give different delay time differences, compared to a method in which the delay time of one entire polarization component is changed uniformly and sinusoidally. Thus, more complicated delay time fluctuations can be realized, and DGD having a desired distribution (such as Maxwell distribution or Gaussian distribution) can be generated according to the intensity distribution of light incident on the mirror array 51. .

さらに、機械的に駆動される部分は遅延手段25、26の少なくとも一方だけで、しかも基本的にミラーアレー51を回動させるだけなので、小型化および低コスト化が可能である。   Furthermore, since the mechanically driven part is only at least one of the delay means 25 and 26, and basically only the mirror array 51 is rotated, the size and cost can be reduced.

(第1実施形態)
次に、より具体的な構成の第1実施形態を、図3を用いて説明する。
図3の偏波モード分散ストレス発生装置20は、光入射部21が、光信号Pinを入射させるためのコネクタ21aと、入射した光を平行光にするコリメートレンズ21bにより構成され、その光入射部21から出射された光をPBS(偏光ビームスプリッタ)22で受ける。
(First embodiment)
Next, the first embodiment having a more specific configuration will be described with reference to FIG.
In the polarization mode dispersion stress generating apparatus 20 of FIG. 3, the light incident part 21 includes a connector 21a for making the optical signal Pin incident and a collimator lens 21b for making the incident light parallel light, and the light incident part. The light emitted from 21 is received by a PBS (polarized beam splitter) 22.

この偏波モード分散ストレス発生装置20は、一つのPBS22が前記した偏波分離手段23と偏波合波手段28とを兼ねた所謂マイケルソン型干渉計の構造を有しており、入射した光信号Pinを二つの直交偏波成分Pp、Psに分け、その一方Ppを第1遅延手段25に入射し、他方Psを第2遅延手段26に入射し、それらの出射光Pp′、Ps′をPBS22に戻して合波する構成となっている。   This polarization mode dispersion stress generator 20 has a so-called Michelson interferometer structure in which one PBS 22 serves as both the polarization separation means 23 and the polarization multiplexing means 28 described above. The signal Pin is divided into two orthogonal polarization components Pp and Ps, one of which is incident on the first delay means 25 and the other Ps is incident on the second delay means 26, and the emitted lights Pp ′ and Ps ′ are obtained. It returns to PBS22 and becomes a structure which multiplexes.

ここで、第1遅延手段25は、入射光をその入射光軸と一致する出射光軸に沿って折り返すための直交ミラー25aによって構成されている。ただし、直交ミラー25aで折り返された光は入射時と同一偏波状態であるから、折り返された光をそのままPBS22に戻すと、PBS22の可逆性により入射光Pin側に戻ってしまい、入射光との分離が困難になる。   Here, the first delay means 25 is constituted by an orthogonal mirror 25a for folding incident light along an outgoing optical axis that coincides with the incident optical axis. However, since the light reflected by the orthogonal mirror 25a is in the same polarization state as that at the time of incidence, if the folded light is returned to the PBS 22 as it is, it returns to the incident light Pin side due to the reversibility of the PBS 22, and Separation becomes difficult.

そこで、PBS22と第1遅延手段25の間に、1/4波長板31を設けている。この1/4波長板31をその光軸が入射する光の偏波方向に対して45度となるように配置する。   Therefore, a ¼ wavelength plate 31 is provided between the PBS 22 and the first delay means 25. This quarter-wave plate 31 is arranged so that its optical axis is 45 degrees with respect to the polarization direction of the incident light.

これにより、PBS22から出射された偏波成分Ppは、1/4波長板31により円偏光となり、直交ミラー25aで折り返されて再び1/4波長板31に反対向きに入射されるので、1/4波長板31からPBS22に対しては、元の偏波成分Ppに対して90度偏波方向が回転した偏波成分Pp′が出射されることになる。そして、この偏波成分Pp′がPBS22に再入射するが、分離時の偏波方向と90度異なるから光信号Pinの入射方向には戻らず、それに直交する方向(図で下方)に出射される。   As a result, the polarization component Pp emitted from the PBS 22 becomes circularly polarized light by the quarter wavelength plate 31, is folded by the orthogonal mirror 25a, and is incident on the quarter wavelength plate 31 in the opposite direction again. From the four-wavelength plate 31 to the PBS 22, the polarization component Pp ′ whose polarization direction is rotated by 90 degrees with respect to the original polarization component Pp is emitted. This polarization component Pp ′ re-enters the PBS 22, but it is 90 degrees different from the polarization direction at the time of separation, so it does not return to the incident direction of the optical signal Pin but is emitted in a direction orthogonal to the direction (downward in the figure). The

また、第2遅延手段26は、前記したように複数の直交ミラーユニット50の反射面がが一面側に連続的に形成されて一体化されているミラーアレー51とそれを回動する回動装置52を含んでいて、PBSから出射された他方の偏波成分Psに幅方向に異なり且つ変動する遅延時間差を付与して折り返す構造を有している。   Further, as described above, the second delay means 26 includes a mirror array 51 in which the reflecting surfaces of the plurality of orthogonal mirror units 50 are continuously formed on one surface side, and a rotating device that rotates the mirror array 51. 52, and has a structure in which the other polarization component Ps emitted from the PBS is folded back with a delay time difference that varies and varies in the width direction.

ただしこの場合も、ミラーユニット51で折り返される光の偏波状態は変わらないので、折り返された光をそのままPBSに戻すと、入射光Pin側に戻ってしまい、一方の偏波成分Ps′との合波が行えない。   However, also in this case, the polarization state of the light reflected by the mirror unit 51 does not change. Therefore, if the returned light is returned to the PBS as it is, it returns to the incident light Pin side, and the polarization component Ps' Cannot combine.

したがって、図のようにPBS22と第2遅延手段26の間にも1/4波長板32を配置する。この場合も前記同様に1/4波長板32の光軸が、入射光の偏波方向に対して45度となるように配置する。   Therefore, a quarter-wave plate 32 is also arranged between the PBS 22 and the second delay means 26 as shown. Also in this case, the quarter wavelength plate 32 is arranged so that the optical axis of the quarter wavelength plate 32 is 45 degrees with respect to the polarization direction of the incident light.

これによって、PBS22から出射された偏波成分Ppは、1/4波長板32により円偏光となり、ミラーアレー51で折り返されて再び1/4波長板32に反対向きに入射されるので、1/4波長板32からPBS22に対しては、元の偏波成分Psに対して90度偏波方向が回転した偏波成分Ps′が出射されることになる。そして、この偏波成分Ps′がPBS22に再入射するが、分離時の偏波方向と90度異なるから光信号Pinの入射方向には戻らず、それに直交する方向(図で下方)に出射される。   As a result, the polarization component Pp emitted from the PBS 22 becomes circularly polarized light by the quarter wavelength plate 32, is folded back by the mirror array 51, and is incident on the quarter wavelength plate 32 again in the opposite direction. From the four-wavelength plate 32, the polarization component Ps ′ whose polarization direction is rotated by 90 degrees with respect to the original polarization component Ps is emitted from the PBS 22. This polarization component Ps ′ re-enters the PBS 22, but does not return to the incident direction of the optical signal Pin because it is 90 degrees different from the polarization direction at the time of separation, and is emitted in a direction (downward in the figure) perpendicular thereto. The

これらの遅延手段から折り返された光Pp′、Ps′は、それぞれ分離時と90度異なる偏光面で再びPBS22に互いに直交する向きで同一位置に入射されるので、PBS22の特性により、光信号Pinの入射光軸と直交する共通の光軸(図で下方に向かう光軸)上でそれらを直交成分とする光Poutに合波されて、光出射部29を介して外部に出射される。   The lights Pp ′ and Ps ′ turned back from these delay means are incident on the same position in the direction orthogonal to the PBS 22 again with polarization planes that are 90 degrees different from those at the time of separation. Are combined with the light Pout having the orthogonal components on a common optical axis (downward in the figure) orthogonal to the incident optical axis, and output to the outside through the light emitting unit 29.

なお、光出射部29はPBS22で合波された光を、集光レンズ29aによって出射用のコネクタ29bに収束させ、そのコネクタ29bから外部へ出射させる。   The light emitting unit 29 converges the light combined by the PBS 22 on the output connector 29b by the condenser lens 29a and outputs the light from the connector 29b to the outside.

制御部30は、二つの遅延手段25、26の一方(この場合は第2遅延手段26)の回動装置52を制御して、ミラーアレー51を予め設定された初期角度、回動振幅で回動させ、出射光Poutの直交偏波成分間の群遅延時間差DGDを変動させ、所望の発生確率分布を与える。   The control unit 30 controls the rotation device 52 of one of the two delay units 25 and 26 (in this case, the second delay unit 26) to rotate the mirror array 51 at a preset initial angle and rotation amplitude. The group delay time difference DGD between the orthogonal polarization components of the outgoing light Pout is varied to give a desired occurrence probability distribution.

なお、上記実施形態の第1遅延手段25は、直交ミラー25aで入射光を折り返していたが、平面ミラーで折り返してもよい。これは後述の実施形態においても同様である。   In addition, although the 1st delay means 25 of the said embodiment folded the incident light with the orthogonal mirror 25a, you may fold with a plane mirror. The same applies to the embodiments described later.

(第2実施形態)
また、図4に示すように、第2遅延手段26の入射部にビームエキスパンダ53を設け、ミラーアレー51に入射する光の幅を拡大してもよい。このようにすることで、小型の光学系で、より大きな遅延時間差を付与することができる。このビームエキスパンダ53は、偏波分離手段としてのPBS22からミラーアレー51の間の任意の位置に配置できる。
(Second Embodiment)
In addition, as shown in FIG. 4, a beam expander 53 may be provided at the incident portion of the second delay means 26 to increase the width of the light incident on the mirror array 51. By doing so, a larger delay time difference can be given with a small optical system. The beam expander 53 can be arranged at an arbitrary position between the PBS 22 as the polarization separation means and the mirror array 51.

なお、ビームエキスパンダ53としては、図5の(a)のように、凹レンズ53aと凸レンズ53bを組合せたものや、図5の(b)のように、三角柱プリズム53c、53dを組合せたものが使用できる。   The beam expander 53 is a combination of a concave lens 53a and a convex lens 53b as shown in FIG. 5A, or a combination of triangular prisms 53c and 53d as shown in FIG. 5B. Can be used.

(第3実施形態)
また、図6のように光入射部21のコリメータ21bおよび光出射部29の集光レンズ29aを、それぞれビーム幅を広げる方向が互いに直交する二組のシリンドリカルレンズ21b′、21b″、29a′、29″をそれぞれ用いて、その間を伝搬する光のビーム幅を2次元方向に広げて、より大きな遅延時間差を付与することもできる。
(Third embodiment)
In addition, as shown in FIG. 6, the collimator 21b of the light incident portion 21 and the condensing lens 29a of the light exit portion 29 are each made of two sets of cylindrical lenses 21b ′, 21b ″, 29a ′, whose beam width expanding directions are orthogonal to each other. 29 ″ can be used to widen the beam width of light propagating between them in a two-dimensional direction to give a larger delay time difference.

(第4実施形態)
また、干渉計の両アームの光路長が一致する位置を基準として一方のアーム側の遅延時間を変動させるために、図7に示すように、光出射部29の前段に設けた分岐器56で出射光を分岐して両偏光方向に対して偏光軸を45度に傾けた検光子57に与え、その検光子57から出射される光(両偏波を含む光)を受光器58に入射してその強度を検出して制御部30に与える。また、第1遅延手段25の直交ミラー25aの位置をスライド駆動装置25bによりスライドさせて、PBS22からの距離を可変できる構造にし、制御部30は、第2遅延手段26のミラーアレー51の角度を所定角度に固定した状態で、光入射部21から広帯域光源を入射させ、第1遅延手段25の直交ミラー25aを移動させて、受光器58に入射される光の強度が最大となる位置(干渉計の両アームの光路長が一致する位置)を決定し、この位置を基準にし、ミラーアレー51を所定角度から回動駆動する。
(Fourth embodiment)
Further, in order to vary the delay time on one arm side with respect to the position where the optical path lengths of both arms of the interferometer coincide with each other, as shown in FIG. The emitted light is branched and applied to an analyzer 57 whose polarization axis is inclined by 45 degrees with respect to both polarization directions, and light (light including both polarizations) emitted from the analyzer 57 is incident on a light receiver 58. The intensity is detected and given to the control unit 30. Further, the position of the orthogonal mirror 25a of the first delay means 25 is slid by the slide drive device 25b so that the distance from the PBS 22 can be varied, and the control unit 30 changes the angle of the mirror array 51 of the second delay means 26. In a state of being fixed at a predetermined angle, a broadband light source is incident from the light incident portion 21 and the orthogonal mirror 25a of the first delay means 25 is moved so that the intensity of light incident on the light receiver 58 is maximized (interference). The position where the optical path lengths of both arms of the meter coincide with each other is determined, and the mirror array 51 is rotated from a predetermined angle with reference to this position.

なお、この例では第1遅延手段25の光反射手段としての直交ミラー25aをスライド駆動装置25bによってスライドさせ、第1遅延手段25の光路長を均一に変化させているが、第2遅延手段26のミラーアレー51を回動だけでなくスライド駆動させても同様の作用が得られる。   In this example, the orthogonal mirror 25a as the light reflecting means of the first delay means 25 is slid by the slide drive device 25b, and the optical path length of the first delay means 25 is changed uniformly, but the second delay means 26 is used. The same operation can be obtained by sliding the mirror array 51 in addition to turning.

(第5実施形態)
前記第1の実施形態では、単一のPBS22が偏波分離手段23と偏波合波手段28を兼ねた構成(マイケルソン型干渉計)を示したが、図8のように、それらを互いに独立したPBSで構成した、所謂マッハツェンダー型干渉計の構成を採用することもできる。
(Fifth embodiment)
In the first embodiment, the configuration (Michelson interferometer) in which the single PBS 22 serves as the polarization separation means 23 and the polarization multiplexing means 28 is shown. However, as shown in FIG. A so-called Mach-Zehnder interferometer configuration constituted by an independent PBS can also be adopted.

即ち、光入射部21から入射された光を、偏波分離手段としてのPBS23により、二つの直交偏波成分Pp、Psに分け、第1遅延手段25と第2遅延手段26にそれぞれ出射する。   That is, the light incident from the light incident portion 21 is divided into two orthogonal polarization components Pp and Ps by the PBS 23 as the polarization separation means, and emitted to the first delay means 25 and the second delay means 26, respectively.

第1遅延手段25は、入射する偏波成分PpをPBS61で受けて90度方向を変えて出射する光を1/4波長板31を通過させ、直交ミラー25aで折り返し、1/4波長板31およびPBS61を介して、偏波合波手段としてのPBS28に入射する。   The first delay means 25 receives the incident polarization component Pp by the PBS 61, changes the direction by 90 degrees, and transmits the emitted light through the ¼ wavelength plate 31, turns back by the orthogonal mirror 25a, and ¼ wavelength plate 31. Then, the light enters the PBS 28 as polarization multiplexing means via the PBS 61.

また、第2遅延手段26は、PBS23からの偏波成分PsをPBS62で受けて、これを通過させ、1/4波長板32を介してミラーアレー51に入射し、その折り返し光を、1/4波長板32およびPBS62を介してPBS28に入射する。   Further, the second delay means 26 receives the polarization component Ps from the PBS 23 by the PBS 62, passes it, enters the mirror array 51 through the quarter wavelength plate 32, and converts the return light to 1 / The light enters the PBS 28 via the four-wave plate 32 and the PBS 62.

なおここで、4つのPBS23、61、62、28は、長方形をなすように直交配置される。また、1/4波長板31、32の作用は、前記同様で偏波方向を変換するためのものである。   Here, the four PBSs 23, 61, 62, and 28 are arranged orthogonally so as to form a rectangle. The operation of the quarter-wave plates 31 and 32 is the same as described above for converting the polarization direction.

これによって、第2遅延手段26に入射された偏波成分Psには、前記同様に、ミラーアレー51によって折り返される光路において、幅方向に異なり且つ変動する遅延時間差が付与され、他方の偏波成分Pp′とともにPBS28に出射され、前記同様に光Poutに合波されて、光出射部29を介して外部に出射される。   As a result, the polarization component Ps incident on the second delay means 26 is given a delay time difference that varies and varies in the width direction in the optical path folded back by the mirror array 51, as described above, and the other polarization component. It is emitted to the PBS 28 together with Pp ′, combined with the light Pout in the same manner as described above, and emitted to the outside through the light emitting portion 29.

(第6実施形態)
上記各実施形態では、入射する光信号Pinを直線偏波とし、偏波分離手段22を構成するPBS22、23で分離される二つの直交偏波成分の大きさがほぼ等しくなるような偏光面で入力させて両偏波成分の遅延量に有効な変動を与えるようにしているが、各実施形態において、図9のように、光入射部21に偏波スクランブラ21cを設け、これを制御部30によって制御し、入射する光信号Pinの偏波をランダムに変化させることで、光信号Pinの偏波方向を意識しないでも出射光Poutの偏波成分間の遅延量に有効な変動を与えることができる。
(Sixth embodiment)
In each of the above embodiments, the incident optical signal Pin is linearly polarized, and the polarization plane is such that the magnitudes of the two orthogonal polarization components separated by the PBSs 22 and 23 constituting the polarization separation means 22 are substantially equal. However, in each embodiment, as shown in FIG. 9, a polarization scrambler 21c is provided in the light incident part 21, and this is controlled by the control part. 30. By changing the polarization of the incident optical signal Pin at random, the effective amount of delay between the polarization components of the outgoing light Pout can be given without being aware of the polarization direction of the optical signal Pin. Can do.

(第7実施形態)
また、前記各実施形態では、第1遅延手段25と第2遅延手段26のうちの一方に(ここでは第2遅延手段26)に、ミラーアレー51による折り返し光路を設けていたが、図10のように、両方の遅延手段にミラーアレー51と回動装置52を設けて、両者を同時に駆動する(ただし回動の周期、振幅、位相の少なくとも一つは異なるようにする)ことで、両偏波成分にの間により複雑な変動を与えることも可能である。この場合、前記した図3のマイケルソン型で第1遅延手段25を第2遅延手段26と同等の構成としたり、前記した図8のマッハツェンダー型のいずれにも適用できる。
(Seventh embodiment)
Further, in each of the above embodiments, one of the first delay means 25 and the second delay means 26 (here, the second delay means 26) is provided with a return optical path by the mirror array 51. Thus, both the delay means are provided with the mirror array 51 and the rotation device 52, and both are driven simultaneously (however, at least one of the rotation period, amplitude and phase is different). It is also possible to give more complex fluctuations between the wave components. In this case, the first delay means 25 of the Michelson type shown in FIG. 3 can have the same configuration as the second delay means 26, or can be applied to any of the Mach-Zehnder type shown in FIG.

20……偏波モード分散ストレス発生装置、21……光入射部、22……偏光ビームスプリッタ(PBS)、23……偏波分離手段(PBS)、25……第1遅延手段、25a……直交ミラー、25b……スライド駆動装置、26……第2遅延手段、28……偏波合波手段(PBS)、29……光出射部、30……制御部、31、32……1/4波長板、50……直交ミラーユニット、51……ミラーアレー、52……回動装置、53……ビームエキスパンダ、56……分岐器、57……検光子、58……受光器、61、62……PBS   DESCRIPTION OF SYMBOLS 20 ... Polarization mode dispersion | distribution stress generator, 21 ... Light incident part, 22 ... Polarization beam splitter (PBS), 23 ... Polarization separation means (PBS), 25 ... First delay means, 25a ... Orthogonal mirror, 25b... Slide drive device, 26 ... second delay means, 28 ... polarization multiplexing means (PBS), 29 ... light emitting section, 30 ... control section, 31, 32 ... 1 / 4 wavelength plate, 50 ... orthogonal mirror unit, 51 ... mirror array, 52 ... rotating device, 53 ... beam expander, 56 ... branching device, 57 ... analyzer, 58 ... light receiver, 61 62 …… PBS

Claims (8)

偏波モード分散の付与対象となる光信号を二つの直交偏波成分に分離し、
前記分離された一方の直交偏波成分を第1の光路を伝搬させ、他方の直交偏波成分を第2の光路を伝搬させるととともに、前記第1の光路と第2の光路のうち少なくとも一方の光路に、偏波分離された光をその幅方向に分けて複数の直交ミラー(50)でそれぞれ受けて折り返す折り返し光路を形成して幅方向で異なる遅延を与え、前記複数の直交ミラーを該直交ミラーを形成する一対の直交反射面が交わる境界線に平行な軸で一体的に回動させることで、各直交ミラーによりそれぞれ折り返された光成分に付与される遅延時間差を変動させて伝搬させ、
前記第1の光路と第2の光路を伝搬した直交偏波成分を合波して、互いに直交する偏波成分の群遅延時間差が、前記複数の直交ミラーの回動角に応じて変化する光を生成することを特徴とする偏波モード分散ストレス発生方法。
Separates the optical signal to be given polarization mode dispersion into two orthogonal polarization components,
The separated one orthogonal polarization component is propagated in the first optical path, the other orthogonal polarization component is propagated in the second optical path, and at least one of the first optical path and the second optical path In this optical path, the polarization-separated light is divided in the width direction, and each of the plurality of orthogonal mirrors (50) receives and folds back the optical path to give different delays in the width direction. By rotating integrally with an axis parallel to the boundary line where a pair of orthogonal reflecting surfaces forming an orthogonal mirror intersects, the delay time difference given to the light component folded by each orthogonal mirror is changed and propagated. ,
Light in which the orthogonal polarization components propagated through the first optical path and the second optical path are combined, and the group delay time difference between the orthogonal polarization components changes according to the rotation angles of the plurality of orthogonal mirrors. Generating a polarization mode dispersion stress.
偏波モード分散の付与対象となる光信号を入射させるための光入射部(21)と、
前記光入射部に入射された光信号を二つの直交偏波成分に分離する偏波分離手段(22、23)と、
前記二つの直交偏波成分の一方を受けて第1の光路を経由させ、該第1の光路の長さ相当の遅延を与えて出射する第1遅延手段(25)と、
前記二つの直交偏波成分の他方を受けて第2の光路を経由させ、該第2の光路の長さ相当の遅延を与えて出射する第2遅延手段(26)と、
前記第1遅延手段によって遅延された一方の直交偏波成分と、前記第2遅延手段によって遅延された他方の直交偏波成分を合波する偏波合波手段(22、28)と、
前記偏波合波手段で合波された光を外部へ出射するための光出射部(29)と備え、
前記第1遅延手段と第2遅延手段の少なくとも一方は、
偏波分離された光をその幅方向に分けてそれぞれ受けて折り返す複数の直交ミラー(50)と、該複数の直交ミラーを該直交ミラーを形成する一対の直交反射面が交わる境界線に平行な軸で一体的に回動させる回動装置(52)とを含み、前記各直交ミラーによりそれぞれ折り返された光成分に付与される遅延時間差を変動させつつ伝搬させて、前記偏波合波手段で合波された光の偏波成分の群遅延時間差を、前記複数の直交ミラーの回動角に応じて変化させることを特徴とする偏波モード分散ストレス発生装置。
A light incident part (21) for causing an optical signal to be given polarization mode dispersion to be incident;
Polarization separation means (22, 23) for separating the optical signal incident on the light incident portion into two orthogonal polarization components;
First delay means (25) for receiving one of the two orthogonally polarized components, passing through the first optical path, and emitting with a delay corresponding to the length of the first optical path;
Second delay means (26) for receiving the other of the two orthogonally polarized components, passing through the second optical path, and emitting with a delay corresponding to the length of the second optical path;
Polarization multiplexing means (22, 28) for combining one orthogonal polarization component delayed by the first delay means and the other orthogonal polarization component delayed by the second delay means;
A light emitting section (29) for emitting the light combined by the polarization multiplexing means to the outside,
At least one of the first delay means and the second delay means is:
A plurality of orthogonal mirrors (50) that receive and fold the polarization-separated light separately in the width direction, and the plurality of orthogonal mirrors are parallel to a boundary line where a pair of orthogonal reflecting surfaces forming the orthogonal mirror intersect. A rotation device (52) that rotates integrally with a shaft, and propagates while varying a delay time difference imparted to each light component folded by each orthogonal mirror, and the polarization multiplexing means A polarization mode dispersion stress generating apparatus, characterized in that a group delay time difference of polarization components of combined light is changed according to rotation angles of the plurality of orthogonal mirrors.
単一の偏光ビームスプリッタ(22)が、前記偏波分離手段と前記偏波合波手段とを兼ね、
前記偏光ビームスプリッタと前記第1遅延手段との間および前記偏光ビームスプリッタと前記第2遅延手段との間に、それぞれ1/4波長板(31、32)が挿入されており、
前記第1遅延手段と第2遅延手段は、前記偏光ビームスプリッタで分離された直交偏波成分を前記各1/4波長板を介して受けてこれを同一光軸で逆向きに折り返して再度前記1/4波長板に入射させて、分離時と偏光方向がそれぞれ90度異なる直交偏波成分に変えて分離時と同一光軸で前記偏光ビームスプリッタに戻し、それらを直交成分とする光を、前記偏光ビームスプリッタに対する前記光信号の入射光軸と直交する光軸に沿って出射させることを特徴とする請求項2記載の偏波モード分散ストレス発生装置。
A single polarization beam splitter (22) serves as both the polarization separation means and the polarization multiplexing means,
Quarter wavelength plates (31, 32) are inserted between the polarization beam splitter and the first delay means and between the polarization beam splitter and the second delay means, respectively.
The first delay means and the second delay means receive the orthogonal polarization components separated by the polarization beam splitter through the quarter wavelength plates, and fold them in the opposite directions around the same optical axis, and again Incident light into a quarter-wave plate, converted into orthogonal polarization components whose polarization directions are 90 degrees different from those at the time of separation, and returned to the polarization beam splitter with the same optical axis as that at the time of separation, 3. The polarization mode dispersion stress generating apparatus according to claim 2, wherein the light is emitted along an optical axis orthogonal to an incident optical axis of the optical signal to the polarization beam splitter.
前記偏波分離手段と前記偏波合波手段は、それぞれ個別の偏光ビームスプリッタ(23、28)によって構成されていることを特徴とする請求項2記載の偏波モード分散ストレス発生装置。   3. The polarization mode dispersion stress generating apparatus according to claim 2, wherein the polarization beam splitting unit and the polarization beam combining unit are configured by individual polarization beam splitters (23, 28), respectively. 前記複数の直交ミラーに入射される光のビーム幅を広げるビームエキスパンダ(53)を、前記偏波分離手段と前記複数の直交ミラーの間に配置したことを特徴とする請求項2〜4のいずれかに記載の偏波モード分散ストレス発生装置。   The beam expander (53) for expanding the beam width of light incident on the plurality of orthogonal mirrors is disposed between the polarization separating means and the plurality of orthogonal mirrors. The polarization mode dispersion stress generator according to any one of the above. 前記光入射部には、入射光のビーム幅を広げて平行光にするコリメータ(21b)が設けられ、前記光出射部には、合波光を集光するための集光レンズ(29a)が設けられており、
前記光入射部のコリメータと前記光出射部の集光レンズが、ビーム幅拡張方向が互いに直交する二組のシリンドリカルレンズによってそれぞれ形成されていることを特徴とする請求項2〜5のいずれかに記載の偏波モード分散ストレス発生装置。
The light incident part is provided with a collimator (21b) that widens the beam width of incident light to make parallel light, and the light emitting part is provided with a condenser lens (29a) for condensing the combined light. And
The collimator of the light incident part and the condensing lens of the light emission part are respectively formed by two sets of cylindrical lenses whose beam width expansion directions are orthogonal to each other. The polarization mode dispersion stress generator as described.
前記光入射部には、入射光の偏波状態をランダム化する偏波スクランブラ(21c)が設けられていることを特徴とする請求項2〜5のいずれかに記載の偏波モード分散ストレス発生装置。   The polarization mode dispersion stress according to any one of claims 2 to 5, wherein a polarization scrambler (21c) for randomizing a polarization state of incident light is provided in the light incident portion. Generator. 前記偏波合波手段によって合波されて前記光出射部に出射される光の一部を分岐する分岐器(56)と、
前記分岐器によって分岐された光から両偏波成分を取り出すように、両偏光方向に対して偏光軸を45度傾けた検光子(57)と、
前記検光子によって検出された両偏波成分を受光する受光器(58)と、
前記第1遅延手段と第2遅延手段の少なくとも一方に含まれる光反射手段(25a)を、その入射光軸と平行な方向にスライド移動させて該光反射手段によって折り返される光路長を均一に変化させるスライド駆動手段(25b)とを含み、
前記光入射部から広帯域光源を入射させて、前記複数のミラーの角度を所定角度に固定した状態で、前記スライド駆動手段を制御したときの前記受光器の出力に基づいて、前記第1遅延手段と第2遅延手段の光路長合わせを行い、該光路長が合った状態から前記複数のミラーを前記所定角度から回動させることを特徴とする請求項2〜6のいずれかに記載の偏波モード分散ストレス発生装置。
A branching device (56) for branching a part of the light combined by the polarization multiplexing unit and output to the light output unit;
An analyzer (57) having a polarization axis inclined by 45 degrees with respect to both polarization directions so as to extract both polarization components from the light branched by the splitter;
A light receiver (58) for receiving both polarization components detected by the analyzer;
The light reflection means (25a) included in at least one of the first delay means and the second delay means is slid in a direction parallel to the incident optical axis, and the optical path length turned back by the light reflection means is uniformly changed. Slide driving means (25b)
The first delay means based on the output of the light receiver when the slide driving means is controlled in a state where a broadband light source is incident from the light incident portion and the angles of the plurality of mirrors are fixed to a predetermined angle. The polarization direction according to any one of claims 2 to 6, wherein the optical path lengths of the second delay means and the second delay means are adjusted, and the plurality of mirrors are rotated from the predetermined angle from a state in which the optical path lengths are matched. Mode distributed stress generator.
JP2010194007A 2010-08-31 2010-08-31 Polarization mode dispersion stress generation method and apparatus Expired - Fee Related JP5357845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010194007A JP5357845B2 (en) 2010-08-31 2010-08-31 Polarization mode dispersion stress generation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010194007A JP5357845B2 (en) 2010-08-31 2010-08-31 Polarization mode dispersion stress generation method and apparatus

Publications (2)

Publication Number Publication Date
JP2012054673A JP2012054673A (en) 2012-03-15
JP5357845B2 true JP5357845B2 (en) 2013-12-04

Family

ID=45907572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010194007A Expired - Fee Related JP5357845B2 (en) 2010-08-31 2010-08-31 Polarization mode dispersion stress generation method and apparatus

Country Status (1)

Country Link
JP (1) JP5357845B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6979381B2 (en) * 2017-06-16 2021-12-15 京セラ株式会社 Optical connector module
KR102316398B1 (en) 2017-06-16 2021-10-22 교세라 가부시키가이샤 Optical connector module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3527462B2 (en) * 2000-06-07 2004-05-17 日本電信電話株式会社 Transmission test method and transmission simulation device
JP3997785B2 (en) * 2002-01-22 2007-10-24 Kddi株式会社 Polarization mode dispersion generator
JP4142300B2 (en) * 2002-02-05 2008-09-03 古河電気工業株式会社 Variable group delay time applicator
JP4028251B2 (en) * 2002-02-12 2007-12-26 古河電気工業株式会社 Polarization mode dispersion compensation method

Also Published As

Publication number Publication date
JP2012054673A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
US7800755B1 (en) High-speed polarimeter having a multi-wavelength source
US7821647B2 (en) Apparatus and method for measuring surface topography of an object
JP6043228B2 (en) Optical module and light irradiation device
JP2001296503A (en) Device for reducing speckle
US10126556B2 (en) Light operation device
JP2017513071A5 (en)
CN106767389A (en) Striking rope type simultaneous phase-shifting interference testing device based on prismatic decomposition phase shift
US7723670B1 (en) Optical differential group delay module with folded optical path
JP5113987B2 (en) Optical analyzer with polarization characteristics
JP5357845B2 (en) Polarization mode dispersion stress generation method and apparatus
WO2012060339A1 (en) Optical device
JP6558960B2 (en) Laser beam combining / branching device and laser measuring device
US20110261437A1 (en) Delay-Line-Interferometer for Integration with Balanced Receivers
JP5600510B2 (en) Polarization mode dispersion stress generation method and apparatus
JP5765683B2 (en) Delay interferometer
CN111562002B (en) High-flux high-resolution high-contrast polarization interference spectrum imaging device and method
JP6055006B2 (en) Spectroscopic apparatus, spectroscopic method, and analytical apparatus
US20130094087A1 (en) Tunable filter using a wave plate
JP2010032785A (en) Tunable filter, light source device, and spectral distribution measuring instrument
Riza et al. Broadband all-digital variable fiber-optic attenuator using digital micromirror device
JP2012182790A (en) Optical receiver
US6735352B2 (en) Arrangement and method for producing a predeterminable polarization mode dispersion
JP4694526B2 (en) Optically controlled phased array antenna device
JP7329241B2 (en) Fabry-Perot Etalon, Wavelength Variation Detector Using Same, and Wavelength Meter
JPS6134128B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130830

R150 Certificate of patent or registration of utility model

Ref document number: 5357845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees