JP5354526B2 - Wireless communication system - Google Patents

Wireless communication system Download PDF

Info

Publication number
JP5354526B2
JP5354526B2 JP2009001200A JP2009001200A JP5354526B2 JP 5354526 B2 JP5354526 B2 JP 5354526B2 JP 2009001200 A JP2009001200 A JP 2009001200A JP 2009001200 A JP2009001200 A JP 2009001200A JP 5354526 B2 JP5354526 B2 JP 5354526B2
Authority
JP
Japan
Prior art keywords
communication path
communication
directional antenna
signal wave
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009001200A
Other languages
Japanese (ja)
Other versions
JP2010161513A (en
Inventor
博之 中瀬
修三 加藤
浩和 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2009001200A priority Critical patent/JP5354526B2/en
Publication of JP2010161513A publication Critical patent/JP2010161513A/en
Application granted granted Critical
Publication of JP5354526B2 publication Critical patent/JP5354526B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Transmission System (AREA)

Description

本発明は、指向性を制御することが可能な指向性アンテナを備えた受信機を含む無線通信システムおよびその通信経路形成部に関し、常時複数の信号を追尾・モニタすることによって、好適な通信経路を用いて通信を行い、例えば、ミリ波帯などの電磁波の通信経路の一つが障害物によって遮断されても、瞬時に他の通信経路に切り替えて途切れることなく安定して送受信することができる無線通信システムに関する。   The present invention relates to a wireless communication system including a receiver including a directional antenna capable of controlling directivity and a communication path forming unit thereof, and preferably a communication path suitable for tracking and monitoring a plurality of signals at all times. For example, even if one of the electromagnetic wave communication paths such as the millimeter wave band is interrupted by an obstacle, it is possible to switch to another communication path instantly and transmit and receive stably without interruption. The present invention relates to a communication system.

ミリ波帯などの高周波帯の電磁波を用いた無線通信システムでは高いアンテナゲインをもつ指向性アンテナを用いることが一般的である。高いアンテナゲインを実現するためには、開口アンテナやアレイアンテナなど、物理的に大きなアンテナが必要となる。また、アンテナゲインの大きな指向性アンテナは通常、その指向性を変更できないため、一方向にのみ通信可能であると同時に、アンテナ間のアライメントを物理的に調整することが非常に困難である。   In a wireless communication system using an electromagnetic wave in a high frequency band such as a millimeter wave band, a directional antenna having a high antenna gain is generally used. In order to realize a high antenna gain, a physically large antenna such as an aperture antenna or an array antenna is required. In addition, since a directivity antenna having a large antenna gain usually cannot change its directivity, it can communicate in only one direction, and at the same time, it is very difficult to physically adjust the alignment between the antennas.

高いアンテナゲインを実現しながらも、その指向性の方向を変更できる指向性アンテナとして、ビームフォーミングアンテナがある。ビームフォーミングアンテナは、複数のアンテナ素子に位相と振幅を精度良く調整した信号電力を供給することにより、ビームの指向性を制御して変更するものである。   As a directional antenna that can change the direction of the directivity while realizing a high antenna gain, there is a beam forming antenna. A beam forming antenna controls and changes the directivity of a beam by supplying signal power whose phase and amplitude are accurately adjusted to a plurality of antenna elements.

このようなビームフォーミングが可能となると、ミリ波の欠点である大きな伝搬減衰をカバーするアンテナ利得が得られると同時に、その指向性を任意の方向へ向けることができることから、端末の移動も可能となる。   If such beam forming becomes possible, it is possible to obtain an antenna gain that covers the large propagation attenuation that is a drawback of millimeter waves, and at the same time, the directivity can be directed in an arbitrary direction, so that the terminal can be moved. Become.

ビームフォーミングアンテナなどの指向性アンテナを用いて、特に信号の直進性が強いミリ波帯の電波を用いる無線通信装置では、相手の無線通信装置からの電波の強度がもっとも強い方向にアンテナの指向性を向けるようにしていた。   In a wireless communication device that uses a directional antenna such as a beam forming antenna and that uses millimeter-wave radio waves, which have a strong signal straightness, the directionality of the antenna in the direction where the strength of the radio waves from the partner wireless communication device is strongest. I was aiming.

一方で、ミリ波帯などの高周波帯の電磁波を用いた無線通信システムでは、伝搬による信号減衰が大きく、回折が期待できないため、通信経路に人間が侵入するだけで通信ができなくなる。このため、常時好適な通信経路で通信を行い、壁面などで反射された反射波も常時追尾し、現在使用している直接波が遮断された場合は、反射波などの他の好適な通信経路に切り替える必要がある。   On the other hand, in a wireless communication system using an electromagnetic wave in a high frequency band such as a millimeter wave band, signal attenuation due to propagation is large and diffraction cannot be expected. Therefore, communication cannot be performed only by a person entering the communication path. For this reason, communication is always performed on a suitable communication path, and the reflected wave reflected on the wall surface is always tracked. When the direct wave currently used is interrupted, other suitable communication path such as a reflected wave is used. It is necessary to switch to.

図10と図11を参照して、例えば、ビームフォーミングアンテナなど、指向性を可変とする指向性アンテナ100a、200bを有する従来の二つの送受信機100、200が信号を送受信する場合について説明する。   With reference to FIG. 10 and FIG. 11, for example, a case where two conventional transceivers 100 and 200 having directional antennas 100 a and 200 b having variable directivities such as beam forming antennas transmit and receive signals will be described.

送受信機100が指向性アンテナ100aを用いて指向性を有する電波(以後、「ビーム」と呼ぶ)を放射すると、送受信機200は指向性アンテナ200a用いてこのビームを受信する。図10に示すように、送受信機200は、指向性アンテナ200aによって受信されたビームを変調して復調する変復調部201と、受信したビームの中から受信電力が最大のビームを検出する受信電力検出部202と、受信電力検出部202が検出した受信電力が最大のビームを受信するように、指向性アンテナ200aを制御して指向性アンテナ200aの指向性を変更するアンテナ制御部203とを有する。送受信機100と送受信機200は略同一の構造であるので、送受信機100の詳細な説明は省略する。   When the transceiver 100 radiates a directional radio wave (hereinafter referred to as “beam”) using the directional antenna 100a, the transceiver 200 receives the beam using the directional antenna 200a. As shown in FIG. 10, the transceiver 200 includes a modulation / demodulation unit 201 that modulates and demodulates a beam received by the directional antenna 200a, and a received power detection that detects a beam having the maximum received power from the received beams. And an antenna control unit 203 that controls the directional antenna 200a to change the directivity of the directional antenna 200a so as to receive the beam having the maximum received power detected by the received power detection unit 202. Since the transceiver 100 and the transceiver 200 have substantially the same structure, detailed description of the transceiver 100 is omitted.

図10と図11に示す例では、送受信機200の指向性アンテナ200aと送受信機100の指向性アンテナ100aの間には、好適な通信経路として、送受信機100からのビームが直接送受信機200に到来する直接波の通信経路P0と、送受信機100からのビームが壁などの反射体Rに反射して送受信機200に到来する反射波の通信経路P1とが存在し、図10では通信経路P0を用いて通信を行っているが、通信経路P0が障害物で遮断された場合には、図11に示すように送受信機100と送受信機200は通信経路P0を通信経路P1に切り替えることによって、通信の継続を維持している。   In the example shown in FIGS. 10 and 11, a beam from the transceiver 100 directly passes to the transceiver 200 as a suitable communication path between the directional antenna 200 a of the transceiver 200 and the directional antenna 100 a of the transceiver 100. An incoming direct wave communication path P0 and a reflected wave communication path P1 arriving at the transmitter / receiver 200 after the beam from the transmitter / receiver 100 is reflected by a reflector R such as a wall exist. In FIG. However, when the communication path P0 is blocked by an obstacle, the transceiver 100 and the transceiver 200 switch the communication path P0 to the communication path P1 as shown in FIG. The continuity of communication is maintained.

このとき、例えば、送受信機200の受信電力検出部202は受信したビームの中で、通信経路P0を通過して到来したビームと通信経路P1を通過して到来したビームとを含む、受信したビームそれぞれの電力を比較して、受信電力が最大のビームを検出し、受信電力が最大のビームの通信経路を好適な通信経路とする。アンテナ制御部203は、受信電力検出部202が検出した受信電力が最大のビームを受信するように、指向性アンテナ200aの固定ビームを変更する。   At this time, for example, the received power detection unit 202 of the transceiver 200 includes a received beam including a beam that has passed through the communication path P0 and a beam that has passed through the communication path P1 among the received beams. By comparing the respective powers, the beam having the maximum received power is detected, and the communication path of the beam having the maximum received power is set as a suitable communication path. The antenna control unit 203 changes the fixed beam of the directional antenna 200a so as to receive the beam having the maximum reception power detected by the reception power detection unit 202.

図12を参照して、このように構成された送受信機同士が通信を行う場合について説明する。図12では送受信機100を家庭に配置したパーソナルコンピュータ、送受信機200を携帯電話として示されている。送受信機100と送受信機200とは直接波の通信経路P0を好適な通信経路として用いているが(図12の(a))、人が通過するなどして、通信経路P0が障害物によって遮られると(図12の(b))、それぞれの送受信機の受信電力検出部は他の好適な通信経路を探索して検出し(図12の(c))、それぞれの送受信機のアンテナ制御部は、検出した通信経路P1の方向に指向性アンテナ200aの指向性を変更して通信を再開するようになっている(図12の(d))。   With reference to FIG. 12, the case where the transceivers thus configured communicate with each other will be described. FIG. 12 shows a personal computer in which the transceiver 100 is installed at home and the transceiver 200 as a mobile phone. The transceiver 100 and the transceiver 200 use the direct-wave communication path P0 as a suitable communication path ((a) in FIG. 12). However, the communication path P0 is blocked by an obstacle due to passage of a person or the like. When this occurs ((b) in FIG. 12), the received power detection unit of each transceiver searches for and detects another suitable communication path ((c) in FIG. 12), and the antenna control unit of each transceiver. Changes the directivity of the directional antenna 200a in the direction of the detected communication path P1, and resumes communication ((d) of FIG. 12).

しかしながら、従来の指向性アンテナを用いた通信では、どうしても通信経路が遮断されてから(図12の(b))別の好適な通信経路を探索して検出するまで(図12の(c))時間を要し、通信を再開(図12の(d))するまで通信が中断されてしまうという問題があった。さらに、図12の(d)に示す、別の好適な通信経路を検出する際に、適当な通信経路が検出されなければ通信が途絶えてしまうこともあった。   However, in communication using a conventional directional antenna, the communication path is inevitably interrupted ((b) in FIG. 12) until another suitable communication path is searched for and detected ((c) in FIG. 12). There is a problem that the communication is interrupted until it takes time and communication is resumed ((d) in FIG. 12). Further, when another suitable communication path shown in FIG. 12D is detected, communication may be interrupted unless an appropriate communication path is detected.

