JP5331389B2 - 表示装置の作製方法 - Google Patents

表示装置の作製方法 Download PDF

Info

Publication number
JP5331389B2
JP5331389B2 JP2008151264A JP2008151264A JP5331389B2 JP 5331389 B2 JP5331389 B2 JP 5331389B2 JP 2008151264 A JP2008151264 A JP 2008151264A JP 2008151264 A JP2008151264 A JP 2008151264A JP 5331389 B2 JP5331389 B2 JP 5331389B2
Authority
JP
Japan
Prior art keywords
film
semiconductor film
thin film
gas
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008151264A
Other languages
English (en)
Other versions
JP2009021571A5 (ja
JP2009021571A (ja
Inventor
舜平 山崎
充弘 一條
哲弘 田中
高志 大槻
清治 保本
健一 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2008151264A priority Critical patent/JP5331389B2/ja
Publication of JP2009021571A publication Critical patent/JP2009021571A/ja
Publication of JP2009021571A5 publication Critical patent/JP2009021571A5/ja
Application granted granted Critical
Publication of JP5331389B2 publication Critical patent/JP5331389B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3145Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers formed by deposition from a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Formation Of Insulating Films (AREA)

Description

本発明は、少なくとも画素部に薄膜トランジスタを用いた表示装置に関する。
近年、絶縁表面を有する基板上に形成された半導体薄膜(厚さ数十〜数百nm程度)をチャネル形成領域に用いて薄膜トランジスタを構成する技術が注目されている。薄膜トランジスタはICや電気光学装置のような電子デバイスに広く応用され、特に画像表示装置のスイッチング素子として開発が急がれている。
画像表示装置のスイッチング素子として、非晶質半導体膜をチャネル形成領域に用いた薄膜トランジスタ、または多結晶半導体膜をチャネル形成領域に用いた薄膜トランジスタ等が用いられている。
また、画像表示装置のスイッチング素子として、微結晶半導体膜をチャネル形成領域に用いた薄膜トランジスタが用いられている(特許文献1及び2)。
特開平4−242724号公報 特開2005−49832号公報
多結晶半導体膜をチャネル形成領域に用いた薄膜トランジスタは、非晶質半導体膜をチャネル形成領域に用いた薄膜トランジスタに比べて移動度が2桁以上高く、半導体表示装置の画素部とその周辺の駆動回路を同一基板上に一体形成できるという利点を有している。しかしながら、非晶質半導体膜をチャネル形成領域に用いた場合に比べて、半導体膜の結晶化のために工程が複雑化するため、その分歩留まりが低減し、コストが高まるという問題がある。
また、半導体の結晶粒の表面は、酸化されやすいという問題がある。このため、チャネル形成領域の結晶粒が酸化されると、結晶粒の表面に酸化膜が形成されてしまい、当該酸化膜がキャリアの移動の障害となり、薄膜トランジスタの特性が低下するという問題がある。
上述した問題に鑑み、本発明は、薄膜トランジスタの特性を低減することなく、量産性が可能な表示装置及びその作製方法を提案することを課題とする。
微結晶半導体膜(セミアモルファス半導体膜ともいう。)と、微結晶半導体膜に接するゲート絶縁膜と、ゲート電極とが重畳する薄膜トランジスタを備えた表示装置において、微結晶半導体膜の表面に酸化防止膜が形成されていることを特徴とする。
酸化防止膜としては、非晶質半導体膜があり、更には、窒素、水素、またはハロゲンのいずれか一つ以上を含む非晶質半導体膜であることが好ましい。非晶質半導体膜に、窒素、水素、またはハロゲンのいずれか一つを含むことで、微結晶半導体膜に含まれる結晶粒が酸化されることを低減することが可能である。
酸化防止膜は、プラズマCVD法、スパッタリング法等で形成することができる。また、非晶質半導体膜を形成した後、非晶質半導体膜の表面を窒素プラズマ、水素プラズマ、またはハロゲンプラズマで処理して非晶質半導体膜の表面を窒素化、水素化またはハロゲン化することができる。
微結晶半導体膜は、多結晶半導体膜と異なり、微結晶半導体膜として直接基板上に成膜することができる。具体的には、水素化珪素又はハロゲン化珪素を原料ガスとし、周波数が1GHz以上のマイクロ波プラズマCVD装置を用いて成膜することができる。また、1MHzから20MHz、代表的には13.56MHzの高周波、または20MHzより大きく120MHz程度までのVHF帯の高周波、代表的には27.12MHz、60MHzを用いたプラズマCVD法により、微結晶半導体膜を形成することができる。上記方法を用いて作製された微結晶半導体膜は、0.5nm〜20nmの結晶粒を非晶質半導体中に含む微結晶半導体膜も含んでいる。よって、多結晶半導体膜を用いる場合と異なり、半導体膜の成膜後に結晶化の工程を設ける必要がない。薄膜トランジスタの作製における工程数を削減することができ、表示装置の歩留まりを高め、コストを抑えることができる。また、周波数が1GHz以上のマイクロ波を用いたプラズマは電子密度が高く、原料ガスである水素化珪素の解離が容易となる。このため、周波数が数十MHz〜数百MHzのマイクロ波プラズマCVD装置と比較して、周波数が1GHz以上のマイクロ波プラズマCVD装置を用いることによって微結晶半導体膜を容易に作製することが可能であり、成膜速度を高めることが可能である。このため、表示装置の量産性を高めることが可能である。
また、本発明の一は、基板側にガスを噴出するノズルを有する第1のガス管と、基板と反対側にガスを噴出するノズルを有する第2のガス管とが格子状に交差して設けられているプラズマCVD装置において、第1のガス管に、水素化珪素と、一酸化二窒素とを供給し、第2のガス管に、希ガスを供給して、酸化窒化珪素膜を形成し、酸化窒化珪素膜を用いて薄膜トランジスタを形成する表示装置の作製方法である。
なお、第2のガス管に、酸素を供給してもよい。また、第2のガス管に水素を供給してもよい。
基板側にガスを供給するガス管に一酸化二窒素を導入することで、プラズマの着火を容易とすることが可能である。また、プラズマCVD装置の処理容器内に導入するアルゴンの量を削減することが可能であり、コスト削減と共に、原料ガスの導入量を増やせることが可能であるため、成膜速度を上昇させることができる。
また、微結晶半導体膜を用い、薄膜トランジスタ(TFT)を作製し、該薄膜トランジスタを画素部、さらには駆動回路に用いて表示装置を作製する。微結晶半導体膜を用いた薄膜トランジスタは、その移動度が2〜10cm/V・secと、非晶質半導体膜を用いた薄膜トランジスタの2〜20倍の移動度を有しているので、駆動回路の一部または全体を、画素部と同じ基板上に一体形成し、システムオンパネルを形成することができる。
また、表示装置としては、発光装置や液晶表示装置を含む。発光装置は発光素子を含み、液晶表示装置は液晶素子を含む。発光素子は、電流または電圧によって輝度が制御される素子をその範疇に含んでおり、具体的には無機EL(Electro Luminescence)、有機EL、またはFED(Field Emission Display)に用いられている電子源素子(電子放出素子)等が含まれる。
また、表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントローラを含むIC等を実装した状態にあるモジュールとを含む。さらに本発明は、該発光装置を作製する過程における、表示素子が完成する前の一形態に相当する素子基板に関し、該素子基板は、電流を発光素子に供給するための手段を複数の各画素に備える。素子基板は、具体的には、表示素子の画素電極のみが形成された状態であっても良いし、画素電極となる導電膜を成膜した後であって、エッチングして画素電極を形成する前の状態であっても良いし、あらゆる形態があてはまる。
なお、本明細書中における表示装置とは、画像表示デバイス、発光デバイス、もしくは光源(照明装置含む)を指す。また、コネクター、例えばFPC(Flexible printed circuit)もしくはTAB(Tape Automated Bonding)テープもしくはTCP(Tape Carrier Package)が取り付けられたモジュール、TABテープやTCPの先にプリント配線板が設けられたモジュール、または表示素子にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも全て表示装置に含むものとする。
本発明は、微結晶半導体膜の表面に酸化防止膜を形成するため、微結晶粒の表面が酸化することを低減することが可能であるため、薄膜トランジスタの移動度の低下を防止することができる。
また、周波数が1GHz以上のマイクロ波プラズマCVD装置を用いることで微結晶半導体膜の成膜速度を向上させることが可能であり、当該微結晶半導体膜を用いた薄膜トランジスタの表示装置の量産性を高めることができる。
また、成膜後における半導体膜の結晶化の工程を削減することができ、薄膜トランジスタの工程を複雑化させることなく、表示装置のシステムオンパネル化を実現することができる。
以下、本発明の実施の形態について図面を参照しながら説明する。但し、本発明は多くの異なる態様で実施することが可能であり、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本実施の形態の記載内容に限定して解釈されるものではない。
(実施の形態1)
本発明の表示装置の作製方法について説明する。はじめに、表示装置の一形態とし液晶表示装置を用いて説明する。図1乃至図3に、駆動回路に用いられる薄膜トランジスタの断面図と、画素部に用いられる薄膜トランジスタの断面図を示す。なお、微結晶半導体膜を有する薄膜トランジスタはp型よりもn型の方が、移動度が高いので駆動回路に用いるのにより適しているが、本発明では、薄膜トランジスタはn型であってもp型であってもどちらでも良い。いずれの極性の薄膜トランジスタを用いる場合でも、同一の基板上に形成する薄膜トランジスタを全て同じ極性にそろえておくことが、工程数を抑えるためにも望ましい。
図1(A)に示すように、基板50上にゲート電極51、52を形成する。基板50は、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、若しくはアルミノシリケートガラスなど、フュージョン法やフロート法で作製される無アルカリガラス基板、セラミック基板の他、本作製工程の処理温度に耐えうる耐熱性を有するプラスチック基板等を用いることができる。また、ステンレス合金などの金属基板の表面に絶縁膜を設けた基板を適用しても良い。基板50の大きさは、320mm×400mm、370mm×470mm、550mm×650mm、600mm×720mm、680mm×880mm、730mm×920mm、1000mm×1200mm、1100mm×1250mm、1150mm×1300mm、1500mm×1800mm、1900mm×2200mm、2160mm×2460mm、2400mm×2800mm、又は2850mm×3050mm等を用いることができる。
ゲート電極51、52は、チタン、モリブデン、クロム、タンタル、タングステン、アルミニウムなどの金属材料またはその合金材料を用いて形成する。ゲート電極51、52は、スパッタリング法や真空蒸着法で基板50上に導電膜を形成し、当該導電膜上にフォトリソグラフィ技術またはインクジェット法によりマスクを形成し、当該マスクを用いて導電膜をエッチングすることで、形成することができる。また、銀、金、銅などの導電性ナノペーストを用いてインクジェット法により吐出し焼成して、ゲート電極51、52を形成することができる。なお、ゲート電極51、52の密着性向上のために、上記金属材料の窒化物膜を、基板50及びゲート電極51、52の間に設けてもよい。
なお、ゲート電極51、52上には、絶縁膜や半導体膜や配線を形成するので、段切れ防止のため端部がテーパー状になるように加工することが望ましい。また、図示しないがこの工程でゲート電極に接続する配線も同時に形成することができる。
次に、ゲート電極51、52上に、ゲート絶縁膜53、微結晶半導体膜54、酸化防止膜55、及び一導電型を付与する不純物が添加された半導体膜56を順に形成する。なお、少なくとも、ゲート絶縁膜53、微結晶半導体膜54、及び酸化防止膜55を連続的に形成することが好ましい。さらには、ゲート絶縁膜53、微結晶半導体膜54、酸化防止膜55、及び一導電型を付与する不純物が添加された半導体膜56を連続的に形成することが好ましい。少なくとも、ゲート絶縁膜53及び微結晶半導体膜54を大気に触れさせることなく連続成膜することで、大気成分や大気中に浮遊する汚染不純物元素に汚染されることなく各積層界面を形成することができるので、薄膜トランジスタ特性のばらつきを低減することができる。また、微結晶半導体膜54及び酸化防止膜55を大気に触れさせることなく連続成膜することで、微結晶半導体膜の結晶粒の酸化を防止することができる。
ゲート絶縁膜53は、CVD法やスパッタリング法等を用いて、酸化珪素膜、窒化珪素膜、酸化窒化珪素膜、または窒化酸化珪素膜の単層若しくは積層で形成することができる。また、基板側から酸化珪素膜または酸化窒化珪素膜と、窒化珪素膜または窒化酸化珪素膜との順に積層して形成することができる。また、基板側から窒化珪素膜または窒化酸化珪素膜と、酸化珪素膜または酸化窒化珪素膜と、窒化珪素膜または窒化酸化珪素膜との順に積層して形成することができる。更には、周波数が1GHz以上のマイクロ波プラズマCVD装置を用いてゲート絶縁膜53を形成することが好ましい。マイクロ波プラズマCVD装置で形成した酸化窒化珪素膜、窒化酸化珪素膜は、耐圧が高く、後に形成される薄膜トランジスタの信頼性を高めることができる。
ここでは、酸化窒化珪素膜とは、その組成として、窒素よりも酸素の含有量が多いものであって、ラザフォード後方散乱法(RBS:Rutherford Backscattering Spectrometry)及び水素前方散乱法(HFS:Hydrogen Forward Scattering)を用いて測定した場合に、濃度範囲として酸素が50〜70原子%、窒素が0.5〜15原子%、珪素が25〜35原子%、水素が0.1〜10原子%の範囲で含まれるものをいう。また、窒化酸化珪素膜とは、その組成として、酸素よりも窒素の含有量が多いものであって、RBS及びHFSを用いて測定した場合に、濃度範囲として酸素が5〜30原子%、窒素が20〜55原子%、珪素が25〜35原子%、水素が10〜30原子%の範囲で含まれるものをいう。但し、酸化窒化珪素または窒化酸化珪素を構成する原子の合計を100原子%としたとき、窒素、酸素、珪素及び水素の含有比率が上記の範囲内に含まれるものとする。
微結晶半導体膜54は、非晶質と結晶構造(単結晶、多結晶を含む)の中間的な構造の半導体を含む膜である。この半導体は、自由エネルギー的に安定な第3の状態を有する半導体であって、短距離秩序を持ち格子歪みを有する結晶質なものであり、その粒径を0.5〜20nmとして非単結晶半導体中に分散させて存在せしめることが可能である。また、未結合手(ダングリングボンド)を終端するため水素またはハロゲンを少なくとも1原子%またはそれ以上含ませている。さらに、ヘリウム、アルゴン、クリプトン、ネオンなどの希ガス元素を含ませて格子歪みをさらに助長させることで、安定性が増し良好な微結晶半導体膜が得られる。このような微結晶半導体膜に関する記述は、例えば、米国特許4,409,134号で開示されている。
この微結晶半導体膜は54、周波数が1GHz以上のマイクロ波CVD装置により形成することができる。代表的には、SiH、Siなどの水素化珪素やSiHCl、SiHCl、SiCl、SiFなどのハロゲン化珪素を用いて形成することができる。また、水素化珪素又はハロゲン化珪素に、水素やヘリウム、アルゴン、クリプトン、ネオンから選ばれた一種または複数種の希ガス元素で希釈して微結晶半導体膜を形成することができる。
微結晶半導体膜54は、1nm以上300nm以下、好ましくは5nm以上200nm以下で形成する。
また、水素化珪素やハロゲン化珪素中に、CH、Cなどの炭化物気体、GeH、GeFなどのゲルマニウム化気体を混入させて、エネルギーバンド幅を1.5〜2.4eV、若しくは0.9〜1.1eVに調節しても良い。
また、微結晶半導体膜は、価電子制御を目的とした不純物元素を意図的に添加しないときに弱いn型の電気伝導性を示すので、薄膜トランジスタのチャネル形成領域として機能する微結晶半導体膜に対しては、p型を付与する不純物元素を、成膜と同時に、或いは成膜後に添加することで、しきい値制御をすることが可能となる。p型を付与する不純物元素としては、代表的には硼素であり、B、BFなどの不純物気体を1ppm〜1000ppm、好ましくは1〜100ppmの割合で水素化珪素又はハロゲン化珪素に混入させると良い。そしてボロンの濃度を、例えば1×1014〜6×1016atoms/cmとすると良い。
また、微結晶半導体膜の酸素濃度を、5×1018atoms/cm以下、1×1018atoms/cm以下、窒素及び炭素の濃度それぞれを1×1019cm−3以下とすることが好ましい。酸素、窒素、及び炭素が微結晶半導体膜に混入する濃度を低減することで、微結晶半導体膜がn型化になることを防止することができる。
また、微結晶半導体膜を形成する前に、ゲート絶縁膜の表面を水素、窒素、ハロゲン、希ガスのいずれかのプラズマで処理して表面を凹凸状としてもよい。このようにすることで、ゲート絶縁膜と微結晶半導体膜との界面での格子歪を低減することが可能である。
酸化防止膜55は、SiH、Si等の水素化珪素、SiHCl、SiHCl、SiCl、SiFなどのハロゲン化珪素を用いて、プラズマCVD法により形成することができる。また、酸化防止膜55として、上記水素化珪素またはハロゲン化珪素に、ヘリウム、アルゴン、クリプトン、ネオンから選ばれた一種または複数種の希ガス元素で希釈して非晶質半導体膜を形成することができる。また、上記水素化珪素またはハロゲン化珪素と水素と用いることで水素を含む非晶質半導体膜を形成することができる。また、上記水素化珪素またはハロゲン化珪素と窒素またはアンモニアとを用いることで、窒素を含む非晶質半導体膜を形成することができる。また、上記水素化珪素と、フッ素、塩素、臭素、またはヨウ素を含む気体(F、Cl、Br、I、HF、HCl、HBr、HI等)を用いることで、フッ素、塩素、臭素、またはヨウ素を含む非晶質半導体膜を形成することができる。
また、酸化防止膜55は、ターゲットに非晶質半導体を用いて水素、または希ガスでスパッタリングして非晶質半導体膜を形成することができる。このとき、アンモニア、窒素、またはNOを雰囲気中に含ませることにより、窒素を含む非晶質半導体膜を形成することができる。また、雰囲気中にフッ素、塩素、臭素、またはヨウ素を含む気体(F、Cl、Br、I、HF、HCl、HBr、HI等)を含ませることにより、フッ素、塩素、臭素、またはヨウ素を含む非晶質半導体膜を形成することができる。
また、酸化防止膜55として、微結晶半導体膜54の表面にプラズマCVD法またはスパッタリング法により非晶質半導体膜を形成した後、非晶質半導体膜を水素プラズマ、窒素プラズマ、またはハロゲンプラズマで処理して、非晶質半導体膜を水素化、窒素化、またはハロゲン化してもよい。
酸化防止膜55は、結晶粒を含まない非晶質半導体膜で形成することが好ましい。このため、周波数が数十MHz〜数百MHzの高周波プラズマCVD法、またはマイクロ波プラズマCVD法で形成する場合は、結晶粒を含まない非晶質半導体膜となるように、成膜条件を制御することが好ましい。
酸化防止膜55は、後のソース領域及びドレイン領域の形成プロセスにおいて、一部エッチングされる場合があるが、そのときに、酸化防止膜55の一部が残存する厚さで形成することが好ましい。代表的には、1nm以上100nm以下、好ましくは1nm以上50nm以下、好ましくは1nm以上10nm以下の厚さで形成する。
微結晶半導体膜54の表面に、非晶質半導体膜、更には水素、窒素、またはハロゲンを含む非晶質半導体膜を形成することで、微結晶半導体膜54に含まれる結晶粒の表面の自然酸化を防止することが可能である。特に、非晶質半導体と結晶粒が接する領域では、結晶格子の歪に由来し、亀裂が入りやすい。この亀裂が酸素に触れると結晶粒は酸化され、酸化珪素が形成される。しかしながら、微結晶半導体膜54の表面に酸化防止膜を形成することで、結晶粒の酸化を防ぐことができる。
一導電型を付与する不純物が添加された半導体膜56は、nチャネル型の薄膜トランジスタを形成する場合には、代表的な不純物元素としてリンを添加すれば良く、水素化珪素またはハロゲン化珪素にPHなどの不純物気体を加えれば良い。また、pチャネル型の薄膜トランジスタを形成する場合には、代表的な不純物元素としてボロンを添加すれば良く、水素化珪素またはハロゲン化珪素にBなどの不純物気体を加えれば良い。一導電型を付与する不純物が添加された半導体膜56は、微結晶半導体膜体、または非晶質半導体で形成することができる。
ここで、ゲート絶縁膜53から一導電型を付与する不純物が添加された半導体膜56を連続成膜ことが可能なマイクロ波プラズマCVD装置について、図10を用いて示す。図10はマイクロ波プラズマCVD装置の上断面を示す模式図であり、共通室1120の周りに、ロード室1110、アンロード室1115、反応室(1)〜反応室(4)1111〜1114を備えた構成となっている。共通室1120と各室の間にはゲートバルブ1122〜1127が備えられ、各室で行われる処理が、相互に干渉しないように構成されている。基板1130はロード室1110、アンロード室1115のカセット1128、1129に装填され、共通室1120の搬送手段1121により反応室(1)〜反応室(4)1111〜1114へ運ばれる。この装置では、堆積膜種ごとに反応室をあてがうことが可能であり、複数の異なる被膜を大気に触れさせることなく連続して形成することができる。
反応室(1)〜反応室(4)それぞれにおいて、ゲート絶縁膜53、微結晶半導体膜54、酸化防止膜55、及び一導電型を付与する不純物が添加された半導体膜56を積層形成する。この場合は、原料ガスの切り替えにより異なる種類の膜を連続的に複数積層することができる。または、反応室(1)及び反応室(3)でゲート絶縁膜53、微結晶半導体膜54、及び酸化防止膜55を形成し、反応室(2)及び反応室(4)で一導電型を付与する不純物が添加された半導体膜56を形成する。一導電型を付与する不純物が添加された半導体膜56のみ単独で成膜することにより、チャンバに残存する一導電型を付与する不純物が他の膜に混入することを防ぐことができる。
このように、複数のチャンバが接続されたマイクロ波プラズマCVD装置で、同時にゲート絶縁膜53、微結晶半導体膜54、酸化防止膜55、及び一導電型を付与する不純物が添加された半導体膜56を成膜することができるため、量産性を高めることができる。また、ある反応室がメンテナンスやクリーニングを行っていても、残りの反応室において成膜処理が可能となり、成膜のタクトを向上させることができる。また、大気成分や大気中に浮遊する汚染不純物元素に汚染されることなく各積層界面を形成することができるので、薄膜トランジスタ特性のばらつきを低減することができる。
また、ゲート絶縁膜を酸化珪素膜または酸化窒化珪素膜と、窒化珪素膜または窒化酸化珪素膜との2層で形成する場合、反応室を5つ設け、反応室(1)で、ゲート絶縁膜の酸化珪素膜または酸化窒化珪素膜を形成し、反応室(2)で、ゲート絶縁膜の窒化珪素膜または窒化酸化珪素膜を形成し、反応室(3)で、微結晶半導体膜を形成し、反応室(4)で酸化防止膜を形成し、反応室(5)で、一導電型を付与する不純物が添加された半導体膜を形成してもよい。このとき、各反応室の内壁を成膜する種類の膜でコーティングすることが好ましい。このような構成のマイクロ波プラズマCVD装置を用いれば、各反応室で一種類の膜を成膜することが可能であり、且つ大気に曝すことなく連続して形成することができるため、前に成膜した膜の残留物や大気に浮遊する不純物元素に汚染されることなく、各積層界面を形成することができる。
さらには、マイクロ波発生装置と共に高周波発生装置を設け、ゲート絶縁膜、微結晶半導体膜、および一導電型を付与する不純物が添加された半導体膜をマイクロ波プラズマCVD法で形成し、酸化防止膜を高周波プラズマCVD法で形成してもよい。
なお、図10に示すマイクロ波プラズマCVD装置には、ロード室及びアンロード室が別々に設けられているが、一つとしロード/アンロード室とでもよい。また、マイクロ波プラズマCVD装置に予備室を設けてもよい。予備室で基板を予備加熱することで、各反応室において成膜までの加熱時間を短縮することが可能であるため、スループットを向上させることができる。
図11はこのようなマイクロ波プラズマCVD装置の一つの反応室の構成を詳細に説明するものである。なお、ガス供給部182及びマイクロ波発生装置184は反応室の外に設けられる。
マイクロ波発生装置184は、周波数が1GHz以上、好ましくは2.45GHz以上、より好ましくは8.3GHz以上のマイクロ波を供給する。なお、本発明においては、マイクロ波発生装置184を複数有することで、安定な大面積のプラズマを生成することが可能である。このため、一辺が600mmを超える基板、特に一辺が1000mmを超える大面積基板においても、均一性の高い膜を成膜する事が可能であり、且つ成膜速度を高めることができる。
処理容器180は、密閉構造により内部を減圧に保持できる構成となっている。処理容器180及び天板187は、表面がアルミナ、酸化珪素、フッ素樹脂のいずれかの絶縁膜で覆われた金属、例えばアルミニウムを含む合金で形成される。また、取り付け具188は金属、例えばアルミニウムを含む合金で形成される。
反応室の内部を減圧にするために、排出口183を介して真空ポンプが処理容器180に接続される。真空ポンプは、低真空排気手段及び高真空排気手段を有する。低真空排気手段は、開閉バルブを動作させ、概ね大気圧から0.1Pa程度までの真空排気を行うものであり、例えば、ドライポンプにより構成される。高真空排気手段は0.1Pa以下の高真空排気を行うものであり、ターボ分子ポンプなどにより構成される。高真空排気手段と直列に連結される圧力調節バルブは、ガス流のコンダクタンスを調整するものであり、ガス供給部182から供給される反応ガスの排気速度を調整することにより、反応室内の圧力の所定の範囲に保つ動作をする。
処理容器180内部には、基板1130を配置するための支持台181が設けられる。支持台181は窒化アルミニウム、窒化珪素、シリコンカーバイトなどのセラミックス材で構成されている。支持台181の内部に温度制御部199を設けることによって、基板1130の温度を制御することも可能である。また、支持台181には、高周波電源に接続される給電部が設けられていてもよい。給電部を設けることで、支持台181に載置された基板にバイアス電圧を印加することができる。
処理容器180の上部には、マイクロ波発生装置184に連結された導波管185が設けられる。導波管185は、マイクロ波発生装置184で発生したマイクロ波を処理容器180に導入する。また、導波管185に接し且つ開口部187aを有する天板187が設けられ、取り付け具188で天板187に設けられた複数の誘電体板196が設けられる。
誘電体板196は、天板187の開口部に密着するように設けられる。マイクロ波発生装置184で発生したマイクロ波が導波管185及び天板187の開口部を経て、誘電体板196に伝播し、誘電体板196を透過して処理容器内に放出される。処理容器内に放出されたマイクロ波の電界エネルギーにより、ガス供給部182から導入されたガスがプラズマ化する。当該プラズマ200は、誘電体板196表面でより密度が高いため、基板1130へのダメージを低減することができる。また、誘電体板196を複数設けることで、均一な大面積のプラズマの発生及び維持が可能である。誘電体板196は、サファイア、石英ガラス、アルミナ、酸化珪素、窒化珪素等のセラミックスで形成される。なお、誘電体板196は、プラズマ200発生側に窪みが形成されてもよい。当該窪みにより、安定したプラズマを生成することができる。誘電体板196を複数設けることで、一辺が600mmを超える基板、特に一辺が1000mmを超える大面積基板においても、均一性の高い膜を成膜する事が可能であり、且つ成膜速度を高めることができる。
誘電体板196側にガスを噴出するノズルを有するガス管197と、基板1130側にガスを噴出するノズルを有するガス管198が格子状に交差して設けられている。また、ガス管198から原料ガスを噴出することで、基板1130により近い位置で原料ガスを噴出することが可能であり、成膜速度を高めることが可能である。ガス管197、198は、アルミナ、窒化アルミニウム等のセラミックスで形成される。セラミックスはマイクロ波の透過率が高いため、ガス管197、198をセラミックスで形成することで、誘電体板196の直下にガス管を設けても、電界の乱れが生じずプラズマの分布を均一にすることができる。
ここで、処理容器180内にガスを供給するガス供給部182の詳細について、図12を用いて説明する。
処理容器180内は、誘電体板196側にガスを供給するガス管197と、基板1130側にガスを供給するガス管198が設けられており、各々に供給するガスが分けられている。
基板1130側にガスを供給するガス管198には、シラン等の水素化珪素のガスライン211b、アンモニアのガスライン212b、窒素のガスライン213b、アルゴンのガスライン214b、一酸化二窒素のガスライン215bがそれぞれ、ガス管198の最終バルブ218に接続される。
水素化珪素のガスライン211bには、水素化珪素供給源211a、バルブ211c、マスフロコントローラ211d、バルブ211eが設けられる。バルブ211c、211eが開放されることで、マスフロコントローラ211dによって流量が制御された水素化珪素ガスが最終バルブ218まで導入される。最終バルブ218が開放されることにより、水素化珪素ガスがガス管198に供給される。
アンモニアのガスライン212bには、アンモニア供給源212a、バルブ212c、マスフロコントローラ212d、バルブ212eが設けられる。バルブ212c、212eが開放されることで、マスフロコントローラ212dによって流量が制御されたアンモニアガスが最終バルブ218まで導入される。最終バルブ218が開放されることにより、アンモニアガスがガス管198に供給される。
窒素のガスライン213bには、窒素供給源213a、バルブ213c、マスフロコントローラ213d、バルブ213eが設けられる。バルブ213c、213eが開放されることで、マスフロコントローラ213dによって流量が制御された窒素ガスが最終バルブ218まで導入される。最終バルブ218が開放されることにより、窒素ガスがガス管198に供給される。
アルゴンのガスライン214bには、アルゴン供給源214a、バルブ214c、マスフロコントローラ214d、バルブ214eが設けられる。バルブ214c、214eが開放されることで、マスフロコントローラ214dによって流量が制御されたアルゴンガスが最終バルブ218まで導入される。最終バルブ218が開放されることにより、アルゴンガスがガス管198に供給される。
一酸化二窒素のガスライン215bには、一酸化二窒素供給源215a、バルブ215c、マスフロコントローラ215d、バルブ215eが設けられる。バルブ215c、215eが開放されることで、マスフロコントローラ215dによって流量が制御された一酸化二窒素ガスが最終バルブ218まで導入される。最終バルブ218が開放されることにより、一酸化二窒素供ガスがガス管198に供給される。
また、誘電体板196側にガスを供給するガス管197には、アルゴンのガスライン214f、一酸化二窒素のガスライン215f、酸素のガスライン216bがそれぞれ、ガス管197の最終バルブ217に接続される。
アルゴンのガスライン214fには、アルゴン供給源214a、バルブ214c、マスフロコントローラ214g、バルブ214hが設けられる。バルブ214c、214hが開放されることで、マスフロコントローラ214gによって流量が制御されたアルゴンガスが最終バルブ217まで導入される。最終バルブ217が開放されることにより、アルゴンガスがガス管197に供給される。
一酸化二窒素のガスライン215fには、一酸化二窒素供給源215a、バルブ215c、マスフロコントローラ215g、バルブ215hが設けられる。バルブ215c、215hが開放されることで、マスフロコントローラ215gによって流量が制御された一酸化二窒素ガスが最終バルブ217まで導入される。最終バルブ217が開放されることにより、一酸化二窒素ガスがガス管197に供給される。
酸素のガスライン216bには、酸素供給源216a、バルブ216c、マスフロコントローラ216d、バルブ216eが設けられる。バルブ216c、216eが開放されることで、マスフロコントローラ216dによって流量が制御された酸素ガスが最終バルブ217まで導入される。最終バルブ217が開放されることにより、酸素ガスがガス管197に供給される。
なお、アルゴン供給源214aはアルゴンのガスライン214b及び214fに分岐され、それによってガス管197、198にガスが供給される。また、一酸化二窒素供給源215aは一酸化二窒素のガスライン215b及び215fに分岐され、それによってガス管197、198にガスが供給される。
基板側にガスを供給するガス管198側に水素化珪素、アンモニア、窒素、一酸化二窒素等の原料ガスを導入することで、成膜速度を高めることが可能である。また、一酸化二窒素を基板側にガスを供給するガス管198に導入することで、プラズマの着火を容易とすることが可能である。一酸化二窒素を誘電体板側に導入する場合、プラズマの着火を容易とするために、大量のアルゴンを処理容器内に導入する必要があったが、一酸化二窒素を基板側に導入することで、処理容器内に導入するアルゴンの量を削減することが可能であり、コスト削減と共に、原料ガスの導入量を増やせることが可能であるため、成膜速度を上昇させることができる。
以下に、成膜処理について説明する。これらの成膜処理は、その目的に応じて、ガス供給部182から供給するガスを選択すれば良い。
ここでは、ゲート絶縁膜として、酸化窒化珪素膜及び窒化酸化珪素膜の形成方法を一例としてあげる。
はじめに、マイクロ波プラズマCVD装置の反応室の内部を、フッ素ラジカルでクリーニングする。なお、フッ素ラジカルは、反応室の外側に設けられたプラズマ発生器に、フッ化炭素、フッ化窒素、またはフッ素を導入し、解離し、フッ素ラジカルを反応室に導入することで、反応室内をクリーニングすることができる。
フッ素ラジカルでクリーニングした後、反応室内部に水素を大量に導入することで、反応室内の残留フッ素と水素を反応させて、残留フッ素の濃度を低減することができる。このため、後に反応室の内壁に成膜する保護膜へのフッ素の混入量を減らすことが可能であり、保護膜の厚さを薄くすることが可能である。
次に、図11(A)に示すように反応室の処理容器180内壁、誘電体板196、ガス管197、198、支持台181等の表面に保護膜201として酸化窒化珪素膜を堆積する。ここでは、処理容器180内の圧力を1〜200Pa、好ましくは10 〜40Paとし、プラズマ着火用ガスとして、ヘリウム、アルゴン、キセノン、クリプトン等の希ガスのいずれか一種以上のガスを導入する。さらには、希ガスのいずれか一種及び水素を導入する。特に、プラズマ着火用ガスとしてヘリウム、更にはヘリウムと水素を用いることが好ましい。
ヘリウムのイオン化エネルギーは24.5eVと高いエネルギーを持つが、約20eVに準安定状態があるので、放電中においては約4eVでイオン化が可能である。このため、放電開始電圧が低く、また放電を維持しやすい。よって、プラズマを均一に維持することが可能であると共に、省電力化が可能である。
また、プラズマ着火用ガスとして、ヘリウム、アルゴン、キセノン、クリプトン等の希ガスのいずれか一種以上及び酸素ガスを導入してもよい。希ガスと共に、酸素ガスを処理容器180内に導入することで、プラズマの着火を容易とすることができる。
次に、マイクロ波発生装置184の電源をオンにし、マイクロ波発生装置184の出力は500〜6000W、好ましくは4000〜6000Wとしてプラズマ200を発生させる。次に、ガス管198から原料ガスを処理容器180内に導入する。具体的には、原料ガスとして、一酸化二窒素、希ガス、及びシランを導入することで、処理容器180の内壁、ガス管197、198、誘電体板196、及び支持台181表面上に保護膜201として酸化窒化珪素膜を形成する。このときの水素化珪素の流量を50〜300sccm、一酸化二窒素の流量を500〜6000sccmとし、保護膜201の膜厚を500〜2000nmとする。
次に、原料ガスの供給を停止し、処理容器180内の圧力を低下し、マイクロ波発生装置184の電源をオフにした後、図11(B)に示すように、処理容器180内の支持台181上に基板1130を導入する。
次に、上記保護膜と同様の工程により、基板上に酸化窒化珪素膜を堆積させる。
所定の厚さの酸化窒化珪素膜が堆積されたら、原料ガスの供給を停止し、処理容器180内の圧力を低下し、マイクロ波発生装置184の電源をオフにする。
次に、処理容器180内の圧力を1〜200Pa、好ましくは1〜100Paとし、プラズマ着火用ガスとして、ヘリウム、アルゴン、キセノン、クリプトン等の希ガスのいずれか一種以上と、原料ガスであるシラン、一酸化二窒素、及びアンモニアを導入する。なお、原料ガスとして、アンモニアの代わりに窒素を導入しても良い。次に、マイクロ波発生装置184の電源をオンにし、マイクロ波発生装置184の出力は500〜6000W、好ましくは4000〜6000Wとしてプラズマ200を発生させる。次に、ガス管198から原料ガスを処理容器180内に導入し、基板1130の酸化窒化珪素膜上に窒化酸化珪素膜を形成する。次に、原料ガスの供給を停止し、処理容器180内の圧力を低下し、マイクロ波発生装置184の電源をオフにして、成膜プロセスを終了する。
以上の工程により、反応室内壁の保護膜を酸化窒化珪素膜とし、基板上に酸化窒化珪素膜及び窒化酸化珪素膜を連続的に成膜することで、上層側の窒化酸化珪素膜中に酸化珪素等の不純物の混入を低減することができる。当該膜は耐圧が高いため、ゲート絶縁膜として用いると、トランジスタの閾値のばらつきを低減することができる。また、BT特性を向上させることができる。また、静電気に対する耐性が高まり、高い電圧が印加されても破壊しにくいトランジスタを作製することができる。また、経時破壊の少ないトランジスタを作製することができる。また、ホットキャリアダメージの少ないトランジスタを作製することができる。
また、ゲート絶縁膜として酸化窒化珪素膜単層の場合、上記保護膜の形成方法及び酸化窒化珪素膜の形成方法を用いる。特に、シランに対する一酸化二窒素の流量比を100倍以上300倍以下、好ましくは150倍以上250倍以下とすると、耐圧の高い酸化窒化珪素膜を形成することができる。
次に、マイクロ波プラズマCVD法による微結晶半導体膜の成膜処理方法について示す。まず、上記ゲート絶縁膜と同様により、反応室内をクリーニングする。次に、処理容器180内に保護膜として珪素膜を堆積する。ここでは、処理容器内の圧力を1〜200Pa、好ましくは1〜100Paとし、プラズマ着火用ガスとして、ヘリウム、アルゴン、キセノン、クリプトン等の希ガスのいずれか一種以上を導入する。なお、希ガスと共に水素を導入してもよい。
次に、マイクロ波発生装置184の電源をオンにし、マイクロ波発生装置184の出力は500〜6000W、好ましくは4000〜6000Wとしてプラズマ200を発生させる。次に、ガス管198から原料ガスを処理容器180内に導入する。具体的には、原料ガスとして、具体的には、珪素化合物ガス、更には水素ガスを導入することで、処理容器180の内壁、ガス管197、198、誘電体板196、及び支持台181表面上に保護膜201として微結晶珪素膜を形成する。このときの保護膜の膜厚を500〜2000nmとする。
次に、原料ガスの供給を停止し、処理容器180内の圧力を低下し、マイクロ波発生装置184の電源をオフにした後、図11(B)に示すように、処理容器180内の支持台181上に基板1130を導入する。
次に、上記保護膜と同様の工程により、基板上に微結晶珪素膜を堆積させる。
所定の厚さの微結晶珪素膜が堆積されたら、次に、原料ガスの供給を停止し、処理容器180内の圧力を低下し、マイクロ波発生装置184の電源をオフにして、成膜プロセスを終了する。
周波数が1GHz以上のマイクロ波プラズマCVD装置で発生されたプラズマは、電子密度が高く、原料ガスから多くのラジカルが形成され、基板1130へ供給されるため、基板でのラジカルの表面反応が促進され、微結晶珪素の成膜速度を高めることができる。更に、複数のマイクロ波発生装置、及び複数の誘電体板で構成されるマイクロ波プラズマCVD装置は、安定した大面積のプラズマを生成することができる。このため、大面積基板上においても、膜質の均一性を高めた膜を成膜することが可能であると共に、量産性を高めることができる。
なお、ゲート絶縁膜及び半導体膜それぞれの作製工程において、反応室の内壁に500〜2000nmの保護膜が形成されている場合は、上記クリーニング処理及び保護膜形成処理を省くことができる。
また、一つの反応室でゲート絶縁膜及び微結晶半導体膜を積層する場合、ゲート絶縁膜を形成した後、反応室内にシラン等の水素化珪素を導入し、残留酸素及び水素化珪素を反応させて、反応物を反応室外に排出することで、反応室内の残留酸素濃度を低減させることができる。この結果、微結晶半導体膜に含まれる酸素の濃度を低減することができる。また、微結晶半導体膜に含まれる結晶粒の酸化を防止することができる。
なお、マイクロ波プラズマCVD装置にヘリウムガスを精製するヘリウム低温精製器を設けてもよい。具体的には、図11に示す処理容器の排出口183及びガス供給部182の間にヘリウム低温精製器を設ける。ここで、処理容器に導入したヘリウムガスを精製し、再利用する方法について、図13を用いて説明する。
図13は、ヘリウムに含まれる不純物を除去するヘリウム低温精製器の概要を説明する図である。
ヘリウム低温精製器は、ヘリウムガスに含まれる不純物を液化する気液分離器304、及び気液分離器304で分離された気体中に含まれる不純物を分離する吸着器305を有する液化窒素貯槽303を有する。
液化窒素貯槽303では、ヘリウムガスは液化せず、ヘリウムガスに含まれる不純物を液化する程度の温度に保つために、例えば液化窒素311が満たされており、そこに少なくとも気液分離器304が浸されている。不純物を含むヘリウムガスを適当な温度、例えば80Kに冷却すると、ヘリウムガスに含まれる低沸点の不純物成分が液化する。当該液化した不純物成分を、排出管310を経て排出部306へ分離することができる。
また、不純物を含むヘリウムガスを気液分離器304に導入する管307と、気液分離器304から吸着器305へヘリウムガスを導入する管308と、吸着器305から精製されたヘリウムガスをガス供給部182へ供給する管309と、気液分離器304で分離した不純物液体を排出部306へ排出する排出管310とを有する。また、精製されたヘリウムガスとの熱交換により、管307に導入される不純物を含むヘリウムガスを冷却する熱交換器302が設けられていてもよい。
処理容器の排出口183から排出された不純物を含むヘリウムガスは、管307を経て、気液分離器304に導入される。この過程において、不純物を含むヘリウムガスは熱交換器302によって冷却される。次に、液化窒素貯槽303内の気液分離器304において、ヘリウムガスから液化した不純物を排出管310を経て排出部306へ分離する。
気液分離器304内のヘリウムガスには、液化しなかった微量の不純物が残存する場合がある。この不純物を除去するために、ヘリウムガスは、管308を経て吸着器305において微量の不純物が除去される。この結果、精製されたヘリウムガスが、熱交換器302を経てガス供給部182に導入される。この結果、ヘリウムガスを排出ガスから分離、精製して、再利用することができる。
このように、マイクロ波プラズマCVD装置において、排出口183及びガス供給部182の間にヘリウム低温精製器を設けることにより、高価なヘリウムを再利用することが可能であるため、コスト削減が可能である。
次に、一導電型を付与する不純物元素が添加された半導体膜56上に導電膜57を形成し、導電膜57上にレジスト58を塗布する。
導電膜57は、アルミニウム、銅、又はシリコン、チタン、ネオジム、スカンジウム、モリブデンなどの耐熱性向上元素若しくはヒロック防止元素が添加されたアルミニウム合金を用いて形成することが好ましい。また、一導電型を付与する不純物が添加された半導体膜と接する側の膜を、チタン、タンタル、モリブデン、タングステン、またはこれらの元素の窒化物で形成し、その上にアルミニウムまたはアルミニウム合金を形成した積層構造としても良い。更には、アルミニウムまたはアルミニウム合金の上面及び下面を、チタン、タンタル、モリブデン、タングステン、またはこれらの元素の窒化物で挟んだ積層構造としてもよい。
導電膜57は、スパッタリング法や真空蒸着法で、一導電型を付与する不純物が添加された半導体膜56上に形成する。また、導電膜57は、銀、金、銅などの導電性ナノペーストを用いてスクリーン印刷法、インクジェット法等を用いて吐出し焼成して形成しても良い。
レジスト58は、ポジ型レジストまたはネガ型レジストを用いることができる。ここでは、ポジ型レジストを用いて示す。
次に、多階調マスク59を用いて、レジスト58に光を照射して、レジスト58を露光する。
ここで、多階調マスク59を用いた露光について、図8及び図9を用いて説明する。
多階調マスクを用いることで、フォトマスクの枚数を削減することが可能である。多階調マスクとは、露光部分、中間露光部分、及び未露光部分に3つの露光レベルを行うことが可能なマスクであり、一度の露光及び現像工程により、複数(代表的には二種類)の厚さの領域を有するレジストマスクを形成することが可能である。
多階調マスクの代表例としては、図8に示すようなグレートーンマスク59a、図9に示すようなハーフトーンマスク59bがある。
図8(A)に示すように、グレートーンマスク59aは、透光性を有する基板163及びその上に形成される遮光部164並びに回折格子165で構成される。遮光部164においては、光の透過率が0%である。一方、回折格子165はスリット、ドット、メッシュ等の光透過部の間隔を、露光に用いる光の解像度限界以下の間隔とすることにより、光の透過率を制御することができる。なお、回折格子165は、周期的なスリット、ドット、メッシュ、または非周期的なスリット、ドット、メッシュどちらも用いることができる。
透光性を有する基板163は、石英等の透光性を有する基板を用いることができる。遮光部164及び回折格子165は、クロムや酸化クロム等の光を吸収する遮光材料を用いて形成することができる。
グレートーンマスク59aに露光光を照射した場合、図8(B)に示すように、遮光部164においては、光透過率166は0%であり、遮光部164及び回折格子165が設けられていない領域では光透過率166は100%である。また、回折格子165においては、10〜70%の範囲で調整可能である。回折格子165における光の透過率の調整は、回折格子165のスリット、ドット、またはメッシュの間隔及びピッチの調整により可能である。
図9(A)に示すように、ハーフトーンマスク59bは、透光性を有する基板163及びその上に形成される半透過部167並びに遮光部168で構成される。半透過部167は、MoSiN、MoSi、MoSiO、MoSiON、CrSiなどを用いることができる。遮光部168は、クロムや酸化クロム等の光を吸収する遮光材料を用いて形成することができる。
ハーフトーンマスク59bに露光光を照射した場合、図9(B)に示すように、遮光部168においては、光透過率169は0%であり、遮光部168及び半透過部167が設けられていない領域では光透過率169は100%である。また、半透過部167においては、10〜70%の範囲で調整可能である。半透過部167に於ける光の透過率の調整は、半透過部167の材料により調整により可能である。
多階調マスクを用いて露光した後、現像することで、図1(C)に示すように、膜厚の異なる領域を有するレジストマスク61、62を形成することができる。
次に、レジストマスク61、62により、微結晶半導体膜54、酸化防止膜55、一導電型を付与する不純物元素が添加された半導体膜56、導電膜57をエッチングして島状に分離する。この結果、図2(A)に示すような、微結晶半導体膜69、70、酸化防止膜67、68、一導電型を付与する不純物が添加された半導体膜65、66、及び導電膜63、64を形成することができる。
次に、レジストマスク61、62をアッシングする。この結果、レジストの面積が縮小し、厚さが薄くなる。このとき、膜厚の薄い領域のレジスト(ゲート電極51、52の一部と重畳する領域)は除去され、図2(B)に示すように、分離されたレジストマスク71、72を形成することができる。
次に、レジストマスク71、72を用いて一導電型を付与する不純物が添加された半導体膜65、66、及び導電膜63、64をエッチングして分離する。この結果、図2(C)に示すような、一対のソース電極及びドレイン電極73〜76、及び一対のソース領域及びドレイン領域77〜80を形成することができる。なお、当該エッチング工程において、酸化防止膜67、68の一部もエッチングされる。一部エッチングされた、凹部を有する酸化防止膜を酸化防止膜81、82と示す。このときに酸化防止膜が分離された場合は、微結晶半導体膜の表面を、窒素、水素、またはハロゲンでプラズマ処理して、表面を窒素化、水素化、またはハロゲン化すればよい。また、酸化防止膜81、82は、面積が縮小したレジストマスク71、72で一部エッチングされるため、ソース電極及びドレイン電極の外側に突出した形状となる。
本実施の形態により、ソース領域及びドレイン領域の形成工程と、酸化防止膜81、82の凹部とを同一工程で形成することができる。酸化防止膜81、82の凹部の深さを酸化防止膜81、82の一番膜厚の厚い領域の1/2〜1/3とすることで、ソース領域及びドレイン領域の距離を離すことが可能であるため、ソース領域及びドレイン領域の間でのリーク電流を低減することができる。
以上の工程により、図3(A)に示すように、チャネルエッチ型の薄膜トランジスタ85、86を形成することができる。チャネルエッチ型の薄膜トランジスタは、作製工程数が少なく、コスト削減が可能である。また、微結晶半導体膜でチャネル形成領域を構成することにより2〜10cm/V・secの電界効果移動度を得ることができる。従って、この薄膜トランジスタを画素部122の画素のスイッチング用素子として、さらに走査線(ゲート線)側の駆動回路121を形成する素子として利用することができる。
次に、薄膜トランジスタ85、86上に、コンタクトホールを有する絶縁膜87を形成し、絶縁膜87のコンタクトホールにおいてソース電極またはドレイン電極73〜76に接する画素電極88を形成する。
絶縁膜87としては、ゲート絶縁膜53と同様に形成することができる。なお、絶縁膜87は、大気中に浮遊する有機物や金属物、水蒸気などの汚染不純物の侵入を防ぐためのものであり、緻密な膜が好ましい。また、絶縁膜87に窒化珪素膜を用いることで、酸化防止膜81、82中の酸素濃度を5×1019atoms/cm以下、好ましくは1×1019atoms/cm以下とすることができる。
画素電極88は、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電性材料を用いることができる。
なお、ここでは、画素電極88を透光性を有する導電性材料で形成し、透過型の液晶表示装置を作製する例を示すが、本発明の液晶表示装置はこの構成に限定されない。光を反射しやすい導電膜を用いて画素電極を形成することで、反射型の液晶表示装置を形成することができる。この場合、ソース電極又はドレイン電極76の一部を画素電極として用いることができる。
次に、絶縁膜87または画素電極88上に、スペーサ133を絶縁膜で形成する。なお図3(B)では、絶縁膜87上にスペーサ133を、酸化珪素を用いて形成した例を示している。画素電極88とスペーサ133は、いずれを先に形成しても良い。また、スペーサ133としてここでは、柱状スペーサを用いて示したがビーズスペーサを散布してもよい。
そして、絶縁膜87、スペーサ133、画素電極88を覆うように、配向膜131を成膜し、ラビング処理を施す。
次に、液晶を封止するためのシール材162を形成する。一方、透光性を有する導電性材料を用いた対向電極141と、ラビング処理が施された配向膜142とが形成された第2の基板140を用意する。そして、シール材162で囲まれた領域に液晶161を滴下し、別途用意しておいた第2の基板140を、対向電極141と画素電極88とが向かい合うように、シール材162を用いて貼り合わせる。なおシール材162にはフィラーが混入されていても良い。
なお、第2の基板140にシール材162を形成し、シール材162で囲まれた領域に液晶161を滴下した後、第1の基板120と第2の基板140をシール材162を用いて貼り合せてもよい。
また、上述した液晶の注入は、ディスペンサ式(滴下式)を用いているが、本発明はこれに限定されない。シール材162を用いて第1の基板120及び第2の基板140を貼り合わせてから毛細管現象を用いて液晶を注入するディップ式(汲み上げ式)を用いていても良い。
また、第1の基板120または第2の基板140にカラーフィルタや、ディスクリネーションを防ぐための遮蔽膜(ブラックマトリクス)などが形成されていても良い。また、第1の基板120の薄膜トランジスタが形成されている面とは逆の面に偏光板150を貼り合わせ、また第2の基板140の対向電極141が形成されている面とは逆の面に、偏光板151を貼り合わせておく。
対向電極141は、画素電極88と同様の材料を適宜用いることができる。画素電極88と液晶161と対向電極141が重なり合うことで、液晶素子132が形成されている。
以上の工程により、液晶表示装置を作製することができる。
なお、図1〜図3は、チャネルエッチ型の薄膜トランジスタを有する液晶表示装置の作製方法について示したが、チャネル保護型の薄膜トランジスタを用いて形成することができる。当該作製方法について、図4及び5を用いて示す。
図4(A)に示すように、基板50上にゲート電極51、52を形成する。次に、ゲート電極51、52上にゲート絶縁膜53、微結晶半導体膜54、酸化防止膜55、及び絶縁膜91を形成する。絶縁膜91としては、窒化珪素、窒化酸化珪素、酸化珪素、酸化窒化珪素をスパッタリング法、CVD法等で微結晶半導体膜54上に形成することができる。また、ポリイミド、アクリル、またはシロキサンを含む組成物をインクジェット法または印刷法により吐出し焼成して絶縁膜91を形成することができる。
次に、絶縁膜91を一部エッチングして、図4(B)に示すように、ゲート電極51、52と重なる微結晶半導体膜54上にチャネル保護膜92、93を形成する。酸化防止膜55を形成することで、微結晶半導体膜の酸化を防止することができる。また、上記の工程で絶縁膜91をエッチングしてチャネル保護膜92、93を形成するときのエッチング保護膜としても機能する。
次に、図4(C)に示すように、チャネル保護膜92、93上に一導電型を付与する不純物が添加された半導体膜94を形成し、一導電型を付与する不純物が添加された半導体膜94上に、導電膜95を形成し、導電膜95上に、多階調マスクを用いてレジストマスク61、62を形成する。一導電型を付与する不純物が添加された半導体膜94は、図1(B)に示す一導電型を付与する不純物元素が添加された半導体膜56と同様に形成することができる。また、導電膜95は図1(B)に示す導電膜57と同様に形成することができる。
次に、多階調マスクを用いたフォトリソグラフィ技術により形成したレジストマスク61、62を用いて、導電膜95、一導電型を付与する不純物が添加された半導体膜94、及び微結晶半導体膜54をエッチングし分離して、図5(A)に示すように、チャネル形成領域として機能する微結晶半導体膜69、70、酸化防止膜67、68、一導電型を付与する不純物が添加された半導体膜98、99、及び導電膜96、97を形成する。
次に、図5(B)に示すように、レジストマスク61、62をアッシングして、分離されたレジストマスク71、72を形成する。
次に、レジストマスク71、72をマスクとして、導電膜96、97をエッチングして、図5(C)に示すように、一対のソース電極及びドレイン電極101〜104を形成し、一導電型を付与する不純物が添加された半導体膜98、99をエッチングして、一対のソース領域及びドレイン領域105〜108を形成する。このとき、チャネル保護膜92、93の一部がエッチングされ、チャネル保護膜92a、93aとなる。また、酸化防止膜67、68も一部エッチングされて酸化防止膜109、110となる。
以上の工程により、ゲート電極51、52、及び微結晶半導体膜69、70に重畳するチャネル保護膜92a、93aを有するチャネル保護型の薄膜トランジスタ118、119を作製することができる。チャネル保護型の薄膜トランジスタを素子基板に形成することで、薄膜トランジスタの素子特性のばらつきを低減することができると共に、オフ電流を低減することができる。また、微結晶半導体膜でチャネル形成領域を構成することにより2〜10cm/V・secの電界効果移動度を得ることができる。従って、この薄膜トランジスタを画素部122の画素のスイッチング用素子として、さらに走査線(ゲート線)側の駆動回路121を形成する素子として利用することができる。
さらには、素子基板の駆動回路121を構成する薄膜トランジスタ及び画素部122のスイッチング素子として機能する薄膜トランジスタとして、順スタガ型の薄膜トランジスタを用いて形成することができる。当該素子基板ついて、図6を用いて示す。
順スタガ型の薄膜トランジスタは、基板50上に形成された下地膜として機能する絶縁膜40上にソース配線及びドレイン配線41a〜41dを形成する。次に、ソース配線及びドレイン配線41a〜41d上に微結晶半導体膜42を形成する。次に、微結晶半導体膜42上に酸化防止膜43を形成する。次に、酸化防止膜43、微結晶半導体膜42、ソース配線、及びドレイン配線41a〜41d上にゲート絶縁膜44を形成する。次に、ゲート絶縁膜44上にゲート電極45を形成する。次に、ゲート絶縁膜44及びゲート電極45上に保護膜46を形成し、保護膜46及びゲート絶縁膜44に形成されるコンタクトホールにおいて、画素部122の画素薄膜トランジスタとして機能する薄膜トランジスタのソース配線またはドレイン配線41dに接続する画素電極47を形成する。
なお、ソース配線及びドレイン配線41a〜41dは、図1(A)に示すゲート電極51、52と同様に形成することができる。微結晶半導体膜42は、図1(A)に示す微結晶半導体膜54と同様に形成することができる。酸化防止膜43は、図1(A)に示す酸化防止膜55と同様に形成することができる。ゲート絶縁膜44は図1(A)に示すゲート絶縁膜53と同様に形成することができる。ゲート電極45は、図1(B)に示す導電膜57と同様に形成することができる。保護膜46は図3(A)に示す絶縁膜87と同様に形成することができる。画素電極47は図3(A)に示す画素電極88と同様に形成することができる。
また、ここでは、ソース配線及びドレイン配線41a、41bに接して微結晶半導体膜42が形成されているが、ソース配線及びドレイン配線41a、41bと微結晶半導体膜42との間に、一導電型を付与する不純物を有する一対の半導体膜を設けてもよい。
次に、表示装置として、発光表示装置の作製工程について、図1〜図3、及び図7を用いて説明する。なお、ここでは、図3(C)に示すチャネルエッチ型の薄膜トランジスタを用いて示すが、チャネル保護型の薄膜トランジスタまたは順スガタ型の薄膜トランジスタを適宜用いることができる。
図1、図2、及び図3(A)の工程を経て、図7に示すように基板50上に薄膜トランジスタ85、86を形成し、薄膜トランジスタ85、86上に保護膜として機能する絶縁膜87を形成する。次に、絶縁膜87上にコンタクトホールを有する平坦化膜111を形成し、平坦化膜111上に薄膜トランジスタ86のソース電極またはドレイン電極に接続する画素電極112を形成する。
平坦化膜111は、アクリル、ポリイミド、ポリアミドなどの有機樹脂、またはシロキサンを用いて形成することが好ましい。
図7(A)では画素の薄膜トランジスタがn型であるので、画素電極112として、陰極を用いるのが望ましいが、逆にp型の場合は陽極を用いるのが望ましい。具体的には、陰極としては、仕事関数が小さい公知の材料、例えば、Ca、Al、CaF、MgAg、AlLi等を用いることができる。
次に図7(B)に示すように、平坦化膜111及び画素電極112の端部上に、隔壁113を形成する。隔壁113は開口部を有しており、該開口部において画素電極112が露出している。隔壁113は、有機樹脂膜、無機絶縁膜または有機ポリシロキサンを用いて形成する。特に感光性の材料を用い、画素電極上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。
次に、隔壁113の開口部において画素電極112と接するように、発光層114を形成する。発光層114は、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。
そして発光層114を覆うように、陽極材料を用いた共通電極115を形成する。共通電極115は、液晶表示装置に用いた画素電極88として列挙した透光性を有する導電性材料を用いた透光性導電膜で形成することができる。共通電極115として上記透光性導電膜の他に、窒化チタン膜またはチタン膜を用いても良い。図7(B)では、共通電極115としITOを用いている。隔壁113の開口部において、画素電極112と発光層114と共通電極115が重なり合うことで、発光素子117が形成されている。この後、発光素子117に酸素、水素、水分、二酸化炭素等が侵入しないように、共通電極115及び隔壁113上に保護膜116を形成することが好ましい。保護膜116としては、窒化珪素膜、窒化酸化珪素膜、DLC膜等を形成することができる。
さらに、実際には、図7(B)まで完成したら、さらに外気に曝されないように気密性が高く、脱ガスの少ない保護フィルム(ラミネートフィルム、紫外線硬化樹脂フィルム等)やカバー材でパッケージング(封入)することが好ましい。
次に、発光素子の構成について、図14を用いて説明する。ここでは、駆動用TFTがn型の場合を例に挙げて、画素の断面構造について説明する。
発光素子は発光を取り出すために少なくとも陽極又は陰極の一方が透明であればよい。そして、基板上に薄膜トランジスタ及び発光素子を形成し、基板とは逆側の面から発光を取り出す上面射出や、基板側の面から発光を取り出す下面射出や、基板側及び基板とは反対側の面から発光を取り出す両面射出構造の発光素子があり、本発明の画素構成はどの射出構造の発光素子にも適用することができる。
上面射出構造の発光素子について図14(A)を用いて説明する。
図14(A)に、駆動用TFT7001がn型で、発光素子7002から発せられる光が陽極7005側に抜ける場合の、画素の断面図を示す。図14(A)では、発光素子7002の陰極7003と駆動用TFT7001が電気的に接続されており、陰極7003上にEL層7004、陽極7005が順に積層されている。陰極7003は仕事関数が小さく、なおかつ光を反射する導電膜であれば公知の材料を用いることができる。例えば、Ca、Al、CaF、MgAg、AlLi等が望ましい。そしてEL層7004は、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。複数の層で構成されている場合、陰極7003上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注入層の順に積層する。なおこれらの層を全て設ける必要はない。陽極7005は光を透過する透光性を有する導電性材料を用いて形成し、例えば酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、ITO、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する導電性導電膜を用いても良い。
陰極7003及び陽極7005でEL層7004を挟んでいる領域が発光素子7002に相当する。図14(A)に示した画素の場合、発光素子7002から発せられる光は、白抜きの矢印で示すように陽極7005側に射出する。
次に、下面射出構造の発光素子について図14(B)を用いて説明する。駆動用TFT7011がn型で、発光素子7012から発せられる光が陰極7013側に射出する場合の、画素の断面図を示す。図14(B)では、駆動用TFT7011と電気的に接続された透光性を有する導電膜7017上に、発光素子7012の陰極7013が成膜されており、陰極7013上にEL層7014、陽極7015が順に積層されている。なお、陽極7015が透光性を有する場合、陽極上を覆うように、光を反射または遮蔽するための遮蔽膜7016が成膜されていてもよい。陰極7013は、図14(A)の場合と同様に、仕事関数が小さい導電膜であれば公知の材料を用いることができる。ただしその膜厚は、光を透過する程度(好ましくは、5nm〜30nm程度)とする。例えば20nmの膜厚を有するAlを、陰極7013として用いることができる。そしてEL層7014は、図14(A)と同様に、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。陽極7015は光を透過する必要はないが、図14(A)と同様に、透光性を有する導電性材料を用いて形成することができる。そして遮蔽膜7016は、例えば光を反射する金属等を用いることができるが、金属膜に限定されない。例えば黒の顔料添加した樹脂等を用いることもできる。
陰極7013及び陽極7015で、EL層7014を挟んでいる領域が発光素子7012に相当する。図14(B)に示した画素の場合、発光素子7012から発せられる光は、白抜きの矢印で示すように陰極7013側に射出する。
次に、両面射出構造の発光素子について、図14(C)を用いて説明する。図14(C)では、駆動用TFT7021と電気的に接続された透光性を有する導電膜7027上に、発光素子7022の陰極7023が成膜されており、陰極7023上にEL層7024、陽極7025が順に積層されている。陰極7023は、図14(A)の場合と同様に、仕事関数が小さい導電膜であれば公知の材料を用いることができる。ただしその膜厚は、光を透過する程度とする。例えば20nmの膜厚を有するAlを、陰極7023として用いることができる。そしてEL層7024は、図14(A)と同様に、単数の層で構成されていても、複数の層が積層されるように構成されていてもどちらでも良い。陽極7025は、図14(A)と同様に、光を透過する透光性を有する導電性材料を用いて形成することができる。
陰極7023と、EL層7024と、陽極7025とが重なっている部分が発光素子7022に相当する。図14(C)に示した画素の場合、発光素子7022から発せられる光は、白抜きの矢印で示すように陽極7025側と陰極7023側の両方に射出する。
なお本実施の形態では、駆動用TFTと発光素子が電気的に接続されている例を示したが、駆動用TFTと発光素子との間に電流制御用TFTが接続されている構成であってもよい。
なお本実施の形態で示す発光装置は、図14に示した構成に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。
以上により、表示装置を作製することができる。また、微結晶半導体膜の表面に、酸化防止膜を形成することで、微結晶半導体膜に含まれる結晶粒の表面の自然酸化を防止することが可能である。このため、薄膜トランジスタの特性の低減を防止することが可能である。
また、多階調マスクを用いて薄膜トランジスタを形成するため、フォトマスク数を削減することが可能であるため、コスト削減が可能である。
また、周波数が1GHz以上のマイクロ波プラズマCVD装置で発生されたプラズマは、電子密度が高いため、当該装置を用いることで、微結晶半導体膜の成膜速度を高めることができる。このため、微結晶半導体膜を用いた薄膜トランジスタを有する表示装置の量産性を高めることができる。また、複数のマイクロ波発生装置、及び複数の誘電体板で構成されるマイクロ波プラズマCVD装置は、安定した大面積のプラズマを生成することができる。このため、大面積基板を用いて表示装置を作製することが可能であり、量産性を高めることができる。
(実施の形態2)
次に、本発明の表示装置の一形態である表示パネルの構成について、以下に示す。
図15(A)に、信号線駆動回路6013のみを別途形成し、基板6011上に形成された画素部6012と接続している表示パネルの形態を示す。画素部6012及び走査線駆動回路6014は、微結晶半導体膜を用いた薄膜トランジスタを用いて形成する。微結晶半導体膜を用いた薄膜トランジスタよりも高い移動度が得られるトランジスタで信号線駆動回路を形成することで、走査線駆動回路よりも高い駆動周波数が要求される信号線駆動回路の動作を安定させることができる。なお、信号線駆動回路6013は、単結晶の半導体を用いたトランジスタ、多結晶の半導体を用いた薄膜トランジスタ、またはSOIを用いたトランジスタであっても良い。画素部6012と、信号線駆動回路6013と、走査線駆動回路6014とに、それぞれ電源の電位、各種信号等が、FPC6015を介して供給される。
なお、信号線駆動回路及び走査線駆動回路を、共に画素部と同じ基板上に形成しても良い。
また、駆動回路を別途形成する場合、必ずしも駆動回路が形成された基板を、画素部が形成された基板上に貼り合わせる必要はなく、例えばFPC上に貼り合わせるようにしても良い。図15(B)に、信号線駆動回路6023のみを別途形成し、基板6021上に形成された画素部6022及び走査線駆動回路6024と接続している表示装置パネルの形態を示す。画素部6022及び走査線駆動回路6024は、微結晶半導体膜を用いた薄膜トランジスタを用いて形成する。信号線駆動回路6023は、FPC6025を介して画素部6022と接続されている。画素部6022と、信号線駆動回路6023と、走査線駆動回路6024とに、それぞれ電源の電位、各種信号等が、FPC6025を介して供給される。
また、信号線駆動回路の一部または走査線駆動回路の一部のみを、微結晶半導体膜を用いた薄膜トランジスタを用いて画素部と同じ基板上に形成し、残りを別途形成して画素部と電気的に接続するようにしても良い。図15(C)に、信号線駆動回路が有するアナログスイッチ6033aを、画素部6032、走査線駆動回路6034と同じ基板6031上に形成し、信号線駆動回路が有するシフトレジスタ6033bを別途異なる基板に形成して貼り合わせる表示装置パネルの形態を示す。画素部6032及び走査線駆動回路6034は、微結晶半導体膜を用いた薄膜トランジスタを用いて形成する。信号線駆動回路が有するシフトレジスタ6033bは、FPC6035を介して画素部6032と接続されている。画素部6032と、信号線駆動回路と、走査線駆動回路6034とに、それぞれ電源の電位、各種信号等が、FPC6035を介して供給される。
図15に示すように、本発明の表示装置は、駆動回路の一部または全部を、画素部と同じ基板上に、微結晶半導体膜を用いた薄膜トランジスタを用いて形成することができる。
なお、別途形成した基板の接続方法は、特に限定されるものではなく、公知のCOG方法、ワイヤボンディング方法、或いはTAB方法などを用いることができる。また接続する位置は、電気的な接続が可能であるならば、図15に示した位置に限定されない。また、コントローラ、CPU、メモリ等を別途形成し、接続するようにしても良い。
なお本発明で用いる信号線駆動回路は、シフトレジスタとアナログスイッチのみを有する形態に限定されない。シフトレジスタとアナログスイッチに加え、バッファ、レベルシフタ、ソースフォロワ等、他の回路を有していても良い。また、シフトレジスタとアナログスイッチは必ずしも設ける必要はなく、例えばシフトレジスタの代わりにデコーダ回路のような信号線の選択ができる別の回路を用いても良いし、アナログスイッチの代わりにラッチ等を用いても良い。
図16に本発明の表示装置のブロック図を示す。図16に示す表示装置は、表示素子を備えた画素を複数有する画素部700と、各画素を選択する走査線駆動回路702と、選択された画素へのビデオ信号の入力を制御する信号線駆動回路703とを有する。
図16において信号線駆動回路703は、シフトレジスタ704、アナログスイッチ705を有している。シフトレジスタ704には、クロック信号(CLK)、スタートパルス信号(SP)が入力されている。クロック信号(CLK)とスタートパルス信号(SP)が入力されると、シフトレジスタ704においてタイミング信号が生成され、アナログスイッチ705に入力される。
またアナログスイッチ705には、ビデオ信号(video signal)が与えられている。アナログスイッチ705は入力されるタイミング信号に従ってビデオ信号をサンプリングし、後段の信号線に供給する。
次に、走査線駆動回路702の構成について説明する。走査線駆動回路702は、シフトレジスタ706、バッファ707を有している。また場合によってはレベルシフタを有していても良い。走査線駆動回路702において、シフトレジスタ706にクロック信号(CLK)及びスタートパルス信号(SP)が入力されることによって、選択信号が生成される。生成された選択信号はバッファ707において緩衝増幅され、対応する走査線に供給される。走査線には、1ライン分の画素のトランジスタのゲートが接続されている。そして、1ライン分の画素のトランジスタを一斉にONにしなくてはならないので、バッファ707は大きな電流を流すことが可能なものが用いられる。
フルカラーの表示装置で、R(赤)、G(緑)、B(青)に対応するビデオ信号を、順にサンプリングして対応する信号線に供給している場合、シフトレジスタ704とアナログスイッチ705とを接続するための端子数が、アナログスイッチ705と画素部700の信号線を接続するための端子数の1/3程度に相当する。よって、アナログスイッチ705を画素部700と同じ基板上に形成することで、アナログスイッチ705を画素部700と異なる基板上に形成した場合に比べて、別途形成した基板の接続に用いる端子の数を抑えることができ、接続不良の発生確率を抑え、歩留まりを高めることができる。
なお、図16の走査線駆動回路702は、シフトレジスタ706、及びバッファ707を有するが、シフトレジスタ706で走査線駆動回路702を構成してもよい。
なお、図16に示す構成は、本発明の表示装置の一形態を示したに過ぎず、信号線駆動回路と走査線駆動回路の構成はこれに限定されない。
次に、極性が全て同一の微結晶半導体膜を用いた薄膜トランジスタを含むシフトレジスタの一形態について図17及び図18を用いて説明する。図17に、本実施の形態のシフトレジスタの構成を示す。図17に示すシフトレジスタは、複数のフリップフロップ701−i(フリップフロップ701−1〜701−nのうちいずれか一)で構成される。また、第1のクロック信号、第2のクロック信号、スタートパルス信号、リセット信号が入力されて動作する。
図17のシフトレジスタの接続関係について説明する。図17のシフトレジスタは、i段目のフリップフロップ701−i(フリップフロップ701−1〜701−nのうちいずれか一)は、図18に示した第1の配線501が第7の配線717−i−1に接続され、図18に示した第2の配線502が第7の配線717−i+1に接続され、図18に示した第3の配線503が第7の配線717−iに接続され、図18に示した第6の配線506が第5の配線715に接続される。
また、図18に示した第4の配線504が奇数段目のフリップフロップでは第2の配線712に接続され、偶数段目のフリップフロップでは第3の配線713に接続され、図18に示した第5の配線505が第4の配線714に接続される。
ただし、1段目のフリップフロップ701−1の図18に示す第1の配線501は第1の配線711に接続され、n段目のフリップフロップ701−nの図18に示す第2の配線502は第6の配線716に接続される。
なお、第1の配線711、第2の配線712、第3の配線713、第6の配線716を、それぞれ第1の信号線、第2の信号線、第3の信号線、第4の信号線と呼んでもよい。さらに、第4の配線714、第5の配線715を、それぞれ第1の電源線、第2の電源線と呼んでもよい。
次に、図17に示すフリップフロップの詳細について、図18に示す。図18に示すフリップフロップは、第1の薄膜トランジスタ171、第2の薄膜トランジスタ172、第3の薄膜トランジスタ173、第4の薄膜トランジスタ174、第5の薄膜トランジスタ175、第6の薄膜トランジスタ176、第7の薄膜トランジスタ177及び第8の薄膜トランジスタ178を有する。本実施の形態において、第1の薄膜トランジスタ171、第2の薄膜トランジスタ172、第3の薄膜トランジスタ173、第4の薄膜トランジスタ174、第5の薄膜トランジスタ175、第6の薄膜トランジスタ176、第7の薄膜トランジスタ177及び第8の薄膜トランジスタ178は、nチャネル型トランジスタとし、ゲート・ソース間電圧(Vgs)がしきい値電圧(Vth)を上回ったとき導通状態になるものとする。
次に、図17に示すフリップフロップの接続構成について、以下に示す。
第1の薄膜トランジスタ171の第1の電極(ソース電極またはドレイン電極の一方)が第4の配線504に接続され、第1の薄膜トランジスタ171の第2の電極(ソース電極またはドレイン電極の他方)が第3の配線503に接続される。
第2の薄膜トランジスタ172の第1の電極が第6の配線506に接続され、第2の薄膜トランジスタ172の第2の電極が第3の配線503に接続される。
第3の薄膜トランジスタ173の第1の電極が第5の配線505に接続され、第3の薄膜トランジスタ173の第2の電極が第2の薄膜トランジスタ172のゲート電極に接続され、第3の薄膜トランジスタ173のゲート電極が第5の配線505に接続される。
第4の薄膜トランジスタ174の第1の電極が第6の配線506に接続され、第4の薄膜トランジスタ174の第2の電極が第2の薄膜トランジスタ172のゲート電極に接続され、第4の薄膜トランジスタ174のゲート電極が第1の薄膜トランジスタ171のゲート電極に接続される。
第5の薄膜トランジスタ175の第1の電極が第5の配線505に接続され、第5の薄膜トランジスタ175の第2の電極が第1の薄膜トランジスタ171のゲート電極に接続され、第5の薄膜トランジスタ175のゲート電極が第1の配線501に接続される。
第6の薄膜トランジスタ176の第1の電極が第6の配線506に接続され、第6の薄膜トランジスタ176の第2の電極が第1の薄膜トランジスタ171のゲート電極に接続され、第6の薄膜トランジスタ176のゲート電極が第2の薄膜トランジスタ172のゲート電極に接続される。
第7の薄膜トランジスタ177の第1の電極が第6の配線506に接続され、第7の薄膜トランジスタ177の第2の電極が第1の薄膜トランジスタ171のゲート電極に接続され、第7の薄膜トランジスタ177のゲート電極が第2の配線502に接続される。
第8の薄膜トランジスタ178の第1の電極が第6の配線506に接続され、第8の薄膜トランジスタ178の第2の電極が第2の薄膜トランジスタ172のゲート電極に接続され、第8の薄膜トランジスタ178のゲート電極が第1の配線501に接続される。
なお、第1の薄膜トランジスタ171のゲート電極、第4の薄膜トランジスタ174のゲート電極、第5の薄膜トランジスタ175の第2の電極、第6の薄膜トランジスタ176の第2の電極及び第7の薄膜トランジスタ177の第2の電極の接続箇所をノード143とする。さらに、第2の薄膜トランジスタ172のゲート電極、第3の薄膜トランジスタ173の第2の電極、第4の薄膜トランジスタ174の第2の電極、第6の薄膜トランジスタ176のゲート電極及び第8の薄膜トランジスタ178の第2の電極の接続箇所をノード144とする。
なお、第1の配線501、第2の配線502、第3の配線503及び第4の配線504を、それぞれ第1の信号線、第2の信号、第3の信号線、第4の信号線と呼んでもよい。さらに、第5の配線505を第1の電源線、第6の配線506を第2の電源線と呼んでもよい。
図18に示したフリップフロップの上面図の一例を図19に示す。
導電膜901は、第1の薄膜トランジスタ171の第1の電極として機能する部分を含み、画素電極と同時に形成される配線951を介して第4の配線504と接続される。
導電膜902は第1の薄膜トランジスタ171の第2の電極として機能する部分を含み、画素電極と同時に形成される配線952を介して第3の配線503と接続される。
導電膜903は、第1の薄膜トランジスタ171のゲート電極、及び第4の薄膜トランジスタ174のゲート電極として機能する部分を含む。
導電膜904は、第2の薄膜トランジスタ172の第1の電極、第6の薄膜トランジスタ176の第1の電極、第4の薄膜トランジスタ174の第1の電極、及び第8の薄膜トランジスタ178の第1の電極として機能する部分を含み、第6の配線506と接続される。
導電膜905は、第2の薄膜トランジスタ172の第2の電極として機能する部分を含み、画素電極と同時に形成される配線954を介して第3の配線503と接続される。
導電膜906は第2の薄膜トランジスタ172のゲート電極、及び第6の薄膜トランジスタ176のゲート電極として機能する部分を含む。
導電膜907は、第3の薄膜トランジスタ173の第1の電極として機能する部分を含み、配線955を介して第5の配線505と接続される。
導電膜908は、第3の薄膜トランジスタ173の第2の電極、及び第4の薄膜トランジスタ174の第2の電極として機能する部分を含み、画素電極と同時に形成される配線956を介して導電膜906と接続される。
導電膜909は、第3の薄膜トランジスタ173のゲート電極として機能する部分を含み、配線955を介して第5の配線505と接続される。
導電膜910は、第5の薄膜トランジスタ175の第1の電極として機能する部分を含み、画素電極と同時に形成される配線959を介して第5の配線505と接続される。
導電膜911は、第5の薄膜トランジスタ175の第2の電極、及び第7の薄膜トランジスタ177の第2の電極として機能する部分を含み、画素電極と同時に形成される配線958を介して導電膜903と接続される。
導電膜912は、第5の薄膜トランジスタ175のゲート電極として機能する部分を含み、画素電極と同時に形成される配線960を介して第1の配線501と接続される。
導電膜913は、第6の薄膜トランジスタ176の第2の電極として機能する部分を含み、画素電極と同時に形成される配線957を介して導電膜903と接続される。
導電膜914は、第7の薄膜トランジスタ177のゲート電極として機能する部分を含み、画素電極と同時に形成される配線962を介して第2の配線502と接続される。
導電膜915は、第8の薄膜トランジスタ178のゲート電極として機能する部分を含み、画素電極と同時に形成される配線961を介して導電膜912と接続される。
導電膜916は、第8の薄膜トランジスタ178の第2の電極として機能する部分を含み、画素電極と同時に形成される配線953を介して導電膜906と接続される。
なお、微結晶半導体膜981〜988の一部は、それぞれ第1の薄膜トランジスタ〜第8の薄膜トランジスタのチャネル形成領域として機能する。
次に、本発明の表示装置の一形態に相当する液晶表示パネルの外観及び断面について、図20を用いて説明する。図20Aは、第1の基板4001上に形成された微結晶半導体膜を有する薄膜トランジスタ4010及び液晶素子4013を、第2の基板4006との間にシール材4005によって封止した、パネルの上面図であり、図20(B)は、図20(A)のA−A’における断面図に相当する。
第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004とを囲むようにして、シール材4005が設けられている。また画素部4002と、走査線駆動回路4004の上に第2の基板4006が設けられている。よって画素部4002と、走査線駆動回路4004とは、第1の基板4001とシール材4005と第2の基板4006とによって、液晶4008と共に封止されている。また第1の基板4001上のシール材4005によって囲まれている領域とは異なる領域に、別途用意された基板上に多結晶半導体膜で形成された信号線駆動回路4003が実装されている。なお本実施の形態では、多結晶半導体膜を用いた薄膜トランジスタを有する信号線駆動回路4003を、第1の基板4001に貼り合わせる例について説明するが、単結晶半導体を用いたトランジスタで信号線駆動回路を形成し、貼り合わせるようにしても良い。図20(B)では、信号線駆動回路4003に含まれる、多結晶半導体膜で形成された薄膜トランジスタ4009を例示する。
また第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004は、薄膜トランジスタを複数有しており、図20(B)では、画素部4002に含まれる薄膜トランジスタ4010とを例示している。薄膜トランジスタ4010は微結晶半導体膜を用いた薄膜トランジスタに相当する。
また、液晶素子4013が有する画素電極4030は、薄膜トランジスタ4010とソース電極またはドレイン電極4040、配線4041を介して電気的に接続されている。そして液晶素子4013の対向電極4031は第2の基板4006上に形成されている。画素電極4030と対向電極4031と液晶4008とが重なっている部分が、液晶素子4013に相当する。
なお、第1の基板4001、第2の基板4006としては、ガラス、金属(代表的にはステンレス)、セラミックス、プラスチックを用いることができる。プラスチックとしては、FRP(Fiberglass−Reinforced Plastics)板、PVF(ポリビニルフルオライド)フィルム、ポリエステルフィルム、またはアクリル樹脂フィルムを用いることができる。また、アルミニウムホイルをPVFフィルムやポリエステルフィルムで挟んだ構造のシートを用いることもできる。
また、球状のスペーサ4035は、画素電極4030と対向電極4031との間の距離(セルギャップ)を制御するために設けられている。なお絶縁膜をパターニングすることで得られるスペーサを用いていても良い。
また別途形成された信号線駆動回路4003と、走査線駆動回路4004または画素部4002に与えられる各種信号及び電位は、引き回し配線4014、4015を介して、FPC4018から供給されている。
本実施の形態では、接続端子4016が、液晶素子4013が有する画素電極4030と同じ導電膜から形成されている。また、引き回し配線4014、4015は、配線4041と同じ導電膜で形成されている。
接続端子4016は、FPC4018が有する端子と、異方性導電膜4019を介して電気的に接続されている。
なお図示していないが、本実施の形態に示した液晶表示装置は配向膜、偏光板を有し、更にカラーフィルタや遮蔽膜を有していても良い。
また図20では、信号線駆動回路4003を別途形成し、第1の基板4001に実装している例を示しているが、本実施の形態はこの構成に限定されない。走査線駆動回路を別途形成して実装しても良いし、信号線駆動回路の一部または走査線駆動回路の一部のみを別途形成して実装しても良い。
次に、本発明の表示装置の一形態に相当する発光表示パネルの外観及び断面について、図21を用いて説明する。図21(A)は、第1の基板上に形成された微結晶半導体膜をチャネル形成領域に用いた薄膜トランジスタ及び発光素子を、第2の基板との間にシール材によって封止した、パネルの上面図であり、図21(B)は、図21(A)のA−A’における断面図に相当する。
第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004とを囲むようにして、シール材4005が設けられている。また画素部4002と、走査線駆動回路4004の上に第2の基板4006が設けられている。よって画素部4002と、走査線駆動回路4004とは、第1の基板4001とシール材4005と第2の基板4006とによって、充填材4007と共に密封されている。また第1の基板4001上のシール材4005によって囲まれている領域とは異なる領域に、別途用意された基板上に多結晶半導体膜で形成された信号線駆動回路4003が実装されている。なお本実施の形態では、多結晶半導体膜を用いた薄膜トランジスタを有する信号線駆動回路4003を、第1の基板4001に貼り合わせる例について説明するが、単結晶半導体を用いたトランジスタで信号線駆動回路を形成し、貼り合わせるようにしても良い。図21(B)では、信号線駆動回路4003に含まれる、多結晶半導体膜で形成された薄膜トランジスタ4009を例示する。
また第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004は、薄膜トランジスタを複数有しており、図21(B)では、画素部4002に含まれる薄膜トランジスタ4010を例示している。なお本実施の形態では、薄膜トランジスタ4010が駆動用TFTであると仮定するが、薄膜トランジスタ4010は電流制御用TFTであっても良いし、消去用TFTであっても良い。薄膜トランジスタ4010は微結晶半導体膜を用いた薄膜トランジスタに相当する。
発光素子4011は、第1の電極として機能する画素電極4030、発光層、第2の電極4012で構成される。なお、第2の電極4012は透光性を有する。また、発光素子4011が有する画素電極4030は、薄膜トランジスタ4010のソース電極またはドレイン電極4040と、配線4041を介して電気的に接続されている。なお発光素子4011の構成は、本実施の形態に示した構成に限定されない。発光素子4011から取り出す光の方向や、薄膜トランジスタ4010の極性などに合わせて、発光素子4011の構成は適宜変えることができる。
また、別途形成された信号線駆動回路4003と、走査線駆動回路4004または画素部4002に与えられる各種信号及び電位は、図21(B)に示す断面図では図示されていないが、引き回し配線4014及び4015を介して、FPC4018から供給されている。
本実施の形態では、接続端子4016が、発光素子4011が有する画素電極4030と同じ導電膜から形成されている。また、引き回し配線4014、4015は、配線4041と同じ導電膜から形成されている。
接続端子4016は、FPC4018が有する端子と、異方性導電膜4019を介して電気的に接続されている。
発光素子4011からの光の取り出し方向に位置する基板は、透明でなければならない。その場合には、ガラス板、プラスチック板、ポリエステルフィルムまたはアクリルフィルムのような透光性を有する材料を用いる。
また、充填材4007としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹脂または熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル、ポリイミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEVA(エチレンビニルアセテート)を用いることができる。本実施の形態では充填材として窒素を用いる。
また、必要であれば、発光素子の射出面に偏光板、又は円偏光板(楕円偏光板を含む)、位相差板(λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを適宜設けてもよい。また、偏光板又は円偏光板に反射防止膜を設けてもよい。例えば、表面の凹凸により反射光を拡散し、映り込みを低減できるアンチグレア処理を施すことができる。
なお、図21では、信号線駆動回路4003を別途形成し、第1の基板4001に実装している例を示しているが、本実施の形態はこの構成に限定されない。走査線駆動回路を別途形成して実装しても良いし、信号線駆動回路の一部または走査線駆動回路の一部のみを別途形成して実装しても良い。
本実施の形態は、他の実施の形態に記載した構成と組み合わせて実施することが可能である。
(実施の形態3)
本発明により得られる液晶表示装置や発光装置等の表示装置によって、様々なモジュール(アクティブマトリクス型液晶モジュール、アクティブマトリクス型ELモジュール)に用いることができる。即ち、それらを表示部に組み込んだ電子機器全てに本発明を実施できる。
その様な電子機器としては、ビデオカメラやデジタルカメラ等のカメラ、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、カーナビゲーション、プロジェクタ、カーステレオ、パーソナルコンピュータ、携帯情報端末(モバイルコンピュータ、携帯電話または電子書籍等)などが挙げられる。それらの一例を図22に示す。
図22(A)はテレビジョン装置である。表示モジュールを、図22(A)に示すように、筐体に組みこんで、テレビジョン装置を完成させることができる。FPCまで取り付けられた表示パネルのことを表示モジュールとも呼ぶ。表示モジュールにより主画面2003が形成され、その他付属設備としてスピーカー部2009、操作スイッチなどが備えられている。このように、テレビジョン装置を完成させることができる。
図22(A)に示すように、筐体2001に表示素子を利用した表示用パネル2002が組みこまれ、受信機2005により一般のテレビ放送の受信をはじめ、モデム2004を介して有線又は無線による通信ネットワークに接続することにより一方向(送信者から受信者)又は双方向(送信者と受信者間、又は受信者間同士)の情報通信をすることもできる。テレビジョン装置の操作は、筐体に組みこまれたスイッチ又は別体のリモコン操作機2006により行うことが可能であり、このリモコン装置にも出力する情報を表示する表示部2007が設けられていても良い。
また、テレビジョン装置にも、主画面2003の他にサブ画面2008を第2の表示用パネルで形成し、チャネルや音量などを表示する構成が付加されていても良い。この構成において、主画面2003を視野角の優れた発光表示パネルで形成し、サブ画面を低消費電力で表示可能な液晶表示パネルで形成しても良い。また、低消費電力化を優先させるためには、主画面2003を液晶表示パネルで形成し、サブ画面2008を発光表示パネルで形成し、サブ画面2008は点滅可能とする構成としても良い。
勿論、本発明はテレビジョン装置に限定されず、パーソナルコンピュータのモニタをはじめ、鉄道の駅や空港などにおける情報表示盤や、街頭における広告表示盤など大面積の表示媒体としても様々な用途に適用することができる。
図22(B)は携帯電話機2301の一例を示している。この携帯電話機2301は、表示部2302、操作部2303などを含んで構成されている。表示部2302においては、上記実施の形態で説明した表示装置を適用することで、量産性を高めることができる。
また、図22(C)に示す携帯型のコンピュータは、本体2401、表示部2402等を含んでいる。表示部2402に、上記実施の形態に示す表示装置を適用することにより、量産性を高めることができる。
本発明の表示装置の作製方法を説明する断面図である。 本発明の表示装置の作製方法を説明する断面図である。 本発明の表示装置の作製方法を説明する断面図である。 本発明の表示装置の作製方法を説明する断面図である。 本発明の表示装置の作製方法を説明する断面図である。 本発明の表示装置の作製方法を説明する断面図である。 本発明の表示装置の作製方法を説明する断面図である。 本発明に適用可能な多階調マスクを説明する図である。 本発明に適用可能な多階調マスクを説明する図である。 本発明のマイクロ波プラズマCVD装置を説明する上面図である。 本発明のマイクロ波プラズマCVD装置の反応室を説明する断面図である。 本発明のマイクロ波プラズマCVD装置のガス供給部を説明する図である。 本発明のマイクロ波プラズマCVD装置のガス精製装置を説明する図である。 本発明に適用可能な発光装置における画素を説明する断面図である。 本発明の表示パネルを説明する斜視図である。 本発明に適用可能な表示装置の構成を説明するブロック図である。 本発明に適用可能な表示装置の駆動回路の構成を説明する等価回路図である。 本発明に適用可能な表示装置の駆動回路の構成を説明する等価回路図である。 本発明に適用可能な表示装置の駆動回路のレイアウトを説明する上面図である。 本発明の液晶表示パネルを説明する上面図及び断面図である。 本発明の発光表示パネルを説明する上面図及び断面図である。 本発明の表示装置を用いた電子機器を説明する斜視図である。

Claims (2)

  1. 基板上にゲート電極を形成する第1の工程と、
    前記ゲート電極上にゲート絶縁膜を形成する第2の工程と、
    前記ゲート絶縁膜上に微結晶半導体膜を形成する第3の工程と、
    前記微結晶半導体膜上に非晶質半導体膜を形成する第4の工程と、
    前記非晶質半導体膜上に一導電型を付与する不純物を含む第1の半導体膜を形成する第5の工程と、
    前記第1の半導体膜上に第1の導電膜を形成する第6の工程と、
    前記第1の導電膜、前記第1の半導体膜、前記非晶質半導体膜、及び前記微結晶半導体膜を島状に加工する第7の工程と、
    島状に加工された前記第1の導電膜をエッチングして一対の第2の導電膜を形成する第8の工程と、
    島状に加工された前記第1の半導体膜をエッチングして一対の第2の半導体膜を形成する第9の工程と、を有し、
    前記第2の工程と前記第3の工程とは同一の反応室内で行われ、
    前記第3の工程において、前記反応室内に水素化珪素を導入し、前記反応室内の酸素と前記水素化珪素と反応させることにより生じた反応物を前記反応室外に排出した後に前記微結晶半導体膜を形成し、
    記第4の工程の後であって前記第5の工程の前に、前記非晶質半導体膜表面をハロゲン化することを特徴とする表示装置の作製方法。
  2. 基板上にゲート電極を形成する第1の工程と、
    前記ゲート電極上にゲート絶縁膜を形成する第2の工程と、
    前記ゲート絶縁膜上に微結晶半導体膜を形成する第3の工程と、
    前記微結晶半導体膜上に非晶質半導体膜を形成する第4の工程と、
    前記非晶質半導体膜上に一導電型を付与する不純物を含む第1の半導体膜を形成する第5の工程と、
    前記第1の半導体膜上に第1の導電膜を形成する第6の工程と、
    前記第1の導電膜、前記第1の半導体膜、前記非晶質半導体膜、及び前記微結晶半導体膜を島状に加工する第7の工程と、
    島状に加工された前記第1の導電膜をエッチングして一対の第2の導電膜を形成する第8の工程と、
    島状に加工された前記第1の半導体膜をエッチングして一対の第2の半導体膜を形成する第9の工程と、を有し、
    前記第2の工程と前記第3の工程とは同一の反応室内で行われ、
    前記第3の工程において、前記反応室内に水素化珪素を導入し、前記反応室内の酸素と前記水素化珪素と反応させることにより生じた反応物を前記反応室外に排出した後に前記微結晶半導体膜を形成し、
    記第4の工程の後であって前記第5の工程の前に、前記非晶質半導体膜表面を窒素化することを特徴とする表示装置の作製方法。
JP2008151264A 2007-06-15 2008-06-10 表示装置の作製方法 Expired - Fee Related JP5331389B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008151264A JP5331389B2 (ja) 2007-06-15 2008-06-10 表示装置の作製方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007159372 2007-06-15
JP2007159372 2007-06-15
JP2008151264A JP5331389B2 (ja) 2007-06-15 2008-06-10 表示装置の作製方法

Publications (3)

Publication Number Publication Date
JP2009021571A JP2009021571A (ja) 2009-01-29
JP2009021571A5 JP2009021571A5 (ja) 2011-05-26
JP5331389B2 true JP5331389B2 (ja) 2013-10-30

Family

ID=40131459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008151264A Expired - Fee Related JP5331389B2 (ja) 2007-06-15 2008-06-10 表示装置の作製方法

Country Status (2)

Country Link
US (1) US8300168B2 (ja)
JP (1) JP5331389B2 (ja)

Families Citing this family (214)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US11980366B2 (en) 2006-10-03 2024-05-14 Cilag Gmbh International Surgical instrument
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US8921858B2 (en) * 2007-06-29 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9176353B2 (en) * 2007-06-29 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8334537B2 (en) * 2007-07-06 2012-12-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
TWI456663B (zh) 2007-07-20 2014-10-11 Semiconductor Energy Lab 顯示裝置之製造方法
US8330887B2 (en) * 2007-07-27 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
JP5058909B2 (ja) 2007-08-17 2012-10-24 株式会社半導体エネルギー研究所 プラズマcvd装置及び薄膜トランジスタの作製方法
US8030147B2 (en) * 2007-09-14 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing thin film transistor and display device including the thin film transistor
US20090090915A1 (en) 2007-10-05 2009-04-09 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor, and method for manufacturing the same
JP5311955B2 (ja) * 2007-11-01 2013-10-09 株式会社半導体エネルギー研究所 表示装置の作製方法
US8187956B2 (en) * 2007-12-03 2012-05-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing microcrystalline semiconductor film, thin film transistor having microcrystalline semiconductor film, and photoelectric conversion device having microcrystalline semiconductor film
US8591650B2 (en) * 2007-12-03 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for forming crystalline semiconductor film, method for manufacturing thin film transistor, and method for manufacturing display device
KR101446249B1 (ko) 2007-12-03 2014-10-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치 제조방법
RU2493788C2 (ru) 2008-02-14 2013-09-27 Этикон Эндо-Серджери, Инк. Хирургический режущий и крепежный инструмент, имеющий радиочастотные электроды
US11986183B2 (en) 2008-02-14 2024-05-21 Cilag Gmbh International Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8247315B2 (en) * 2008-03-17 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method for manufacturing semiconductor device
CN102007585B (zh) * 2008-04-18 2013-05-29 株式会社半导体能源研究所 薄膜晶体管及其制造方法
KR101455317B1 (ko) 2008-04-18 2014-10-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 박막 트랜지스터 및 그 제작 방법
JP5436017B2 (ja) * 2008-04-25 2014-03-05 株式会社半導体エネルギー研究所 半導体装置
WO2009157573A1 (en) 2008-06-27 2009-12-30 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, semiconductor device and electronic device
EP2291856A4 (en) * 2008-06-27 2015-09-23 Semiconductor Energy Lab THIN FILM TRANSISTOR
JP5627071B2 (ja) 2008-09-01 2014-11-19 株式会社半導体エネルギー研究所 半導体装置の作製方法
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
JP5498762B2 (ja) * 2008-11-17 2014-05-21 株式会社半導体エネルギー研究所 薄膜トランジスタの作製方法
TWI501319B (zh) 2008-12-26 2015-09-21 Semiconductor Energy Lab 半導體裝置及其製造方法
US8278657B2 (en) 2009-02-13 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device including the transistor, and manufacturing method of the transistor and the semiconductor device
US8247812B2 (en) * 2009-02-13 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device including the transistor, and manufacturing method of the transistor and the semiconductor device
TWI556309B (zh) 2009-06-19 2016-11-01 半導體能源研究所股份有限公司 電漿處理裝置,形成膜的方法,和薄膜電晶體的製造方法
US8258025B2 (en) * 2009-08-07 2012-09-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing microcrystalline semiconductor film and thin film transistor
US9177761B2 (en) 2009-08-25 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD apparatus, method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device
JP5709579B2 (ja) * 2010-03-02 2015-04-30 株式会社半導体エネルギー研究所 微結晶半導体膜の作製方法
US8431496B2 (en) * 2010-03-05 2013-04-30 Semiconductor Energy Labortory Co., Ltd. Semiconductor device and manufacturing method thereof
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9168038B2 (en) 2010-09-30 2015-10-27 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a tissue thickness compensator
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
JP5931573B2 (ja) * 2011-05-13 2016-06-08 株式会社半導体エネルギー研究所 半導体装置の作製方法
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
BR112014024098B1 (pt) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. cartucho de grampos
MX358135B (es) 2012-03-28 2018-08-06 Ethicon Endo Surgery Inc Compensador de grosor de tejido que comprende una pluralidad de capas.
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
MX368026B (es) 2013-03-01 2019-09-12 Ethicon Endo Surgery Inc Instrumento quirúrgico articulable con vías conductoras para la comunicación de la señal.
BR112015026109B1 (pt) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc Instrumento cirúrgico
US9445813B2 (en) 2013-08-23 2016-09-20 Ethicon Endo-Surgery, Llc Closure indicator systems for surgical instruments
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
JP6532889B2 (ja) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC 締結具カートリッジ組立体及びステープル保持具カバー配置構成
JP6612256B2 (ja) 2014-04-16 2019-11-27 エシコン エルエルシー 不均一な締結具を備える締結具カートリッジ
CN106456176B (zh) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 包括具有不同构型的延伸部的紧固件仓
US20150297222A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
KR102245497B1 (ko) * 2014-08-08 2021-04-29 삼성디스플레이 주식회사 표시 기판 및 이의 제조 방법
BR112017004361B1 (pt) 2014-09-05 2023-04-11 Ethicon Llc Sistema eletrônico para um instrumento cirúrgico
US9737301B2 (en) 2014-09-05 2017-08-22 Ethicon Llc Monitoring device degradation based on component evaluation
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9968355B2 (en) 2014-12-18 2018-05-15 Ethicon Llc Surgical instruments with articulatable end effectors and improved firing beam support arrangements
MX2017008108A (es) * 2014-12-18 2018-03-06 Ethicon Llc Instrumento quirurgico con un yunque que puede moverse de manera selectiva sobre un eje discreto no movil con relacion a un cartucho de grapas.
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
JP2020121162A (ja) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10433844B2 (en) 2015-03-31 2019-10-08 Ethicon Llc Surgical instrument with selectively disengageable threaded drive systems
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
CN108882932B (zh) 2016-02-09 2021-07-23 伊西康有限责任公司 具有非对称关节运动构造的外科器械
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US10835245B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US11191540B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument
JP7010956B2 (ja) 2016-12-21 2022-01-26 エシコン エルエルシー 組織をステープル留めする方法
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
EP4070740A1 (en) 2017-06-28 2022-10-12 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US20190000459A1 (en) 2017-06-28 2019-01-03 Ethicon Llc Surgical instruments with jaws constrained to pivot about an axis upon contact with a closure member that is parked in close proximity to the pivot axis
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US20190192148A1 (en) 2017-12-21 2019-06-27 Ethicon Llc Stapling instrument comprising a tissue drive
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
CN109037037B (zh) * 2018-09-27 2023-09-01 武汉华星光电技术有限公司 低温多晶硅层、薄膜晶体管及其制作方法
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US11871925B2 (en) 2020-07-28 2024-01-16 Cilag Gmbh International Surgical instruments with dual spherical articulation joint arrangements
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11980362B2 (en) 2021-02-26 2024-05-14 Cilag Gmbh International Surgical instrument system comprising a power transfer coil
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US20220378425A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a control system that controls a firing stroke length
US11980363B2 (en) 2021-10-18 2024-05-14 Cilag Gmbh International Row-to-row staple array variations
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
CN114361338A (zh) * 2022-01-07 2022-04-15 天津大学 一种增强n型半导体稳定性的方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122123A (en) 1980-03-03 1981-09-25 Shunpei Yamazaki Semiamorphous semiconductor
JPS6262073A (ja) 1985-09-11 1987-03-18 Ishikawajima Harima Heavy Ind Co Ltd ポペツト弁の温度制御装置
JPH0253941A (ja) 1988-08-17 1990-02-22 Tsudakoma Corp 織機の運転装置
JPH03278466A (ja) * 1990-03-27 1991-12-10 Toshiba Corp 薄膜トランジスタおよびその製造方法
KR950013784B1 (ko) 1990-11-20 1995-11-16 가부시키가이샤 한도오따이 에네루기 겐큐쇼 반도체 전계효과 트랜지스터 및 그 제조방법과 박막트랜지스터
US5514879A (en) 1990-11-20 1996-05-07 Semiconductor Energy Laboratory Co., Ltd. Gate insulated field effect transistors and method of manufacturing the same
JP2791422B2 (ja) 1990-12-25 1998-08-27 株式会社 半導体エネルギー研究所 電気光学装置およびその作製方法
US5849601A (en) 1990-12-25 1998-12-15 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US7115902B1 (en) 1990-11-20 2006-10-03 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US7576360B2 (en) 1990-12-25 2009-08-18 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device which comprises thin film transistors and method for manufacturing the same
US7098479B1 (en) 1990-12-25 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US6835523B1 (en) 1993-05-09 2004-12-28 Semiconductor Energy Laboratory Co., Ltd. Apparatus for fabricating coating and method of fabricating the coating
US6171674B1 (en) 1993-07-20 2001-01-09 Semiconductor Energy Laboratory Co., Ltd. Hard carbon coating for magnetic recording medium
JPH0963955A (ja) * 1995-08-23 1997-03-07 Toyota Central Res & Dev Lab Inc 成膜装置、成膜方法および単結晶膜の製造方法
KR100257158B1 (ko) * 1997-06-30 2000-05-15 김영환 박막 트랜지스터 및 그의 제조 방법
JP2000277439A (ja) 1999-03-25 2000-10-06 Kanegafuchi Chem Ind Co Ltd 結晶質シリコン系薄膜のプラズマcvd方法およびシリコン系薄膜光電変換装置の製造方法
JP4700160B2 (ja) * 2000-03-13 2011-06-15 株式会社半導体エネルギー研究所 半導体装置
SG142160A1 (en) * 2001-03-19 2008-05-28 Semiconductor Energy Lab Method of manufacturing a semiconductor device
JP4782316B2 (ja) * 2001-06-29 2011-09-28 東京エレクトロン株式会社 処理方法及びプラズマ装置
JP2004014958A (ja) 2002-06-11 2004-01-15 Fuji Electric Holdings Co Ltd 薄膜多結晶太陽電池とその製造方法
JP4748954B2 (ja) 2003-07-14 2011-08-17 株式会社半導体エネルギー研究所 液晶表示装置
US8319219B2 (en) * 2003-07-14 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
DE10334265A1 (de) * 2003-07-25 2005-02-24 Basf Ag Thermoplastisches Polyurethan enthaltend Silangruppen
JP2005050905A (ja) 2003-07-30 2005-02-24 Sharp Corp シリコン薄膜太陽電池の製造方法
JP2005167051A (ja) * 2003-12-04 2005-06-23 Sony Corp 薄膜トランジスタおよび薄膜トランジスタの製造方法
TWI234288B (en) * 2004-07-27 2005-06-11 Au Optronics Corp Method for fabricating a thin film transistor and related circuits
JP2006148082A (ja) * 2004-10-19 2006-06-08 Semiconductor Energy Lab Co Ltd 配線基板及び半導体装置の作製方法
JP5013393B2 (ja) 2005-03-30 2012-08-29 東京エレクトロン株式会社 プラズマ処理装置と方法
JP4597792B2 (ja) 2005-06-27 2010-12-15 東京エレクトロン株式会社 処理ガス供給構造およびプラズマ処理装置
JP4777717B2 (ja) 2005-08-10 2011-09-21 東京エレクトロン株式会社 成膜方法、プラズマ処理装置および記録媒体

Also Published As

Publication number Publication date
US8300168B2 (en) 2012-10-30
JP2009021571A (ja) 2009-01-29
US20080308807A1 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP5331389B2 (ja) 表示装置の作製方法
JP7290769B2 (ja) 半導体装置
JP5364293B2 (ja) 表示装置の作製方法およびプラズマcvd装置
JP5435907B2 (ja) 表示装置の作製方法
JP5542269B2 (ja) 発光装置
US8633485B2 (en) Display device and manufacturing method thereof
US7998800B2 (en) Method for manufacturing semiconductor device
JP5311955B2 (ja) 表示装置の作製方法
US8951849B2 (en) Method for manufacturing semiconductor device including layer containing yttria-stabilized zirconia
JP2009071284A (ja) 表示装置
JP5288597B2 (ja) 半導体装置の作製方法
JP2009130229A (ja) 半導体装置の作製方法
JP5324837B2 (ja) 表示装置の作製方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5331389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees