JP5333464B2 - Fuel injection control device - Google Patents

Fuel injection control device Download PDF

Info

Publication number
JP5333464B2
JP5333464B2 JP2011003389A JP2011003389A JP5333464B2 JP 5333464 B2 JP5333464 B2 JP 5333464B2 JP 2011003389 A JP2011003389 A JP 2011003389A JP 2011003389 A JP2011003389 A JP 2011003389A JP 5333464 B2 JP5333464 B2 JP 5333464B2
Authority
JP
Japan
Prior art keywords
pressure
injection
fuel
injection rate
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011003389A
Other languages
Japanese (ja)
Other versions
JP2012145018A (en
Inventor
豊盛 立木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011003389A priority Critical patent/JP5333464B2/en
Priority to DE102012100021.2A priority patent/DE102012100021B4/en
Publication of JP2012145018A publication Critical patent/JP2012145018A/en
Application granted granted Critical
Publication of JP5333464B2 publication Critical patent/JP5333464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • F02D2200/0616Actual fuel mass or fuel injection amount determined by estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The fuel injection control device has an asymptote-calculator, which calculates a decreasing asymptote by approximation of a decreasing curve course of a pressure curve course, and calculates an increasing curve course of the pressure curve course during pressure curve course. The decreasing curve course drops-out in a degradation period, in which the detected pressure is reduced corresponding to an increase of injection rate and the increasing curve course increases during an increasing period, in which the detected pressure is increased corresponding to a decline of injection rate.

Description

本発明は、燃料噴射弁へ供給される燃料の圧力を検出する燃圧センサを備えた燃料噴射システムに適用される、内燃機関の燃料噴射制御装置に関するものである。   The present invention relates to a fuel injection control device for an internal combustion engine, which is applied to a fuel injection system including a fuel pressure sensor that detects the pressure of fuel supplied to a fuel injection valve.

特許文献1,2等には、燃料噴射に伴い生じた供給燃料の圧力変化(圧力波形)を検出する燃圧センサを備え、検出した圧力波形から噴射率の変化(噴射率波形)を解析する技術が開示されている。具体的には、噴射率上昇に伴い生じた圧力降下量ΔP(図2参照)と最大噴射率Rmax(噴射率波形の高さ)とは相関が高いことに着目し、圧力波形から検出されるΔPに相関係数Gを掛けてRmaxを算出する。そして、算出したRmaxに基づき、噴射開始時期や噴射終了時期等を指令する噴射指令信号を設定する。つまり、検出したΔPに基づいて算出されたRmaxに基づき燃料噴射弁の作動をフィードバック制御する。   Patent Documents 1 and 2 and the like include a fuel pressure sensor that detects a pressure change (pressure waveform) of a supplied fuel caused by fuel injection, and a technique for analyzing a change in injection rate (injection rate waveform) from the detected pressure waveform Is disclosed. Specifically, the pressure drop amount ΔP (see FIG. 2) generated with the increase in the injection rate and the maximum injection rate Rmax (the height of the injection rate waveform) are focused on and detected from the pressure waveform. Rmax is calculated by multiplying ΔP by the correlation coefficient G. Then, based on the calculated Rmax, an injection command signal for instructing an injection start timing, an injection end timing, or the like is set. That is, the operation of the fuel injection valve is feedback controlled based on Rmax calculated based on the detected ΔP.

しかしこの手法では、多段噴射における噴射間のインターバルや噴射時の筒内圧等、その時の環境条件に応じて、ΔPは噴射毎に逐次異なる値になる。そのため、フィードバック制御に用いるRmaxの算出値が環境条件に応じて逐次変動するので、目標噴射状態(例えば目標噴射開始時期、目標噴射量)に対して実噴射状態が大きくハンチングする等、フィードバック制御の安定性が損なわれる。   However, in this method, ΔP is sequentially different for each injection depending on the environmental conditions at that time, such as the interval between injections in multistage injection and the in-cylinder pressure at the time of injection. For this reason, since the calculated value of Rmax used for feedback control varies sequentially according to the environmental conditions, the actual injection state greatly hunts with respect to the target injection state (for example, target injection start timing, target injection amount). Stability is impaired.

この問題の解消を図ったのが特許文献3記載の発明であり、以下、その概要について図2を用いて説明する。   The invention described in Patent Document 3 has solved this problem, and the outline thereof will be described below with reference to FIG.

検出した圧力波形のうち、噴射率上昇に伴い圧力降下する期間の波形を降下波形、噴射率降下に伴い圧力上昇する期間の波形を上昇波形とした場合において、先ず、前記降下波形を直線に近似した降下近似直線Lα、及び前記上昇波形を直線に近似した上昇近似直線Lβを算出する。次に、圧力波形のうち降下波形が現れる直前の特定期間における波形に基づき、基準圧力Pbaseを算出する。次に、降下近似直線Lαと上昇近似直線Lβとの交点に対応した圧力である交点圧力Pαβと、基準圧力Pbaseとの圧力差ΔPγを算出する。次に、算出した圧力差ΔPγに相関係数Gaを掛けて最大噴射率Rmaxを算出する。   Of the detected pressure waveforms, when the waveform during the period when the pressure drops as the injection rate rises is the falling waveform and the waveform during the period when the pressure rises as the injection rate falls is the rising waveform, first, the descending waveform is approximated to a straight line And the rising approximate straight line Lβ obtained by approximating the rising waveform to a straight line. Next, the reference pressure Pbase is calculated based on the waveform in the specific period immediately before the drop waveform appears in the pressure waveform. Next, a pressure difference ΔPγ between the intersection pressure Pαβ, which is a pressure corresponding to the intersection of the descending approximate line Lα and the ascending approximate line Lβ, and the reference pressure Pbase is calculated. Next, the maximum injection rate Rmax is calculated by multiplying the calculated pressure difference ΔPγ by the correlation coefficient Ga.

前記圧力差ΔPγは最大噴射率Rmaxと相関が高い。しかも、圧力差ΔPγの算出に用いる降下波形及び上昇波形は、上記インターバルや筒内圧等の環境条件に応じて若干の影響を受けるものの、これらの波形の変化は、圧力降下量ΔPの逐次変動の影響に比べれば僅かである。噴射開始から最大噴射率に到達するまでの燃料噴射に伴う燃料圧力の下降、及び最大噴射率から噴射終了となるまでの燃料圧力の上昇は、極めて短時間で行われるためである。したがって、圧力降下量ΔPの逐次変動の影響を大きく受けることなく最大噴射率Rmaxを算出できるようになるので、フィードバック制御の安定性が損なわれるといった先述の問題を解消できる。   The pressure difference ΔPγ is highly correlated with the maximum injection rate Rmax. Moreover, although the drop waveform and the rise waveform used for calculating the pressure difference ΔPγ are slightly affected by the environmental conditions such as the interval and the in-cylinder pressure, changes in these waveforms are caused by the sequential fluctuation of the pressure drop amount ΔP. Compared to the impact, it is negligible. This is because the decrease in the fuel pressure accompanying the fuel injection from the start of injection until the maximum injection rate is reached and the increase in the fuel pressure from the maximum injection rate to the end of the injection are performed in a very short time. Therefore, the maximum injection rate Rmax can be calculated without being greatly affected by the sequential fluctuation of the pressure drop amount ΔP, so that the above-described problem that the stability of the feedback control is impaired can be solved.

特開2009−103063号公報JP 2009-103063 A 特開2010−3004号公報JP 2010-3004 A 特開2010−223184号公報JP 2010-223184 A

ここで、燃料噴射弁が経年劣化することに伴い先述した相関係数Gaは変化していく。例えば、燃料噴射弁の噴孔が磨耗する経年劣化が進行すると、同じ圧力差ΔPγであっても最大噴射率Rmaxは高くなり相関係数Gaは大きくなる。また、噴孔に異物が堆積する経年劣化が進行すると、同じ圧力差ΔPγであっても最大噴射率Rmaxは低くなり相関係数Gaは小さくなる。   Here, the correlation coefficient Ga described above changes as the fuel injection valve deteriorates over time. For example, when aged deterioration in which the nozzle hole of the fuel injection valve wears out proceeds, the maximum injection rate Rmax increases and the correlation coefficient Ga increases even at the same pressure difference ΔPγ. Further, as the aging deterioration in which foreign matter accumulates in the nozzle hole proceeds, the maximum injection rate Rmax decreases and the correlation coefficient Ga decreases even if the pressure difference ΔPγ is the same.

しかしながら、圧力差ΔPγの算出に用いる降下波形及び上昇波形は、噴孔がたとえ磨耗して経年劣化したとしても、これらの波形の変化は、ΔPの変化に比べれば僅かである。上述したように、噴射開始から最大噴射率に到達するまでの燃焼噴射に伴う燃料圧力の下降、及び最大噴射率から噴射終了となるまでの燃料圧力の上昇は、極めて短時間で行われるためである。従って、このような圧力差ΔPγの算出に用いる降下波形及び上昇波形は、燃料噴射弁の経年劣化の影響を殆ど受けないので、特許文献3記載の発明では、経年劣化を加味した最大噴射率Rmaxを算出することができない。よって、実噴射状態を目標噴射状態に一致させるよう高精度で制御できなくなる。   However, the descending waveform and the ascending waveform used for calculation of the pressure difference ΔPγ are small compared to the change in ΔP even if the nozzle hole is worn and deteriorates over time. As described above, the decrease in fuel pressure accompanying combustion injection from the start of injection until the maximum injection rate is reached and the increase in fuel pressure from the maximum injection rate to the end of injection are performed in a very short time. is there. Therefore, the descending waveform and the ascending waveform used for calculating the pressure difference ΔPγ are hardly affected by the aging deterioration of the fuel injection valve. Therefore, in the invention described in Patent Document 3, the maximum injection rate Rmax in consideration of the aging deterioration is used. Cannot be calculated. Therefore, it becomes impossible to control with high accuracy so that the actual injection state matches the target injection state.

ちなみに、上述した特許文献3に係る手法は、燃料噴射弁の開度が全開になる前に閉弁作動を開始するような小噴射時の場合であり、圧力差ΔPγが所定値以上となる大噴射時には、予め設定しておいた値をRmaxとみなす。よって、この場合においても、圧力降下量ΔPの逐次変動の影響を受けることなく最大噴射率Rmaxを算出できる反面、経年劣化を加味した最大噴射率Rmaxを算出することができない。   Incidentally, the method according to Patent Document 3 described above is a case of small injection in which the valve closing operation is started before the opening degree of the fuel injection valve is fully opened, and the pressure difference ΔPγ is large enough to be a predetermined value or more. At the time of injection, a preset value is regarded as Rmax. Therefore, in this case as well, the maximum injection rate Rmax can be calculated without being affected by the sequential fluctuation of the pressure drop amount ΔP, but the maximum injection rate Rmax taking into account aging deterioration cannot be calculated.

本発明は、上記課題を解決するためになされたものであり、その目的は、噴射制御の安定性向上、及び経年劣化を加味した噴射制御の実現を図った燃料噴射制御装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a fuel injection control device that achieves injection control that takes into account the stability improvement of injection control and aging degradation. is there.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明では、燃料噴射弁へ供給される燃料の圧力を検出する燃圧センサを備えた燃料噴射システムに適用されることを前提とする。   The invention described in claim 1 is premised on being applied to a fuel injection system provided with a fuel pressure sensor for detecting the pressure of fuel supplied to the fuel injection valve.

そして、前記燃圧センサにより検出された圧力波形のうち、燃料の噴射率上昇に伴い圧力降下する期間の波形を降下波形、燃料の噴射率降下に伴い圧力上昇する期間の波形を上昇波形とした場合に、前記降下波形を直線に近似した降下近似直線、及び前記上昇波形を直線に近似した上昇近似直線を算出する直線近似手段と、前記燃圧センサにより検出された圧力波形のうち前記降下波形が現れる直前の特定期間における波形に基づき、基準圧力を算出する基準圧力算出手段と、前記降下近似直線及び前記上昇近似直線の交点に対応した圧力である交点圧力を算出し、その交点圧力と前記基準圧力との圧力差に基づき最大噴射率を算出する最大噴射率算出手段と、噴射率上昇に伴い生じた圧力降下量を検出する圧力降下量検出手段と、前記圧力降下量検出手段により検出された圧力降下量が前記燃料噴射弁の経年変化に伴い変化する度合いを表した、経年変化指数を算出する経年変化指数算出手段と、前記経年変化指数に基づき、前記最大噴射率算出手段により算出される最大噴射率を補正する補正手段と、を備えることを特徴とする。   Of the pressure waveforms detected by the fuel pressure sensor, the waveform during the period when the pressure drops as the fuel injection rate rises is the falling waveform, and the waveform during the period when the pressure rises as the fuel injection rate falls is the rising waveform In addition, a descending approximate line that approximates the descending waveform to a straight line, a linear approximation means that calculates an ascending approximate line that approximates the ascending waveform to a straight line, and the descending waveform among the pressure waveforms detected by the fuel pressure sensor appear. Based on the waveform in the immediately preceding specific period, a reference pressure calculating means for calculating a reference pressure, and calculating an intersection pressure that is a pressure corresponding to an intersection of the descending approximate straight line and the ascending approximate straight line, the intersection pressure and the reference pressure A maximum injection rate calculating means for calculating a maximum injection rate based on a pressure difference between the pressure difference, a pressure drop amount detecting means for detecting a pressure drop amount caused by an increase in the injection rate, and the pressure A secular change index calculating means for calculating a secular change index that represents the degree of change in the pressure drop detected by the lower amount detecting means with the secular change of the fuel injection valve, and based on the secular change index, the maximum Correction means for correcting the maximum injection rate calculated by the injection rate calculation means.

ここで、前記降下近似直線及び前記上昇近似直線に基づき算出される交点圧力と基準圧力との圧力差は、最大噴射率との相関が高い。しかも、これらの降下波形及び上昇波形は、インターバルや筒内圧等の環境条件に応じて生じる圧力降下量ΔPの逐次変動の影響を殆ど受けない。この点に着目した本発明では、前記圧力差に基づき最大噴射率を算出するので、本発明により算出した最大噴射率に基づき燃料噴射弁の作動をフィードバック制御しても、目標噴射状態に対して実噴射状態が大きくハンチングすることが抑制され、噴射制御の安定性を向上できる。   Here, the pressure difference between the intersection pressure calculated based on the descending approximate line and the ascending approximate line and the reference pressure has a high correlation with the maximum injection rate. Moreover, these descending waveform and ascending waveform are hardly affected by the sequential variation of the pressure drop amount ΔP generated according to the environmental conditions such as the interval and the in-cylinder pressure. In the present invention focusing on this point, the maximum injection rate is calculated based on the pressure difference. Therefore, even if the operation of the fuel injection valve is feedback controlled based on the maximum injection rate calculated by the present invention, Large hunting of the actual injection state is suppressed, and the stability of injection control can be improved.

さらに本発明では、噴射率上昇に伴い生じた圧力降下量と最大噴射率との相関が高いことにも着目して、燃料噴射弁の経年変化に伴い生じた圧力降下量の変化度合い(経年変化指数)を算出し、その経年変化指数に基づき、最大噴射率算出手段により算出した最大噴射率を補正する。そのため、経年劣化を加味した最大噴射率に補正することができる。   Further, in the present invention, paying attention to the fact that the correlation between the pressure drop caused by the increase in the injection rate and the maximum injection rate is high, the degree of change in the pressure drop caused by the aging of the fuel injection valve (the change over time) An index) is calculated, and the maximum injection rate calculated by the maximum injection rate calculating means is corrected based on the secular change index. Therefore, it can correct | amend to the maximum injection rate which considered aging degradation.

要するに本発明は、環境条件に応じて逐次変動する圧力降下量ΔPの影響を殆ど受けない降下近似直線及び上昇近似直線を用いて最大噴射率を算出することで、噴射制御の安定性向上を図り、その一方で、経年変化の影響が顕著に現れる圧力降下量ΔPを用いて最大噴射率を補正することで、経年変化を加味した制御を実現可能にするものである。   In short, the present invention seeks to improve the stability of injection control by calculating the maximum injection rate using a descending approximation line and an ascending approximation line that are hardly affected by the pressure drop amount ΔP that varies sequentially according to environmental conditions. On the other hand, by correcting the maximum injection rate using the pressure drop amount ΔP in which the influence of the secular change appears remarkably, it is possible to realize the control in consideration of the secular change.

ちなみに、本発明にかかる補正手段は、最大噴射率算出手段により算出される最大噴射率を直接補正してもよいし、交点圧力と基準圧力との圧力差に相関係数を掛けて最大噴射率を算出する場合には、前記相関係数を補正することで最大噴射率を補正してもよい。   Incidentally, the correcting means according to the present invention may directly correct the maximum injection rate calculated by the maximum injection rate calculating means, or the maximum injection rate by multiplying the pressure difference between the intersection pressure and the reference pressure by a correlation coefficient. In the case of calculating the maximum injection rate, the correlation coefficient may be corrected.

請求項2及び請求項3記載の発明では、前記圧力差が所定値以上である場合には、予め設定しておいた値を最大噴射率として算出することを特徴とする。   The invention according to claim 2 and claim 3 is characterized in that when the pressure difference is a predetermined value or more, a preset value is calculated as a maximum injection rate.

ここで、燃料噴射弁の開度が全開になる前に閉弁作動を開始するような小噴射時の場合には、交点圧力と基準圧力との圧力差に基づき最大噴射率を算出すればよいが、前記圧力差が所定値以上となる大噴射時には、上記発明の如く、予め設定しておいた値を最大噴射率として算出した方が、最大噴射率を正確に算出できる。そして、このように算出した大噴射時の最大噴射率についても、環境条件に応じて生じる圧力降下量ΔPの逐次変動の影響を受けないので、噴射制御の安定性を向上できる。また、大噴射時の最大噴射率(つまり、予め設定しておいた値)を、経年変化指数に基づき補正するため、大噴射時においても経年劣化を加味した最大噴射率に補正することができる。   Here, in the case of small injection in which the valve closing operation is started before the opening degree of the fuel injection valve is fully opened, the maximum injection rate may be calculated based on the pressure difference between the intersection pressure and the reference pressure. However, at the time of large injection in which the pressure difference is greater than or equal to a predetermined value, the maximum injection rate can be accurately calculated by calculating a preset value as the maximum injection rate as in the above invention. Further, the maximum injection rate at the time of large injection calculated in this way is not affected by the sequential fluctuation of the pressure drop amount ΔP that occurs according to the environmental conditions, so that the stability of the injection control can be improved. Further, since the maximum injection rate at the time of large injection (that is, a preset value) is corrected based on the secular change index, it can be corrected to the maximum injection rate that takes into account deterioration over time even at the time of large injection. .

請求項4記載の発明では、前記経年変化指数算出手段は、所定期間に検出した複数の前記圧力降下量に基づき算出した複数の最大噴射率の平均値を算出し、その平均値が変化する度合いを前記経年変化指数として算出することを特徴とする。 In the invention according to claim 4, the aging index calculating means calculates an average value of a plurality of maximum injection rates calculated based on the plurality of pressure drop amounts detected in a predetermined period, and a degree to which the average value changes Is calculated as the aging index.

ここで、上記発明に反して、圧力降下量を検出し最大噴射率を算出する毎に平均化することなく経年変化指数を逐次算出する場合には、算出した経年変化指数が環境条件に応じて頻繁に変動し、その結果、経年変化が生じていないにも拘わらず補正後の最大噴射率が頻繁に変動して、噴射制御の安定性向上の妨げになることが懸念される。これに対し上記発明によれば、所定期間に検出した圧力降下量に基づき算出した複数の最大噴射率の平均値の変化量を経年変化指数として算出するので、補正後の最大噴射率が環境条件に応じて頻繁に変動するといった上記懸念が解消される。 Here, contrary to the above-mentioned invention, when calculating the secular change index without averaging every time the pressure drop amount is detected and the maximum injection rate is calculated , the calculated secular change index depends on the environmental conditions. As a result, there is a concern that the corrected maximum injection rate frequently fluctuates despite the fact that the secular change does not occur and hinders improvement in the stability of the injection control. On the other hand, according to the above invention, since the change amount of the average value of the plurality of maximum injection rates calculated based on the pressure drop detected during the predetermined period is calculated as the secular change index, the corrected maximum injection rate is the environmental condition. The above-mentioned concern that it fluctuates frequently according to the situation is resolved.

なお、前記「所定期間」の具体例としては、運転者が内燃機関を始動操作してから停止操作するまでの期間(1トリップ期間)、車両が所定の距離だけ走行する期間、内燃機関の運転時間が所定時間経過する期間、等が挙げられる。   Specific examples of the “predetermined period” include a period from when the driver starts the internal combustion engine to a stop operation (one trip period), a period during which the vehicle travels a predetermined distance, and the operation of the internal combustion engine. For example, a period in which a predetermined time elapses.

請求項5記載の発明では、前記圧力降下量検出手段は、前記基準圧力と関連付けて前記圧力降下量を検出し、前記基準圧力は複数の領域に分割して設定されており、前記経年変化指数算出手段は、前記領域毎の前記圧力降下量の検出数に応じて、前記圧力降下量の値に重み付けをして前記平均値を算出することを特徴とする。   According to a fifth aspect of the present invention, the pressure drop amount detecting means detects the pressure drop amount in association with the reference pressure, the reference pressure is set by being divided into a plurality of regions, and the secular change index The calculating means calculates the average value by weighting the value of the pressure drop amount according to the number of detected pressure drop amounts for each region.

ここで、噴射指令信号が同じであっても、基準圧力が異なれば検出される圧力降下量は異なる値になる。また、内燃機関のユーザーによっては基準圧力の使用領域が偏る場合がある。例えば、高負荷運転の機会が多いユーザーの場合には、基準圧力が高い領域で燃料噴射する機会が多い。したがって、ユーザーの使用頻度が高い基準圧力に応じた圧力降下量に基づき経年変化指数を算出することが、最大噴射率を精度良く補正する上で望ましい。この点を鑑みた上記発明では、検出数が多い領域であるほど圧力降下量の重み付けを大きくして経年変化指数を算出できるので、最大噴射率を精度良く補正できる。   Here, even if the injection command signal is the same, if the reference pressure is different, the detected pressure drop amount has a different value. In addition, depending on the user of the internal combustion engine, the use area of the reference pressure may be uneven. For example, in the case of a user who has many opportunities for high-load operation, there are many opportunities for fuel injection in a region where the reference pressure is high. Therefore, it is desirable to calculate the secular change index based on the pressure drop amount corresponding to the reference pressure that is frequently used by the user in order to accurately correct the maximum injection rate. In the above invention in view of this point, the aging index can be calculated by increasing the weighting of the pressure drop amount as the number of detections is larger, so that the maximum injection rate can be accurately corrected.

請求項6記載の発明では、前記経年変化指数算出手段は、燃料噴射時の環境条件が所定範囲内である時に検出した前記圧力降下量に基づき、前記経年変化指数を算出することを特徴とする。   The invention according to claim 6 is characterized in that the aging index calculating means calculates the aging index based on the pressure drop detected when the environmental condition during fuel injection is within a predetermined range. .

先述した通り、前記インターバルや筒内圧、基準圧力等の環境条件が異なれば検出される圧力降下量が異なる値になる。そのため、過去に検出した圧力降下量と現在の圧力降下量とを比較して経年変化指数を算出するにあたり、比較する圧力降下量の検出時の環境条件が大きく異なっていると、経年変化指数を高精度で算出できない。この点を鑑みた上記発明では、環境条件が所定範囲内である時に検出した圧力降下量に基づき経年変化指数を算出するので、略同一の環境条件で検出した圧力降下量に基づき経年変化指数を算出でき、経年変化指数の算出精度を向上できる。   As described above, if the environmental conditions such as the interval, the in-cylinder pressure, and the reference pressure are different, the detected pressure drop amount becomes a different value. Therefore, when calculating the secular change index by comparing the pressure drop amount detected in the past with the current pressure drop amount, if the environmental conditions at the time of detecting the pressure drop amount to be compared are greatly different, It cannot be calculated with high accuracy. In the above invention in view of this point, since the aging index is calculated based on the pressure drop detected when the environmental condition is within the predetermined range, the aging index is calculated based on the pressure drop detected under substantially the same environmental conditions. It can be calculated and the calculation accuracy of the secular change index can be improved.

請求項7記載の発明では、前記経年変化指数算出手段は、前記基準圧力が所定圧力以上である高圧時に検出した前記圧力降下量に基づき、前記経年変化指数を算出することを特徴とする。   The invention according to claim 7 is characterized in that the aging index calculating means calculates the aging index based on the pressure drop amount detected when the reference pressure is higher than a predetermined pressure.

ここで、基準圧力が高圧であるほど圧力降下量の絶対値が大きくなるので、高圧時の圧力降下量に基づき経年変化指数を算出すれば、低圧時の圧力降下量に基づき算出する場合に比べて経年変化指数を高精度で算出できる。よって、上記発明によれば、経年変化指数を高精度で算出でき、最大噴射率を精度良く補正できる。   Here, as the reference pressure is higher, the absolute value of the pressure drop becomes larger. Therefore, if the secular change index is calculated based on the pressure drop at high pressure, the absolute value of the pressure drop is higher than that calculated based on the pressure drop at low pressure. The aging index can be calculated with high accuracy. Therefore, according to the above invention, the secular change index can be calculated with high accuracy, and the maximum injection rate can be corrected with high accuracy.

本発明の第1実施形態にかかる内燃機関制御装置が適用される、燃料噴射システムの概略を示す図である。It is a figure showing the outline of the fuel injection system to which the internal-combustion-engine control device concerning a 1st embodiment of the present invention is applied. 噴射指令信号に対応する噴射率および燃圧の変化を示す図である。It is a figure which shows the change of the injection rate and fuel pressure corresponding to an injection command signal. 噴射率パラメータの学習及び噴射指令信号の設定等の概要を示すブロック図である。It is a block diagram which shows the outline | summary of the learning of an injection rate parameter, the setting of an injection command signal, etc. 噴射率パラメータの算出手順を示すフローチャートである。It is a flowchart which shows the calculation procedure of an injection rate parameter. 噴射時燃圧波形Wa、非噴射時燃圧波形Wu、噴射波形Wbを示す図である。It is a figure which shows the fuel pressure waveform Wa at the time of injection, the fuel pressure waveform Wu at the time of non-injection, and the injection waveform Wb. 経年劣化の進行に伴い、圧力降下量ΔP及び最大噴射率Rmaxが低下していく態様を示す図である。It is a figure which shows the aspect that pressure drop amount (DELTA) P and the maximum injection rate Rmax fall with progress of aged deterioration. 指令噴射量及び基準圧力Pbaseの変化に対する、圧力降下量ΔP及び最大噴射率Rmaxの変化を示す図である。It is a figure which shows the change of pressure drop amount (DELTA) P and the maximum injection rate Rmax with respect to the change of instruction | command injection amount and the reference pressure Pbase. 平均値Rmax(ΔP)aveの算出に用いる、複数の最大噴射率Rmax(ΔP)の値を示す図である。It is a figure which shows the value of several maximum injection rate Rmax ((DELTA) P) used for calculation of average value Rmax ((DELTA) P) ave. 図4の処理で用いる補正比Kaの算出手順を示すフローチャートである。It is a flowchart which shows the calculation procedure of correction | amendment ratio Ka used by the process of FIG. 本発明の第2実施形態において、平均値Rmax(ΔP)aveの算出に用いる、複数の最大噴射率Rmax(ΔP)の値を示す図である。It is a figure which shows the value of several maximum injection rate Rmax ((DELTA) P) used for calculation of average value Rmax ((DELTA) P) ave in 2nd Embodiment of this invention. 本発明の第3実施形態において、平均値Rmax(ΔP)aveの算出に用いる、複数の最大噴射率Rmax(ΔP)の値を示す図である。It is a figure which shows the value of several maximum injection rate Rmax ((DELTA) P) used for calculation of average value Rmax ((DELTA) P) ave in 3rd Embodiment of this invention.

以下、本発明に係る制御装置を具体化した各実施形態を図面に基づいて説明する。以下に説明する制御装置は、車両用のエンジン(内燃機関)に搭載されたものであり、当該エンジンには、複数の気筒#1〜#4について高圧燃料を噴射して圧縮自着火燃焼させるディーゼルエンジンを想定している。   Hereinafter, each embodiment which actualized the control device concerning the present invention is described based on a drawing. A control device described below is mounted on an engine (internal combustion engine) for a vehicle, and in the diesel engine, high pressure fuel is injected into a plurality of cylinders # 1 to # 4 to perform compression self-ignition combustion. An engine is assumed.

(第1実施形態)
図1は、上記エンジンの各気筒に搭載された燃料噴射弁10、各々の燃料噴射弁10に搭載された燃圧センサ20、及び車両に搭載された電子制御装置であるECU30等を示す模式図である。
(First embodiment)
FIG. 1 is a schematic diagram showing a fuel injection valve 10 mounted on each cylinder of the engine, a fuel pressure sensor 20 mounted on each fuel injection valve 10, an ECU 30 that is an electronic control device mounted on a vehicle, and the like. is there.

先ず、燃料噴射弁10を含むエンジンの燃料噴射システムについて説明する。燃料タンク40内の燃料は、燃料ポンプ41によりコモンレール42(蓄圧容器)に圧送されて蓄圧され、各気筒の燃料噴射弁10(#1〜#4)へ分配供給される。複数の燃料噴射弁10(#1〜#4)は、予め設定された順番で燃料の噴射を順次行う。なお、燃料ポンプ41にはプランジャポンプが用いられているため、プランジャの往復動に同期して燃料は圧送される。   First, an engine fuel injection system including the fuel injection valve 10 will be described. The fuel in the fuel tank 40 is pumped and stored in the common rail 42 (pressure accumulating container) by the fuel pump 41, and distributed and supplied to the fuel injection valves 10 (# 1 to # 4) of each cylinder. The plurality of fuel injection valves 10 (# 1 to # 4) sequentially inject fuel in a preset order. In addition, since the plunger pump is used for the fuel pump 41, fuel is pumped in synchronism with the reciprocating motion of the plunger.

燃料噴射弁10は、以下に説明するボデー11、ニードル形状の弁体12及びアクチュエータ13等を備えて構成されている。ボデー11は、内部に高圧通路11aを形成するとともに、燃料を噴射する噴孔11bを形成する。弁体12は、ボデー11内に収容されて噴孔11bを開閉する。   The fuel injection valve 10 includes a body 11, a needle-shaped valve body 12, an actuator 13, and the like described below. The body 11 forms a high-pressure passage 11a inside and a nozzle hole 11b for injecting fuel. The valve body 12 is accommodated in the body 11 and opens and closes the nozzle hole 11b.

ボデー11内には弁体12に背圧を付与する背圧室11cが形成されており、高圧通路11a及び低圧通路11dは背圧室11cと接続されている。高圧通路11a及び低圧通路11dと背圧室11cとの連通状態は制御弁14により切り替えられており、電磁コイルやピエゾ素子等のアクチュエータ13へ通電して制御弁14を図1の下方へ押し下げ作動させると、背圧室11cは低圧通路11dと連通して背圧室11c内の燃料圧力は低下する。その結果、弁体12へ付与される背圧力が低下して弁体12はリフトアップ(開弁作動)する。これにより、弁体12のシート面12aがボデー11のシート面11eから離座して、噴孔11bから燃料が噴射される。   A back pressure chamber 11c for applying a back pressure to the valve body 12 is formed in the body 11, and the high pressure passage 11a and the low pressure passage 11d are connected to the back pressure chamber 11c. The communication state between the high pressure passage 11a and the low pressure passage 11d and the back pressure chamber 11c is switched by the control valve 14, and the actuator 13 such as an electromagnetic coil or a piezoelectric element is energized to push the control valve 14 downward in FIG. As a result, the back pressure chamber 11c communicates with the low pressure passage 11d and the fuel pressure in the back pressure chamber 11c decreases. As a result, the back pressure applied to the valve body 12 is lowered and the valve body 12 is lifted up (opening operation). Thereby, the seat surface 12a of the valve body 12 is separated from the seat surface 11e of the body 11, and fuel is injected from the injection hole 11b.

一方、アクチュエータ13への通電をオフして制御弁14を図1の上方へ作動させると、背圧室11cは高圧通路11aと連通して背圧室11c内の燃料圧力は上昇する。その結果、弁体12へ付与される背圧力が上昇して弁体12はリフトダウン(閉弁作動)する。これにより、弁体12のシート面12aがボデー11のシート面11eに着座して、噴孔11bからの燃料噴射が停止される。   On the other hand, when the power supply to the actuator 13 is turned off and the control valve 14 is operated upward in FIG. 1, the back pressure chamber 11c communicates with the high pressure passage 11a and the fuel pressure in the back pressure chamber 11c increases. As a result, the back pressure applied to the valve body 12 increases and the valve body 12 is lifted down (closed valve operation). Thereby, the seat surface 12a of the valve body 12 is seated on the seat surface 11e of the body 11, and the fuel injection from the injection hole 11b is stopped.

したがって、ECU30がアクチュエータ13への通電を制御することで、弁体12の開閉作動が制御される。これにより、コモンレール42から高圧通路11aへ供給された高圧燃料は、弁体12の開閉作動に応じて噴孔11bから噴射される。   Therefore, the ECU 30 controls the energization of the actuator 13 so that the opening / closing operation of the valve body 12 is controlled. Thereby, the high-pressure fuel supplied from the common rail 42 to the high-pressure passage 11 a is injected from the injection hole 11 b according to the opening / closing operation of the valve body 12.

燃圧センサ20は、各々の燃料噴射弁10に搭載されており、以下に説明するステム21(起歪体)及び圧力センサ素子22等を備えて構成されている。ステム21はボデー11に取り付けられており、ステム21に形成されたダイヤフラム部21aが高圧通路11aを流通する高圧燃料の圧力を受けて弾性変形する。圧力センサ素子22はダイヤフラム部21aに取り付けられており、ダイヤフラム部21aで生じた弾性変形量に応じて圧力検出信号をECU30へ出力する。   The fuel pressure sensor 20 is mounted on each fuel injection valve 10 and includes a stem 21 (a strain generating body) and a pressure sensor element 22 described below. The stem 21 is attached to the body 11, and the diaphragm portion 21a formed on the stem 21 is elastically deformed by receiving the pressure of the high-pressure fuel flowing through the high-pressure passage 11a. The pressure sensor element 22 is attached to the diaphragm portion 21a, and outputs a pressure detection signal to the ECU 30 in accordance with the amount of elastic deformation generated in the diaphragm portion 21a.

ECU30は、アクセルペダルの操作量やエンジン負荷、エンジン回転速度NE等に基づき目標噴射状態(例えば噴射段数、噴射開始時期、噴射終了時期、噴射量等)を算出する。例えば、エンジン負荷及びエンジン回転速度に対応する最適噴射状態を噴射状態マップにして記憶させておく。そして、現状のエンジン負荷及びエンジン回転速度に基づき、噴射状態マップを参照して目標噴射状態を算出する。そして、算出した目標噴射状態に対応する噴射指令信号t1、t2、Tq(図2(a)参照)を、後に詳述する噴射率パラメータtd,te,Rα,Rβ,Rmaxに基づき設定し、燃料噴射弁10へ出力することで燃料噴射弁10の作動を制御する。   The ECU 30 calculates a target injection state (for example, the number of injection stages, the injection start timing, the injection end timing, the injection amount, etc.) based on the operation amount of the accelerator pedal, the engine load, the engine rotational speed NE, and the like. For example, the optimal injection state corresponding to the engine load and the engine speed is stored as an injection state map. Based on the current engine load and engine speed, the target injection state is calculated with reference to the injection state map. Then, the injection command signals t1, t2, and Tq (see FIG. 2A) corresponding to the calculated target injection state are set based on the injection rate parameters td, te, Rα, Rβ, and Rmax described in detail later, and the fuel By outputting to the injection valve 10, the operation of the fuel injection valve 10 is controlled.

また、燃圧センサ20の検出値に基づき、噴射に伴い生じた燃料圧力の変化を燃圧波形(図2(c)参照)として検出し、検出した燃圧波形に基づき燃料の噴射率変化を表した噴射率波形(図2(b)参照)を演算して噴射状態を検出する。そして、検出した噴射率波形(噴射状態)を特定する噴射率パラメータRα,Rβ,Rmaxを学習するとともに、噴射指令信号(パルスオン時期t1、パルスオフ時期t2及びパルスオン期間Tq)と噴射状態との相関関係を特定する噴射率パラメータtd,teを学習する。   Further, based on the detected value of the fuel pressure sensor 20, a change in the fuel pressure caused by the injection is detected as a fuel pressure waveform (see FIG. 2C), and an injection representing a change in the fuel injection rate based on the detected fuel pressure waveform. The rate waveform (see FIG. 2B) is calculated to detect the injection state. Then, while learning the injection rate parameters Rα, Rβ, and Rmax that specify the detected injection rate waveform (injection state), the correlation between the injection command signals (pulse-on timing t1, pulse-off timing t2, and pulse-on period Tq) and the injection state. The injection rate parameters td and te for specifying

具体的には、燃圧波形のうち、噴射開始に伴い燃圧降下を開始する変曲点P1から降下が終了する変曲点P2までの降下波形を、最小二乗法等により直線に近似した降下近似直線Lαを算出する。そして、降下近似直線Lαのうち基準値Bαとなる時期(LαとBαの交点時期LBα)を算出する。この交点時期LBαと噴射開始時期R1とは相関が高いことに着目し、交点時期LBαに基づき噴射開始時期R1を算出する。例えば、交点時期LBαよりも所定の遅れ時間Cαだけ前の時期を噴射開始時期R1として算出すればよい。   Specifically, in the fuel pressure waveform, a descending approximation line that approximates a descending waveform from the inflection point P1 at which the fuel pressure drop starts at the start of injection to the inflection point P2 at which the descent ends by a least square method or the like. Lα is calculated. Then, a time (a crossing time LBα between Lα and Bα) that is the reference value Bα in the descending approximate straight line Lα is calculated. Focusing on the fact that the intersection time LBα and the injection start time R1 are highly correlated, the injection start time R1 is calculated based on the intersection time LBα. For example, a timing that is a predetermined delay time Cα before the intersection timing LBα may be calculated as the injection start timing R1.

また、燃圧波形のうち、噴射終了に伴い燃圧上昇を開始する変曲点P3から降下が終了する変曲点P5までの上昇波形を、最小二乗法等により直線に近似した上昇近似直線Lβを算出する。そして、上昇近似直線Lβのうち基準値Bβとなる時期(LβとBβの交点時期LBβ)を算出する。この交点時期LBβと噴射終了時期R4とは相関が高いことに着目し、交点時期LBβに基づき噴射終了時期R4を算出する。例えば、交点時期LBβよりも所定の遅れ時間Cβだけ前の時期を噴射終了時期R4として算出すればよい。   In addition, a rising approximation line Lβ is calculated by approximating the rising waveform from the inflection point P3 where the fuel pressure rises at the end of injection to the inflection point P5 where the descent ends from the fuel pressure waveform by a least square method or the like. To do. Then, a time (intersection time LBβ between Lβ and Bβ) that is the reference value Bβ in the rising approximate straight line Lβ is calculated. Focusing on the fact that the intersection timing LBβ and the injection end timing R4 are highly correlated, the injection end timing R4 is calculated based on the intersection timing LBβ. For example, a timing that is a predetermined delay time Cβ before the intersection timing LBβ may be calculated as the injection end timing R4.

次に、降下近似直線Lαの傾きと噴射率増加の傾きとは相関が高いことに着目し、図2(b)に示す噴射率波形のうち噴射増加を示す直線Rαの傾きを、降下近似直線Lαの傾きに基づき算出する。例えば、Lαの傾きに所定の係数を掛けてRαの傾きを算出すればよい。同様にして、上昇近似直線Lβの傾きと噴射率減少の傾きとは相関が高いので、噴射率波形のうち噴射減少を示す直線Rβの傾きを、上昇近似直線Lβの傾きに基づき算出する。   Next, paying attention to the fact that the slope of the descending approximate line Lα and the slope of the injection rate increase are highly correlated, the slope of the straight line Rα indicating the increase in the injection rate waveform shown in FIG. Calculation is based on the slope of Lα. For example, the slope of Rα may be calculated by multiplying the slope of Lα by a predetermined coefficient. Similarly, since the slope of the rising approximate line Lβ and the slope of the injection rate decrease are highly correlated, the slope of the straight line Rβ indicating the decrease in injection in the injection rate waveform is calculated based on the slope of the rising approximate line Lβ.

次に、噴射率波形の直線Rα,Rβに基づき、噴射終了を指令したことに伴い弁体12がリフトダウンを開始する時期(閉弁作動開始時期R23)を算出する。具体的には、両直線Rα,Rβの交点を算出し、その交点時期を閉弁作動開始時期R23として算出する。また、噴射開始時期R1の噴射開始指令時期t1に対する遅れ時間(噴射開始遅れ時間td)を算出する。また、閉弁作動開始時期R23の噴射終了指令時期t2に対する遅れ時間(噴射終了遅れ時間te)を算出する。   Next, based on the straight lines Rα and Rβ of the injection rate waveform, a timing (valve closing operation start timing R23) at which the valve body 12 starts lift-down in response to the command to end injection is calculated. Specifically, the intersection of both straight lines Rα and Rβ is calculated, and the intersection timing is calculated as the valve closing operation start timing R23. Further, a delay time (injection start delay time td) with respect to the injection start command timing t1 of the injection start timing R1 is calculated. Further, a delay time (injection end delay time te) with respect to the injection end command timing t2 of the valve closing operation start timing R23 is calculated.

また、降下近似直線Lα及び上昇近似直線Lβの交点に対応した圧力を交点圧力Pαβとして算出し、後に詳述する基準圧力Pbaseと交点圧力Pαβとの圧力差ΔPγを算出し、この圧力差ΔPγと最大噴射率Rmaxとは相関が高いことに着目し、圧力差ΔPγに基づき最大噴射率Rmaxを算出する。具体的には、圧力差ΔPγに相関係数Cγを掛けることで最大噴射率Rmaxを算出する。但し、圧力差ΔPγが所定値ΔPγth未満である小噴射の場合には、上述の如くRmax=ΔPγ×Cγとする一方で、ΔPγ≧ΔPγthである大噴射の場合には、予め設定しておいた値(設定値Rγ)を最大噴射率Rmaxとして算出する。   Further, the pressure corresponding to the intersection of the descending approximate straight line Lα and the ascending approximate straight line Lβ is calculated as the intersection pressure Pαβ, and a pressure difference ΔPγ between the reference pressure Pbase and the intersection pressure Pαβ, which will be described in detail later, is calculated. Focusing on the fact that the correlation with the maximum injection rate Rmax is high, the maximum injection rate Rmax is calculated based on the pressure difference ΔPγ. Specifically, the maximum injection rate Rmax is calculated by multiplying the pressure difference ΔPγ by the correlation coefficient Cγ. However, in the case of the small injection in which the pressure difference ΔPγ is less than the predetermined value ΔPγth, Rmax = ΔPγ × Cγ is set as described above, while in the case of the large injection in which ΔPγ ≧ ΔPγth, it is set in advance. The value (set value Rγ) is calculated as the maximum injection rate Rmax.

なお、上記「小噴射」とは、噴射率がRγに達する前に弁体12がリフトダウンを開始する態様の噴射を想定しており、シート面11e,12aで燃料が絞られて噴射量が制限されている時の噴射率が最大噴射率Rmaxとなる。一方、上記「大噴射」とは、噴射率がRγに達した後に弁体12がリフトダウンを開始する態様の噴射を想定しており、噴孔11bで燃料が絞られて噴射量が制限されている時の噴射率が最大噴射率Rmaxとなる。要するに、噴射指令期間Tqが十分に長く、最大噴射率に達した以降も開弁状態を継続させる場合においては、図2(b)に示す噴射率波形は台形となる。一方、最大噴射率に達する前に閉弁作動を開始させるような小噴射の場合には、噴射率波形は三角形となる。   Note that the “small injection” is assumed to be an injection in which the valve body 12 starts to be lifted down before the injection rate reaches Rγ, and the fuel is throttled at the seat surfaces 11e and 12a to thereby reduce the injection amount. The injection rate when it is restricted becomes the maximum injection rate Rmax. On the other hand, the “large injection” is assumed to be an injection in which the valve body 12 starts to lift down after the injection rate reaches Rγ, and the injection amount is limited by the fuel being throttled at the injection hole 11b. The injection rate when the engine is running is the maximum injection rate Rmax. In short, when the injection command period Tq is sufficiently long and the valve opening state is continued even after reaching the maximum injection rate, the injection rate waveform shown in FIG. On the other hand, in the case of small injection that starts the valve closing operation before reaching the maximum injection rate, the injection rate waveform is a triangle.

以上により、燃圧波形から噴射率パラメータtd,te,Rα,Rβ,Rmaxを算出することができる。そして、これらの噴射率パラメータtd,te,Rα,Rβ,Rmaxの学習値に基づき、噴射指令信号(図2(a)参照)に対応した噴射率波形(図2(b)参照)を算出することができる。なお、このように算出した噴射率波形の面積(図2(b)中の網点ハッチ参照)は噴射量に相当するので、噴射率パラメータに基づき噴射量を算出することもできる。   As described above, the injection rate parameters td, te, Rα, Rβ, and Rmax can be calculated from the fuel pressure waveform. Based on the learned values of the injection rate parameters td, te, Rα, Rβ, and Rmax, an injection rate waveform (see FIG. 2B) corresponding to the injection command signal (see FIG. 2A) is calculated. be able to. Since the area of the injection rate waveform calculated in this way (see halftone dot hatching in FIG. 2B) corresponds to the injection amount, the injection amount can also be calculated based on the injection rate parameter.

図3は、これら噴射率パラメータの学習及び噴射指令信号の設定等の概要を示すブロック図であり、ECU30により機能する各手段31,32,33について以下に説明する。噴射率パラメータ算出手段31は、燃圧センサ20により検出された燃圧波形に基づき噴射率パラメータtd,te,Rα,Rβ,Rmaxを算出する。   FIG. 3 is a block diagram showing an outline of learning of these injection rate parameters, setting of an injection command signal, and the like. Each means 31, 32, 33 functioning by the ECU 30 will be described below. The injection rate parameter calculation means 31 calculates injection rate parameters td, te, Rα, Rβ, Rmax based on the fuel pressure waveform detected by the fuel pressure sensor 20.

学習手段32は、算出した噴射率パラメータをECU30のメモリに記憶更新して学習する。なお、噴射率パラメータは、その時の供給燃圧(コモンレール42内の圧力)に応じて異なる値となるため、供給燃圧又は後述する基準圧力Pbase(図2(c)参照)と関連付けて学習させることが望ましい。図3の例では、燃圧に対応する噴射率パラメータの値を噴射率パラメータマップMに記憶させている。   The learning means 32 learns by updating the calculated injection rate parameter in the memory of the ECU 30. Since the injection rate parameter varies depending on the supply fuel pressure (pressure in the common rail 42) at that time, the injection rate parameter can be learned in association with the supply fuel pressure or a reference pressure Pbase (see FIG. 2C) described later. desirable. In the example of FIG. 3, the injection rate parameter value corresponding to the fuel pressure is stored in the injection rate parameter map M.

設定手段33(制御手段)は、現状の燃圧に対応する噴射率パラメータ(学習値)を、噴射率パラメータマップMから取得する。そして、取得した噴射率パラメータに基づき、目標噴射状態に対応する噴射指令信号t1、t2、Tqを設定する。そして、このように設定した噴射指令信号にしたがって燃料噴射弁10を作動させた時の燃圧波形を燃圧センサ20で検出し、検出した燃圧波形に基づき噴射率パラメータ算出手段31は噴射率パラメータtd,te,Rα,Rβ,Rmaxを算出する。   The setting means 33 (control means) acquires the injection rate parameter (learned value) corresponding to the current fuel pressure from the injection rate parameter map M. And based on the acquired injection rate parameter, the injection command signals t1, t2, and Tq corresponding to the target injection state are set. The fuel pressure sensor 20 detects the fuel pressure waveform when the fuel injection valve 10 is operated in accordance with the injection command signal set in this way, and the injection rate parameter calculation means 31 based on the detected fuel pressure waveform, the injection rate parameter td, te, Rα, Rβ, Rmax are calculated.

要するに、噴射指令信号に対する実際の噴射状態(つまり噴射率パラメータtd,te,Rα,Rβ,Rmax)を検出して学習し、その学習値に基づき、目標噴射状態に対応する噴射指令信号を設定する。そのため、実際の噴射状態に基づき噴射指令信号がフィードバック制御されることとなり、先述した経年劣化が進行しても、実噴射状態が目標噴射状態に一致するよう燃料噴射状態を高精度で制御できる。   In short, an actual injection state (that is, injection rate parameters td, te, Rα, Rβ, Rmax) with respect to the injection command signal is detected and learned, and an injection command signal corresponding to the target injection state is set based on the learned value. . Therefore, the injection command signal is feedback-controlled based on the actual injection state, and the fuel injection state can be controlled with high accuracy so that the actual injection state coincides with the target injection state even when the above-described aging deterioration proceeds.

次に、検出した燃圧波形(図2(c)参照)から噴射率パラメータtd,te,Rα,Rβ,Rmax(図2(b)参照)を算出する手順について、図4のフローチャートを用いて説明する。なお、図4に示す処理は、ECU30が有するマイクロコンピュータにより、燃料の噴射を1回実施する毎に実行される。なお、前記燃圧波形とは、所定のサンプリング周期で取得した、燃圧センサ20による複数の検出値の集合である。   Next, the procedure for calculating the injection rate parameters td, te, Rα, Rβ, and Rmax (see FIG. 2B) from the detected fuel pressure waveform (see FIG. 2C) will be described using the flowchart of FIG. To do. Note that the process shown in FIG. 4 is executed each time fuel is injected by the microcomputer of the ECU 30. The fuel pressure waveform is a set of a plurality of detection values obtained by the fuel pressure sensor 20 acquired at a predetermined sampling period.

先ず、図4に示すステップS10において、噴射率パラメータの算出に用いる燃圧波形であって、以下に説明する噴射波形Wb(補正後燃圧波形)を算出する。なお、以下の説明では、燃料噴射弁10から燃料を噴射させている気筒を噴射気筒(表気筒)、この噴射気筒が燃料を噴射しているときに燃料噴射させていない気筒を非噴射気筒(裏気筒)とし、かつ、噴射気筒に対応する燃圧センサ20を噴射時燃圧センサ、非噴射気筒に対応する燃圧センサ20を非噴射時燃圧センサと呼ぶ。   First, in step S10 shown in FIG. 4, an injection waveform Wb (corrected fuel pressure waveform) described below, which is a fuel pressure waveform used for calculating the injection rate parameter, is calculated. In the following description, a cylinder that is injecting fuel from the fuel injection valve 10 is an injection cylinder (front cylinder), and a cylinder that is not injecting fuel when the injection cylinder is injecting fuel is a non-injection cylinder ( The fuel pressure sensor 20 corresponding to the injection cylinder and the fuel pressure sensor 20 corresponding to the non-injection cylinder is referred to as the non-injection fuel pressure sensor.

噴射時燃圧センサにより検出された燃圧波形である噴射時燃圧波形Wa(図5(a)参照)は、噴射による影響のみを表しているわけではなく、以下に例示する噴射以外の影響で生じた波形成分をも含んでいる。すなわち、燃料タンク40の燃料をコモンレール42へ圧送する燃料ポンプ41がプランジャポンプの如く間欠的に燃料を圧送するものである場合には、燃料噴射中にポンプ圧送が行われると、そのポンプ圧送期間中における噴射時燃圧波形Waは全体的に圧力が高くなった波形となる。つまり、噴射時燃圧波形Wa(図5(a)参照)には、噴射による燃圧変化を表した燃圧波形である噴射波形Wb(図5(c)参照)と、ポンプ圧送による燃圧上昇を表した燃圧波形(図5(b)中の実線Wu参照)とが含まれていると言える。   The fuel pressure waveform Wa during injection, which is the fuel pressure waveform detected by the fuel pressure sensor during injection (see FIG. 5A), does not represent only the influence due to the injection, but is caused by the influence other than the injection exemplified below. It also includes waveform components. That is, when the fuel pump 41 that pumps the fuel in the fuel tank 40 to the common rail 42 pumps the fuel intermittently like a plunger pump, if pump pumping is performed during fuel injection, the pump pumping period The fuel pressure waveform Wa during the injection is a waveform in which the pressure is increased as a whole. That is, the injection fuel pressure waveform Wa (see FIG. 5 (a)) represents the injection waveform Wb (see FIG. 5 (c)), which is a fuel pressure waveform representing the change in fuel pressure due to injection, and the increase in fuel pressure due to pumping. It can be said that the fuel pressure waveform (see the solid line Wu in FIG. 5B) is included.

また、このようなポンプ圧送が燃料噴射中に行われなかった場合であっても、燃料を噴射した直後は、その噴射分だけ噴射システム内全体の燃圧が低下する。そのため、噴射時燃圧波形Waは全体的に圧力が低くなった波形となる。つまり、噴射時燃圧波形Waには、噴射による燃圧変化を表した噴射波形Wbの成分と、噴射システム内全体の燃圧低下を表した燃圧波形(図5(b)中の点線Wu’参照)の成分とが含まれていると言える。   Even if such pump pumping is not performed during fuel injection, immediately after the fuel is injected, the fuel pressure in the entire injection system is reduced by that amount. Therefore, the fuel pressure waveform Wa at the time of injection becomes a waveform in which the pressure is lowered as a whole. That is, the injection fuel pressure waveform Wa includes a component of the injection waveform Wb that represents a change in fuel pressure due to injection and a fuel pressure waveform that represents a decrease in the fuel pressure in the entire injection system (see the dotted line Wu ′ in FIG. 5B). It can be said that the ingredients are included.

そこで図4のステップS10では、非噴射気筒センサにより検出される非噴射時燃圧波形Wu(Wu’)はコモンレール内の燃圧(噴射システム内全体の燃圧)の変化を表していることに着目し、噴射気筒センサにより検出された噴射時燃圧波形Waから、非噴射気筒センサによる非噴射時燃圧波形Wu(Wu’)を差し引いて噴射波形Wbを演算している。なお、図2(c)に示す燃圧波形は噴射波形Wbである。   Therefore, in step S10 of FIG. 4, paying attention to the non-injection fuel pressure waveform Wu (Wu ′) detected by the non-injection cylinder sensor represents a change in the fuel pressure in the common rail (the fuel pressure in the entire injection system), The injection waveform Wb is calculated by subtracting the non-injection fuel pressure waveform Wu (Wu ′) from the non-injection cylinder sensor from the injection fuel pressure waveform Wa detected by the injection cylinder sensor. The fuel pressure waveform shown in FIG. 2C is the injection waveform Wb.

また、多段噴射を実施する場合には、前段噴射にかかる燃圧波形の脈動Wc(図2(c)参照)が燃圧波形Waに重畳する。特に、前段噴射とのインターバルが短い場合には、燃圧波形Waは脈動Wcの影響を大きく受ける。そこで、非噴射時燃圧波形Wu(Wu’)に加えて脈動Wcを燃圧波形Waから差し引く処理を実施して、噴射波形Wbを算出することが望ましい。   Further, when performing multi-stage injection, the pulsation Wc (see FIG. 2C) of the fuel pressure waveform applied to the previous stage injection is superimposed on the fuel pressure waveform Wa. In particular, when the interval with the pre-stage injection is short, the fuel pressure waveform Wa is greatly affected by the pulsation Wc. Therefore, it is desirable to calculate the injection waveform Wb by performing a process of subtracting the pulsation Wc from the fuel pressure waveform Wa in addition to the non-injection fuel pressure waveform Wu (Wu ′).

続くステップS11(基準圧力算出手段)では、噴射波形Wbのうち、噴射開始に伴い燃圧が降下を開始するまでの期間に対応する部分の波形である基準波形に基づき、その基準波形の平均燃圧を基準圧力Pbaseとして算出する。例えば、噴射開始指令時期t1から所定時間が経過するまでの期間TAに対応する部分を、基準波形として設定すればよい。或いは、降下波形の微分値に基づき変曲点P1を算出し、噴射開始指令時期t1から変曲点P1より所定時間前までの期間に相当する部分を基準波形として設定すればよい。   In the subsequent step S11 (reference pressure calculation means), the average fuel pressure of the reference waveform is calculated based on the reference waveform which is the waveform corresponding to the period until the fuel pressure starts to decrease with the start of injection in the injection waveform Wb. Calculated as the reference pressure Pbase. For example, a portion corresponding to a period TA until a predetermined time elapses from the injection start command timing t1 may be set as the reference waveform. Alternatively, the inflection point P1 may be calculated based on the differential value of the descending waveform, and a portion corresponding to a period from the injection start command timing t1 to a predetermined time before the inflection point P1 may be set as the reference waveform.

続くステップS12(直線近似手段)では、噴射波形Wbのうち、噴射率増大に伴い燃圧が降下していく期間に対応する部分の波形である降下波形に基づき、その降下波形の近似直線Lαを算出する。例えば、噴射開始指令時期t1から所定時間が経過した時点からの所定期間TBに対応する部分を、降下波形として設定すればよい。或いは、降下波形の微分値に基づき変曲点P1,P2を算出し、これら変曲点P1,P2の間に相当する部分を降下波形として設定すればよい。そして、降下波形を構成する複数の燃圧検出値(サンプリング値)から、最小二乗法により近似直線Lαを算出すればよい。或いは、降下波形のうち微分値が最小となる時点における接線を、近似直線Lαとして算出すればよい。   In the subsequent step S12 (linear approximation means), an approximate straight line Lα of the descending waveform is calculated based on the descending waveform that is the waveform corresponding to the period in which the fuel pressure decreases as the injection rate increases in the injection waveform Wb. To do. For example, what is necessary is just to set the part corresponding to predetermined period TB from the time of predetermined time having passed since injection start instruction | command time t1 as a fall waveform. Alternatively, the inflection points P1 and P2 may be calculated based on the differential value of the descending waveform, and the portion corresponding to the inflection points P1 and P2 may be set as the descending waveform. Then, an approximate straight line Lα may be calculated by a least square method from a plurality of detected fuel pressure values (sampling values) constituting the descending waveform. Alternatively, the tangent line at the time when the differential value becomes the minimum in the descending waveform may be calculated as the approximate straight line Lα.

続くステップS13(直線近似手段)では、噴射波形Wbのうち、噴射率減少に伴い燃圧が上昇していく期間に対応する部分の波形である上昇波形に基づき、その上昇波形の近似直線Lβを算出する。例えば、噴射終了指令時期t2から所定時間が経過した時点からの所定期間TCに対応する部分を、上昇波形として設定すればよい。或いは、上昇波形の微分値に基づき変曲点P3,P5を算出し、これら変曲点P3,P5の間に相当する部分を上昇波形として設定すればよい。そして、上昇波形を構成する複数の燃圧検出値(サンプリング値)から、最小二乗法により近似直線Lβを算出すればよい。或いは、上昇波形のうち微分値が最大となる時点における接線を、近似直線Lβとして算出すればよい。   In the subsequent step S13 (linear approximation means), an approximate straight line Lβ of the rising waveform is calculated based on the rising waveform that is the waveform corresponding to the period in which the fuel pressure increases as the injection rate decreases in the injection waveform Wb. To do. For example, what is necessary is just to set the part corresponding to the predetermined period TC from the time of predetermined time having passed since the injection end instruction | command time t2 as a rising waveform. Alternatively, the inflection points P3 and P5 may be calculated based on the differential value of the rising waveform, and a portion corresponding to the inflection points P3 and P5 may be set as the rising waveform. Then, the approximate straight line Lβ may be calculated from the plurality of detected fuel pressure values (sampling values) constituting the rising waveform by the least square method. Alternatively, the tangent at the time when the differential value becomes the maximum in the rising waveform may be calculated as the approximate straight line Lβ.

続くステップS14では、基準圧力Pbaseに基づき基準値Bα,Bβを算出する。例えば、基準圧力Pbaseより所定量だけ低い値を基準値Bα,Bβとして算出すればよい。なお、両基準値Bα,Bβを同じ値に設定する必要はない。また、前記所定量は基準圧力Pbaseの値や燃料温度等に応じて可変設定してもよい。   In subsequent step S14, reference values Bα and Bβ are calculated based on the reference pressure Pbase. For example, values lower than the reference pressure Pbase by a predetermined amount may be calculated as the reference values Bα and Bβ. It is not necessary to set both reference values Bα and Bβ to the same value. The predetermined amount may be variably set according to the value of the reference pressure Pbase, the fuel temperature, and the like.

続くステップS15では、近似直線Lαのうち基準値Bαとなる時期(LαとBαの交点時期LBα)を算出する。この交点時期LBαと噴射開始時期R1とは相関が高いことに着目し、交点時期LBαに基づき噴射開始時期R1を算出する。例えば、交点時期LBαよりも所定の遅れ時間Cαだけ前の時期を噴射開始時期R1として算出すればよい。   In the subsequent step S15, a time (intersection time LBα between Lα and Bα) at which the approximate value Lα becomes the reference value Bα is calculated. Focusing on the fact that the intersection time LBα and the injection start time R1 are highly correlated, the injection start time R1 is calculated based on the intersection time LBα. For example, a timing that is a predetermined delay time Cα before the intersection timing LBα may be calculated as the injection start timing R1.

続くステップS16では、近似直線Lβのうち基準値Bβとなる時期(LβとBβの交点時期LBβ)を算出する。この交点時期LBβと噴射終了時期R4とは相関が高いことに着目し、交点時期LBβに基づき噴射終了時期R4を算出する。例えば、交点時期LBβよりも所定の遅れ時間Cβだけ前の時期を噴射終了時期R4として算出すればよい。なお、上記遅れ時間Cα,Cβは、基準圧力Pbaseの値や燃料温度等に応じて可変設定してもよい。   In the subsequent step S16, a time (intersection time LBβ between Lβ and Bβ) that is the reference value Bβ in the approximate straight line Lβ is calculated. Focusing on the fact that the intersection timing LBβ and the injection end timing R4 are highly correlated, the injection end timing R4 is calculated based on the intersection timing LBβ. For example, a timing that is a predetermined delay time Cβ before the intersection timing LBβ may be calculated as the injection end timing R4. The delay times Cα and Cβ may be variably set according to the value of the reference pressure Pbase, the fuel temperature, and the like.

続くステップS17では、近似直線Lαの傾きと噴射率増加の傾きとは相関が高いことに着目し、図2(b)に示す噴射率波形のうち噴射増加を示す直線Rαの傾きを、近似直線Lαの傾きに基づき算出する。例えば、Lαの傾きに所定の係数を掛けてRαの傾きを算出すればよい。なお、ステップS15で算出した噴射開始時期R1と当該ステップS17で算出したRαの傾きに基づき、噴射指令信号に対する噴射率波形の上昇部分を表した直線Rαを特定することができる。   In subsequent step S17, focusing on the fact that the slope of the approximate line Lα and the slope of the injection rate increase are highly correlated, the slope of the straight line Rα indicating the increase in injection in the injection rate waveform shown in FIG. Calculation is based on the slope of Lα. For example, the slope of Rα may be calculated by multiplying the slope of Lα by a predetermined coefficient. Note that, based on the injection start timing R1 calculated in step S15 and the slope of Rα calculated in step S17, a straight line Rα representing the rising portion of the injection rate waveform with respect to the injection command signal can be specified.

さらにステップS17では、近似直線Lβの傾きと噴射率減少の傾きとは相関が高いことに着目し、噴射率波形のうち噴射減少を示す直線Rβの傾きを、近似直線Lβの傾きに基づき算出する。例えば、Lβの傾きに所定の係数を掛けてRβの傾きを算出すればよい。なお、ステップS16で算出した噴射終了時期R4と当該ステップS17で算出したRβの傾きに基づき、噴射指令信号に対する噴射率波形の降下部分を表した直線Rβを特定することができる。なお、上記所定の係数は、基準圧力Pbaseの値や燃料温度等に応じて可変設定してもよい。   Further, in step S17, paying attention to the fact that the slope of the approximate straight line Lβ and the slope of the injection rate decrease are highly correlated, the slope of the straight line Rβ indicating the decrease in the injection rate waveform is calculated based on the slope of the approximate straight line Lβ. . For example, the slope of Rβ may be calculated by multiplying the slope of Lβ by a predetermined coefficient. Note that, based on the injection end timing R4 calculated in step S16 and the slope of Rβ calculated in step S17, a straight line Rβ representing the descending portion of the injection rate waveform with respect to the injection command signal can be specified. The predetermined coefficient may be variably set according to the value of the reference pressure Pbase, the fuel temperature, and the like.

続くステップS18では、ステップS17で算出した噴射率波形の直線Rα,Rβに基づき、噴射終了を指令したことに伴い弁体12がリフトダウンを開始する時期(閉弁作動開始時期R23)を算出する。具体的には、両直線Rα,Rβの交点を算出し、その交点時期を閉弁作動開始時期R23として算出する。   In the subsequent step S18, based on the injection rate waveform straight lines Rα and Rβ calculated in step S17, a timing (valve closing operation start timing R23) at which the valve body 12 starts lift-down in response to the command to end the injection is calculated. . Specifically, the intersection of both straight lines Rα and Rβ is calculated, and the intersection timing is calculated as the valve closing operation start timing R23.

続くステップS19では、ステップS15で算出した噴射開始時期R1の噴射開始指令時期t1に対する遅れ時間(噴射開始遅れ時間td)を算出する。また、ステップS18で算出した閉弁作動開始時期R23の噴射終了指令時期t2に対する遅れ時間(噴射終了遅れ時間te)を算出する。なお、噴射終了遅れ時間teとは、噴射終了を指令した時期t2から、制御弁14の作動を開始する時期までの遅れ時間のことである。要するにこれらの遅れ時間td,teは、噴射指令信号に対する噴射率変化の応答遅れを表すパラメータであり、他にも、噴射開始指令時期t1から最大噴射率到達時期R2までの遅れ時間、噴射終了指令時期t2から噴射率低下開始R3までの遅れ時間、噴射終了指令時期t2から噴射終了時期R4までの遅れ時間等が挙げられる。   In the subsequent step S19, a delay time (injection start delay time td) of the injection start timing R1 calculated in step S15 with respect to the injection start command timing t1 is calculated. Further, a delay time (injection end delay time te) with respect to the injection end command timing t2 of the valve closing operation start timing R23 calculated in step S18 is calculated. The injection end delay time te is a delay time from the timing t2 at which the injection end is commanded to the timing at which the operation of the control valve 14 is started. In short, these delay times td and te are parameters representing the response delay of the injection rate change with respect to the injection command signal. Besides, the delay time from the injection start command timing t1 to the maximum injection rate arrival timing R2, the injection end command Examples include a delay time from the timing t2 to the injection rate decrease start R3, a delay time from the injection end command timing t2 to the injection end timing R4, and the like.

続くステップS20では、基準圧力Pbaseと交点圧力Pαβとの圧力差ΔPγが所定値ΔPγth未満であるか否かを判定する。ΔPγ<ΔPγthと判定された場合(S20:YES)には、次のステップS21(最大噴射率算出手段)において、先述した小噴射であるとみなして、圧力差ΔPγに基づき最大噴射率Rmaxを算出する(Rmax=ΔPγ×Cγ)。一方、ΔPγ≧ΔPγthと判定された場合(S20:NO)には、次のステップS22(最大噴射率算出手段)において、予め設定しておいた値(設定値Rγ)を最大噴射率Rmaxとして算出する。続くステップS23(補正手段)では、ステップS21又はS22で算出した最大噴射率Rmaxに後述する補正比Ka(経年変化指数)を掛けることで、最大噴射率Rmaxを補正する。   In the subsequent step S20, it is determined whether or not the pressure difference ΔPγ between the reference pressure Pbase and the intersection pressure Pαβ is less than a predetermined value ΔPγth. When it is determined that ΔPγ <ΔPγth (S20: YES), in the next step S21 (maximum injection rate calculation means), it is considered that the small injection is described above, and the maximum injection rate Rmax is calculated based on the pressure difference ΔPγ. (Rmax = ΔPγ × Cγ). On the other hand, when it is determined that ΔPγ ≧ ΔPγth (S20: NO), a preset value (set value Rγ) is calculated as the maximum injection rate Rmax in the next step S22 (maximum injection rate calculation means). To do. In subsequent step S23 (correction means), the maximum injection rate Rmax is corrected by multiplying the maximum injection rate Rmax calculated in step S21 or S22 by a correction ratio Ka (aging index) described later.

次に、上記ステップS23による補正の技術的意義を説明する。   Next, the technical significance of the correction in step S23 will be described.

図6(a)は、噴射指令信号が同じであり、かつ、インターバルや筒内圧、基準圧力Pbase等の環境条件が同じである場合における、車両走行距離に対する噴射量の経年変化を示す。図6(a)の例では、噴孔11bにデポジット等の異物が堆積して噴射量が低下していく態様の経年劣化を示しており、走行距離の増大に伴い初期値から(2)(3)へと噴射量は低下していく。   FIG. 6A shows the secular change of the injection amount with respect to the vehicle travel distance when the injection command signal is the same and the environmental conditions such as the interval, the in-cylinder pressure, and the reference pressure Pbase are the same. In the example of FIG. 6 (a), aged deterioration of a mode in which foreign matter such as deposit accumulates in the nozzle hole 11b and the injection amount decreases is shown, and from the initial value (2) ( The injection amount decreases to 3).

図6(b)(c)は、噴射指令信号が同じであり、かつ、前記環境条件が同じである場合における、車両走行距離に対する噴射率波形及び燃圧波形の経年変化を示す。図6(a)に示す如く噴射量が低下していく場合には、図6(b)(c)中の(1)に示す初期状態から、(2)(3)へと、最大噴射率Rmax及び圧力降下量ΔPは低下していく。なお、圧力降下量ΔPとは、噴射率上昇に伴い生じた検出圧力の降下量のことであり、例えば、基準圧力Pbaseから変曲点P2までの圧力降下量、又は、変曲点P1から変曲点P2までの圧力降下量のことである。   FIGS. 6B and 6C show changes over time in the injection rate waveform and the fuel pressure waveform with respect to the vehicle travel distance when the injection command signal is the same and the environmental conditions are the same. When the injection amount decreases as shown in FIG. 6 (a), the maximum injection rate changes from the initial state shown in (1) in FIGS. 6 (b) and 6 (c) to (2) and (3). Rmax and pressure drop amount ΔP decrease. Note that the pressure drop amount ΔP is the amount of decrease in the detected pressure caused by the increase in the injection rate. For example, the pressure drop amount from the reference pressure Pbase to the inflection point P2 or the change from the inflection point P1. It is the amount of pressure drop to the bend point P2.

なお、図6(d)は、基準圧力Pbaseに応じた最大噴射率Rmaxの変化を示しており、基準圧力Pbaseが高いほど最大噴射率Rmaxは高くなることを示す。そして、経年劣化が(1)→(2)→(3)へと進行するにしたがって、基準圧力Pbaseの全領域において最大噴射率Rmaxの値は低下する。   FIG. 6D shows a change in the maximum injection rate Rmax according to the reference pressure Pbase, and shows that the maximum injection rate Rmax increases as the reference pressure Pbase increases. As the aging deterioration proceeds from (1) → (2) → (3), the value of the maximum injection rate Rmax decreases in the entire region of the reference pressure Pbase.

要するに、経年劣化により噴孔面積が縮小していくことに伴い、図6(b)に示す如く最大噴射率Rmaxが低下して、図6(a)に示す如く噴射量が低下していく。そして、このように最大噴射率Rmaxが低下することに伴い圧力降下量ΔPも低下していく。   In short, as the nozzle hole area is reduced due to aging, the maximum injection rate Rmax is reduced as shown in FIG. 6B, and the injection amount is reduced as shown in FIG. 6A. As the maximum injection rate Rmax decreases in this way, the pressure drop amount ΔP also decreases.

ちなみに、図7の上段は指令噴射量に対する圧力降下量ΔPの変化を、基準圧力Pbaseを(a)〜(f)に異ならせた上で試験した結果を示す。また、図7の上段は指令噴射量に対する実際の最大噴射率Rmaxの変化を、基準圧力Pbaseを(a)〜(f)に異ならせた上で試験した結果を示す。図7に示すように、小噴射を指令する場合には指令噴射量の上昇に伴い実際の圧力降下量ΔP及び最大噴射率Rmaxは上昇するが、大噴射を指令する場合には実際の圧力降下量ΔP及び最大噴射率Rmaxは一定の値(設定値Rγ)となる。そして、図6に例示するように経年劣化が進行すると、図7の特性線は全体的に低下することとなる。   Incidentally, the upper part of FIG. 7 shows the result of testing the change in the pressure drop amount ΔP with respect to the command injection amount with the reference pressure Pbase being varied from (a) to (f). Moreover, the upper part of FIG. 7 shows the result of testing the change in the actual maximum injection rate Rmax with respect to the command injection amount with the reference pressure Pbase varied from (a) to (f). As shown in FIG. 7, when commanding small injection, the actual pressure drop amount ΔP and the maximum injection rate Rmax increase as the command injection amount increases, but when commanding large injection, the actual pressure drop The amount ΔP and the maximum injection rate Rmax are constant values (set values Rγ). And as aged deterioration advances as illustrated in FIG. 6, the characteristic line in FIG.

ここで、図4のステップS20〜S22による最大噴射率Rmaxの算出手法では、インターバルや筒内圧等の環境条件に応じて圧力降下量ΔPが逐次変動することの影響を受けないように、降下近似直線Lα及び上昇近似直線Lβに基づき最大噴射率Rmaxを算出している。そして、図6(c)の如く圧力降下量ΔPが低くなるように燃圧波形が経年変化していっても、近似直線Lα,Lβは大きくは変化しない。そのため、最大噴射率Rmaxが経年変化しても、ステップS21,S22で算出される最大噴射率Rmaxには前記経年変化が加味されず、経年変化の進行に伴い最大噴射率Rmaxの算出精度が悪化することとなる。   Here, in the method of calculating the maximum injection rate Rmax in steps S20 to S22 of FIG. 4, a drop approximation is performed so that the pressure drop amount ΔP is not affected by the sequential fluctuation according to the environmental conditions such as the interval and the in-cylinder pressure. The maximum injection rate Rmax is calculated based on the straight line Lα and the rising approximate straight line Lβ. Then, even if the fuel pressure waveform changes over time so that the pressure drop amount ΔP becomes low as shown in FIG. 6C, the approximate lines Lα and Lβ do not change greatly. For this reason, even if the maximum injection rate Rmax changes over time, the maximum injection rate Rmax calculated in steps S21 and S22 does not take into account the change over time, and the calculation accuracy of the maximum injection rate Rmax deteriorates with the progress of change over time. Will be.

そこで本実施形態では、図6(b)(c)に示すように実最大噴射率Rmaxの経年変化と圧力降下量ΔPの経年変化とは相関が高いことに着目し、圧力降下量ΔPの検出結果から実最大噴射率Rmaxの経年変化指数を推定し、推定した経年変化指数に基づき、図4のステップS21,S22で算出した最大噴射率Rmaxを補正している。   Therefore, in the present embodiment, as shown in FIGS. 6B and 6C, focusing on the fact that the secular change of the actual maximum injection rate Rmax and the secular change of the pressure drop amount ΔP are highly correlated, the detection of the pressure drop amount ΔP is detected. A secular change index of the actual maximum injection rate Rmax is estimated from the result, and the maximum injection rate Rmax calculated in steps S21 and S22 of FIG. 4 is corrected based on the estimated secular change index.

具体的には、噴射毎に圧力降下量ΔPを検出し、検出したΔPに所定の相関係数を掛けて最大噴射率を噴射毎に算出する。以下の説明では、このように圧力降下量ΔPに基づき算出した最大噴射率をRmax(ΔP)と記載し、ステップS21,S22で算出した最大噴射率Rmaxとは区別する。そして、所定期間(例えば1トリップ)で検出した複数の最大噴射率Rmax(ΔP)の平均値Rmax(ΔP)aveに基づき補正比Ka(経年変化指数)を算出し、当該補正比Kaを最大噴射率Rmaxに掛けることで補正する。   Specifically, the pressure drop amount ΔP is detected for each injection, and the maximum injection rate is calculated for each injection by multiplying the detected ΔP by a predetermined correlation coefficient. In the following description, the maximum injection rate calculated based on the pressure drop amount ΔP is described as Rmax (ΔP), and is distinguished from the maximum injection rate Rmax calculated in steps S21 and S22. Then, a correction ratio Ka (aging index) is calculated based on an average value Rmax (ΔP) ave of a plurality of maximum injection rates Rmax (ΔP) detected in a predetermined period (for example, one trip), and the correction ratio Ka is calculated as the maximum injection. Correction is made by multiplying the rate Rmax.

図8中の一点鎖線に囲まれた複数のドットは、運転者がエンジンを始動操作してから停止操作するまでの期間(1トリップ期間)において、噴射毎に算出された最大噴射率Rmaxの値を示す。そして、これらの最大噴射率Rmax(ΔP)の平均値Rmax(ΔP)aveが1トリップ毎に変化していく量を経年変化指数として算出し、その経年変化指数に基づき図4のステップS23の補正で用いる補正比Kaを算出する。   A plurality of dots surrounded by a one-dot chain line in FIG. 8 indicates the value of the maximum injection rate Rmax calculated for each injection in a period (one trip period) from when the driver starts the engine to when it stops. Indicates. Then, an amount by which the average value Rmax (ΔP) ave of the maximum injection rate Rmax (ΔP) changes for each trip is calculated as a secular change index, and the correction in step S23 of FIG. 4 is performed based on the secular change index. The correction ratio Ka used in is calculated.

図9は、補正比Kaの算出手順を示すフローチャートであり、ECU30が有するマイクロコンピュータにより、エンジンを始動操作する毎、或いはエンジンを停止操作する毎に繰り返し実行される。   FIG. 9 is a flowchart showing the calculation procedure of the correction ratio Ka, and is repeatedly executed by the microcomputer of the ECU 30 every time the engine is started or every time the engine is stopped.

先ず、図9に示すステップS30(圧力降下量検出手段)において、圧力降下量ΔPに基づき算出した最大噴射率Rmax(ΔP)の、1トリップ分の平均値Rmax(ΔP)aveを算出する。続くステップS31(経年変化指数算出手段)では、最大噴射率Rmax(ΔP)の学習値に対する平均値Rmax(ΔP)ave割合である経年劣化率Kを算出する(K=Rmax(ΔP)ave/Rmax(ΔP)学習値)。つまり、算出した経年劣化率Kが1より小さければ、噴孔11bが閉塞して噴射量が少なくなる劣化が進行していると言える。一方、算出した経年劣化率Kが1より大きければ、噴孔11bの磨耗やシート面11e,12aの損傷等により噴射量が多くなる劣化が進行していると言える。   First, in step S30 (pressure drop amount detecting means) shown in FIG. 9, an average value Rmax (ΔP) ave for one trip of the maximum injection rate Rmax (ΔP) calculated based on the pressure drop amount ΔP is calculated. In subsequent step S31 (aging change index calculating means), an aging deterioration rate K that is an average value Rmax (ΔP) ave ratio with respect to a learning value of the maximum injection rate Rmax (ΔP) is calculated (K = Rmax (ΔP) ave / Rmax). (ΔP) learning value). That is, if the calculated aging deterioration rate K is smaller than 1, it can be said that the deterioration in which the injection hole 11b is closed and the injection amount decreases is progressing. On the other hand, if the calculated aging deterioration rate K is greater than 1, it can be said that deterioration in which the injection amount increases due to wear of the nozzle holes 11b, damage to the sheet surfaces 11e, 12a, or the like is proceeding.

続くステップS32では、ステップS31で算出した経年劣化率Kが、2トリップ連続で閾値Ku以上又は閾値Kd以下になったか否かを判定する。そして、図6(e)中の黒丸に示すように、経年劣化率Kが2トリップ連続で閾値Ku,Kdを超えたと判定された場合(S32:YES)には、次のステップS33(経年変化指数算出手段)に進み、補正比Kaの前回値に経年劣化率Kを掛けて算出した値を、補正比Kaの更新値(経年変化指数)として学習する。また、次のステップS34において、最大噴射率Rmax(ΔP)の学習値を、ステップS30で算出したRmax(ΔP)aveに更新する。   In subsequent step S32, it is determined whether or not the aging deterioration rate K calculated in step S31 has become equal to or higher than the threshold value Ku or lower than the threshold value Kd for two consecutive trips. When it is determined that the aging deterioration rate K has exceeded the threshold values Ku and Kd for two consecutive trips (S32: YES) as shown by the black circles in FIG. 6 (e), the next step S33 (aging change) The index calculation means) learns a value calculated by multiplying the previous value of the correction ratio Ka by the aging deterioration rate K as an updated value (aging index) of the correction ratio Ka. In the next step S34, the learning value of the maximum injection rate Rmax (ΔP) is updated to Rmax (ΔP) ave calculated in step S30.

以上により、本実施形態によれば、降下近似直線Lα及び上昇近似直線Lβの交点圧力Pαβと基準圧力Pbaseとの圧力差ΔPγは、インターバルや筒内圧等の環境条件の影響を殆ど受けず、しかも実最大噴射率Rmaxとの相関が高いことに着目し、この圧力差ΔPγに基づき最大噴射率Rmaxを算出する。そのため、算出した最大噴射率Rmaxが環境条件の影響により逐次変動することを回避しつつ、最大噴射率Rmaxを高精度で算出できる。よって、このように算出された最大噴射率Rmaxの学習値(噴射率パラメータ)に基づき噴射指令信号t1、t2、Tqを設定して、燃料噴射弁10をフィードバック制御する本実施形態によれば、目標噴射状態に対して実噴射状態が大きくハンチングすることを抑制しつつ、フィードバック制御の安定性を向上できる。   As described above, according to the present embodiment, the pressure difference ΔPγ between the intersection pressure Pαβ of the descending approximate straight line Lα and the ascending approximate straight line Lβ and the reference pressure Pbase is hardly affected by the environmental conditions such as the interval and the in-cylinder pressure. Focusing on the fact that the correlation with the actual maximum injection rate Rmax is high, the maximum injection rate Rmax is calculated based on this pressure difference ΔPγ. Therefore, the maximum injection rate Rmax can be calculated with high accuracy while avoiding the calculated maximum injection rate Rmax from fluctuating sequentially due to the influence of environmental conditions. Therefore, according to the present embodiment in which the injection command signals t1, t2, Tq are set based on the learning value (injection rate parameter) of the maximum injection rate Rmax calculated in this way, and the fuel injection valve 10 is feedback-controlled. The stability of the feedback control can be improved while suppressing the actual injection state from greatly hunting with respect to the target injection state.

さらに本実施形態では、圧力降下量ΔPと最大噴射率Rmaxとの相関が高いことにも着目して、所定期間(1トリップ期間)に検出した複数の圧力降下量ΔPに対して最大噴射率Rmax(ΔP)を算出し、その最大噴射率Rmax(ΔP)の平均値Rmax(ΔP)aveに基づき補正比Kaを算出する。そして、上述した圧力差ΔPγから算出した最大噴射率Rmaxを、補正比Kaを用いて補正するので、経年劣化を加味した最大噴射率Rmaxに補正できる。   Further, in the present embodiment, paying attention to the fact that the correlation between the pressure drop amount ΔP and the maximum injection rate Rmax is high, the maximum injection rate Rmax with respect to a plurality of pressure drop amounts ΔP detected in a predetermined period (one trip period). (ΔP) is calculated, and the correction ratio Ka is calculated based on the average value Rmax (ΔP) ave of the maximum injection rate Rmax (ΔP). Since the maximum injection rate Rmax calculated from the pressure difference ΔPγ described above is corrected using the correction ratio Ka, it can be corrected to the maximum injection rate Rmax taking into account aging degradation.

(第2実施形態)
上記第1実施形態では、1トリップ期間に蓄積した全ての最大噴射率Rmax(ΔP)の平均値を、経年劣化率Kの算出に用いる平均値Rmax(ΔP)aveとして算出している。これに対し本実施形態では、経年劣化率Kの算出に用いる平均値Rmax(ΔP)aveを次のように算出する。
(Second Embodiment)
In the first embodiment, the average value of all the maximum injection rates Rmax (ΔP) accumulated in one trip period is calculated as the average value Rmax (ΔP) ave used for calculating the aging deterioration rate K. On the other hand, in the present embodiment, the average value Rmax (ΔP) ave used for calculating the aging deterioration rate K is calculated as follows.

先ず、基準圧力Pbaseと関連付けて圧力降下量ΔPを検出して最大噴射率Rmax(ΔP)を算出する。次に、1トリップ期間で蓄積した全ての最大噴射率Rmax(ΔP)のうち、基準圧力Pbaseが所定圧力以上である高圧領域の最大噴射率Rmax(ΔP)の平均値avehighと、基準圧力Pbaseが所定圧力未満である低圧領域の最大噴射率Rmax(ΔP)の平均値avelowを算出する。次に、高圧領域のデータ点数と、低圧領域のデータ点数とに応じて、各々の値avehigh,avelowに重み付けをする。次に、重み付けされたavehigh及びavelowの平均値を、経年劣化率Kの算出に用いる平均値Rmax(ΔP)aveとして算出する。   First, the pressure drop amount ΔP is detected in association with the reference pressure Pbase, and the maximum injection rate Rmax (ΔP) is calculated. Next, among all the maximum injection rates Rmax (ΔP) accumulated in one trip period, the average value avehigh of the maximum injection rate Rmax (ΔP) in the high pressure region where the reference pressure Pbase is equal to or higher than a predetermined pressure, and the reference pressure Pbase are An average value avelow of the maximum injection rate Rmax (ΔP) in the low pressure region that is less than the predetermined pressure is calculated. Next, the values avehigh and avelow are weighted according to the number of data points in the high pressure region and the number of data points in the low pressure region. Next, the weighted average value of avehigh and avelow is calculated as an average value Rmax (ΔP) ave used for calculating the aging deterioration rate K.

例えば、図10に例示するように、高圧領域のデータ点数が低圧領域よりも多い場合には、高圧領域の平均値avehighの重み付けを、低圧領域の平均値avelowの重み付けよりも大きく設定して、両値avehigh,avelowの平均値を平均値Rmax(ΔP)aveとして算出する。   For example, as illustrated in FIG. 10, when the number of data points in the high pressure region is larger than that in the low pressure region, the weight of the average value avehigh in the high pressure region is set larger than the weight of the average value avelow in the low pressure region, An average value of both values avehigh and avelow is calculated as an average value Rmax (ΔP) ave.

これによれば、エンジンを高負荷で運転する機会の多いユーザーの場合、図10に例示するようにデータ分布が偏ることになり、実際に運転する機会の多いエンジン運転状態の時に検出した最大噴射率Rmax(ΔP)に重み付けを大きく設定して補正比Kaを算出するので、実際の運転状態に適した補正を施すことができ、ステップS23による補正の精度を向上できる。   According to this, in the case of a user who frequently operates the engine at a high load, the data distribution is biased as illustrated in FIG. Since the correction ratio Ka is calculated by setting a large weight to the rate Rmax (ΔP), correction suitable for the actual driving state can be performed, and the correction accuracy in step S23 can be improved.

(第3実施形態)
上記第2実施形態では、基準圧力Pbaseを低圧領域と高圧領域の2つに区分けしているが、本実施形態では、図11に示すように、離散的に配置された複数の領域w1〜w7を設定し、各々の領域w1〜w7に対応する最大噴射率Rmax(ΔP)の値から、経年劣化率Kの算出に用いる平均値Rmax(ΔP)aveを算出し、これらの領域w1〜w7のいずれにも含まれない最大噴射率Rmax(ΔP)の値は、経年劣化率Kの算出には用いない。
(Third embodiment)
In the second embodiment, the reference pressure Pbase is divided into a low pressure region and a high pressure region. However, in the present embodiment, as shown in FIG. 11, a plurality of regions w1 to w7 arranged discretely. Is set, and an average value Rmax (ΔP) ave used for calculating the aging deterioration rate K is calculated from the value of the maximum injection rate Rmax (ΔP) corresponding to each of the regions w1 to w7. The value of the maximum injection rate Rmax (ΔP) not included in any of them is not used for calculating the aging deterioration rate K.

具体的には、各々の領域w1〜w7で最大噴射率Rmax(ΔP)の平均値avew1〜avew7を算出し、それらの値avew1〜avew7の平均値を平均値Rmax(ΔP)aveとして算出する。この時、上記第2実施形態と同様にして、各領域w1〜w7のデータ点数に応じてavew1〜avew7に重み付けを行って平均値Rmax(ΔP)aveを算出してもよい。   Specifically, the average values avew1 to ave7 of the maximum injection rate Rmax (ΔP) are calculated in the respective regions w1 to w7, and the average value of these values avew1 to ave7 is calculated as the average value Rmax (ΔP) ave. At this time, similarly to the second embodiment, the average value Rmax (ΔP) ave may be calculated by weighting the avew1 to ave7 according to the number of data points of the areas w1 to w7.

ここで、最大噴射率Rmax(ΔP)の値は、基準圧力Pbaseが変化することに伴い変動するが、本実施形態の如く、過去の1トリップ分の平均値Rmax(ΔP)aveと、現在の1トリップ分の平均値Rmax(ΔP)aveとを比較するにあたり、同じ基準圧力Pbase領域の最大噴射率Rmax(ΔP)を比較して経年劣化率Kを算出するので、補正比Kaの算出精度を向上できる。   Here, the value of the maximum injection rate Rmax (ΔP) varies as the reference pressure Pbase changes, but as in this embodiment, the average value Rmax (ΔP) ave for the past one trip and the current In comparing the average value Rmax (ΔP) ave for one trip, the aging deterioration rate K is calculated by comparing the maximum injection rate Rmax (ΔP) in the same reference pressure Pbase region, so the calculation accuracy of the correction ratio Ka is increased. It can be improved.

(第3実施形態の変形例)
上記第3実施形態では、基準圧力Pbaseが所定範囲(avew1〜avew7)内となっている時の圧力降下量ΔPから算出した最大噴射率Rmax(ΔP)の値を用いて、平均値Rmax(ΔP)aveを算出しているが、例えば、インターバルと関連付けて圧力降下量ΔPを検出し、インターバルが所定範囲内となっている時の圧力降下量ΔPから算出した最大噴射率Rmax(ΔP)の値を用いて、平均値Rmax(ΔP)aveを算出してもよい。
(Modification of the third embodiment)
In the third embodiment, the average value Rmax (ΔP) is calculated using the maximum injection rate Rmax (ΔP) calculated from the pressure drop amount ΔP when the reference pressure Pbase is within the predetermined range (avew1 to avew7). ) Although ave is calculated, for example, the pressure drop amount ΔP is detected in association with the interval, and the value of the maximum injection rate Rmax (ΔP) calculated from the pressure drop amount ΔP when the interval is within a predetermined range May be used to calculate the average value Rmax (ΔP) ave.

或いは、筒内圧と関連付けて圧力降下量ΔPを検出し、筒内圧が所定範囲内となっている時の圧力降下量ΔPから算出した最大噴射率Rmax(ΔP)の値を用いて、平均値Rmax(ΔP)aveを算出してもよい。   Alternatively, the pressure drop amount ΔP is detected in association with the in-cylinder pressure, and the average value Rmax is calculated using the value of the maximum injection rate Rmax (ΔP) calculated from the pressure drop amount ΔP when the in-cylinder pressure is within the predetermined range. (ΔP) ave may be calculated.

これらによっても、過去の1トリップ分の平均値Rmax(ΔP)aveと、現在の1トリップ分の平均値Rmax(ΔP)aveとを比較するにあたり、同じ環境条件(インターバル又は筒内圧)の最大噴射率Rmax(ΔP)を比較して経年劣化率Kを算出するので、補正比Kaの算出精度を向上できる。   Also in these cases, when comparing the average value Rmax (ΔP) ave for the past one trip with the average value Rmax (ΔP) ave for the current one trip, the maximum injection under the same environmental conditions (interval or in-cylinder pressure) Since the aging deterioration rate K is calculated by comparing the rate Rmax (ΔP), the calculation accuracy of the correction ratio Ka can be improved.

(第4実施形態)
上記第1実施形態では、算出した全ての圧力降下量ΔP(つまり最大噴射率Rmax(ΔP))を平均値Rmax(ΔP)aveの算出に用いているが、本実施形態では、基準圧力Pbaseが所定圧力Punder(図8参照)以上である高圧時に検出した圧力降下量ΔPから算出した最大噴射率Rmax(ΔP)を、平均値Rmax(ΔP)aveの算出対象としている。
(Fourth embodiment)
In the first embodiment, all the calculated pressure drop amounts ΔP (that is, the maximum injection rate Rmax (ΔP)) are used to calculate the average value Rmax (ΔP) ave, but in this embodiment, the reference pressure Pbase is The maximum injection rate Rmax (ΔP) calculated from the pressure drop amount ΔP detected at the time of high pressure that is equal to or higher than the predetermined pressure Punder (see FIG. 8) is used as the calculation target of the average value Rmax (ΔP) ave.

ここで、基準圧力Pbaseが高圧であるほど圧力降下量ΔPの絶対値が大きくなるので、高圧時の圧力降下量ΔPに基づき算出した平均値Rmax(ΔP)aveの方が、過去の平均値Rmax(ΔP)aveと現在の平均値Rmax(ΔP)aveとを比較する際に、経年劣化による平均値Rmax(ΔP)aveの変化量(経年劣化量)が大きく現れる。よって、経年劣化率Kを高精度で算出できる。   Here, since the absolute value of the pressure drop amount ΔP increases as the reference pressure Pbase increases, the average value Rmax (ΔP) ave calculated based on the pressure drop amount ΔP at the time of high pressure is the past average value Rmax. When (ΔP) ave is compared with the current average value Rmax (ΔP) ave, a change amount (aging deterioration amount) of the average value Rmax (ΔP) ave due to aging appears greatly. Therefore, the aged deterioration rate K can be calculated with high accuracy.

この点を鑑みた本実施形態では、高圧時に検出した圧力降下量ΔPによる最大噴射率Rmax(ΔP)を用いて平均値Rmax(ΔP)aveを算出しており、所定圧力Punder未満の低圧時に検出した圧力降下量ΔPによる最大噴射率Rmax(ΔP)は、平均値Rmax(ΔP)aveの算出には用いない。そのため、経年変化指数に相当する経年劣化率Kを高精度で算出できる。   In this embodiment in view of this point, the average value Rmax (ΔP) ave is calculated using the maximum injection rate Rmax (ΔP) based on the pressure drop amount ΔP detected at the time of high pressure, and is detected at a low pressure less than the predetermined pressure Punder. The maximum injection rate Rmax (ΔP) resulting from the pressure drop amount ΔP is not used for calculating the average value Rmax (ΔP) ave. Therefore, the aging deterioration rate K corresponding to the aging index can be calculated with high accuracy.

(第4実施形態の変形例)
上記第4実施形態では、基準圧力Pbaseが所定圧力Punder以上となっている時の圧力降下量ΔPから算出した最大噴射率Rmax(ΔP)の値を用いて、平均値Rmax(ΔP)aveを算出しているが、例えば、インターバルと関連付けて圧力降下量ΔPを検出し、インターバルが所定量以上(又は前段噴射なし)の時の圧力降下量ΔPから算出した最大噴射率Rmax(ΔP)の値を用いて、平均値Rmax(ΔP)aveを算出してもよい。
(Modification of the fourth embodiment)
In the fourth embodiment, the average value Rmax (ΔP) ave is calculated using the value of the maximum injection rate Rmax (ΔP) calculated from the pressure drop amount ΔP when the reference pressure Pbase is equal to or higher than the predetermined pressure Pander. However, for example, the pressure drop amount ΔP is detected in association with the interval, and the value of the maximum injection rate Rmax (ΔP) calculated from the pressure drop amount ΔP when the interval is equal to or larger than a predetermined amount (or no pre-stage injection) is obtained. The average value Rmax (ΔP) ave may be calculated by using it.

或いは、筒内圧と関連付けて圧力降下量ΔPを検出し、筒内圧が所定範囲内となっている時の圧力降下量ΔPから算出した最大噴射率Rmax(ΔP)の値を用いて、平均値Rmax(ΔP)aveを算出してもよい。   Alternatively, the pressure drop amount ΔP is detected in association with the in-cylinder pressure, and the average value Rmax is calculated using the value of the maximum injection rate Rmax (ΔP) calculated from the pressure drop amount ΔP when the in-cylinder pressure is within the predetermined range. (ΔP) ave may be calculated.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

・上記各実施形態では、1トリップ期間で検出した複数の圧力降下量ΔPを用いて、補正比Kaの算出に用いる平均値Rmax(ΔP)aveを算出しているが、車両が所定の距離だけ走行する期間で検出した複数の圧力降下量ΔPを用いるように変更してもよいし、エンジンの運転時間が所定時間経過する期間で検出した複数の圧力降下量ΔPを用いるように変更してもよい。   In each of the above embodiments, the average value Rmax (ΔP) ave used to calculate the correction ratio Ka is calculated using a plurality of pressure drop amounts ΔP detected in one trip period, but the vehicle is only a predetermined distance away. It may be changed to use a plurality of pressure drop amounts ΔP detected during the traveling period, or may be changed to use a plurality of pressure drop amounts ΔP detected during a period when the engine operation time has elapsed for a predetermined time. Good.

・上記各実施形態では、燃料噴射弁10の経年変化に伴い圧力降下量ΔPが変化する度合いを表した「経年変化指数」を、最大噴射率Rmax(ΔP)の学習値に対する平均値Rmax(ΔP)aveの割合(経年劣化率K又は補正比Ka)としている。これに対し、最大噴射率Rmax(ΔP)の学習値と平均値Rmax(ΔP)aveとの差分である経年変化量を、前記「経年変化指数」としてもよい。   In each of the above embodiments, the “aging index” indicating the degree of change in the pressure drop ΔP with the aging of the fuel injection valve 10 is expressed as the average value Rmax (ΔP) with respect to the learning value of the maximum injection rate Rmax (ΔP). ) Ave ratio (aging rate K or correction ratio Ka). On the other hand, the amount of secular change that is the difference between the learned value of the maximum injection rate Rmax (ΔP) and the average value Rmax (ΔP) ave may be used as the “aging change index”.

・上記実施形態では、補正比Ka(経年変化指数)に基づき最大噴射率Rmaxを補正しているが、経年劣化率Kに基づき最大噴射率Rmaxを補正してもよい。この場合、経年劣化率Kが経年変化指数に相当する。また、圧力降下量ΔPの経年変化量や、最大噴射率Rmax(ΔP)の経年変化量に基づき最大噴射率Rmaxを補正してもよい。この場合、これらの経年変化量が経年変化指数に相当する。   In the above embodiment, the maximum injection rate Rmax is corrected based on the correction ratio Ka (aging index), but the maximum injection rate Rmax may be corrected based on the aging deterioration rate K. In this case, the aging deterioration rate K corresponds to the aging index. Further, the maximum injection rate Rmax may be corrected based on the secular change amount of the pressure drop amount ΔP and the secular change amount of the maximum injection rate Rmax (ΔP). In this case, these aging amounts correspond to the aging index.

・図1に示す上記実施形態では、燃圧センサ20を燃料噴射弁10に搭載しているが、コモンレール42の吐出口42aから噴孔11bに至るまでの燃料供給経路内に燃圧センサを配置してもよい。よって、例えばコモンレール42と燃料噴射弁10とを接続する高圧配管42bに燃圧センサを搭載してもよい。また、コモンレール42に燃圧センサ20を配置してもよいし、燃料ポンプ41の吐出口からコモンレール42にいたるまでの燃料供給経路内に燃圧センサを配置してもよい。   In the embodiment shown in FIG. 1, the fuel pressure sensor 20 is mounted on the fuel injection valve 10, but the fuel pressure sensor is disposed in the fuel supply path from the discharge port 42a of the common rail 42 to the injection hole 11b. Also good. Therefore, for example, a fuel pressure sensor may be mounted on the high-pressure pipe 42 b that connects the common rail 42 and the fuel injection valve 10. Further, the fuel pressure sensor 20 may be disposed on the common rail 42, or the fuel pressure sensor may be disposed in the fuel supply path from the discharge port of the fuel pump 41 to the common rail 42.

10…燃料噴射弁、20…燃圧センサ、42…コモンレール(蓄圧容器)、Ka…補正比(経年変化指数)、Lα…降下近似直線、Lβ…上昇近似直線、Pbase…基準圧力、Pαβ…交点圧力、ΔPγ…圧力差、ΔP…圧力降下量、Rmax…最大噴射率、S11…基準圧力算出手段、S12,S13…直線近似手段、S21,S22…最大噴射率算出手段、S23…補正手段、S30…圧力降下量検出手段、S33…経年変化指数算出手段。   DESCRIPTION OF SYMBOLS 10 ... Fuel injection valve, 20 ... Fuel pressure sensor, 42 ... Common rail (accumulation container), Ka ... Correction ratio (aging index), L (alpha) ... Falling approximation straight line, L (beta) ... Rising approximation straight line, Pbase ... Reference pressure, P (alpha) beta ... Intersection pressure , ΔPγ ... pressure difference, ΔP ... pressure drop amount, Rmax ... maximum injection rate, S11 ... reference pressure calculation means, S12, S13 ... linear approximation means, S21, S22 ... maximum injection rate calculation means, S23 ... correction means, S30 ... Pressure drop amount detection means, S33... Aging index calculation means.

Claims (7)

燃料噴射弁へ供給される燃料の圧力を検出する燃圧センサを備えた燃料噴射システムに適用され、
前記燃圧センサにより検出された圧力波形のうち、燃料の噴射率上昇に伴い圧力降下する期間の波形を降下波形、燃料の噴射率降下に伴い圧力上昇する期間の波形を上昇波形とした場合に、前記降下波形を直線に近似した降下近似直線、及び前記上昇波形を直線に近似した上昇近似直線を算出する直線近似手段と、
前記燃圧センサにより検出された圧力波形のうち前記降下波形が現れる直前の特定期間における波形に基づき、基準圧力を算出する基準圧力算出手段と、
前記降下近似直線及び前記上昇近似直線の交点に対応した圧力である交点圧力を算出し、その交点圧力と前記基準圧力との圧力差に基づき最大噴射率を算出する最大噴射率算出手段と、
噴射率上昇に伴い生じた圧力降下量を検出する圧力降下量検出手段と、
前記圧力降下量検出手段により検出された圧力降下量が前記燃料噴射弁の経年変化に伴い変化する度合いを表した、経年変化指数を算出する経年変化指数算出手段と、
前記経年変化指数に基づき、前記最大噴射率算出手段により算出される最大噴射率を補正する補正手段と、
を備えることを特徴とする燃料噴射制御装置。
Applied to a fuel injection system having a fuel pressure sensor for detecting the pressure of fuel supplied to the fuel injection valve;
Of the pressure waveforms detected by the fuel pressure sensor, when the waveform of the period when the pressure drops as the fuel injection rate increases, the waveform of the period when the pressure increases as the fuel injection rate decreases, Linear approximation means for calculating a descending approximation line approximating the descending waveform to a straight line, and an ascending approximation line approximating the rising waveform to a straight line;
Reference pressure calculation means for calculating a reference pressure based on a waveform in a specific period immediately before the drop waveform appears among the pressure waveforms detected by the fuel pressure sensor;
A maximum injection rate calculating means for calculating an intersection pressure that is a pressure corresponding to an intersection of the descending approximate line and the rising approximate line, and calculating a maximum injection rate based on a pressure difference between the intersection pressure and the reference pressure;
A pressure drop amount detecting means for detecting a pressure drop amount caused by an increase in the injection rate;
A secular change index calculating means for calculating a secular change index representing a degree of change of the pressure drop detected by the pressure drop amount detecting means with the secular change of the fuel injection valve;
Correction means for correcting the maximum injection rate calculated by the maximum injection rate calculation means based on the secular change index;
A fuel injection control device comprising:
前記最大噴射率算出手段は、前記圧力差が所定値未満である場合には前記圧力差に基づき最大噴射率を算出し、前記圧力差が所定値以上である場合には予め設定しておいた値を最大噴射率として算出することを特徴とする請求項1に記載の燃料噴射制御装置。   The maximum injection rate calculating means calculates a maximum injection rate based on the pressure difference when the pressure difference is less than a predetermined value, and is preset when the pressure difference is greater than or equal to a predetermined value. The fuel injection control device according to claim 1, wherein the value is calculated as a maximum injection rate. 燃料噴射弁へ供給される燃料の圧力を検出する燃圧センサを備えた燃料噴射システムに適用され、
前記燃圧センサにより検出された圧力波形のうち、燃料の噴射率上昇に伴い圧力降下する期間の波形を降下波形、燃料の噴射率降下に伴い圧力上昇する期間の波形を上昇波形とした場合に、前記降下波形を直線に近似した降下近似直線、及び前記上昇波形を直線に近似した上昇近似直線を算出する直線近似手段と、
前記燃圧センサにより検出された圧力波形のうち前記降下波形が現れる直前の特定期間における波形に基づき、基準圧力を算出する基準圧力算出手段と、
前記降下近似直線及び前記上昇近似直線の交点に対応した圧力である交点圧力を算出し、その交点圧力と前記基準圧力との圧力差を算出し、その圧力差が所定値以上で有る場合には予め設定しておいた値を最大噴射率として算出する最大噴射率算出手段と、
噴射率上昇に伴い生じた圧力降下量を検出する圧力降下量検出手段と、
前記圧力降下量検出手段により検出された圧力降下量が前記燃料噴射弁の経年変化に伴い変化する度合いを表した、経年変化指数を算出する経年変化指数算出手段と、
前記経年変化指数に基づき、前記最大噴射率算出手段により算出される最大噴射率を補正する補正手段と、
を備えることを特徴とする燃料噴射制御装置。
Applied to a fuel injection system having a fuel pressure sensor for detecting the pressure of fuel supplied to the fuel injection valve;
Of the pressure waveforms detected by the fuel pressure sensor, when the waveform of the period when the pressure drops as the fuel injection rate increases, the waveform of the period when the pressure increases as the fuel injection rate decreases, Linear approximation means for calculating a descending approximation line approximating the descending waveform to a straight line, and an ascending approximation line approximating the rising waveform to a straight line;
Reference pressure calculation means for calculating a reference pressure based on a waveform in a specific period immediately before the drop waveform appears among the pressure waveforms detected by the fuel pressure sensor;
When an intersection pressure that is a pressure corresponding to an intersection of the descending approximate straight line and the rising approximate straight line is calculated, a pressure difference between the intersection pressure and the reference pressure is calculated, and the pressure difference is equal to or greater than a predetermined value A maximum injection rate calculation means for calculating a preset value as a maximum injection rate;
A pressure drop amount detecting means for detecting a pressure drop amount caused by an increase in the injection rate;
A secular change index calculating means for calculating a secular change index representing a degree of change of the pressure drop detected by the pressure drop amount detecting means with the secular change of the fuel injection valve;
Correction means for correcting the maximum injection rate calculated by the maximum injection rate calculation means based on the secular change index;
A fuel injection control device comprising:
前記経年変化指数算出手段は、所定期間に検出した複数の前記圧力降下量に基づき算出した複数の最大噴射率の平均値を算出し、その平均値が変化する度合いを前記経年変化指数として算出することを特徴とする請求項1〜3のいずれか1つに記載の燃料噴射制御装置。 The aging index calculating means calculates an average value of a plurality of maximum injection rates calculated based on the plurality of pressure drop amounts detected during a predetermined period, and calculates a degree of change of the average value as the aging index. The fuel injection control device according to claim 1, wherein the fuel injection control device is a fuel injection control device. 前記圧力降下量検出手段は、前記基準圧力と関連付けて前記圧力降下量を検出し、
前記基準圧力は複数の領域に分割して設定されており、
前記経年変化指数算出手段は、前記領域毎の前記圧力降下量の検出数に応じて、前記圧力降下量の値に重み付けをして前記平均値を算出することを特徴とする請求項4に記載の燃料噴射制御装置。
The pressure drop amount detecting means detects the pressure drop amount in association with the reference pressure,
The reference pressure is set to be divided into a plurality of regions,
The said aging index calculation means weights the value of the said pressure drop amount according to the detection number of the said pressure drop amount for every said area | region, The said average value is calculated. Fuel injection control device.
前記経年変化指数算出手段は、燃料噴射時の環境条件が所定範囲内である時に検出した前記圧力降下量に基づき、前記経年変化指数を算出することを特徴とする請求項1〜5のいずれか1つに記載の燃料噴射制御装置。   6. The aging index calculating means calculates the aging index based on the pressure drop detected when an environmental condition during fuel injection is within a predetermined range. The fuel-injection control apparatus as described in one. 前記経年変化指数算出手段は、前記基準圧力が所定圧力以上である高圧時に検出した前記圧力降下量に基づき、前記経年変化指数を算出することを特徴とする請求項1〜6のいずれか1つに記載の燃料噴射制御装置。   The aging index calculating means calculates the aging index based on the pressure drop detected at a high pressure when the reference pressure is equal to or higher than a predetermined pressure. A fuel injection control device according to claim 1.
JP2011003389A 2011-01-11 2011-01-11 Fuel injection control device Active JP5333464B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011003389A JP5333464B2 (en) 2011-01-11 2011-01-11 Fuel injection control device
DE102012100021.2A DE102012100021B4 (en) 2011-01-11 2012-01-03 A fuel injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011003389A JP5333464B2 (en) 2011-01-11 2011-01-11 Fuel injection control device

Publications (2)

Publication Number Publication Date
JP2012145018A JP2012145018A (en) 2012-08-02
JP5333464B2 true JP5333464B2 (en) 2013-11-06

Family

ID=46509756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011003389A Active JP5333464B2 (en) 2011-01-11 2011-01-11 Fuel injection control device

Country Status (2)

Country Link
JP (1) JP5333464B2 (en)
DE (1) DE102012100021B4 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761144B2 (en) * 2012-09-13 2015-08-12 株式会社デンソー Fuel injection control device
JP5915563B2 (en) * 2013-02-05 2016-05-11 株式会社デンソー Learning device
JP6040877B2 (en) * 2013-07-05 2016-12-07 株式会社デンソー Fuel injection state estimation device
JP2015022451A (en) * 2013-07-18 2015-02-02 株式会社豊田自動織機 Method of detecting position of unmanned carrier
JP6269544B2 (en) * 2015-03-19 2018-01-31 トヨタ自動車株式会社 Engine control unit monitoring device
JP6969337B2 (en) 2017-12-06 2021-11-24 株式会社デンソー Fuel injection control device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840288B2 (en) * 2006-11-14 2011-12-21 株式会社デンソー Fuel injection apparatus and adjustment method thereof
JP4424395B2 (en) * 2007-08-31 2010-03-03 株式会社デンソー Fuel injection control device for internal combustion engine
JP4577348B2 (en) 2007-10-24 2010-11-10 株式会社デンソー Internal combustion engine control device and internal combustion engine control system
JP4631937B2 (en) 2008-06-18 2011-02-16 株式会社デンソー Learning device and fuel injection system
JP4737315B2 (en) * 2009-03-25 2011-07-27 株式会社デンソー Fuel injection state detection device
JP4737314B2 (en) * 2009-03-25 2011-07-27 株式会社デンソー Fuel injection state detection device
DE102010040719A1 (en) * 2010-09-14 2012-03-15 Robert Bosch Gmbh Combustion engine controlling method, involves determining regression lines in regions, where characteristics for opening and closing valve are determined from points of intersection of regression lines

Also Published As

Publication number Publication date
JP2012145018A (en) 2012-08-02
DE102012100021B4 (en) 2017-11-30
DE102012100021A1 (en) 2012-07-12

Similar Documents

Publication Publication Date Title
JP5348154B2 (en) Failure injection device for fuel injection system
JP4737314B2 (en) Fuel injection state detection device
JP4835715B2 (en) Fuel injection state detection device
JP4737315B2 (en) Fuel injection state detection device
JP4835716B2 (en) Fuel injection state detection device
US8306719B2 (en) Learning device and fuel injection system
JP5333464B2 (en) Fuel injection control device
JP5287915B2 (en) Fuel injection state estimation device
JP5195842B2 (en) Pressure reducing valve controller
JP5321606B2 (en) Fuel injection control device
JP5723244B2 (en) Fuel injection control device
JP2013007341A (en) Fuel-injection-condition estimating apparatus
US9617947B2 (en) Fuel injection control device
JP6040877B2 (en) Fuel injection state estimation device
JP5278472B2 (en) Abnormality diagnosis device for fuel injection valve
JP5382006B2 (en) Fuel injection control device
JP5565435B2 (en) Fuel injection control device
JP5392277B2 (en) Fuel injection control device
JP2014152674A (en) Fuel injection characteristic detecting device
JP5375848B2 (en) Fuel injection condition analyzer
JP6969337B2 (en) Fuel injection control device
JP4689695B2 (en) Fuel injection system
JP6023002B2 (en) Fuel injection control device
JP6984433B2 (en) Fuel injection valve abnormality judgment device
JP2010084613A (en) Fuel injection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R151 Written notification of patent or utility model registration

Ref document number: 5333464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250