そもそも、受信機が好適な信号を探索する機能を有していたとしても、反射波のない環境では、通信経路は存在しえず、したがって、他の通信経路を探索することすらもできない。   In the first place, even if the receiver has a function of searching for a suitable signal, a communication path cannot exist in an environment without a reflected wave, and therefore, it is impossible to search for another communication path.

そこで本発明は、上述した従来技術に鑑みてなされ、指向性を制御可能なアンテナを備えた無線通信システムにおいて常時好適な通信経路で通信を行い、例えば、ミリ波帯などの電磁波の通信経路の一つが障害物によって遮断されても、通信経路を切り替えて途切れることなく安定して送受信することができる無線通信システムを提供することを目的とする。   Therefore, the present invention has been made in view of the above-described conventional technology, and always performs communication using a suitable communication path in a wireless communication system including an antenna capable of controlling directivity. For example, the communication path of an electromagnetic wave such as a millimeter wave band An object of the present invention is to provide a wireless communication system capable of stably transmitting and receiving without switching between communication paths even when one is blocked by an obstacle.

本発明の一態様によると、信号波を送信する送信装置と、指向性を有する指向性アンテナを備えて信号波を受信する受信装置と、前記送信装置から送信された信号波を直接、もしくは反射して、前記信号波を前記指向性アンテナに導く通信経路を形成する通信経路形成部と、を含む無線通信システムであって、前記受信装置は、好適な信号波の通信経路を選択する好適経路選択手段と、前記好適経路選択手段が選択した好適な通信経路に前記指向性アンテナの指向性の方向を向けて、前記指向性アンテナに前記好適経路選択手段が選択した好適な通信経路を通過した信号波を受信させるアンテナ制御部と、を備え、前記好適経路選択手段は、前記通信経路形成部が形成する通信経路を通過した信号波を含む、複数の信号波の常時追尾し、前記複数の信号波の各々の方向と受信品質を常時測定して、測定した複数の信号波の方向と受信品質に基づいて好適な信号波の通信経路を選択し、前記アンテナ制御部は、前記好適経路選択手段が選択した好適な通信経路に随時、前記指向性アンテナの指向性の方向を向けて、前記指向性アンテナに前記好適経路選択手段が選択した好適な通信経路を通過した信号波を継続して受信させることを特徴とする。さらに前記指向性アンテナが、ビームフォーミングアンテナであり、前記好適経路選択手段は、通信経路を通過して到来する信号の追尾により好適な信号波の通信経路を選択する。前記好適 経路選択手段による信号の追尾が、離散して存在する複数の通信経路のクラスタごとの、 クラスタに含まれる複数のビームの追尾であり、前記好適経路選択手段は、該複数のビー ムの追尾により、クラスタごとに通信に適したビームを常時選択し、前記好適経路選択手 段による好適な信号波の通信経路の選択が、このクラスタごとに選択した複数の通信に適 したビームによる通信経路の選択であることを特徴とする無線通信システム。According to one aspect of the present invention, a transmitting device that transmits a signal wave, a receiving device that includes a directional antenna having directivity and receives a signal wave, and a signal wave transmitted from the transmitting device is directly or reflected. And a communication path forming unit that forms a communication path for guiding the signal wave to the directional antenna, wherein the receiving device selects a suitable signal wave communication path. The directivity direction of the directional antenna is directed to a suitable communication path selected by the selection means and the suitable route selection means, and the preferred communication path selected by the suitable route selection means passes through the directional antenna. An antenna control unit that receives a signal wave, and the preferred path selection unit constantly tracks a plurality of signal waves including a signal wave that has passed through a communication path formed by the communication path forming unit, The direction and the reception quality of each of the number of signal waves are constantly measured, and a suitable signal wave communication path is selected based on the measured direction and the reception quality of the plurality of signal waves. The signal wave that has passed through the preferred communication path selected by the preferred route selection means is continuously directed to the directional antenna by directing the directionality of the directional antenna to the preferred communication path selected by the route selection means. And receiving it. Further, the directional antenna is a beam forming antenna, the preferred route selection means, you select a communication path suitable signal wave by tracking signals arriving through the communication path. The tracking signal according to a preferred path selection means, for each cluster of the plurality of communication paths exist discretely, a tracking of a plurality of beams in the cluster, the preferred route selecting means, the plurality of beam by tracking the beam that is suitable for communication and select always for each cluster, the selection of a suitable signal wave of the communication path by the preferred routing hand stage, a communication path by the beam that is appropriate to a plurality of communication selected for each the cluster wireless communication system characterized in that it is a choice.

ここで、「複数の信号波」とは、当然直接波を含んでもよい。例え、瞬時に通信経路を切り替える機能を有しているとしても、多重反射波が存在しない場合、つまり切り替える経路が存在しない場合は、通信が切断されることになる。送受信機の周辺に、有意な電力を持つ多数の反射波による異なる通信経路を作り出すことで、通信経路を瞬時切り替えにより通信の継続が可能となる。この構成により、本発明の無線通信システムは、信号波を送信する送信装置と、指向性を有する指向性アンテナを備えて信号波を受信する受信装置と、送信装置から送信された信号波を直接、もしくは反射して、信号波を指向性アンテナに導く通信経路を形成する通信経路形成部と、を含む無線通信システムであって、受信装置は、好適な信号波の通信経路を選択する好適経路選択手段と、好適経路選択手段が選択した好適な通信経路に指向性アンテナの指向性の方向を向けて、指向性アンテナに好適経路選択手段が選択した好適な通信経路を通過した信号波を受信させるアンテナ制御部と、を備え、好適経路選択手段は、通信経路形成部が形成する通信経路を通過した信号波を含む、複数の信号波を常時追尾し、前記複数の信号波の各々の方向と受信品質を常時略同時に測定して、測定した複数の信号波の方向と受信品質に基づいて好適な信号波の通信経路を選択し、アンテナ制御部は、好適経路選択手段が選択した好適な通信経路に、指向性アンテナの指向性の方向を向けて、指向性アンテナに好適経路選択手段が選択した好適な通信経路を通過した信号波を継続して受信させるので、常時良好な通信経路で通信を行い、例え、使用している通信経路の一つが障害物によって遮断されても、途切れることなく継続して信号波を受信することができる。このため、例えば、ミリ波帯などの直進性が強く、伝搬による減衰が大きく、回折が期待できない電磁波で無線通信を行う場合にも適用可能である。   Here, the “plurality of signal waves” may naturally include direct waves. For example, even if the communication path is switched instantaneously, communication is disconnected when there are no multiple reflected waves, that is, when there is no switching path. By creating different communication paths with a large number of reflected waves having significant power around the transmitter / receiver, communication can be continued by instantaneously switching the communication paths. With this configuration, the wireless communication system according to the present invention directly transmits a signal wave transmitted from the transmission apparatus, a reception apparatus that receives a signal wave with a directional antenna having directivity, and a signal wave transmitted from the transmission apparatus. Or a communication path forming unit that forms a communication path that reflects and guides a signal wave to a directional antenna, wherein the receiving apparatus selects a suitable signal wave communication path. Directing the directivity direction of the directional antenna to the preferred communication path selected by the selection means and the preferred route selection means, and receiving the signal wave that has passed through the preferred communication path selected by the preferred route selection means for the directional antenna And a suitable path selection means that always tracks a plurality of signal waves including a signal wave that has passed through a communication path formed by the communication path forming section, and that each of the plurality of signal waves Direction and reception quality are always measured almost simultaneously, and a suitable signal wave communication path is selected based on the measured direction and reception quality of the plurality of signal waves, and the antenna control unit selects the preferred path selected by the preferred path selection means. The directivity direction of the directional antenna is directed to the correct communication path, and the signal wave that has passed through the preferred communication path selected by the preferred path selection means is continuously received by the directional antenna. For example, even if one of the used communication paths is blocked by an obstacle, the signal wave can be continuously received without interruption. For this reason, for example, the present invention can be applied to the case where wireless communication is performed using an electromagnetic wave that has strong straightness such as a millimeter wave band, has a large attenuation due to propagation, and cannot be expected to be diffracted.

さらに、本発明の無線通信システムは、前記好適経路選択手段は、通信に用いている通信経路を通過する信号波と、その他の複数の信号波の各々の方向と受信品質を常時測定し、前記指向性アンテナが受信している通信に用いている通信経路を通過する信号波の品質が所定のレベルより劣化したと判断すると、前記アンテナ制御部は、その他の複数の信号波のそれぞれの受信品質に基づき前記好適経路選択手段が選択した好適な通信経路に、前記指向性アンテナの指向性の方向を瞬時に切り替えて、信号波を継続して受信させるようにしてもよい。この構成によって、本発明の受信装置は、通信経路の一つが障害物によって遮断されても、途切れることなく継続して信号波を受信することができる。このため、例えば、ミリ波帯などの直進性が強く、伝搬による減衰が大きく、回折が期待できない電磁波で無線通信を行う場合にも適用可能である。   Further, in the wireless communication system of the present invention, the suitable route selection means constantly measures the direction and reception quality of each of the signal wave passing through the communication path used for communication and the other plurality of signal waves, When it is determined that the quality of the signal wave passing through the communication path used for the communication received by the directional antenna has deteriorated from a predetermined level, the antenna control unit receives the reception quality of each of the other plurality of signal waves. The direction of the directivity antenna may be instantaneously switched to the preferred communication path selected by the preferred path selection unit based on the signal wave so that the signal wave is continuously received. With this configuration, the receiving apparatus of the present invention can continuously receive a signal wave without interruption even if one of the communication paths is blocked by an obstacle. For this reason, for example, the present invention can be applied to the case where wireless communication is performed using an electromagnetic wave that has strong straightness such as a millimeter wave band, a large attenuation due to propagation, and cannot be expected to be diffracted.

また、本発明の無線通信システムによると、前記通信経路形成部は反射率の高い反射体、例えば、正方形または円形の金属板で形成されてもよい。ここで「反射率が高い」とは、到来する信号波を反射して、少なくとも受信装置に信号波として識別されうる反射波を生じうる程度の高さを意味し、このような反射率は実装に応じて相対的に決定してもよい。この構成により、本発明の無線通信システムは、構造が簡単で容易にかつ安価に構築することができる。通信経路形成部として、例えば、金属バンドを所定の条件を満たすように壁やパソコン、キーボード、机、本棚などの家具に貼り付けるだけでもよい。   According to the wireless communication system of the present invention, the communication path forming unit may be formed of a highly reflective reflector, for example, a square or circular metal plate. Here, “high reflectivity” means a height that can reflect an incoming signal wave and at least generate a reflected wave that can be identified as a signal wave in the receiving device. It may be determined relatively according to. With this configuration, the wireless communication system of the present invention can be constructed easily and easily at a low cost. As the communication path forming unit, for example, a metal band may be simply attached to furniture such as a wall, a personal computer, a keyboard, a desk, and a bookshelf so as to satisfy a predetermined condition.

また、本発明の無線通信システムにおいて、前記通信経路形成部は、前記通信経路形成部が形成する通信経路を通過する信号波が直接波を含む他の通信経路を通過する信号波と重畳して前記受信装置の指向性アンテナに受信されることのないように、前記受信装置の指向性アンテナのビーム幅を考慮して通信経路を形成するように配置した反射体であってもよい。   In the wireless communication system of the present invention, the communication path forming unit may superimpose a signal wave passing through a communication path formed by the communication path forming unit with a signal wave passing through another communication path including a direct wave. The reflector may be arranged so as to form a communication path in consideration of the beam width of the directional antenna of the receiving device so that the directional antenna of the receiving device is not received.

この構成により、本発明の無線通信システムは、通信経路形成部は、通信経路形成部が形成する通信経路を通過する信号波が直接波を含む他の通信経路を通過する信号波と重畳して受信装置の指向性アンテナに受信されることのないように、受信装置の指向性アンテナのビーム幅を考慮して通信経路を形成することができるので、遅延分散の少ない、良質な信号を受信装置に提供することができる。   With this configuration, in the wireless communication system of the present invention, the communication path forming unit superimposes the signal wave passing through the communication path formed by the communication path forming unit with the signal wave passing through other communication paths including the direct wave. Since the communication path can be formed in consideration of the beam width of the directional antenna of the receiving device so that it is not received by the directional antenna of the receiving device, a high-quality signal with little delay dispersion is received by the receiving device. Can be provided.

また、本発明の無線通信システムは、前記通信経路形成部は、前記通信経路形成部が形成する通信経路を通過する信号波が直接波を含む他の通信経路の何れかを通過する信号波と重畳して前記受信装置の前記指向性アンテナに受信される場合は、前記通信経路形成部が形成する通信経路を通過する信号波の受信電力と、前記他の通信経路の何れかを通過する信号波の受信電力の差が所定の閾値より大きくなるように、前記受信装置の前記指向性アンテナと前記送信装置の前記指向性アンテナの間の距離、前記受信装置の前記指向性アンテナと前記送信装置の前記指向性アンテナと前記通信経路形成部との距離、前記通信経路形成部の反射率、および前記受信装置の前記指向性アンテナのビーム幅を考慮して通信経路を形成するように配置された反射体であってもよい。   In the wireless communication system of the present invention, the communication path forming unit includes a signal wave that passes through a communication path formed by the communication path forming unit, and a signal wave that passes through any other communication path including a direct wave. When the signal is superimposed and received by the directional antenna of the receiving device, the received power of the signal wave passing through the communication path formed by the communication path forming unit and the signal passing through any of the other communication paths A distance between the directional antenna of the receiving device and the directional antenna of the transmitting device, and the directional antenna of the receiving device and the transmitting device so that the difference in received power of the waves is greater than a predetermined threshold. The communication path is formed in consideration of the distance between the directional antenna and the communication path forming unit, the reflectance of the communication path forming unit, and the beam width of the directional antenna of the receiving device. It may be a reflector.

この構成により、本発明の無線通信システムは、前記通信経路形成部は、前記通信経路形成部が形成する通信経路を通過する信号波が直接波を含む他の通信経路の何れかを通過する信号波と重畳して前記受信装置の前記指向性アンテナに受信される場合は、前記通信経路形成部が形成する通信経路を通過する信号波の受信電力と、前記他の通信経路の何れかを通過する信号波の受信電力の差が所定の閾値より大きくなるように、前記受信装置の前記指向性アンテナと前記送信装置の前記指向性アンテナの間の距離、前記受信装置の前記指向性アンテナと前記送信装置の前記指向性アンテナと前記通信経路形成部との距離、前記通信経路形成部の反射率、および前記受信装置の前記指向性アンテナのビーム幅を考慮して通信経路を形成することができるので、信経路形成部が形成する通信経路を通過する信号波が直接波を含む他の通信経路の何れかを通過する信号波と重畳して受信装置の指向性アンテナに受信されたとしても、良質な信号を受信装置に提供することができる。   With this configuration, in the wireless communication system of the present invention, the communication path forming unit is a signal in which the signal wave passing through the communication path formed by the communication path forming unit passes through any other communication path including a direct wave. When it is received by the directional antenna of the receiving device while being superimposed on a wave, it passes through the received power of the signal wave that passes through the communication path formed by the communication path forming unit and one of the other communication paths. A distance between the directional antenna of the reception device and the directional antenna of the transmission device, and the directional antenna of the reception device so that a difference in received power of signal waves to be larger than a predetermined threshold Forming a communication path in consideration of the distance between the directional antenna and the communication path forming unit of the transmitting apparatus, the reflectance of the communication path forming unit, and the beam width of the directional antenna of the receiving apparatus Even if the signal wave passing through the communication path formed by the signal path forming unit is superimposed on the signal wave passing through any other communication path including the direct wave and received by the directional antenna of the receiving device It is possible to provide a high-quality signal to the receiving device.

さらに、前記通信経路形成部はさらに、前記通信経路の周囲に配置した、信号波の強度を弱める吸収体を含んでもよい。具体的には、通信経路を形成する通信経路形成部の反射体または指向性アンテナの周囲に、干渉の可能性のある反射波の発生を抑えるために、到来するビーム、または信号波を反射するとしても、少なくとも受信装置に信号波として識別されうる程度以下に弱める吸収体を配置してもよい。この構成により、本発明の無線通信システムは、遅延分散を一層弱め、理想的な通信環境を実現することができる。この吸収体は、到来するビーム、または信号波を反射するとしても、少なくとも受信装置に信号波として識別されうる程度以下に弱める低い反射率を有するものであってもよいし、または少なくとも受信装置に信号波として識別されうる反射波を生じない程度以下となるように散乱させる物体でもよい。吸収体の材質、配置および反射率、散乱度は、実装に応じて相対的に決定してもよい。   Furthermore, the communication path forming unit may further include an absorber that is disposed around the communication path and weakens the intensity of the signal wave. Specifically, the incoming beam or signal wave is reflected around the reflector or directional antenna of the communication path forming unit that forms the communication path in order to suppress the generation of reflected waves that may cause interference. However, an absorber that weakens to at least a degree that can be identified as a signal wave may be arranged in at least the receiving device. With this configuration, the wireless communication system of the present invention can further reduce delay dispersion and realize an ideal communication environment. The absorber may reflect an incoming beam or signal wave, but may have a low reflectivity that weakens at least below a level that can be identified as a signal wave by the receiving device, or at least to the receiving device. It may be an object that is scattered so that the reflected wave that can be identified as a signal wave does not generate a reflected wave. The material, arrangement, reflectance, and degree of scattering of the absorber may be relatively determined according to mounting.

本発明によると、指向性を制御可能なアンテナを備えて信号波を受信する受信装置を含
む無線通信システムであって、常時良好な通信経路で通信を行い、例え、使用している通
信経路の一つが障害物によって遮断されても、通信経路を切り替えて途切れることなく安
定して送受信することができる無線通信システムを提供することができる。
According to the present invention, there is provided a wireless communication system including a receiving device that includes an antenna capable of controlling directivity and receives a signal wave. The wireless communication system always performs communication using a good communication path, for example, the communication path used. even one that is blocked by an obstacle, it is possible to provide a wireless communication system that can be stably transmitted and received without interruption by switching the communication path.

以下、本発明の具体的な実施の形態について、図面を参照して詳細に説明する。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施の形態の無線通信システム1の概略構成図である。図1に示すように、本実施の形態の無線通信システム1は、指向性アンテナ10aを有する送受信機10と、指向性アンテナ20aを有する送受信機20と、複数の反射体R1〜R4を含む。指向性アンテナ10aおよび20aはそれぞれ、物理的に一つの指向性を有し、かつその指向性を可変とする。本発明は3以上の送受信機を含む無線通信システムにも適応可能であるが、理解を容易にするため、本実施の形態では、送受信機10と送受信機20の2つとし、送受信機10が時間タイミングを制御するマスタの役割を担当し、送受信機20がスレーブの役割を担当するものとして説明する。また、送受信機10は送信機、送受信機20は受信機としてのみ構成してもよい。さらに、送受信機10のアンテナは指向性アンテナ10aでなくてもよい。   FIG. 1 is a schematic configuration diagram of a wireless communication system 1 according to an embodiment of the present invention. As shown in FIG. 1, the wireless communication system 1 of the present embodiment includes a transceiver 10 having a directional antenna 10a, a transceiver 20 having a directional antenna 20a, and a plurality of reflectors R1 to R4. Each of the directional antennas 10a and 20a physically has one directivity, and the directivity is variable. The present invention can be applied to a wireless communication system including three or more transmitters / receivers. However, in order to facilitate understanding, in the present embodiment, the transmitter / receiver 10 and the transmitter / receiver 20 are used. In the following description, it is assumed that the master plays a role of controlling time timing, and the transceiver 20 takes the role of a slave. Further, the transceiver 10 may be configured only as a transmitter, and the transceiver 20 may be configured only as a receiver. Further, the antenna of the transceiver 10 may not be the directional antenna 10a.

図1に示すように、送受信機10は、さらに、指向性アンテナ10aを介して信号を送受信する送受信部11と、指向性アンテナ10aに到来したビームの中から好適な通信経路で到来したビームを選択する通信経路選択部12と、送信する情報を所定のフレームに形成するフレーム形成部13と、指向性アンテナ10aを制御して、通信経路選択部12が選択した通信経路に指向性アンテナ10aの指向性を合わせる指向性制御部14と、送受信機10の全体の機能と動作を制御するCPU(図示していない)と、を含む。   As shown in FIG. 1, the transceiver 10 further includes a transceiver 11 that transmits and receives signals via the directional antenna 10a, and a beam that has arrived through a suitable communication path among the beams that have arrived at the directional antenna 10a. The communication path selection unit 12 to be selected, the frame formation unit 13 that forms information to be transmitted in a predetermined frame, and the directional antenna 10a are controlled, so that the communication path selected by the communication path selection unit 12 is connected to the directional antenna 10a. A directivity control unit 14 that matches directivity and a CPU (not shown) that controls the overall functions and operations of the transceiver 10 are included.

送受信機20は、指向性アンテナ20aを介して信号を送受信する送受信部21と、通信に使用しているビームも含めて、指向性アンテナ20aに到来したビーム各々の品質を常時にモニタする品質モニタ部22と、品質モニタ部22でモニタしたビーム各々の品質B、B、・・・Bを記憶するメモリ23と、指向性アンテナ20aに到来したビームの中から好適な通信経路を経て到来したビームを選択する通信経路選択部24と、指向性アンテナ20aを制御して、通信経路選択部24が選択した通信経路に指向性アンテナ20aの指向性を合わせる指向性制御部25と、送受信機20の全体の機能と動作を制御するCPU(図示していない)と、を含む。品質モニタ部22は、到来したビームの品質をモニタする。品質モニタ部22とメモリ23と通信経路選択部24とが好適経路選択手段を構成する。 The transceiver 20 includes a transceiver 21 that transmits and receives signals via the directional antenna 20a, and a quality monitor that constantly monitors the quality of each beam arriving at the directional antenna 20a, including the beam used for communication. and parts 22, quality monitoring section beams each quality B 1 was monitored at 22, B 2, a memory 23 for storing · · · B N, via a suitable communications path from the beam arriving at the directional antenna 20a A communication path selection unit 24 that selects an incoming beam, a directivity control unit 25 that controls the directivity antenna 20a to adjust the directivity of the directivity antenna 20a to the communication path selected by the communication path selection unit 24, and transmission / reception CPU (not shown) that controls the overall functions and operations of the machine 20. The quality monitor unit 22 monitors the quality of the incoming beam. The quality monitor unit 22, the memory 23, and the communication route selection unit 24 constitute a preferred route selection unit.

送受信機10と送受信機20の間に位置する複数の反射体R1〜R4は、人為的に通信経路を形成するために設けたものである。反射体R1〜R4は、後に詳述するが、例えば、壁、反射率の高い金属板、壁やパソコン、キーボード、机、本棚などに貼り付けた金属テープなどでもよい。本実施の形態では、反射体は、到来するビームを反射して、少なくとも品質モニタ部22にビームとしてモニタされうる反射波を生じうる程度の反射率を有するものとする。   The plurality of reflectors R1 to R4 positioned between the transceiver 10 and the transceiver 20 are provided for artificially forming a communication path. The reflectors R1 to R4 will be described in detail later, but may be, for example, a wall, a highly reflective metal plate, a metal tape attached to a wall, a personal computer, a keyboard, a desk, a bookshelf, or the like. In the present embodiment, it is assumed that the reflector has a reflectivity enough to reflect an incoming beam and generate a reflected wave that can be monitored as a beam at least by the quality monitor unit 22.

送受信機20は、CPUの制御の下、指向性制御部25によって到来するビームの方向を、例えば、直接波による通信経路P0、壁や棚などの既存の物体R1を反射体とする通信経路P1、人為的に設置した反射体R2〜R4により人為的に形成される通信経路P2〜P4を識別し、品質モニタ部22は、指向性制御部25から、それぞれのビームの方向に関する情報も取得する。さらに、品質モニタ部22は、こうして識別した通信経路P0〜P4を通過する信号を全て、または一部追尾してその品質をモニタし、モニタした信号の品質B、B、・・・Bをその方向とともにメモリ23に記憶する。通信経路選択部24は、メモリ23に記憶した信号の品質B、B、・・・Bに基づいて、通信に用いる好適な通信経路を選択する。指向性制御部25は、指向性アンテナ20aを制御して、通信経路選択部24が選択した好適な通信経路の方向に、指向性アンテナ20aの指向性を向けて、送受信機10と送受信機20とが安定した通信を行えるようにする。この構成によって、送受信機20は、現在使用している到来波だけでなく、常時2つ以上の到来波を追尾して、品質をモニタし、通信に用いることができる到来波を選択して、その通信経路に指向性アンテナ20aの指向性を向けることができる。したがって、送受信機20は、人が横切るなどして、例え、現在通信に利用している通信経路の信号の品質が劣化したとしても、直ちに他の好適な通信経路を選択して、指向性アンテナ20aの指向性を切り替えて通信できるので、通信を中断することなく、安定した通信を行うことができる。 Under the control of the CPU, the transceiver 20 determines the direction of the beam arriving by the directivity control unit 25, for example, a communication path P0 using direct waves, and a communication path P1 using an existing object R1 such as a wall or shelf as a reflector. The communication paths P <b> 2 to P <b> 4 that are artificially formed by the reflectors R <b> 2 to R <b> 4 that are artificially installed are identified, and the quality monitor unit 22 also acquires information on the direction of each beam from the directivity control unit 25. . Further, the quality monitor unit 22 tracks all or part of the signals passing through the communication paths P0 to P4 thus identified and monitors the quality, and the quality B 1 , B 2 ,. N is stored in the memory 23 together with the direction. The communication path selection unit 24 selects a suitable communication path used for communication based on the signal quality B 1 , B 2 ,... B N stored in the memory 23. The directivity control unit 25 controls the directional antenna 20a to direct the directivity of the directional antenna 20a in the direction of a suitable communication path selected by the communication path selection unit 24, so that the transceiver 10 and the transceiver 20 And to enable stable communication. With this configuration, the transceiver 20 always tracks two or more incoming waves as well as the currently used incoming waves, monitors the quality, selects the incoming waves that can be used for communication, The directivity of the directional antenna 20a can be directed to the communication path. Therefore, even if a person crosses, for example, even if the signal quality of the communication path currently used for communication deteriorates, the transceiver 20 immediately selects another suitable communication path, and the directional antenna Since communication can be performed by switching the directivity of 20a, stable communication can be performed without interrupting communication.

本実施の形態では、送受信機10と送受信機20は、時分割多重アクセス方式で通信を行うシステムに適している。送受信機10は、フレーム形成部13が形成したフレーム(「スーパーフレーム」とも呼ばれる)を有する構成で信号を送信する。図2に、送受信機10のフレーム形成部13が形成するフレーム構造の例を示す。   In the present embodiment, the transmitter / receiver 10 and the transmitter / receiver 20 are suitable for a system that performs communication by a time division multiple access method. The transceiver 10 transmits a signal in a configuration having a frame (also referred to as a “super frame”) formed by the frame forming unit 13. FIG. 2 shows an example of a frame structure formed by the frame forming unit 13 of the transceiver 10.

フレームは、時分割多重アクセスを行う際の基本単位となる複数のタイムスロット(以後、「スロット」と呼ぶ)からなる。本実施の形態では、説明を容易にするため、送受信機10が通信を行う対象を一つの送受信機20としているが、本発明は、これに限定されず、このフレームを反復させて複数の送受信機20と通信をしてもよい。フレームは、時間の基準となる同期信号を送信するビーコンBと、通信経路ごとに追尾用の信号を送信する追尾スロットTS0〜TSNと、通信に用いる通信スロットCSと、を有する。   The frame is composed of a plurality of time slots (hereinafter referred to as “slots”) which are basic units for performing time division multiple access. In the present embodiment, for ease of explanation, a single transmitter / receiver 20 is used as an object with which the transmitter / receiver 10 communicates. However, the present invention is not limited to this, and a plurality of transmission / reception is performed by repeating this frame. You may communicate with the machine 20. The frame includes a beacon B that transmits a synchronization signal serving as a time reference, tracking slots TS0 to TSN that transmit a tracking signal for each communication path, and a communication slot CS used for communication.

具体的には、送受信機10は、フレームごとに時間の基準を示すビーコンを送信する。その後、通信経路P0を通過する直接波と、通信経路P1〜P4を通過する反射波の方向に対して、追尾スロットにて追尾用の信号を送信する。本実施の形態では、追尾スロットはTS0〜TS4と5個用いるものとする。追尾スロットTS0〜TS4の各々は、指向性制御部25によって識別した通信経路のそれぞれと関連付けられ、それらのタイミングなどは、ビーコンにて報知する。送受信機10と送受信機20との間に存在する通信経路P0〜P4の全て、もしくは一部に対して、時間的に独立した追尾スロットTS0〜TS4を確保することによって、送受信機20は常時複数の通信経路P0〜P4の全て、もしくは一部に対してのアンテナ指向性を制御するための追尾を行うことが可能となる。また、追尾スロットTS0〜TS4の後の通信スロットCSでデータ送受信のための時間を確保する。   Specifically, the transceiver 10 transmits a beacon indicating a time reference for each frame. Thereafter, a tracking signal is transmitted in the tracking slot in the direction of the direct wave passing through the communication path P0 and the direction of the reflected wave passing through the communication paths P1 to P4. In the present embodiment, five tracking slots, TS0 to TS4, are used. Each of the tracking slots TS0 to TS4 is associated with each of the communication paths identified by the directivity control unit 25, and their timing is notified by a beacon. By securing tracking slots TS0 to TS4 that are temporally independent for all or a part of the communication paths P0 to P4 existing between the transceiver 10 and the transceiver 20, the transceiver 20 is always in a plurality. Tracking for controlling the antenna directivity with respect to all or part of the communication paths P0 to P4 can be performed. In addition, a time for data transmission / reception is secured in the communication slot CS after the tracking slots TS0 to TS4.

送受信機20はフレームに含まれるビーコンBの情報に基づき、通信経路P0を通過して到来した直接波と通信経路P1〜P4のいずれかを通過して到来した反射波、もしくは複数の反射波から成る、複数の到来波に対して指向性を調整して追尾を行い、同時にこれら複数の到来波の信号品質をモニタする。モニタの結果から、通信経路を選択決定し、送受信部21によって通信を行う。使用している到来波が遮断された場合は、信号品質が急激に劣化することから、直ちに品質モニタ部22が検知できる。品質モニタ部22が通信に使用している到来波の品質が所定の程度を超えて劣化していることを検出した場合は、ただちに、通信経路選択部24は、品質モニタ部22が追尾してモニタしている他の到来波の中で品質が好適の通信経路に切り替えて、通信を継続する。これによって、通信に使用している通信経路が、人が通などして遮断された場合であっても、通信を中断することなく、安定した通信を確保することができる。品質モニタ部22は、従来の検出部と同様に、受信した信号の受信電力として、例えば、受信信号強度検出(RSSI:Receive Signal Strength Indication)をモニタしてもよい。さらに、送受信機10が送信する信号のフレームから、受信電力以外に遅延分散をモニタしてもよい。また、信号対雑音比(SNR: Signal to Noise Ratio)、信号対干渉・雑音比(SINR: Signal to Interference and Noise Ratio)、ビット誤り率、フレーム誤り率、パケット誤り率のうち少なくとも一つを常時測定し、前記複数の信号波の信号対雑音比、信号対干渉・雑音比、ビット誤り率、フレーム誤り率、パケット誤り率などをモニタしてもよい。その手法について、以下、詳細に説明する。   Based on the information of the beacon B included in the frame, the transceiver 20 uses a direct wave that has arrived through the communication path P0 and a reflected wave that has arrived through any of the communication paths P1 to P4, or a plurality of reflected waves. The tracking is performed by adjusting the directivity of a plurality of incoming waves, and simultaneously the signal quality of the plurality of incoming waves is monitored. A communication path is selected and determined from the result of monitoring, and communication is performed by the transmission / reception unit 21. When the incoming wave used is interrupted, the signal quality is rapidly deteriorated, so that the quality monitor unit 22 can immediately detect it. When the quality monitoring unit 22 detects that the quality of the incoming wave used for communication has deteriorated beyond a predetermined level, the communication path selection unit 24 immediately tracks the quality monitoring unit 22 The communication is continued by switching to the communication path with the best quality among the other incoming waves being monitored. As a result, even when the communication path used for communication is interrupted by a person passing through, stable communication can be ensured without interrupting communication. The quality monitor unit 22 may monitor, for example, received signal strength detection (RSSI: Receive Signal Strength Indication) as the received power of the received signal, similarly to the conventional detection unit. Further, the delay dispersion may be monitored in addition to the received power from the frame of the signal transmitted by the transceiver 10. Further, at least one of a signal-to-noise ratio (SNR), a signal-to-interference and noise ratio (SINR), a bit error rate, a frame error rate, and a packet error rate is always set. Measurement may be performed to monitor the signal-to-noise ratio, signal-to-interference / noise ratio, bit error rate, frame error rate, packet error rate, etc. of the plurality of signal waves. The method will be described in detail below.

図3に、フレームを構成する追尾スロットTS0の内部構造を追尾スロットの一例として示す。フレームを構成する追尾スロットの内部構造は略同一であるので、他の追尾スロットの内部構造については詳細な説明を省略する。   FIG. 3 shows the internal structure of the tracking slot TS0 constituting the frame as an example of the tracking slot. Since the internal structure of the tracking slot constituting the frame is substantially the same, detailed description of the internal structure of the other tracking slots is omitted.

図3の(A)に示すようにフレームの内部の追尾スロットTS0には、品質モニタ部22が、ビーム、すなわち信号を追尾するための追尾トラッキングパターンと、ビーム、すなわち信号の品質をモニタするための品質モニタ用のパターンが含まれる。品質モニタ用パターンを、例えば、図3の(B)に示すように、後に詳述する遅延分散測定に用いてもよい。通信経路選択部24は、主にビームの受信電力と遅延分散に基づいて好適な通信経路を選択するが、本発明はこれに限定されない。品質モニタ用パターンを、図3の(C)に示すように、BER(Bit Error Rate:ビット誤り率)測定に用いてもよい。さらに、トラッキングパターンの中で信号の追尾と通信経路の品質モニタとを同時に行ってもよい。また、例えば、図3の(D)に示すように、トラッキングと品質モニタを同時に行うことができるパターンを用いてもよい。この他にも同様の構成で、例えば、信号対雑音比、信号対干渉・雑音比、フレーム誤り率、パケット誤り率をモニタするためのパターンを設けてもよい。さらに、遅延分散、信号対雑音比、信号対干渉・雑音比、フレーム誤り率、パケット誤り率などのいずれか二つ以上の測定値を品質の評価に用いる場合は、例えば、遅延分散の測定値を高く重み付けするなど、それぞれの測定値に対して重要度に応じて重み付けをして評価してもよい。または、まず遅延分散を比較して、略同一だった場合は、信号対雑音比を比較する、または、遅延分散が高ければ受信電力が高くとも選択しないなど、優先順位をつけて、最も優先順位の高い測定値が略同一だった場合に、次の測定値を比較するなどしてもよい。これらは使用する信号波の特性、および実装に応じて選択可能である。   As shown in FIG. 3A, in the tracking slot TS0 in the frame, the quality monitoring unit 22 monitors the tracking tracking pattern for tracking the beam, that is, the signal, and the quality of the beam, that is, the signal. Patterns for quality monitoring are included. For example, as shown in FIG. 3B, the quality monitor pattern may be used for delay dispersion measurement described in detail later. The communication path selection unit 24 selects a suitable communication path mainly based on the received power of the beam and the delay dispersion, but the present invention is not limited to this. The quality monitor pattern may be used for BER (Bit Error Rate) measurement as shown in FIG. Further, signal tracking and communication path quality monitoring may be performed simultaneously in the tracking pattern. Further, for example, as shown in FIG. 3D, a pattern capable of simultaneously performing tracking and quality monitoring may be used. In addition to this, for example, a pattern for monitoring a signal-to-noise ratio, a signal-to-interference / noise ratio, a frame error rate, and a packet error rate may be provided. Furthermore, when using two or more measured values such as delay dispersion, signal-to-noise ratio, signal-to-interference / noise ratio, frame error rate, and packet error rate for quality evaluation, for example, measured values of delay dispersion May be evaluated by weighting each measured value according to the importance. Or, compare the delay dispersion first, and if they are approximately the same, compare the signal-to-noise ratio, or if the delay dispersion is high, do not select even if the received power is high. When the high measured values are substantially the same, the next measured values may be compared. These can be selected according to the characteristics of the signal wave used and the implementation.

また、従来の追尾トラッキングは、信号に用いるビームとその隣接するビームしか追尾してこなかったが、本実施の形態の品質モニタ部22は、複数のビーム、すなわち信号の到来方向の大きく異なる離散して伝播する複数のビーム、すなわち複数の信号の塊を追尾する動作を行う。以下、このように構成された本実施の形態の品質モニタ部22が実行する追尾トラッキングについて詳細に説明する。   Further, in the conventional tracking tracking, only the beam used for the signal and the adjacent beam have been tracked. However, the quality monitor unit 22 of the present embodiment has a plurality of beams, that is, discrete signals with greatly different arrival directions of the signals. The operation of tracking a plurality of beams propagating in this manner, that is, a plurality of signal blocks, is performed. Hereinafter, the tracking tracking executed by the quality monitoring unit 22 of the present embodiment configured as described above will be described in detail.

図4は、送受信機10、20の配置とビームの通信経路P0〜P2との関係を示す図である。図5は、送受信機20から図4の断面Aで見た三つの通信経路P0〜P2により形成される信号の塊(以後、「クラスタ」と呼ぶ)を示す図である。図4および図5を参照して、本実施の形態の品質モニタ部22が実行する追尾トラッキングについて説明する。   FIG. 4 is a diagram illustrating the relationship between the arrangement of the transceivers 10 and 20 and the beam communication paths P0 to P2. FIG. 5 is a diagram showing a lump of signals (hereinafter referred to as “cluster”) formed by the three communication paths P0 to P2 viewed from the transceiver 20 on the cross section A of FIG. With reference to FIG. 4 and FIG. 5, the tracking tracking executed by the quality monitor unit 22 of the present embodiment will be described.

図4で示すように、この例では、二つの送受信機10、20は正対して配置され、見通し直接波による通信経路P0と、反射体R1、R2による二つの反射波の通信経路P1、P2が存在している。図5に示すように、見通し直接波による通信経路P0はクラスタC0を、反射体R1、R2による二つの反射波の通信経路P1、P2はクラスタC1、C2を形成する。このため、クラスタC1、C2、C3は離間して存在しており、したがって離散した信号波として送受信機20に受信される。   As shown in FIG. 4, in this example, the two transceivers 10 and 20 are arranged to face each other, and the communication path P0 by the direct line-of-sight wave and the two reflected wave communication paths P1 and P2 by the reflectors R1 and R2 Is present. As shown in FIG. 5, the communication path P0 by direct line-of-sight waves forms a cluster C0, and the two reflected wave communication paths P1 and P2 by reflectors R1 and R2 form clusters C1 and C2. For this reason, the clusters C1, C2, and C3 exist apart from each other, and are therefore received by the transceiver 20 as discrete signal waves.

従来の追尾トラッキングでは、通信に用いるビームと隣接ビームのみをトラッキングしていたため、図5に示すように、離間して存在する他のクラスタを検出することはできない。したがって、通信に用いるビームが遮断されると、同時に隣接ビームも遮断されることから、通信の継続が困難となった。本実施の形態の品質モニタ部22は、従来の追尾トラッキングとは異なり、まず、大きく到来方向の異なる通信経路、例えば、P0、P1、P2により形成される、離間して存在する複数のクラスタC0、C1、C2に対しても常時追尾を行う。   In the conventional tracking tracking, only the beam used for communication and the adjacent beam are tracked. Therefore, as shown in FIG. 5, it is not possible to detect other clusters that exist apart from each other. Therefore, when the beam used for communication is interrupted, adjacent beams are also interrupted at the same time, making it difficult to continue communication. Unlike the conventional tracking tracking, the quality monitoring unit 22 according to the present embodiment first has a plurality of clusters C0 that are separated from each other and are formed by communication paths having greatly different arrival directions, for example, P0, P1, and P2. , C1 and C2 are always tracked.

各クラスタには、複数のビームが含まれる。図5では、クラスタC1に9個、クラスタC2に6個、クラスタC3に4個のビームが含まれている。クラスタごとに、クラスタに含まれる複数のビームの中から通信に好適なビームを選択する。この動作は従来のビームトラッキングと同等である。図5では、クラスタC1、C2、C3の中で、それぞれビームBC0、BC1、BC2が通信に好適なビームとして選択されており、そのビームに隣接するビームは隣接ビームとなる。このようにしてクラスタごとに通信に適したビームBC0、BC1、BC2を常時選択し、このクラスタごとに選択した複数の通信に適したビームの中から、通信に用いるビームを選択しているので、人が通過するなどして、通信に使用している通信経路のクラスタが遮断されたとしても、瞬時に他の通信経路のクラスタの中の好適な通信ビームに切り替えて通信を行うことができるので、通信を継続して維持することができる。   Each cluster includes a plurality of beams. In FIG. 5, the cluster C1 includes nine beams, the cluster C2 includes six beams, and the cluster C3 includes four beams. For each cluster, a beam suitable for communication is selected from a plurality of beams included in the cluster. This operation is equivalent to conventional beam tracking. In FIG. 5, beams BC0, BC1, and BC2 are selected as suitable beams for communication among the clusters C1, C2, and C3, and the beams adjacent to the beams are adjacent beams. In this way, the beam BC0, BC1, BC2 suitable for communication is always selected for each cluster, and the beam used for communication is selected from the plurality of beams suitable for communication selected for each cluster. Even if a cluster of communication paths used for communication is cut off due to a person passing by, etc., communication can be performed by switching to a suitable communication beam in the cluster of other communication paths instantly. , Communication can be maintained continuously.

図6は、このようにして構成された本実施の形態の無線通信システム1の動作の概要を説明する図である。図6では送受信機10を家庭に配置したパーソナルコンピュータ、送受信機20を携帯電話として描いている。図6を参照して、このように構成された本実施の形態の無線通信システム1において送受信機10、20が同士が通信を行う場合について説明する。   FIG. 6 is a diagram for explaining the outline of the operation of the wireless communication system 1 of the present embodiment configured as described above. In FIG. 6, the transceiver 10 is illustrated as a personal computer in which the transceiver 10 is installed at home, and the transceiver 20 is illustrated as a mobile phone. With reference to FIG. 6, the case where the transceivers 10 and 20 communicate with each other in the wireless communication system 1 of the present embodiment configured as described above will be described.

図6に示すように、送受信機20は、例えば、直接波の通信経路P0で通信しているが、送受信機20の品質モニタ部22は、同時に他の好適な通信経路、例えば、通信経路P1を追尾してモニタしている(図6の(A))。人が通過するなどして、通信経路P0が障害物によって遮られ、通信に利用できない状況に陥いると、送受信機20の品質モニタ部22が検知し、送受信機20の通信経路選択部24は、品質モニタ部22が追尾して品質モニタ部22が品質をモニタしている他の通信経路の中から直ちに好適な通信経路P1を選択し、指向性制御部25は、選択した通信経路P1の方向に指向性アンテナ20aの指向性を変更して通信を継続する(図6の(B))。通信経路をP0からP1に切り替えた後も、送受信機20の品質モニタ部22は、好適な通信経路P2を新たに探索し、同様に通信経路P2を常時追尾することで、通信経路を選択できる状況を常時確保する(図6の(C))。このため、無線通信システム1は常時良好な通信経路を用いて通信を行い、通信は途絶えることがない。   As shown in FIG. 6, the transmitter / receiver 20 communicates with, for example, a direct-wave communication path P0. Is monitored (FIG. 6A). When the communication path P0 is blocked by an obstacle due to a person passing or the like and cannot be used for communication, the quality monitor unit 22 of the transceiver 20 detects that the communication path selection unit 24 of the transceiver 20 The quality monitoring unit 22 tracks and the quality monitoring unit 22 immediately selects a suitable communication path P1 from among the other communication paths monitored by the quality monitoring unit 22, and the directivity control unit 25 selects the selected communication path P1. The communication is continued by changing the directivity of the directional antenna 20a in the direction ((B) of FIG. 6). Even after switching the communication path from P0 to P1, the quality monitor unit 22 of the transceiver 20 can search for a new suitable communication path P2 and similarly select the communication path by always tracking the communication path P2. The situation is always secured ((C) in FIG. 6). For this reason, the wireless communication system 1 always performs communication using a good communication path, and communication is not interrupted.

<好ましい通信経路の形成>
送受信機10と送受信機20との間の通信を安定させるためには、複数の反射体を送受信機10と送受信機20との間もしくは周辺に配置して通信経路を形成することが望ましいことについて既に説明した。発明者は好適な通信経路を形成するための条件について様々な研究を行い、好ましい反射体および反射体の設置条件について明らかにした。以下、発明者が行った実験結果に基づいて、好ましい反射体とその設置条件について説明する。なお、本実施の形態では、通信経路を形成する反射体が通信経路形成部の一部を構成する。
好ましい反射体について
<Preferred communication path formation>
In order to stabilize communication between the transceiver 10 and the transceiver 20, it is desirable to form a communication path by arranging a plurality of reflectors between or around the transceiver 10 and the transceiver 20. Already explained. The inventor conducted various studies on the conditions for forming a suitable communication path, and clarified preferable reflectors and reflector installation conditions. Hereinafter, preferred reflectors and installation conditions thereof will be described based on the results of experiments conducted by the inventors. In the present embodiment, the reflector that forms the communication path constitutes a part of the communication path forming unit.
About preferred reflectors

送信機Txと受信機Rxとの間に配置する好ましい反射体の条件を特定するため、反射体の形状およびサイズを変更して受信電力を測定する実験を行い、その結果を図7〜図9にまとめた。図7は、実験を行った際の送信機Txと受信機Rxと反射体Rとの関係を示す図である。送信機Txと受信機Rxは金属製の机の上に配置した。送信機Txの指向性アンテナAtのビーム幅は15度、受信機Rxの指向性アンテナArのビーム幅は60度とした。また、送信機Txの指向性アンテナAtと受信機Rxの指向性アンテナArは、反射体Rの反射面を含む面に対して等距離であり、かつ、送信機Txの指向性アンテナAtの先端と受信機Rxの指向性アンテナArの先端と反射体Rの反射点が、正三角形を形成するように配置している。好適な反射波を得るため、反射体Rは、到来するビームを反射して、少なくとも受信機Rxにビームとして識別されうる反射波を生じうる程度に高い反射率を有する必要がある。反射体Rとして金属テープを使用し、発泡スチロールの上に配置した。この金属テープの形状および長さを変更して以下の実験を行った。   In order to specify the conditions of a preferable reflector disposed between the transmitter Tx and the receiver Rx, an experiment for measuring the received power by changing the shape and size of the reflector was performed, and the results are shown in FIGS. Summarized in FIG. 7 is a diagram illustrating a relationship among the transmitter Tx, the receiver Rx, and the reflector R when the experiment is performed. The transmitter Tx and the receiver Rx were placed on a metal desk. The beam width of the directional antenna At of the transmitter Tx is 15 degrees, and the beam width of the directional antenna Ar of the receiver Rx is 60 degrees. In addition, the directional antenna At of the transmitter Tx and the directional antenna Ar of the receiver Rx are equidistant from the surface including the reflecting surface of the reflector R, and the tip of the directional antenna At of the transmitter Tx. And the tip of the directional antenna Ar of the receiver Rx and the reflection point of the reflector R are arranged to form an equilateral triangle. In order to obtain a suitable reflected wave, the reflector R needs to have a reflectivity that is high enough to reflect the incoming beam and at least produce a reflected wave that can be identified as a beam to the receiver Rx. A metal tape was used as the reflector R, and was placed on a polystyrene foam. The following experiment was conducted by changing the shape and length of the metal tape.

図8は、金属テープの形状に対する受信電力の変化を示す図である。図8から、10cmの長さまでであれば金属テープを長くすると受信電力が増加することが実証された。最も好適な形状は10cmの正方向であることがわかる。   FIG. 8 is a diagram illustrating a change in received power with respect to the shape of the metal tape. From FIG. 8, it was demonstrated that the received power increases when the metal tape is lengthened up to a length of 10 cm. It can be seen that the most preferred shape is 10 cm positive.

図9は、金属テープの長さに対する受信電力と遅延分散の変化を示す図である。この図では、金属テープの長さを30cmにした場合に、受信電力が最大となり、遅延分散が最小となっていることがわかる。金属テープは反射率が最も高い。このように反射率の高い反射体がビームのエネルギーの中にある場合は、反射体の反射面積が所定の値、すなわち、到来するビームのエネルギーのすべてを反射する大きさに至るまで、反射体の反射面積に比例して反射するエネルギーが増加する。このため、金属テープの長さが30cmになるまで反射波の受信電力が増大する傾向にあることがわかる。   FIG. 9 is a diagram showing changes in received power and delay dispersion with respect to the length of the metal tape. In this figure, it can be seen that when the length of the metal tape is 30 cm, the received power is maximized and the delay dispersion is minimized. Metal tape has the highest reflectivity. When a reflector having such a high reflectivity is in the energy of the beam, the reflector is reflected until the reflection area of the reflector reaches a predetermined value, that is, a size that reflects all of the energy of the incoming beam. The reflected energy increases in proportion to the reflection area. For this reason, it can be seen that the received power of the reflected wave tends to increase until the length of the metal tape reaches 30 cm.

図7〜図9のグラフから、反射体の反射領域が所定の値より大きくなると、受信電力が増加し、遅延分散が減少することがわかる。また、反射体の形状も正方形または円形など、反射領域の大きな形状の方が有利であると考えられる。   It can be seen from the graphs of FIGS. 7 to 9 that when the reflection area of the reflector becomes larger than a predetermined value, the received power increases and the delay dispersion decreases. Further, it is considered that the shape of the reflector is more advantageous when the shape of the reflection region is large, such as a square or a circle.

このように、本発明の無線通信システムは、信号波を送信する送信装置と、指向性を有する指向性アンテナを備えて信号波を受信する受信装置と、送信装置から送信された信号波を直接、もしくは反射して受信装置の指向性アンテナに導く通信経路を形成する通信経路形成部と、を含む無線通信システムであって、受信装置は、好適な信号波の通信経路を選択する好適経路選択手段と、好適経路選択手段が選択した好適な通信経路に指向性アンテナの指向性の方向を向けて、指向性アンテナに好適経路選択手段が選択した好適な通信経路を通過した信号波を受信させるアンテナ制御部と、を備え、好適経路選択手段は、通信経路形成部が形成する通信経路を通過した信号波を含む、複数の信号波を常時追尾し、複数の信号波の各々の方向と受信品質を常時測定して、測定した複数の信号波の方向と受信品質に基づいて好適な信号波の通信経路を選択し、アンテナ制御部は、好適経路選択手段が選択した好適な通信経路に随時、指向性アンテナの指向性の方向を向けて、指向性アンテナに好適経路選択手段が選択した好適な通信経路を通過した信号波を継続して受信させるので、常時好適な通信経路で通信を行い、通信を行っている通信経路の一つが障害物によって遮断されても、途切れることなく継続して信号波を受信することができる。このため、例えば、ミリ波帯などの直進性が強く、伝搬による減衰が大きく、回折が期待できない電磁波で無線通信を行う場合にも適用可能である。   As described above, the wireless communication system according to the present invention directly transmits a signal wave transmitted from the transmission apparatus, a reception apparatus that includes the directional antenna having directivity and receives the signal wave, and a signal wave transmitted from the transmission apparatus. Or a communication path forming unit that forms a communication path that reflects and guides to a directional antenna of the receiving apparatus, wherein the receiving apparatus selects a suitable signal wave communication path. Directing the directivity direction of the directional antenna to the preferred communication path selected by the preferred route selection means, and causing the directional antenna to receive the signal wave that has passed through the preferred communication path selected by the preferred route selection means An antenna control unit, and the preferred path selection unit always tracks a plurality of signal waves including a signal wave that has passed through the communication path formed by the communication path forming unit, and receives each direction and reception of the plurality of signal waves. The quality is constantly measured, and a suitable signal wave communication path is selected based on the measured direction of the plurality of signal waves and the reception quality, and the antenna control unit always selects a suitable communication path selected by the suitable path selection unit. The directional antenna is directed so that the signal wave that has passed through the preferred communication path selected by the preferred route selection means is continuously received by the directional antenna, so communication is always performed through the preferred communication path. Even if one of the communication paths performing communication is blocked by an obstacle, the signal wave can be continuously received without interruption. For this reason, for example, the present invention can be applied to the case where wireless communication is performed using an electromagnetic wave that has strong straightness such as a millimeter wave band, a large attenuation due to propagation, and cannot be expected to be diffracted.

また、上述の実施の形態の無線通信システムにおいて、本発明の通信経路形成部を自動的に通信経路を選択する送信装置および受信装置とともに適応する場合について説明したが、本発明はこれに限定されない。本発明の通信経路形成部は単体で設置することも可能である。例えば、反射率の高い反射体であって、遅延分散を人間が測定して、遅延分散の低い場所、具体的には、通信経路部が形成する通信経路を通過する信号波が直接波を含む他の通信経路を通過する信号波と重畳して受信装置の指向性アンテナに受信されることのないように、受信装置の指向性アンテナのビーム幅を考慮して通信経路を形成するように配置する、あるいは、通信経路形成部が形成する通信経路を通過する信号波が直接波を含む他の通信経路の何れかを通過する信号波と重畳して受信装置の指向性アンテナに受信される場合は、通信経路形成部が形成する通信経路を通過する信号波の受信電力と他の通信経路の何れかを通過する信号波の受信電力の差が所定の閾値を超えるように、受信装置の指向性アンテナと送信装置の指向性アンテナの間の距離、受信装置の指向性アンテナおよび送信装置の指向性アンテナと通信経路形成部との距離、通信経路形成部の反射率、および受信装置の指向性アンテナのビーム幅を考慮して通信経路を形成するように配置するのであれば、特殊な送信装置または受信装置は必須ではない。   Moreover, in the wireless communication system of the above-described embodiment, the case where the communication path forming unit of the present invention is applied together with the transmission apparatus and the reception apparatus that automatically select the communication path has been described, but the present invention is not limited to this. . The communication path forming unit of the present invention can be installed alone. For example, it is a reflector having a high reflectivity, and a signal wave passing through a communication path formed by a communication path formed by a place where the delay dispersion is low by human measurement of the delay dispersion, specifically, a communication path unit includes a direct wave. Arranged so that the communication path is formed in consideration of the beam width of the directional antenna of the receiving device so that it is not received by the directional antenna of the receiving device superimposed on the signal wave passing through another communication path Or when a signal wave passing through a communication path formed by a communication path forming unit is received by a directional antenna of a receiving apparatus superimposed on a signal wave passing through any other communication path including a direct wave Is directed to the receiving device so that the difference between the received power of the signal wave passing through the communication path formed by the communication path forming unit and the received power of the signal wave passing through any of the other communication paths exceeds a predetermined threshold. Antenna antenna and transmitter directivity Considering the distance between the tenors, the distance between the directional antenna of the receiving device and the directional antenna of the transmitting device and the communication path forming unit, the reflectance of the communication path forming unit, and the beam width of the directional antenna of the receiving device A special transmitter or receiver is not essential if it is arranged so as to form a communication path.

以上、実施の形態の無線通信システムおよびその通信経路形成部について説明した。本発明の無線通信システムを構成する通信経路形成部は、例えば、金属バンドを所定の条件を満たすように壁やパソコン、キーボード、机、本棚などの家具に貼り付けるだけでもよく、金属バンドは正方形または円形の金属板で形成してもよい。このように構造が簡単で容易にかつ安価に構築することができる。この通信経路形成部と制御可能な指向性アンテナと指向性アンテナの指向性を制御する送受信装置を備えていれば、また、送受信装置も、携帯電話やコンピュータなど様々な通信機器に適用可能であり、例えば、CPUとメモリを含む、一般的なコンピュータを上述した各手段として機能させるプログラムによって動作させることもできる。また、本発明の無線通信システムで使用可能なミリ波などの高周波数の電磁波は規制が少ないため、広帯域を利用することができ、例えば、車載ミリ波レーダー、60GHz帯ミリ波映像システム(無線ホームリンク)、120GHz帯高精細動画非圧縮伝送システム、車々間・路車間無線システム、放送用55GHz帯ミリ波モバイルカメラ、武器・危険物透視スキャナ(カメラ)コンクリートひび割れ検査装置、異物混入検査装置、封筒内危険物検査システム、さらに、家庭におけるHDTV(High Definition Television)無線伝送など、様々な用途に利用可能である。   Heretofore, the wireless communication system and the communication path forming unit thereof have been described. The communication path forming unit constituting the wireless communication system of the present invention may be simply affixed to a furniture such as a wall, a personal computer, a keyboard, a desk, or a book shelf so that the predetermined condition is satisfied. Or you may form with a circular metal plate. Thus, the structure is simple and can be constructed easily and inexpensively. If this communication path forming unit, a controllable directional antenna, and a transmission / reception device for controlling the directivity of the directional antenna are provided, the transmission / reception device can also be applied to various communication devices such as mobile phones and computers. For example, a general computer including a CPU and a memory can be operated by a program that functions as each of the above-described units. In addition, since high-frequency electromagnetic waves such as millimeter waves that can be used in the wireless communication system of the present invention are not restricted, a wide band can be used. For example, an in-vehicle millimeter wave radar, a 60 GHz band millimeter wave video system (wireless home) Link), 120 GHz band high-definition video uncompressed transmission system, inter-vehicle / road-to-vehicle wireless system, 55 GHz band millimeter-wave mobile camera for broadcasting, weapon / dangerous material fluoroscopic scanner (camera), concrete crack inspection device, foreign material contamination inspection device, in envelope It can be used for various applications such as a dangerous goods inspection system and HDTV (High Definition Television) wireless transmission at home.

本発明の一実施の形態の無線通信システムの概略構成図であるIt is a schematic block diagram of the radio | wireless communications system of one embodiment of this invention. 図1の無線通信システムを構成する送受信機のフレーム形成部が形成するフレーム構造の一例を示す図である。It is a figure which shows an example of the frame structure which the frame formation part of the transmitter / receiver which comprises the radio | wireless communications system of FIG. 1 forms. 図2のフレームに含まれる追尾スロットの一例を示す図である。It is a figure which shows an example of the tracking slot contained in the flame | frame of FIG. 本発明の一実施の形態の無線通信システムを構成する送受信機の配置と通信経路との関係を示す図である。It is a figure which shows the relationship between arrangement | positioning of the transmitter / receiver and communication path which comprise the radio | wireless communications system of one embodiment of this invention. 図1の無線通信システムを構成するスレーブ側の送受信機から見た通信経路により形成されるクラスタを示す図である。It is a figure which shows the cluster formed of the communication path seen from the transmitter / receiver of the slave side which comprises the radio | wireless communications system of FIG. 図1の無線通信システムの動作の概要を説明する図である。It is a figure explaining the outline | summary of operation | movement of the radio | wireless communications system of FIG. 送信機と受信器と反射体との関係を説明する図である。It is a figure explaining the relationship between a transmitter, a receiver, and a reflector. 図7の条件の下で測定した金属テープの形状に対する受信電力の変化を示す図である。It is a figure which shows the change of the received power with respect to the shape of the metal tape measured on condition of FIG. 図7の条件の下で測定した金属テープの長さに対する受信電力と遅延分散の変化を示す図である。It is a figure which shows the change of the received power and delay dispersion | variation with respect to the length of the metal tape measured on condition of FIG. 従来の送受信機が直接波を用いて通信をしている状態を示す図である。It is a figure which shows the state which the conventional transmitter / receiver is communicating using a direct wave. 直接波に障害物で遮られた場合に、従来の送受信機が間接波に切り替えて通信をしている状態を示す図である。It is a figure which shows the state which the conventional transmitter / receiver switches to an indirect wave and is communicating, when it obstruct | occludes with the obstruction in the direct wave. 従来の送受信機が通信経路を切り替えながら通信を行う工程を説明する図である。It is a figure explaining the process in which the conventional transmitter / receiver performs communication, switching a communication path.

10 送受信機(送信装置)
10a 指向性アンテナ
11 送受信部
12 通信経路選択部
13 フレーム形成部
14 指向性制御部(アンテナ制御部)
20 送受信機(受信装置)
20a 指向性アンテナ
21 送受信部
22 品質モニタ部(好適経路選択手段)
23 メモリ(好適経路選択手段)
24 通信経路選択部(好適経路選択手段)
25 指向性制御部(アンテナ制御部)
P0 直接波の通信経路
P1〜P4 反射波の通信経路
R1〜R3 反射体(通信経路形成部)
50 遅延分散算出部
51 ADC
52 N段シフトレジスタ部
53 参照用符号データ列部
55 算積回路
100 従来の送受信機(送信装置)
100a 指向性アンテナ
200 従来の送受信機(受信装置)
200a 指向性アンテナ
10 Transceiver (Transmitter)
10a Directional antenna 11 Transmission / reception unit 12 Communication path selection unit 13 Frame forming unit 14 Directivity control unit (antenna control unit)
20 Transceiver (Receiver)
20a Directional antenna 21 Transmitter / receiver 22 Quality monitor (preferred route selection means)
23 memory (preferred route selection means)
24 communication route selection unit (preferred route selection means)
25 Directivity control unit (antenna control unit)
P0 Direct wave communication path P1 to P4 Reflected wave communication path R1 to R3 Reflector (communication path forming unit)
50 Delay dispersion calculation unit 51 ADC
52 N-stage shift register unit 53 Reference code data string unit 55 Multiplication circuit 100 Conventional transceiver (transmitter)
100a Directional antenna 200 Conventional transceiver (receiver)
200a Directional antenna

Claims (6)

信号波を送信する送信装置と、
指向性を有する指向性アンテナを備えて信号波を受信する受信装置と、
前記送信装置から送信された信号波を直接、もしくは反射して前記受信装置の指向性アンテナに導く通信経路を形成する通信経路形成部と、を含む無線通信システムであって、
前記受信装置は、
好適な信号波の通信経路を選択する好適経路選択手段と、
前記好適経路選択手段が選択した好適な通信経路に前記指向性アンテナの指向性の方向を向けて、前記指向性アンテナに前記好適経路選択手段が選択した好適な通信経路を通過した信号波を受信させるアンテナ制御部と、を備え、
前記好適経路選択手段は、前記通信経路形成部が形成する通信経路を通過した信号波を含む、複数の信号波を常時追尾し、前記複数の信号波の各々の方向と受信品質を常時測定して、測定した複数の信号波の方向と受信品質に基づいて好適な信号波の通信経路を選択し、
前記アンテナ制御部は、前記好適経路選択手段が選択した好適な通信経路に随時、前記指向性アンテナの指向性の方向を向けて、前記指向性アンテナに前記好適経路選択手段が選択した好適な通信経路を通過した信号波を継続して受信させ、
前記指向性アンテナが、ビームフォーミングアンテナであり、
前記好適経路選択手段は、通信経路を通過して到来する信号の追尾により好適な信号波の通信経路を選択し、
前記好適経路選択手段による信号の追尾が、
離散して存在する複数の通信経路のクラスタごとの、クラスタに含まれる複数のビーム の追尾であり、
前記好適経路選択手段は、
該複数のビームの追尾により、クラスタごとに通信に適したビームを常時選択し、
前記好適経路選択手段による好適な信号波の通信経路の選択が、
このクラスタごとに選択した複数の通信に適したビームによる通信経路の選択である
とを特徴とする無線通信システム。
A transmission device for transmitting a signal wave;
A receiving device for receiving a signal wave with a directional antenna having directivity;
A communication path forming unit that forms a communication path that directly or reflects a signal wave transmitted from the transmitting apparatus and guides the signal wave to the directional antenna of the receiving apparatus,
The receiving device is:
Preferred route selection means for selecting a suitable signal wave communication route;
Directing the directivity direction of the directional antenna to the preferred communication path selected by the preferred path selection means, and receiving the signal wave that has passed through the preferred communication path selected by the preferred path selection means to the directional antenna An antenna control unit
The suitable path selection means always tracks a plurality of signal waves including a signal wave that has passed through a communication path formed by the communication path forming unit, and always measures the direction and reception quality of each of the plurality of signal waves. Then, select a suitable signal wave communication path based on the measured direction and reception quality of the plurality of signal waves,
The antenna controller preferably directs the direction of the directivity of the directional antenna to the preferred communication path selected by the preferred path selection means, and the preferred communication selected by the preferred path selection means for the directional antenna. Continue to receive the signal wave that has passed through the path,
The directional antenna is a beam forming antenna;
The suitable route selection means selects a communication route of a suitable signal wave by tracking a signal that arrives through the communication route ,
Signal tracking by the preferred route selection means includes:
The tracking of a plurality of beams included in a cluster, for each cluster of a plurality of communication paths existing in a discrete manner ,
The preferred route selection means includes:
By tracking the plurality of beams, a beam suitable for communication is always selected for each cluster,
Selection of a suitable signal wave communication path by the preferred path selection means,
This is the selection of communication paths using beams suitable for multiple communications selected for each cluster.
Wireless communication system comprising a call.
前記好適経路選択手段は、通信に用いている通信経路を通過する信号波と、その他の複数の信号波の各々の方向と受信品質を常時測定し、前記指向性アンテナが受信している通信に用いている通信経路を通過する信号波の品質が所定のレベルより劣化したと判断すると、前記アンテナ制御部は、その他の複数の信号波のそれぞれの受信品質に基づき前記好適経路選択手段が選択した好適な通信経路に、前記指向性アンテナの指向性の方向を切り替えて、信号波を継続して受信させることを特徴とする、請求項1記載の無線通信システム。The preferred path selection means constantly measures the direction and reception quality of each of the signal wave passing through the communication path used for communication and the other plurality of signal waves, and the communication is received by the directional antenna. When it is determined that the quality of the signal wave passing through the communication path used has deteriorated from a predetermined level, the antenna control unit selects the suitable path selection unit based on the reception quality of each of the other plurality of signal waves. suitable communication path, the direction of the directivity of the directional antenna Te toggle, characterized in that to continue receiving the signal wave, a radio communication system according to claim 1, wherein. 前記通信経路形成部が、反射率の高い反射体で形成されることを特徴とする、請求項1記載の無線通信システム。  The wireless communication system according to claim 1, wherein the communication path forming unit is formed of a reflector having a high reflectance. 前記通信経路形成部は、前記通信経路形成部が形成する通信経路を通過する信号波が直接波を含む他の通信経路を通過する信号波と重畳して前記受信装置の前記指向性アンテナに受信されることのないように、前記受信装置の前記指向性アンテナのビーム幅を考慮して通信経路を形成するように配置された反射体であることを特徴とする、請求項1記載の無線通信システム。  The communication path forming unit receives a signal wave passing through a communication path formed by the communication path forming unit with a signal wave passing through another communication path including a direct wave and receives the signal wave on the directional antenna of the receiving apparatus. 2. The wireless communication according to claim 1, wherein the reflector is arranged so as to form a communication path in consideration of a beam width of the directional antenna of the receiving device. system. 前記通信経路形成部は、前記通信経路形成部が形成する通信経路を通過する信号波が直接波を含む他の通信経路の何れかを通過する信号波と重畳して前記受信装置の指向性アンテナに受信される場合は、前記通信経路形成部が形成する通信経路を通過する信号波の受信電力と、前記他の通信経路の何れかを通過する信号波の受信電力の差が所定の閾値より大きくなるように、前記受信装置の指向性アンテナと前記送信装置の指向性アンテナの間の距離、前記受信装置の指向性アンテナと前記送信装置の指向性アンテナと前記通信経路形成部との距離、前記通信経路形成部の反射率、および前記受信装置の指向性アンテナのビーム幅を考慮して通信経路を形成するように配置された反射体であることを特徴とする、請求項1記載の無線通信システム。  The communication path forming unit is configured to superimpose a signal wave passing through a communication path formed by the communication path forming unit with a signal wave passing through any other communication path including a direct wave. The difference between the received power of the signal wave passing through the communication path formed by the communication path forming unit and the received power of the signal wave passing through any of the other communication paths is greater than a predetermined threshold value. The distance between the directional antenna of the receiver and the directional antenna of the transmitter, the distance between the directional antenna of the receiver and the directional antenna of the transmitter and the communication path forming unit, The wireless device according to claim 1, wherein the wireless communication device is a reflector arranged to form a communication path in consideration of a reflectance of the communication path forming unit and a beam width of a directional antenna of the receiving apparatus. Communication system Beam. 前記通信経路形成部はさらに、前記通信経路の周囲に配置した、信号波の強度を弱める吸収体を含む、請求項1記載の無線通信システム。  The wireless communication system according to claim 1, wherein the communication path forming unit further includes an absorber disposed around the communication path to weaken the intensity of the signal wave.
JP2009001200A 2009-01-06 2009-01-06 Wireless communication system Expired - Fee Related JP5354526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009001200A JP5354526B2 (en) 2009-01-06 2009-01-06 Wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009001200A JP5354526B2 (en) 2009-01-06 2009-01-06 Wireless communication system

Publications (2)

Publication Number Publication Date
JP2010161513A JP2010161513A (en) 2010-07-22
JP5354526B2 true JP5354526B2 (en) 2013-11-27

Family

ID=42578366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009001200A Expired - Fee Related JP5354526B2 (en) 2009-01-06 2009-01-06 Wireless communication system

Country Status (1)

Country Link
JP (1) JP5354526B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5932283B2 (en) * 2011-10-13 2016-06-08 キヤノン株式会社 Wireless communication apparatus, communication method, and program
JP5788364B2 (en) * 2012-06-21 2015-09-30 オリンパス株式会社 Wireless communication terminal, wireless communication system, wireless communication method, and program
CN104641569B (en) 2012-07-27 2018-06-12 诺基亚通信公司 A kind of method and apparatus used in a communications system
WO2014036150A1 (en) 2012-08-28 2014-03-06 Interdigital Patent Holdings, Inc. Method for handover of a communication link using a primary beam
JP7077605B2 (en) * 2017-12-21 2022-05-31 富士フイルムビジネスイノベーション株式会社 Communication equipment and communication systems

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031730A (en) * 1998-07-09 2000-01-28 Nec Corp Microwave transmitter for mobile object
JP2000059279A (en) * 1998-08-11 2000-02-25 Nippon Telegr & Teleph Corp <Ntt> Method and device for digital highs-speed radio communication
JP4087023B2 (en) * 1998-09-22 2008-05-14 シャープ株式会社 Millimeter wave signal transmission / reception system and house equipped with millimeter wave band signal transmission / reception system
JP3544891B2 (en) * 1999-04-16 2004-07-21 シャープ株式会社 Wireless transmission system and method for determining directivity direction of antenna
CN101548488B (en) * 2006-12-07 2012-10-24 三菱电机株式会社 Radio communication system, radio terminal station, radio base station, and radio communication method
EP2107699A4 (en) * 2007-01-23 2013-12-04 Nec Corp Radio control method
JP5134380B2 (en) * 2008-01-15 2013-01-30 京セラ株式会社 COMMUNICATION METHOD AND RADIO DEVICE USING THE SAME

Also Published As

Publication number Publication date
JP2010161513A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
US9270355B2 (en) Control method of radio communication system, radio communication system, and radio communication apparatus
US8933840B2 (en) Control method of wireless communication system, wireless communication system, wireless communication apparatus, and adjustment method of array weight vector
US9184821B2 (en) Control method of radio communication system, radio communication system, and radio communication apparatus
US8073491B2 (en) Communication system and method
US20130002487A1 (en) Control method of radio communication system, radio communication system, and radio communication apparatus
US8526878B2 (en) Control method of wireless communication system, wireless communication system, transmitting apparatus, and receiving apparatus
JP2010157944A (en) Radio communication system employing directivity-controllable antenna, and receiving apparatus therefor
US8306483B2 (en) Method and system for improving wireless link robustness using spatial diversity
CN104618964A (en) Switching beam forming-based millimeter wave cooperative communication method
CN110959259A (en) Adaptive antenna configuration
JP2009540765A (en) Radio apparatus and method using directional antennas for peer-to-peer networks in millimeter waves for adaptive beam manipulation
JP5354526B2 (en) Wireless communication system
EP2323273A2 (en) Communications link redundancy including multiple input, multiple output architecture
US20090015475A1 (en) Adaptive Array Base Station Device and Adaptive Array Base Station Device Control Method
JP2012191281A (en) Radio communication device
JP2000115044A (en) Polarized wave diversity transmission system
Yildirim et al. Directional MAC for 60 GHz using polarization diversity extension (DMAC-PDX)
Rehman et al. Receiver based distributed relay selection scheme for 60-GHz networks
JP2000183796A (en) Radio communication equipment
Wang et al. Joint Switched-Beam Training and Rate Adaptation Schemes for MIMO WLANs
JP2022015793A (en) Antenna control device and antenna control system
JPH0955691A (en) Digital radio communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111226

RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7432

Effective date: 20111226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees