JP5354568B2 - System identification device - Google Patents

System identification device Download PDF

Info

Publication number
JP5354568B2
JP5354568B2 JP2008210770A JP2008210770A JP5354568B2 JP 5354568 B2 JP5354568 B2 JP 5354568B2 JP 2008210770 A JP2008210770 A JP 2008210770A JP 2008210770 A JP2008210770 A JP 2008210770A JP 5354568 B2 JP5354568 B2 JP 5354568B2
Authority
JP
Japan
Prior art keywords
circuit
voltage
current
impedance
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008210770A
Other languages
Japanese (ja)
Other versions
JP2010048577A (en
Inventor
哲男 古本
治夫 近藤
淳一 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tempearl Industrial Co Ltd
Original Assignee
Tempearl Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tempearl Industrial Co Ltd filed Critical Tempearl Industrial Co Ltd
Priority to JP2008210770A priority Critical patent/JP5354568B2/en
Publication of JP2010048577A publication Critical patent/JP2010048577A/en
Application granted granted Critical
Publication of JP5354568B2 publication Critical patent/JP5354568B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

本発明は,同一の変圧器から分岐された複数の配電系統の上位側の機器・配線と下位側の機器・配線が同一の系統にあるかどうかを探査する装置に関する。 The present invention relates to an apparatus for exploring whether a higher-level device / wiring and a lower-level device / wiring of a plurality of distribution systems branched from the same transformer are in the same system.

既設の配電系統では,下位の機器が系統の上位のどの機器に接続されているかどうかを探査しなければならない場合がある。 In an existing distribution system, it may be necessary to investigate which lower-level equipment is connected to which higher-level equipment.

このような探査に使用される装置として特許文献1から特許文献3のようなものが知られている。 As devices used for such exploration, devices such as Patent Literature 1 to Patent Literature 3 are known.

特許文献1は,末端電路の電圧線と大地の間にサイクリック的な漏洩電流を発生させ,その電流を上位の電路で検出できるかどうかで電路系統を識別しようとするものであるが,末端電路に大地漏洩電流を発生させ上位電路で漏洩電流を検出するようにしているので,末端側の装置を接続する電路の線は必ず電圧側線でなければならず,アース側の線に接続した場合は電圧側線に接続しなおさなければならない。 In Patent Document 1, a cyclic leakage current is generated between the voltage line of the terminal circuit and the ground, and an attempt is made to identify the circuit system based on whether or not the current can be detected by an upper circuit. Since the earth leakage current is generated in the electric circuit and the leakage current is detected in the upper circuit, the electric circuit line connecting the terminal side device must be the voltage side line, and it is connected to the earth side wire. Must be reconnected to the voltage side wire.

特許文献2は,末端の電路の線間に高周波信号を注入し,上位の電路の分岐部を跨いで2箇所で信号位相を検出し,位相が同一であるかどうかで電路系統を識別しようとするものであるが,電路の2線間に末端側の装置を接続しなければならず,下位側の配線の2線間に機器を接続する場合,コンセントなどのように操作性と安全性に配慮されたような接続器であれば問題ないが,探査したい箇所の機器がブレーカのようなものである場合,ブレーカの各極の端子のうち2つの充電部に接続しなければならず,2つの充電部は至近距離に配置されているから,誤って異極の端子間をショートさせるなどの事故がおきる可能性がある。また通常の場合ブレーカの端子カバーには検電用の小孔が空いているが,古いタイプのブレーカでは小孔が1個しか明いていないことがあり,そのような場合では文献2の方法では充電部保護カバーを外して作業しなければならず,異極端子間をショートさせてしまう危険性が高くなる。 Patent document 2 injects a high frequency signal between the lines of the terminal electric circuit, detects the signal phase at two points across the branch part of the upper circuit, and tries to identify the electric circuit system based on whether the phases are the same. However, it is necessary to connect the device on the end side between the two wires of the electric circuit, and when connecting the device between the two wires of the lower wiring, it is easy to operate and safe like an outlet. There is no problem as long as the connector is considered, but if the device to be explored is like a breaker, it must be connected to two live parts of the terminals at each pole of the breaker. Since two live parts are located at a close distance, there is a possibility of accidents such as accidental shorting between terminals of different polarity. In addition, the breaker terminal cover usually has a small hole for voltage detection, but the old type breaker may have only one small hole. The work must be done with the live part protective cover removed, increasing the risk of shorting between the different terminals.

特許文献3は,末端電路の1線と大地間,あるいは電路の線間に高周波と低周波の2種類の信号を注入し,上位の電路で,大まかな探査は高周波で,最終的な探査は低周波を用いて系統を識別しようとするものであるが,末端電路側の装置の接続は1線と大地間または2線間のいずれでもよいという利点がある反面,電路網が大規模で末端側に設置する装置と幹線側上位に設置する装置の距離が遠い場合の系統の探査を想定しており,装置構成や測定手順が複雑である。現実的には後述する複数の電力量計と直下の複数の開閉器の対応関係のように比較的至近距離の下位と上位の系統探査が必要な場合も多く,そのような場合はより構成も測定方法も簡単で安価な装置が望まれる。
特開昭63−33669号公報 特開平7−113834号公報 特開2006−184246号公報
In Patent Document 3, two types of signals, high frequency and low frequency, are injected between one line of the terminal circuit and the ground, or between the lines of the circuit, and in the upper circuit, rough exploration is at high frequency, and final exploration is The system is intended to identify the system using low frequency, but there is an advantage that the connection of the equipment on the terminal circuit side can be between one line and the ground or between the two lines, but the circuit network is large and the terminal circuit is large. The system configuration and measurement procedure are complicated because the system is assumed to be located when the distance between the equipment installed on the side and the equipment installed on the upper side of the trunk line is long. In reality, it is often necessary to search for lower and upper systems at relatively close distances, as in the correspondence relationship between multiple watt-hour meters and multiple switches directly below. A simple and inexpensive measuring method is desired.
JP 63-33669 A Japanese Patent Laid-Open No. 7-113834 JP 2006-184246 A

そこで本件発明は,末端側の装置は電路の1線と大地間に接続する方式で異極端子間のショートなどが起きにくく,且つ装置を接続する電路の1線は電圧側線でもアース側線でもよくて一旦接続すれば接続替えの必要がなく,装置構成と測定方法が簡単で確実に判定できる電路系統の判定装置を提供することを課題にしている。 Therefore, according to the present invention, the terminal side device is connected between one line of the electric circuit and the ground, so that short circuit between different terminals is unlikely to occur, and one line of the electric circuit connecting the device may be a voltage side line or a ground side line. Therefore, it is an object of the present invention to provide a determination apparatus for an electric circuit system that can be determined with a simple and reliable apparatus configuration and measurement method without the need for connection replacement.

請求項1は,2次巻線の1端子を大地に接続した変圧器の負荷側の複数の配電系統の上流と下流の接続系統を判別する装置において,上流側の任意の系統に接続されて零相電流を検出する手段と判定する手段を含む回路Aと下流側の任意の系統で配線の1端子と大地間に接続される回路Bより成り,回路Bには前記配線の1端子と大地間に接続される電圧検出判定手段とインピーダンスと電圧発生手段と接続切替手段を含み,電圧検出判定手段が系統の配電電圧を検出したときは前記配線の1端子と大地間にインピーダンスを,接続切替手段が選択して接続する一方,検出しなかったときは電圧発生手段を接続切替手段が選択して接続し,回路A前記の回路Bにおけるインピーダンスまたは電圧発生手段を接続したことによるもの電流を検出したとき回路Aを設置した配線または機器の系統と回路Bを設置した配線または機器の系統は同一であるとの判定結果を出力することを特徴とする系統判別装置を提供したものである。

Claim 1, in the apparatus for determining the upstream and downstream connection system of a plurality of distribution system connecting the first terminal of the secondary winding in the earth the transformer on the load side, is connected to any system on the upstream side The circuit A includes a circuit A including a means for determining a zero-phase current and a circuit B connected between one terminal of the wiring and the ground in an arbitrary downstream system. The circuit B includes one terminal of the wiring and the ground. Including voltage detection determination means, impedance, voltage generation means, and connection switching means connected between, when the voltage detection determination means detects the distribution voltage of the system, the impedance is switched between one terminal of the wiring and the ground while connecting means selects, when no detected connects the voltage generating means connected switching means selects the current due to the circuit a is connected to the impedance or voltage generating means in the circuit B Inspection Wiring or equipment lines were installed system and circuit B for wiring or equipment installed circuit A when is obtained by providing a system discriminating apparatus and outputs a determination result to be identical.

請求項2は,前記回路Aの零相電流がインピーダンスあるいは電圧発生手段を接続したことによるものであるとの判定要素には,電流の大きさを含むものであることを特徴とする請求項1の系統判別装置を提供したものである。 According to a second aspect of the present invention, the determination element that the zero-phase current of the circuit A is caused by the connection of impedance or voltage generating means includes the magnitude of the current. A discrimination device is provided.

請求項3は,前記回路Bのインピーダンスは抵抗とし,前記回路Aの判定回路は回路Bの電圧検出判定手段が検出した電圧あるいは電圧発生手段が発生した電圧の位相をもとにして,回路Aが検出した電流から抵抗分による電流を検出し,該抵抗分による電流の大きさが回路Bのインピーダンスあるいは電圧発生手段を接続したことによるものであると判定することを特徴とした請求項1の系統判別装置を提供したものである。 According to a third aspect of the present invention, the impedance of the circuit B is a resistor, and the determination circuit of the circuit A is based on the voltage detected by the voltage detection determination means of the circuit B or the phase of the voltage generated by the voltage generation means. The current of the resistance is detected from the detected current, and it is determined that the magnitude of the current due to the resistance is due to the impedance of the circuit B or the connection of the voltage generating means. A system discrimination device is provided.

請求項4は,前記回路Aの零相電流がインピーダンスまたは電圧発生手段を接続したことによるものであるとの判定要素には,符号化信号の符号を含み,インピーダンスまたは電圧発生手段は符号化制御手段で符号化制御を行うことを特徴とした請求項1の系統判別装置を提供したものである。 According to a fourth aspect of the present invention, the determination element that the zero-phase current of the circuit A is due to the connection of impedance or voltage generation means includes the sign of the encoded signal, and the impedance or voltage generation means is encoded control According to another aspect of the present invention, there is provided a system discriminating apparatus according to claim 1, wherein encoding control is performed by means.

本件発明によれば,2次巻線の1端子を大地に接地した変圧器の負荷側の複数の配電系統の上位側と下位側の系統を探査する装置において,末端側の回路は電路の1線と大地間に接続する方式で異極端子間のショートなどが起きにくく,且つ装置を接続する電路の1線は電圧側線でもアース側線でもよくて一旦接続すれば接続替えの必要がなく,装置構成と測定方法が簡単で確実に判定できる電路系統の判定装置を提供できる。 According to the present invention, in the device for exploring the upper and lower systems of the plurality of distribution systems on the load side of the transformer with one terminal of the secondary winding grounded to the ground, the circuit on the end side is 1 of the electric circuit. The connection between the wire and the ground is less likely to cause short-circuits between different terminals, and one line of the electrical circuit connecting the device may be a voltage side wire or a ground side wire, and once connected, there is no need to change the connection. It is possible to provide a determination device for an electric circuit system that is simple and reliable in configuration and measurement method.

次に本件発明を図面により詳細に説明する。図1は本件発明の第一の実施例の図である。図において1は変圧器で2次側巻き線の一端を大地に接続してあり,2次側巻き線からは複数の系統電路201,202,203・・・に分岐している。301,302,303・・・は系統毎の上位側に設けられた積算電力量計で,下位側には系統毎にブレーカ401,402,403・・・が接続してある。積算電力量計301,302,303・・・とブレーカ401,402,403・・・は系統毎に対応しているが,配置を含めそれらの間の配線接続の接続状況は不明で,積算電力量計とブレーカの対応関係を判別したいものとする。 Next, the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram of a first embodiment of the present invention. In the figure, reference numeral 1 denotes a transformer, one end of the secondary winding is connected to the ground, and the secondary winding branches off into a plurality of system electric circuits 201, 202, 203. 301, 302, 303,... Are integrated watt-hour meters provided on the upper side of each system, and breakers 401, 402, 403,. .. And the breakers 401, 402, 403... Correspond to each system, but the connection status of the wiring connection between them including the arrangement is unknown, and the integrated power Suppose you want to determine the correspondence between a meter and a breaker.

5と6は本件発明による系統判別装置で,5が系統の上位側の配線をクランプする回路A,6が系統の下位側に接続される回路Bであり,回路Aは系統配線の零相電流を検出する変流器501,零相電流検出回路502,判定回路503から構成される。回路Bは,ブレーカの端子のうちの1つに接続されるリード線601,WHMやブレーカを収納した金属ボックスなどの接地端子7に接続されるリード線602,リード線601と602間に接続される電圧検出判定手段603,インピーダンス604,電圧発生手段605,電圧検出判定手段603の検出結果に基づいてインピーダンス604と電圧発生手段605の接続を選択的に切り替える接続切替手段606から構成される。 Reference numerals 5 and 6 are system discriminating devices according to the present invention, 5 is a circuit A for clamping the upper wiring of the system, 6 is a circuit B connected to the lower side of the system, and circuit A is a zero-phase current of the system wiring. Current detector 501, zero-phase current detection circuit 502, and determination circuit 503. The circuit B is connected between a lead wire 601 connected to one of the breaker terminals, a lead wire 602 connected to the ground terminal 7 such as a WHM or a metal box containing the breaker, and lead wires 601 and 602. Voltage detection determination means 603, impedance 604, voltage generation means 605, and connection switching means 606 that selectively switches the connection between impedance 604 and voltage generation means 605 based on the detection result of voltage detection determination means 603.

なお,リード線601はブレーカ端子部の充電部カバーに明けられた検電用の穴からブレーカの複数の端子のうちのひとつに接触棒のような形で接続されるよう構成される。 Note that the lead wire 601 is configured to be connected to one of a plurality of terminals of the breaker in the form of a contact rod from a hole for electric detection opened in a charging portion cover of the breaker terminal portion.

次に,本件発明の装置の動作について説明する。まず回路Aの零相変流器501を積算電力量計側の任意の系統電線に装着する。その後,回路Bのリード線601と602を下位のブレーカ側で601はブレーカ端子のうちひとつに,602はアース端子に接続すると,電圧検出判定手段603がリード線601を接続したブレーカ端子とリード線602を接続した大地間の電圧を検出判定する。図1では,リード線601は電圧(L)側線の端子に接続されているので電圧検出判定手段603は変圧器2次側の端子電圧を計測するので電圧があると判定し,切替接続手段606をインピーダンス604側に切り替える。 Next, the operation of the apparatus of the present invention will be described. First, the zero-phase current transformer 501 of the circuit A is attached to an arbitrary system wire on the integrated watt-hour meter side. After that, when the lead wires 601 and 602 of the circuit B are connected to one of the breaker terminals on the lower breaker side and 602 is connected to the ground terminal, the voltage detection determination means 603 is connected to the breaker terminal and the lead wire to which the lead wire 601 is connected. The voltage between the grounds connected to 602 is detected and determined. In FIG. 1, since the lead wire 601 is connected to the terminal on the voltage (L) side line, the voltage detection determining means 603 measures the terminal voltage on the secondary side of the transformer, so it is determined that there is a voltage, and the switching connecting means 606 Is switched to the impedance 604 side.

インピーダンス604がリード線601と602間に接続された時点で,L側の電圧線から大地に対してインピーダンス604に応じた電流Izが流れる。図1では零相変流器501を設置した系統配線はリード線601を接続した系統と同一であるから,零相変流器501と検出回路502は電流Izを検出し,判定回路503はリード線601を接続したブレーカ401は零相変流器501を取り付けた系統の積算電力量計301と同一系統上にあり対応関係にあると判定し結果を音声や視覚的表示などで出力する。なお出力は判定回路503に含まれてもよいし,503の出力を受けて表示する手段を別途設けてもよい。 When the impedance 604 is connected between the lead wires 601 and 602, a current Iz corresponding to the impedance 604 flows from the L-side voltage line to the ground. In FIG. 1, since the system wiring in which the zero-phase current transformer 501 is installed is the same as the system to which the lead wire 601 is connected, the zero-phase current transformer 501 and the detection circuit 502 detect the current Iz, and the judgment circuit 503 The breaker 401 connected to the line 601 is on the same system as the integrated watt-hour meter 301 of the system to which the zero-phase current transformer 501 is attached and is determined to have a corresponding relationship, and the result is output by voice or visual display. Note that the output may be included in the determination circuit 503, or a means for receiving and displaying the output of 503 may be provided separately.

電圧検出判定手段603がリード線601と602間に相応の電圧を検出しない場合,接続切替手段606は電圧発生手段605側に切り替わる。この場合,リード線601を接続したブレーカの端子はアース(N)側線であるから,全体として図2のようになり,系統のアース(N)側の電線,トランスの接地線,大地,ブレーカ側の接地を経路として電圧発生手段605による電流Igが系統に流れる。回路Aは,零相変流器501と検出回路502がIgを検出した場合に,判定回路503は,ブレーカ401が積算電力量計301に接続されていると判定し,結果を出力する。 When the voltage detection determination unit 603 does not detect a corresponding voltage between the lead wires 601 and 602, the connection switching unit 606 switches to the voltage generation unit 605 side. In this case, since the terminal of the breaker to which the lead wire 601 is connected is the ground (N) side wire, it is as shown in FIG. 2 as a whole, and the system ground (N) side wire, transformer ground wire, ground, breaker side The current Ig from the voltage generating means 605 flows through the system using the ground of the current as a path. When the zero-phase current transformer 501 and the detection circuit 502 detect Ig, the circuit A determines that the breaker 401 is connected to the integrated watthour meter 301 and outputs the result.

もしリード線601を接続したブレーカが,積算電力量系301の系統でない場合は零相変流器501は前述のIzもIgも検出しないから回路Aは系統が同一であるとの出力はしない。その場合,リード線601の接続を,ブレーカ402,403・・・と順次接続しなおすか,回路Aの零相変流器501を積算電力量計の符号で302,303,304・・・と順次装着しなおして行き,出力が出たところで積算電力量計のどれとブレーカのどれが同一系統上にあるかを判別できる。 If the breaker to which the lead wire 601 is connected is not a system of the integrated power amount system 301, the zero-phase current transformer 501 does not detect the above-mentioned Iz and Ig, so that the circuit A does not output that the systems are the same. In that case, the connection of the lead wire 601 is sequentially reconnected to the breakers 402, 403, or the zero-phase current transformer 501 of the circuit A is 302, 303, 304,. When the output is output, it is possible to determine which of the integrated watt-hour meters and which of the breakers are on the same system.

以上の説明において,401のブレーカの上位に既設の漏電リレーや漏電遮断器などの地絡検出装置がある場合,IzもしくはIgの大きさは該地絡検出装置の感度電流未満であることが必要である。例えば家庭用の場合,漏電遮断器の定格感度電流は一般的に30mAが用いられるのでその定格不動作電流15mA未満が望ましい。また,図1に示す当該電路201の対地静電容量分9により装置接続前に既に暗漏洩電流が流れている場合があり,また,電路201,202・・・のアース線側に対地静電容量分8,10・・・があるような場合,インピーダンス604に流れるIzは大地を帰路として変圧器1のNに流れる経路と対地静電容量分8,10・・・から電路201,202・・・のアース側線を通じて変圧器のNに流れる経路を分流する。また図2におけるIgについても同様の影響がある。さらに漏洩電流にその他のノイズ等がある場合があり,それらが判定回路503の判定に対して制約を与える可能性がある。しかし,次のように対応が考えられる。 In the above description, when there is a ground fault detection device such as an existing earth leakage relay or earth leakage breaker above the breaker 401, the magnitude of Iz or Ig needs to be less than the sensitivity current of the ground fault detection device. It is. For example, in the case of home use, the rated sensitivity current of the earth leakage circuit breaker is generally 30 mA, so that the rated inoperative current is preferably less than 15 mA. Further, there is a case where a dark leakage current has already flowed before the device is connected due to the earth capacitance 9 of the electric circuit 201 shown in FIG. When there is a capacity 8, 10,..., Iz flowing through the impedance 604 returns from the ground to the N of the transformer 1 and the ground capacitance 8, 10,.・ Branch the path that flows to N of the transformer through the earth side wire. In addition, Ig in FIG. 2 has the same influence. Furthermore, there may be other noise in the leakage current, which may limit the determination of the determination circuit 503. However, the following measures can be considered.

まず,前述のブレーカ401の上位に漏電遮断器があることを考慮して,さらにIz,Igを凡そ同一となるようにインピーダンス604,電圧発生手段605の仕様を設定し,若干の誤差を見込んで判定回路503の判定のための電流閾値を設定する方法である。図1で積算電力量計の各系統負荷が一般の家庭であるような場合,
通常は変圧器1のN極側の接地抵抗は10Ω以下,端子7の接地抵抗は500Ω以下であるから,Iz,Igを10mA程度に設定するとすれば,インピーダンス604は電源電圧を100Vとすれば10kΩ程度となるが,接地抵抗が10Ω+500Ω以下であればIzはほとんど変化ない。また電圧発生手段605を定電流源とすれば,接地抵抗最大10Ω+500Ωに10mAを流す場合の出力電力も510Ω×10mA×10mA=0.05W程度で済むから簡単に構成できる。
First, considering that there is a leakage breaker above the breaker 401, the specifications of the impedance 604 and voltage generation means 605 are set so that Iz and Ig are almost the same, and some errors are expected. This is a method of setting a current threshold for determination by the determination circuit 503. When each system load of the integrated watt-hour meter in FIG. 1 is a general household,
Normally, the ground resistance on the N pole side of the transformer 1 is 10 Ω or less and the ground resistance of the terminal 7 is 500 Ω or less. Therefore, if Iz and Ig are set to about 10 mA, the impedance 604 is set to a power supply voltage of 100V. Although it is about 10 kΩ, if the ground resistance is 10Ω + 500Ω or less, Iz hardly changes. Further, if the voltage generating means 605 is a constant current source, the output power when 10 mA is passed through the maximum ground resistance of 10Ω + 500Ω can be simply configured because only 510Ω × 10 mA × 10 mA = 0.05 W is sufficient.

その場合の図1,図2における対地静電容量8,9・・・の影響について考察する。前述のように201,202,203・・・の負荷が通常家庭で用いられるものであり,定格感度電流が30mAの漏電遮断器が設置してあるような電路である場合,対地静電容量による漏洩電流も最大でも前述の定格不動作感度電流15mA未満であろうと考えられる。一般的には数mA以下であるから,対地静電容量のインピーダンスは数十kΩ以上であると考えられる。図1においてインピーダンス604に流れる電流はリード線602から接地端子7,大地を通じて変圧器1の接地端子Nに流れる経路とリード線602から接地端子7,対地静電容量8,電路201のアース側線を通じて変圧器1の接地端子Nに流れる経路,対地静電容量10,電路202のアース側線を通じて変圧器1の接地端子Nに流れる経路(以下,電路203,204についても同じ)に分流するが,大地を経路とする場合の抵抗は前述のとおり10Ω+500Ωであり,対地静電容量8,10・・・を経路とする場合のインピーダンスはそれぞれ数十kΩであるので,ほとんど対地静電容量8,10,・・・側を流れない。従って,判定回路の検出閾値を10mAよりやや低めに設定すれば,図1の電路201ではIzを検出でき,電路202では対地静電容量11を経路とする暗漏洩電流を含めてもIzには至らないので誤検出することはない(電路203,204・・・も同じ)。 The influence of the ground capacitances 8, 9,... In FIGS. As described above, when the load of 201, 202, 203... Is normally used at home and the circuit is such that an earth leakage breaker with a rated sensitivity current of 30 mA is installed, it depends on the ground capacitance. It is considered that the leakage current is at most less than the above-mentioned rated inoperative sensitivity current of 15 mA. Since it is generally several mA or less, the impedance of the ground capacitance is considered to be several tens of kΩ or more. In FIG. 1, the current flowing through the impedance 604 flows from the lead wire 602 to the ground terminal 7, the path flowing from the ground to the ground terminal N of the transformer 1, the lead wire 602 to the ground terminal 7, the ground capacitance 8, and the ground side line of the electric circuit 201. A path that flows to the ground terminal N of the transformer 1, a capacitance to the ground 10, and a path that flows to the ground terminal N of the transformer 1 through the ground side line of the electric circuit 202 (hereinafter, the same applies to the electric circuits 203 and 204). As described above, the resistance when the path is 10Ω + 500Ω and the impedance when the path is the ground capacitance 8, 10,... ... Does not flow on the side. Therefore, if the detection threshold of the determination circuit is set to be slightly lower than 10 mA, Iz can be detected in the electric circuit 201 of FIG. 1, and Iz can be detected even if the electric circuit 202 includes a dark leakage current that is routed to the ground capacitance 11. Therefore, no erroneous detection is made (the same applies to the electric circuits 203, 204,...).

図2の場合,電圧発生手段605によって流れる電流Igも,リード線601から電路201のアース側線を通じて流れる電流と,大地静電容量8から大地を経由して変圧器1のN側端子に流れる電流とに分流し,電路201のアース側線に流れる電流もまたその先で,変圧器1のN端子から大地を経由して戻る経路と電路202のアース側線,対地静電容量10から大地を経由して戻る経路(電路203,204・・・も同じ)に分流するが,先の図1の説明に同じく,大地を経路とする抵抗は最大でも510Ω程度であり,対して対地静電容量8,10・・・のインピーダンスはそれぞれ数十kΩであるので,対地静電容量8,10を流れる電流はほとんどなく,電路201ではIgを検出でき,電路202では対地静電容量10による漏洩電流を含めてもIgに至らないので誤検出することはない(電路203,204も同じ)。従って,IzとIgの値をほぼ同一となるようにして,且つ判定回路の電流閾値をIzとIgよりやや低い値に選定し,IzあるいはIgの値を適当に設定すれば,ほとんどの場合,誤判定なしに系統を判定できる。 In the case of FIG. 2, the current Ig flowing by the voltage generating means 605 also flows from the lead wire 601 through the ground side line of the electric circuit 201 and from the ground capacitance 8 to the N side terminal of the transformer 1 via the ground. The current that flows to the ground side line of the electric circuit 201 is also connected to the path from the N terminal of the transformer 1 via the ground, the ground side line of the electric circuit 202, and the ground capacitance 10 to the ground. However, as in the explanation of FIG. 1, the resistance with the ground as a route is about 510Ω at the maximum, and the capacitance to the ground is 8, Since the impedance of 10... Is several tens of kΩ, there is almost no current flowing through the ground capacitances 8 and 10, Ig can be detected in the circuit 201, and leakage due to the ground capacitance 10 can be detected in the circuit 202. Even if the leakage current is included, it does not reach Ig, so that it is not erroneously detected (the same applies to the electric circuits 203 and 204). Therefore, in most cases, if the values of Iz and Ig are made substantially the same, the current threshold value of the determination circuit is selected to be slightly lower than Iz and Ig, and the value of Iz or Ig is set appropriately, A system can be determined without erroneous determination.

しかし,各電路の対地静電容量のインピーダンスが上述の説明より低く,例えば,電路毎に対地静電容量による漏洩電流が10mA程度もあるような場合は,上述の方法のみでは次のように誤判定となる。 However, if the impedance of the ground capacitance of each circuit is lower than the above explanation, for example, if there is a leakage current of about 10 mA due to the ground capacitance for each circuit, the above method alone will cause the following error. It becomes a judgment.

まず,図1の場合,判定回路の判定電流閾値は上述の方法によれば10mAよりやや低い値に設定することになるが,電路毎の対地静電容量による漏洩電流が10mA程度であるから,図1でインピーダンス604によるIzを10mAに設定しても,電路201,202・・・の漏れ電流はいずれも10mA程度以上あることになり,インピーダンス604を接続した電路201を特定できない。 First, in the case of FIG. 1, the determination current threshold of the determination circuit is set to a value slightly lower than 10 mA according to the above method, but the leakage current due to the ground capacitance for each electric circuit is about 10 mA. In FIG. 1, even if Iz due to the impedance 604 is set to 10 mA, the leakage currents of the electric circuits 201, 202... Are about 10 mA or more, and the electric circuit 201 to which the impedance 604 is connected cannot be specified.

次に,図2の場合,電圧発生手段605の発生電圧周波数が電路の周波数と同一である場合,発生電圧の位相によっては,前述の対地静電容量による漏洩電流の位相との関係で,変流器501が検出する電流がIgより小さくなる場合があり,その場合,電圧発生装置605を接続した電路を特定できない。 Next, in the case of FIG. 2, when the generated voltage frequency of the voltage generating means 605 is the same as the frequency of the electric circuit, depending on the phase of the generated voltage, it varies depending on the relationship with the phase of the leakage current due to the ground capacitance described above. In some cases, the current detected by the flow device 501 is smaller than Ig. In this case, the electric circuit to which the voltage generator 605 is connected cannot be specified.

この場合,図1のインピーダンス604は抵抗分のインピーダンスとして図1の電圧検出判定手段603の検出した電圧の位相データと測定した電流データ,図2の電圧発生手段605の発生電圧周波数は電路電圧の周波数ではない周波数とし発生した電圧の位相データと測定した電流データのうち発生電圧周波数成分のみをフィルタリング抽出した電流データをもとに,判定回路503は電流データから抵抗分に流れている電流のみを検出し,検出した抵抗分の電流で閾値を前述のIzまたはIgよりやや低い電流に設定すればよい。そのようにすれば,図1のIz,図2のIgのみの大きさを検出できるから誤判定がない。なお,図2の場合電圧発生手段605の発生周波数を電路電圧の周波数の整数分の1あるいは整数倍とすれば前述のフィルタリング処理を省略してもよい。 In this case, the impedance 604 in FIG. 1 is the impedance of the resistance, the phase data of the voltage detected by the voltage detection determination means 603 in FIG. 1 and the measured current data, and the generated voltage frequency of the voltage generation means 605 in FIG. Based on the phase data of the generated voltage and the current data obtained by filtering and extracting only the generated voltage frequency component in the measured current data, the determination circuit 503 determines only the current flowing through the resistance from the current data. The threshold value may be set to a current slightly lower than the above-described Iz or Ig based on the detected resistance current. By doing so, there is no misjudgment because only the magnitudes of Iz in FIG. 1 and Ig in FIG. 2 can be detected. In the case of FIG. 2, the above-described filtering process may be omitted if the generated frequency of the voltage generating means 605 is set to 1 / integer or multiple of the frequency of the circuit voltage.

ここで,電圧の位相データをもとに抵抗分のみの電流を抽出する方法について簡単に説明する。図3は交流電圧に対し抵抗とコンデンサが接続されている場合の電圧と電流の関係の概念図で,電圧vに対し抵抗分電流Irは電圧vと同相であって,容量分電流Icは電圧vより90度位相が進んでおり,IoはIrとIcの合成電流となって電圧vより位相角θだけ進んでいる。従って,電圧位相が分かっていれば,電流Ioとの位相差を測定し,Io×cosθを計算することでIrが得られる。 Here, a method for extracting a current only for resistance based on voltage phase data will be briefly described. FIG. 3 is a conceptual diagram of the relationship between voltage and current when a resistor and a capacitor are connected to an AC voltage. The resistance divided current Ir is in phase with the voltage v and the voltage divided current Ic is the voltage. The phase is advanced by 90 degrees from v, and Io is a combined current of Ir and Ic, and is advanced by a phase angle θ from the voltage v. Therefore, if the voltage phase is known, Ir can be obtained by measuring the phase difference from the current Io and calculating Io × cos θ.

また図4の方法によっても図3のIrを求めることができる。図4の(イ)は電路電圧vであり,(ロ)は抵抗分に流れる電流Irであり,(ニ)は容量分に流れる電流Icである。ここで,電圧vの半波毎の位相によって電流IrとIcの波形を反転する。つまり(イ)の波形のaからbの区間は電圧が+であるので,IrとIcの波形はそのまま,(イ)の波形のbからcの区間は電圧が−であるので,IrとIcの波形を反転する。その結果Irは(ハ)に,Icは(ホ)のようになって平均すると,Irは+の値に,Icは零となるからIc分をキャンセルできる。 Also, Ir in FIG. 3 can be obtained by the method in FIG. 4A is the circuit voltage v, FIG. 4B is the current Ir flowing through the resistance, and FIG. 4D is the current Ic flowing through the capacitance. Here, the waveforms of the currents Ir and Ic are inverted according to the phase of each half wave of the voltage v. That is, since the voltage in the section from (a) to b is positive, the Ir and Ic waveforms remain as they are, and in the section from (b) to b, the voltage is-, so Ir and Ic. Invert the waveform. As a result, if Ir becomes (c) and Ic becomes (e) and averages, Ir becomes a positive value and Ic becomes zero, so Ic can be canceled.

図1の場合で,インピーダンス604を抵抗とすれば,Izは電路電圧と同相の電流となるから,変流器501が検出した電流を,電圧検出手段603が検出した電路電圧データをもとに図3または図4の方法でIzのみを抽出すれば,図1の場合では誤判定がなくなる。 In the case of FIG. 1, if the impedance 604 is a resistance, Iz becomes a current in phase with the circuit voltage. Therefore, the current detected by the current transformer 501 is obtained based on the circuit voltage data detected by the voltage detection means 603. If only Iz is extracted by the method of FIG. 3 or FIG. 4, there will be no erroneous determination in the case of FIG.

次ぎに図2の電圧発生手段による発生電圧の周波数と,商用の電路電圧により対地静電容量を通じて流れる暗漏洩電流の周波数の関係において,電圧発生手段の発生する電圧の周波数が暗漏洩電流の周波数の整数分の1または電圧発生手段の発生する電圧の周波数が暗漏洩電流の周波数の整数倍のときに,図4の方法を適用した場合について説明する。図5は(イ)電圧vの周波数が(ロ)電流Iの周波数の1/2の場合で図4の方法を適用したときの説明図である。電圧vの波形のaからbの区間は電流Iをそのまま,bからcの区間は電流Iを反転すると電流は(ハ)のような波形になり電流Iの大きさはその位相に関係なく電圧の1サイクルの平均値をとれば零にできる。 Next, in the relationship between the frequency of the voltage generated by the voltage generating means in FIG. 2 and the frequency of the dark leakage current flowing through the ground capacitance due to the commercial circuit voltage, the frequency of the voltage generated by the voltage generating means is the frequency of the dark leakage current. A case will be described in which the method of FIG. 4 is applied when the frequency of the integral fraction of 1 or the frequency of the voltage generated by the voltage generating means is an integral multiple of the frequency of the dark leakage current. 5A and 5B are explanatory diagrams when the method of FIG. 4 is applied when the frequency of the voltage v is (b) half the frequency of the current I. The current I remains unchanged in the interval from a to b of the waveform of the voltage v, and the current I is inverted in the interval from b to c, and the current becomes a waveform as shown in (c). The magnitude of the current I is the voltage regardless of the phase. If the average value of one cycle is taken, it can be made zero.

同じく,図6は(イ)電圧vの周波数が(ロ)電流Iの周波数の2倍のときに図4の方法を適用した場合に,電圧vのaからbの区間は電流Iをそのまま,bからcの区間では電流Iを反転すれば(ハ)のような波形になり電流Iの大きさはその位相に関係なく電圧の2サイクル分の周期における平均値をとれば零にできる。すなわち,前述のように図2の電圧発生手段605の発生電圧の周波数を電路電圧の周波数の整数分の1あるいは整数倍とすれば,電路電圧により対地静電容量に流れる暗電流の影響を零にでき,電圧発生手段605による電流Igだけを判別できるから電路の暗漏洩電流による誤判定がなくなる。 Similarly, in FIG. 6, when the method of FIG. 4 is applied when (a) the frequency of the voltage v is (b) twice the frequency of the current I, the current I remains as it is in the interval from a to b of the voltage v. In the period from b to c, if the current I is inverted, the waveform becomes as shown in (c), and the magnitude of the current I can be made zero by taking the average value in the period of two cycles of the voltage regardless of the phase. That is, if the frequency of the voltage generated by the voltage generating means 605 in FIG. 2 is set to 1 / integer or multiple of the frequency of the circuit voltage as described above, the influence of the dark current flowing to the ground capacitance due to the circuit voltage is reduced to zero. Since only the current Ig by the voltage generating means 605 can be determined, erroneous determination due to the dark leakage current in the electric circuit is eliminated.

積算電力量計301,302・・・とブレーカ401,402・・・が同一ボックス内にあるなど至近距離にある場合は,5の回路Aと6の回路Bを同一筐体内に構成して,該筐体から変流器501とリード線601,602を必要長さ分延出すればよい。そのようにすれば判定回路503は電圧検出判定装置603と電圧発生手段605の電圧位相のデータを容易に得ることができ前述の図3ないし図6のような演算処理が可能となる。また回路Aと回路Bを別の筐体に構成しなければならない場合は,その間を有線,無線信号により電圧検出判定手段と電圧発生手段の位相のタイミング(図4から図6におけるa,b,c)をパルス信号などで回路Bから回路Aに送信すれば回路Aで演算処理が可能である。 When the integrated watt-hour meters 301, 302... And the breakers 401, 402... Are in the same box, etc., the 5 circuits A and 6 circuits B are configured in the same housing. What is necessary is just to extend the current transformer 501 and the lead wires 601 and 602 by the required length from the housing. By doing so, the determination circuit 503 can easily obtain the voltage phase data of the voltage detection determination device 603 and the voltage generation means 605, and can perform the arithmetic processing as shown in FIGS. When the circuit A and the circuit B have to be configured in different cases, the phase timing between the voltage detection determination means and the voltage generation means is determined by a wired signal or a wireless signal (a, b, in FIGS. 4 to 6). If c) is transmitted from the circuit B to the circuit A by a pulse signal or the like, the arithmetic processing can be performed by the circuit A.

別の方法として,インピーダンス604は図7の(a)(b)(c)のように符号化制御手段607により可変とし,Izが図8のように適当なパターンで断続あるいは変化するようにして符号化してもよく,判定手段503の判定条件に符号整合性を加えてもよい。電圧発生手段605の発生電圧についても図9のような構成にしてIgが図9のように符号化制御手段608により変化するようにして判定手段503の判定条件にその変化の符号整合性を加えてもよい。 As another method, the impedance 604 is made variable by the encoding control means 607 as shown in FIGS. 7A, 7B and 7C, and Iz is intermittently changed or changed in an appropriate pattern as shown in FIG. It may be encoded, and code consistency may be added to the determination condition of the determination means 503. The voltage generated by the voltage generation means 605 is also configured as shown in FIG. 9 so that Ig is changed by the encoding control means 608 as shown in FIG. 9 and the sign consistency of the change is added to the determination condition of the determination means 503. May be.

そのようにすれば,大地漏洩電流が大きい場合も,変流器501が検出した電流が,対地漏洩電流か回路Bを接続したことによる電流かの判別が容易にできる。 By doing so, even when the ground leakage current is large, it is possible to easily determine whether the current detected by the current transformer 501 is a ground leakage current or a current due to connection of the circuit B.

以上のような系統探査装置は,下位側のブレーカではひとつの端子に接触するだけでよいから,古い設備でブレーカの端子カバーの検電用の小孔がひとつしか空いていない場合でも端子カバーを外すことなく系統判別ができて測定時に短絡などの事故を起こす可能性が低く安全である。また,大地間電圧を測定してインピーダンスと電圧発生手段の接続を切り替えるようにしているので,リード線601を接続した電線がアース線側であってもリード線601を電圧側線に接続換えする必要がない。万一ひとつしかない検電用の小孔のLとNの配線間違いがあり,リード線601を接続した端子がN側であった場合でも系統を判別できる。そのうえ,測定方法が容易で,確実に系統の判別が可能である。 The system exploration device as described above only needs to contact one terminal at the breaker on the lower side, so even if the old equipment has only one small hole for detecting the voltage on the terminal cover of the breaker, the terminal cover must be removed. The system can be discriminated without disconnecting it, and it is safe with no possibility of causing an accident such as a short circuit during measurement. Moreover, since the voltage between the grounds is measured and the connection between the impedance and the voltage generating means is switched, it is necessary to change the connection of the lead wire 601 to the voltage side wire even if the wire connected to the lead wire 601 is on the ground wire side. There is no. The system can be identified even when there is a mistake in the wiring of the small holes L and N for detecting electric power, and the terminal to which the lead wire 601 is connected is on the N side. In addition, the measurement method is easy and the system can be reliably identified.

本件発明は,上述の積算電力量計とブレーカの対応関係の探査のほか,より下位のブレーカとコンセントなどの系統探査にも利用可能である。
The present invention can be used not only for searching for the correspondence relationship between the integrated watt-hour meter and the breaker, but also for searching for systems such as lower order breakers and outlets.

本件発明の装置の使用と構成を示す図。The figure which shows use and a structure of the apparatus of this invention. 本件発明の装置の使用と構成を示す図。The figure which shows use and a structure of the apparatus of this invention. 抵抗分電流Irと容量分電流Icの合成電流から抵抗分電流Irを検出する方法の説明図Explanatory drawing of the method of detecting resistance divided current Ir from the combined current of resistance divided current Ir and capacitive divided current Ic 同上Same as above 電圧の周波数が電流の周波数の整数分の1の場合に図4の方法で電流の影響をキャンセルできる説明図FIG. 4 is an explanatory diagram that can cancel the influence of current when the frequency of the voltage is 1 / integer of the frequency of the current. 電圧の周波数が電流の周波数の整数倍の場合に図4の方法で電流の影響をキャンセルできる説明図FIG. 4 is an explanatory diagram that can cancel the influence of current when the voltage frequency is an integral multiple of the current frequency. インピーダンスに符号制御手段を設けた場合の例。An example in which a sign control means is provided for impedance. 電流の変化パターンの一例を示す図。The figure which shows an example of the change pattern of an electric current. 電圧発生手段に符合制御手段を設けた場合の例。An example in which a sign control means is provided in the voltage generating means.

符号の説明Explanation of symbols

1 変圧器
201〜204 系統の配線
301〜304 積算電力量計
401〜404 ブレーカ
5 回路A
501 零相変流器
502 検出回路
503 判定回路
6 回路B
601,602 リード線
603 電圧検出判定回路
604 インピーダンス
605 電圧発生手段
606 接続切替手段
607 符号制御手段
608 符号制御手段
7 接地端子
DESCRIPTION OF SYMBOLS 1 Transformer 201-204 System wiring 301-304 Integrated watt-hour meter 401-404 Breaker 5 Circuit A
501 Zero-phase current transformer 502 Detection circuit 503 Determination circuit 6 Circuit B
601 602 Lead wire 603 Voltage detection determination circuit 604 Impedance 605 Voltage generation means 606 Connection switching means 607 Sign control means 608 Sign control means 7 Ground terminal

Claims (4)

2次巻線の1端子を大地に接続した変圧器の負荷側の複数の配電系統の上流と下流の接続系統を判別する装置において,上流側の任意の系統に接続されて零相電流を検出する手段と判定する手段を含む回路Aと下流側の任意の系統で配線の1端子と大地間に接続される回路Bより成り,回路Bには前記配線の1端子と大地間に接続される電圧検出判定手段とインピーダンスと電圧発生手段と接続切替手段を含み,電圧検出判定手段が系統の配電電圧を検出したときは前記配線の1端子と大地間にインピーダンスを接続切替手段が選択して接続する一方,検出しなかったときは電圧発生手段を接続切替手段が選択して接続し,回路A前記の回路Bにおけるインピーダンスまたは電圧発生手段を接続したことによる電流を検出したとき回路Aを設置した配線または機器の系統と回路Bを設置した配線または機器の系統は同一であるとの判定結果を出力することを特徴とする系統判別装置。 Detects zero-phase current connected to any upstream system in a device that discriminates upstream and downstream connection systems of a plurality of distribution systems on the load side of a transformer with one terminal of a secondary winding connected to the ground Circuit A including a means for determining and a circuit B connected between one terminal of the wiring and the ground in an arbitrary system on the downstream side. The circuit B is connected between one terminal of the wiring and the ground. Includes voltage detection determination means, impedance, voltage generation means, and connection switching means. When the voltage detection determination means detects the distribution voltage of the system, the connection switching means selects and connects the impedance between one terminal of the wiring and the ground. to contrast, when not detected connects the voltage generating means connected switching means selects, the circuit a when it detects a current by the circuit a is connected to the impedance or voltage generating means in the circuit B Location and wiring or wiring or equipment lines were installed system and circuit B equipment system discriminating apparatus and outputs a determination result to be identical. 前記回路Aの零相電流がインピーダンスあるいは電圧発生手段を接続したことによるものであるとの判定要素には,電流の大きさを含むものであることを特徴とする請求項1の系統判別装置。 2. The system discriminating apparatus according to claim 1, wherein the determination element that the zero-phase current of the circuit A is due to the impedance or voltage generation means being connected includes the magnitude of the current. 回路Bのインピーダンスは抵抗とし,前記回路Aの判定回路は回路Bの電圧検出判定手段が検出した電圧あるいは電圧発生手段が発生した電圧の位相をもとにして,回路Aが検出した電流から抵抗分による電流を検出し,該抵抗分による電流の大きさが回路Bのインピーダンスあるいは電圧発生手段を接続したことによるものであると判定することを特徴とした請求項1の系統判別装置。 The impedance of the previous SL circuit B and a resistor, said circuit determining circuit of A and the phase of the voltage which the voltage or the voltage generating means for voltage detection determining means detects the circuit B is generated on the basis of the detected circuit A current 2. The system discrimination device according to claim 1, wherein a current due to the resistance is detected from the circuit and it is determined that the magnitude of the current due to the resistance is due to the impedance of the circuit B or the voltage generating means being connected. 前記回路Aの零相電流がインピーダンスまたは電圧発生手段を接続したことによるものであるとの判定要素には,符号化信号の符号を含み,インピーダンスまたは電圧発生手段は符号化制御手段で符号化制御を行うことを特徴とした請求項1の系統判別装置。
The determination element that the zero-phase current of the circuit A is due to the connection of the impedance or voltage generation means includes the sign of the encoded signal, and the impedance or voltage generation means is encoded and controlled by the encoding control means. The system discriminating apparatus according to claim 1, wherein:
JP2008210770A 2008-08-19 2008-08-19 System identification device Expired - Fee Related JP5354568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008210770A JP5354568B2 (en) 2008-08-19 2008-08-19 System identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008210770A JP5354568B2 (en) 2008-08-19 2008-08-19 System identification device

Publications (2)

Publication Number Publication Date
JP2010048577A JP2010048577A (en) 2010-03-04
JP5354568B2 true JP5354568B2 (en) 2013-11-27

Family

ID=42065790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008210770A Expired - Fee Related JP5354568B2 (en) 2008-08-19 2008-08-19 System identification device

Country Status (1)

Country Link
JP (1) JP5354568B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540017B (en) * 2012-02-08 2015-06-24 华北电力大学(保定) Partition and segmentation on-line positioning method for small-current grounding faults
JP6017006B1 (en) * 2015-11-05 2016-10-26 三菱電機株式会社 Information output system and connection determination method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138070U (en) * 1981-02-23 1982-08-28
JP2577890B2 (en) * 1986-07-29 1997-02-05 財団法人 中部電気保安協会 Wiring connection determination method in low voltage circuit

Also Published As

Publication number Publication date
JP2010048577A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
US9857396B2 (en) Device for measuring at least one physical quantity of an electric installation
US8717038B2 (en) Wiring testing device
RU2505824C2 (en) Directed detection of ground short-circuit
CN102262199B (en) Fault Identification in three-phase electrical power system and oriented detection
US20150346266A1 (en) System and method for pulsed ground fault detection and localization
US20150088438A1 (en) Ratio metric current measurement
US9952271B2 (en) Insulation monitoring system for secured electric power system
CN102385020B (en) Single sensor orientation is utilized to detect earth fault
WO2018221619A1 (en) Electricity leakage detecting method
CN107710008A (en) The method and apparatus for debugging the voltage sensor and branch current sensor for branch road monitoring system
JP6672465B2 (en) Method and apparatus for short-circuit monitoring of three-phase ac loads
JP5743296B1 (en) Leakage location exploration method and apparatus
CN109596934B (en) Secondary circuit multipoint grounding double-clamp meter measuring method
JP4599120B2 (en) Electrical installation insulation monitoring device and method
JP5475316B2 (en) Ground resistance measurement method
CN107636481A (en) The method and apparatus for debugging the voltage sensor and branch current sensor for branch road monitoring system
JP5354568B2 (en) System identification device
EP3779474B1 (en) Measuring electrical energy consumption
CN115932385B (en) Residual current monitoring method and system and single-phase intelligent electric energy meter
JP4712594B2 (en) Method for determining erroneous connection of outlet with ground electrode and tester for determining erroneous connection of outlet with ground electrode
JP7013770B2 (en) Forced grounding device and ground fault search device
US6333625B1 (en) Fault localizing and identifying device for electric systems
KR20100008197A (en) Method for discriminating fault line and phase in ungrounded distribution system
KR101046440B1 (en) Terminal inspection device of electric wire
JP2019002812A (en) Insulation resistance measurement system, distribution board, insulation resistance measurement method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R150 Certificate of patent or registration of utility model

Ref document number: 5354568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees