JP5321772B2 - Medicinal drug substance containing magnetic particles - Google Patents

Medicinal drug substance containing magnetic particles Download PDF

Info

Publication number
JP5321772B2
JP5321772B2 JP2006165168A JP2006165168A JP5321772B2 JP 5321772 B2 JP5321772 B2 JP 5321772B2 JP 2006165168 A JP2006165168 A JP 2006165168A JP 2006165168 A JP2006165168 A JP 2006165168A JP 5321772 B2 JP5321772 B2 JP 5321772B2
Authority
JP
Japan
Prior art keywords
magnetic
iron oxide
particles
fine particles
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006165168A
Other languages
Japanese (ja)
Other versions
JP2007023027A (en
Inventor
俊之 博多
浩史 川崎
真次 植本
七生 堀石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2006165168A priority Critical patent/JP5321772B2/en
Publication of JP2007023027A publication Critical patent/JP2007023027A/en
Application granted granted Critical
Publication of JP5321772B2 publication Critical patent/JP5321772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant

Landscapes

  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Power Engineering (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

本発明は、医療技術分野において、薬物の送達法であるドラッグデリバリー システム(以降、DDSと記す)、レントゲンやMRI(磁気共鳴)等で用いられるCT(計算断層像法)診断及び温熱治療法などの治療用の磁性粒子含有医薬に用いる原薬に関するものである。   The present invention relates to a drug delivery system (hereinafter referred to as DDS) which is a drug delivery method in the medical technical field, CT (computed tomography) diagnosis and thermotherapy used in X-rays, MRI (magnetic resonance), etc. The present invention relates to a drug substance for use in a magnetic particle-containing medicine for the treatment of.

詳述すれば、本発明は、上記磁性粒子含有医薬の病変組織や細胞への送達指向性、CTによる診断時の造影感度及び温熱治療時の発熱性等の性能を向上させることを目的とする磁性粒子含有医薬用原薬である。   More specifically, an object of the present invention is to improve performance such as directivity of delivery of the magnetic particle-containing drug to a diseased tissue or cell, contrast sensitivity at the time of diagnosis by CT, and heat generation at the time of thermotherapy. It is an active pharmaceutical ingredient containing magnetic particles.

近年、磁性体として磁性酸化鉄微粒子を用い、リン脂質、タンパク質及び水溶性ポリマー等の生体適応性物質と複合化した磁性粒子含有医薬が検討されている(特許文献1〜5等)。   In recent years, magnetic particle-containing pharmaceuticals in which magnetic iron oxide fine particles are used as a magnetic substance and complexed with biocompatible substances such as phospholipids, proteins, and water-soluble polymers have been studied (Patent Documents 1 to 5 and the like).

また、磁性酸化鉄微粒子の単分散水溶液を調整するために、界面活性剤等の表面処理剤で粒子表面を被覆する方法(特許文献6)、Al、Si等の無機物を被覆する方法(特許文献7)、または有機金属ポリマーで被覆する方法(特許文献4)等が知られている。   Further, in order to prepare a monodispersed aqueous solution of magnetic iron oxide fine particles, a method of coating the particle surface with a surface treatment agent such as a surfactant (Patent Document 6), a method of coating an inorganic substance such as Al and Si (Patent Document) 7) or a method of coating with an organometallic polymer (Patent Document 4) is known.

しかし、これらは磁性酸化鉄粒子を利用するものではあるが、磁性粒子に付加する修飾機能を主体とするものであり、磁性酸化鉄微粒子の粒度や磁気特性等の粉体特性と磁性粒子含有医薬特性との特性要因の関係が十分に解明されているとは言い難いものである。   However, although these use magnetic iron oxide particles, they mainly have a modification function added to the magnetic particles, and the powder properties such as the particle size and magnetic properties of the magnetic iron oxide fine particles and the magnetic particle-containing pharmaceuticals It is hard to say that the relationship between the characteristics and the characteristic factors has been fully elucidated.

特に、微細な磁性酸化鉄粒子を生体適応性物質に均一に分散・担持させることは、酸化鉄粒子の過度の磁気凝集に起因して容易なことではなく、これまでは大きな粒子サイズの磁性酸化鉄粒子が用いられてきた。   In particular, it is not easy to uniformly disperse and carry fine magnetic iron oxide particles in a biocompatible substance due to excessive magnetic aggregation of iron oxide particles. Iron particles have been used.

また、粒子サイズが大きな磁性酸化鉄粒子は、治療後に酸化鉄粒子が体内に残留する可能性が高く、使用上の安全性が十分に確保できるとは言い難いものであった。   In addition, magnetic iron oxide particles having a large particle size have a high possibility of iron oxide particles remaining in the body after treatment, and it is difficult to say that safety in use can be sufficiently secured.

そこで、均質な機能性、例えば試薬送達性、造影感度、発熱性能等を有するとともに、機能を十分に発揮できる診断用及び治療用の磁性粒子含有医薬を再現性良く生成できる磁性粒子含有医薬用原薬の開発が求められている。   Therefore, magnetic particle-containing pharmaceutical raw materials that have homogeneous functionality, such as reagent delivery properties, contrast sensitivity, heat generation performance, etc., and that can generate magnetic particle-containing pharmaceuticals for diagnosis and treatment that can fully perform their functions with high reproducibility. There is a need for drug development.

特開平3−128331号公報Japanese Patent Laid-Open No. 3-128331 特開平4−52202号公報JP-A-4-52202 特開平7−122410号公報JP 7-122410 A 特表平8−500700号公報JP-T 8-500700 Publication 特開平11−106391号公報JP-A-11-106391 特開平1−4002号公報JP-A-1-4002 特開平5−310429号公報JP-A-5-310429

上述したように、均質な特性を有した磁性体含有医薬を再現性良く得るためには、磁性粒子含有医薬の製薬時において、生体適応性物質と磁性酸化鉄微粒子とを均一に分散混合させることが不可欠な条件であり、そのためには原薬中の磁性酸化鉄微粒子は微細で粒度が均一な磁性酸化鉄微粒子からなる単分散コロイド水溶液であることが必要である。   As described above, in order to obtain a magnetic substance-containing drug having homogeneous characteristics with good reproducibility, the biocompatible substance and the magnetic iron oxide fine particles are uniformly dispersed and mixed at the time of pharmaceutical preparation of the magnetic particle-containing drug. Therefore, the magnetic iron oxide fine particles in the drug substance are required to be a monodispersed aqueous colloidal solution composed of fine and uniform magnetic iron oxide fine particles.

しかし、界面活性剤などの表面処理剤を使用して磁性酸化鉄微粒子を分散させた場合、使用した表面処理剤が残留し、得られる磁性体含有医薬にもこれらの表面処理剤が混入して生体への安全性に影響を及ぼし、また生体適応性物質との混合を阻害する等の問題がある。さらに、表面処理剤を除去するためには複雑な処理が必要であった。   However, when a surface treatment agent such as a surfactant is used to disperse the magnetic iron oxide fine particles, the used surface treatment agent remains, and these surface treatment agents are mixed in the obtained magnetic substance-containing medicine. There are problems such as affecting the safety to the living body and inhibiting mixing with the biocompatible substance. Furthermore, complicated treatment is required to remove the surface treatment agent.

本発明は、上記従来の問題点に鑑みてなされたものであり、表面処理剤を使用しないで、均一な粒度から成る磁性酸化鉄微粒子の分散コロイド無菌水溶液を提供することを技術的課題とする。   The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a sterile colloidal aqueous solution of magnetic iron oxide fine particles having a uniform particle size without using a surface treatment agent. .

本発明者は、前記課題を解決すべく鋭意研究を重ねた結果、磁性粒子として微細な磁性酸化鉄粒子に着目し、超常磁性酸化鉄粒子からなる分散コロイド水溶液の分散安定条件を見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventor has focused on fine magnetic iron oxide particles as magnetic particles, and found the dispersion stability condition of a dispersed colloidal aqueous solution composed of superparamagnetic iron oxide particles.

即ち、本発明は、一次粒子の平均粒子径が5〜30nm、凝集粒子径が30〜200nmの磁性酸化鉄微粒子が分散したコロイド無菌水溶液であることを特徴とする磁性粒子含有医薬用原薬である(本発明1)。   That is, the present invention relates to a magnetic particle-containing drug substance characterized in that it is a colloid sterile aqueous solution in which magnetic iron oxide fine particles having an average primary particle diameter of 5 to 30 nm and an aggregate particle diameter of 30 to 200 nm are dispersed. There is (Invention 1).

また、本発明は、磁性酸化鉄微粒子の飽和磁化が35〜90Am/kg、保磁力が0〜6.0kA/mであることを特徴とする前記磁性粒子含有医薬用原薬である(本発明2)。 The present invention is also the above-mentioned medicinal drug substance containing magnetic particles, wherein the magnetic iron oxide fine particles have a saturation magnetization of 35 to 90 Am 2 / kg and a coercive force of 0 to 6.0 kA / m (this book) Invention 2).

また、本発明は、磁性酸化鉄微粒子がスピネル構造の組成物MOFe(Mは2価金属)であることを特徴とする前記磁性粒子含有医薬用原薬である(本発明3)。 In addition, the present invention provides the above-described magnetic particle-containing pharmaceutical drug substance, wherein the magnetic iron oxide fine particles are a spinel structure composition MOFe 2 O 3 (M is a divalent metal) (Invention 3).

また、本発明は、組成物MOFe(Mは2価金属)のMが、Fe及び/又はMg(但し、FeとMgの総和がFe1モルに対して1モル以下)であることを特徴とする前記磁性粒子含有医薬用原薬である(本発明4)。 Further, in the present invention, M of the composition MOFe 2 O 3 (M is a divalent metal) is Fe and / or Mg (provided that the sum of Fe and Mg is 1 mol or less relative to 1 mol of Fe 2 O 3 ). The magnetic drug substance containing the magnetic particles according to the present invention (Invention 4).

また、本発明は、コロイド無菌水溶液中の磁性酸化鉄微粒子の濃度が5〜50mg/mlであることを特徴とする前記いずれかに記載の磁性粒子含有医薬用原薬である(本発明5)。   In addition, the present invention provides the drug substance containing magnetic particles according to any one of the above, wherein the concentration of the magnetic iron oxide fine particles in the colloid sterile aqueous solution is 5 to 50 mg / ml (Invention 5). .

また、本発明は、コロイド水溶液のpHが9.0以上で、かつ、ゼータ電位が−20mV以下、電気伝導度が50μS以上であることを特徴とする前記いずれかに記載の磁性粒子医薬用原薬である(本発明6)。   The present invention also provides the magnetic particle pharmaceutical raw material according to any one of the above, wherein the aqueous colloidal solution has a pH of 9.0 or higher, a zeta potential of −20 mV or lower, and an electric conductivity of 50 μS or higher. It is a drug (Invention 6).

また、本発明は、前記いずれかに記載の磁性酸化鉄微粒子とリン脂質、多糖類、蛋白質あるいはデキストリン類との複合体であることを特徴とする磁性粒子含有医薬用原薬である(本発明7)。   In addition, the present invention is a magnetic drug substance containing a magnetic particle, characterized in that it is a complex of the magnetic iron oxide fine particles described above and a phospholipid, polysaccharide, protein or dextrin (this invention) 7).

本発明に係る磁性体含有医薬用原薬は、微細な磁性酸化鉄粒子の分散コロイド無菌水溶液であるから、磁性体粒子を生体適合性物質に均質に分散させた複合物からなる医薬を容易に合成することができる。さらに、液媒が界面活性剤などを含有しない原薬であるので、生体への安全性に与える影響は極めて少ないものである。
また、微細な磁性粒子は製薬造粒工程において、微粒子の集合状態を調整することにより造粒粒子に強磁性体の機能を付与することができる。
また、超微粒子であることで投与後は体内からの排泄を容易にすることができる。
Since the magnetic substance-containing medicinal drug substance according to the present invention is a sterile colloidal aqueous solution of fine magnetic iron oxide particles, it is easy to produce a medicine comprising a composite in which magnetic particles are homogeneously dispersed in a biocompatible substance. Can be synthesized. Furthermore, since the liquid medium is a drug substance that does not contain a surfactant or the like, the influence on the safety to the living body is extremely small.
In addition, fine magnetic particles can impart a ferromagnetic function to the granulated particles by adjusting the aggregate state of the fine particles in the pharmaceutical granulation step.
In addition, the ultrafine particles can facilitate excretion from the body after administration.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

本発明における磁性酸化鉄微粒子の一次粒子の平均粒子径は5nm〜30nmである。一次粒子径が5nm未満では非晶質であり、30nmを超える場合は保磁力が大きくなり過度な磁気的凝集が生じやすくなり、凝集粒径が200nm以上となってしまう。好ましくは5〜20nmであり、より好ましいのは保磁力の小さい10nm以下である。   The average particle diameter of primary particles of the magnetic iron oxide fine particles in the present invention is 5 nm to 30 nm. When the primary particle size is less than 5 nm, the material is amorphous. When the primary particle size is more than 30 nm, the coercive force increases and excessive magnetic aggregation tends to occur, resulting in an aggregate particle size of 200 nm or more. Preferably it is 5-20 nm, More preferably, it is 10 nm or less with a small coercive force.

本発明における磁性酸化鉄微粒子の凝集粒子径は30〜200nmである。30nm未満の場合には、癌の温熱療法に用いた場合に交番磁場による発熱性が低くなり、一方、200nmを越えると投与後の体内からの排出において問題を生じる。好ましくは50nm〜150nmである。   The aggregated particle diameter of the magnetic iron oxide fine particles in the present invention is 30 to 200 nm. If the thickness is less than 30 nm, the exothermic property due to an alternating magnetic field is low when used for cancer thermotherapy, while if it exceeds 200 nm, a problem occurs in the elimination from the body after administration. Preferably it is 50 nm-150 nm.

本発明における磁性酸化鉄微粒子の粒度分布は、標準偏差値を平均粒径で割って得られる変動係数の値が、10%以下であることが好ましく、より好ましくは8%以下である。10%を超える場合には、水への分散性に問題を生じ、経時的に磁性粒子が沈降してくるという問題が生じる。   In the particle size distribution of the magnetic iron oxide fine particles in the present invention, the value of the coefficient of variation obtained by dividing the standard deviation value by the average particle size is preferably 10% or less, more preferably 8% or less. When it exceeds 10%, a problem occurs in the dispersibility in water, and the problem that the magnetic particles settle over time occurs.

本発明における磁性酸化鉄微粒子は、スピネル型強磁性体MO・Fe(Mは2価金属)であり、MがFeの場合の組成はxFeO・Feであり、この組成式のxは2価鉄の含有量を表し、x=1はFeO・Feでマグネタイト、x=0はγ−Feでマグヘマイト、その中間(x=0〜1)のスピネル型酸化鉄も磁性酸化鉄であり、これらの超常磁性酸化鉄粒子が用いられる。 The magnetic iron oxide fine particles in the present invention are spinel ferromagnets MO · Fe 2 O 3 (M is a divalent metal), and the composition when M is Fe is xFeO · Fe 2 O 3. X represents the content of divalent iron, x = 1 is magnetite with FeO · Fe 2 O 3 , x = 0 is maghemite with γ-Fe 2 O 3 , and an intermediate (x = 0 to 1) spinel type Iron oxide is also magnetic iron oxide, and these superparamagnetic iron oxide particles are used.

本発明における磁性酸化鉄微粒子の組成MO・Fe(Mは2価金属)のMとして、Fe以外にMgを選択したのは、Mgには生体適応性があるためであるが、他の2価金属でも目的に応じて選択して用いることができる。 The reason why Mg was selected in addition to Fe as M of the composition MO · Fe 2 O 3 (M is a divalent metal) of the magnetic iron oxide fine particles in the present invention is that Mg is biocompatible. These divalent metals can be selected and used according to the purpose.

本発明における磁性酸化鉄微粒子は超常磁性体であることが好ましいが、保磁力は0〜6.0kA/mであることが好ましい。6.0kA/mを超える大きな保磁力の場合は残留磁化を生じて磁気凝集し易くなる。より好ましくは0.05〜4.0kA/mである。飽和磁化は35〜90Am/kgである。35Am/kg未満の飽和磁化では磁性が不足しており、スピネル酸化鉄粒子では90Am/kgを超える磁化値は得難い。より好ましくは50〜85Am/kgである。 The magnetic iron oxide fine particles in the present invention are preferably a superparamagnetic material, but the coercive force is preferably 0 to 6.0 kA / m. In the case of a large coercive force exceeding 6.0 kA / m, remanent magnetization occurs and magnetic aggregation is likely to occur. More preferably, it is 0.05-4.0 kA / m. The saturation magnetization is 35 to 90 Am 2 / kg. When the saturation magnetization is less than 35 Am 2 / kg, the magnetism is insufficient, and with spinel iron oxide particles, it is difficult to obtain a magnetization value exceeding 90 Am 2 / kg. More preferably, it is 50-85 Am < 2 > / kg.

本発明における無菌水溶液とは、毒性検査及びエンドトキシン検査において共に陰性である原薬水溶液である。具体的には、生菌数が1×10−6/UNIT未満であり、エンドトキシンが5.0EU/kg以下である。 The sterile aqueous solution in the present invention is an aqueous solution of a drug substance that is negative in both a toxicity test and an endotoxin test. Specifically, the viable cell count is less than 1 × 10 −6 / UNIT, and the endotoxin is 5.0 EU / kg or less.

本発明に係る磁性粒子含有医薬用原薬の磁性酸化鉄微粒子の濃度は、5〜50mg/mlが好ましい。50mg/mlを越える場合には、粒子間に働くファンデアワールス力の影響が大きくなって凝集が生起し易くなり好ましくない。5mg/ml未満では濃度が希薄すぎて実用的でない。好ましい濃度は10〜40mg/mlである。   The concentration of the magnetic iron oxide fine particles of the medicinal drug substance containing magnetic particles according to the present invention is preferably 5 to 50 mg / ml. If it exceeds 50 mg / ml, the effect of van der Waals force acting between the particles becomes large and aggregation is likely to occur, which is not preferable. If it is less than 5 mg / ml, the concentration is too thin to be practical. A preferred concentration is 10-40 mg / ml.

本発明に係る磁性粒子含有医薬用原薬のpH値は9.0以上が好ましく、より好ましくは9.0〜11.0である。   The pH value of the medicinal drug substance containing magnetic particles according to the present invention is preferably 9.0 or more, more preferably 9.0 to 11.0.

本発明に係る磁性粒子含有医薬用原薬のゼータ電位は−20mV以下が好ましく、より好ましくは−30mV以下である。   The zeta potential of the medicinal drug substance containing magnetic particles according to the present invention is preferably −20 mV or less, more preferably −30 mV or less.

本発明に係る磁性粒子含有医薬用原薬の電気伝導度は50〜400μSが好ましい。   The electric conductivity of the magnetic drug substance containing medicinal drug according to the present invention is preferably 50 to 400 μS.

本発明における磁性酸化鉄微粒子とリン脂質、多糖類、蛋白質あるいはデキストリン類との複合体とすることができる。   In the present invention, a complex of magnetic iron oxide fine particles and phospholipids, polysaccharides, proteins, or dextrins can be used.

次に、本発明に係る磁性粒子医薬用原薬の製造方法について述べる。   Next, a method for producing a magnetic drug substance according to the present invention will be described.

磁性酸化鉄微粒子の単分散コロイド水溶液は下記3工程により生成することができる。   A monodispersed aqueous colloidal solution of magnetic iron oxide fine particles can be produced by the following three steps.

即ち、(1)磁性酸化鉄微粒子を生成した後、(2)反応母液から反応時に副生した水可溶性副生塩類を常法により水洗除去して磁性酸化鉄微粒子のコロイド水溶液を精製し、(3)精製したコロイド水溶液の分散媒を超純水で置換して得ることができる。   That is, (1) after producing magnetic iron oxide fine particles, (2) purifying a colloidal aqueous solution of magnetic iron oxide fine particles by removing water-soluble by-product salts by-produced during the reaction from the reaction mother liquor by washing with a conventional method. 3) It can be obtained by replacing the dispersion medium of the purified colloidal aqueous solution with ultrapure water.

本発明における磁性酸化鉄微粒子は、鉄塩水溶液とアルカリを用いる水溶液反応(湿式法という。)、または、酸化鉄粉を水素等の還元性ガス中で加熱還元する方法(乾式法という)等で合成することができる。   The magnetic iron oxide fine particles in the present invention are obtained by an aqueous solution reaction using an iron salt aqueous solution and an alkali (referred to as a wet method), or a method in which iron oxide powder is heated and reduced in a reducing gas such as hydrogen (referred to as a dry method). Can be synthesized.

上記磁性酸化鉄微粒子の合成方法において、一般には共沈法や水酸化第一鉄コロイドの酸化反応などと呼ばれる湿式法で合成する。   In the method of synthesizing the magnetic iron oxide fine particles, synthesis is generally performed by a wet method called a coprecipitation method or an oxidation reaction of ferrous hydroxide colloid.

共沈法とは、第一鉄塩水溶液Fe(II)1モルと第二鉄塩水溶液Fe(III)2モルとの混合水溶液にアルカリ水溶液を攪拌しながら加えると、Fe(II)と2Fe(III)の共沈反応が生起して黒色スピネル型磁性酸化鉄であるマグネタイト粒子が生成する反応である。この反応においてFe以外の2価金属、例えばMgを添加した場合にはMgを含有したスピネル型磁性酸化鉄微粒子が得られる。また、鉄塩濃度や混合温度などの反応条件により生成粒子の大きさが制御できるので、これらの反応条件を組み合わせることにより磁性酸化鉄微粒子を合成することができる。   In the coprecipitation method, when an alkaline aqueous solution is added to a mixed aqueous solution of 1 mol of ferrous salt aqueous solution Fe (II) and 2 mol of ferric salt aqueous solution Fe (III) while stirring, Fe (II) and 2Fe ( This is a reaction in which the coprecipitation reaction of III) occurs and magnetite particles, which are black spinel type magnetic iron oxide, are generated. In this reaction, when a divalent metal other than Fe, for example, Mg is added, spinel-type magnetic iron oxide fine particles containing Mg are obtained. In addition, since the size of the generated particles can be controlled by reaction conditions such as iron salt concentration and mixing temperature, magnetic iron oxide fine particles can be synthesized by combining these reaction conditions.

水酸化第一鉄コロイドの酸化反応法とは、第一鉄塩水溶液にアルカリ水溶液を添加すると水酸化第一鉄コロイドが生成し、該水酸化第一鉄コロイドを含有する水溶液を加熱攪拌しながら空気等の酸素含有ガスを通気すると水酸化第一鉄コロイドの酸化反応により黒色磁性酸化鉄であるマグネタイト粒子が生成する反応である。上記の共沈法と同様にFe以外の2価金属を添加した場合には添加金属を含有したスピネル酸化鉄粒子が得られる。また、この反応条件を組み合わせて制御することにより磁性酸化鉄微粒子を合成することができる。   The ferrous hydroxide colloid oxidation reaction method is that when an aqueous alkali solution is added to a ferrous salt aqueous solution, a ferrous hydroxide colloid is formed, and the aqueous solution containing the ferrous hydroxide colloid is heated and stirred. When oxygen-containing gas such as air is ventilated, magnetite particles, which are black magnetic iron oxide, are generated by oxidation reaction of ferrous hydroxide colloid. When a divalent metal other than Fe is added as in the coprecipitation method, spinel iron oxide particles containing the added metal are obtained. Moreover, magnetic iron oxide fine particles can be synthesized by controlling the reaction conditions in combination.

磁性酸化鉄微粒子を含有するコロイド水溶液の水洗は、常法に従って行えばよい。例えば、デカンテーションの繰り返しによる方法、メンブランフィルターを加圧により通過させる方法、ヌッチェを用いてろ過・水洗する方法、または、遠心分離機により固液分離した後、超純水を加えて再分散する方法でも実施できる。   The aqueous colloidal solution containing magnetic iron oxide fine particles may be washed according to a conventional method. For example, a method by repeated decantation, a method of passing through a membrane filter by pressurization, a method of filtering and washing with Nutsche, or solid-liquid separation with a centrifuge and then adding ultrapure water to redisperse The method can also be implemented.

そして、コロイド水溶液の濃度を超純水で5〜50mg/mlに希釈調整して磁性酸化鉄微粒子が無菌水に分散している磁性粒子含有医薬用原薬を得ることができる。   Then, the concentration of the aqueous colloidal solution is adjusted to 5 to 50 mg / ml with ultrapure water to obtain a magnetic particle-containing drug substance in which magnetic iron oxide fine particles are dispersed in sterile water.

さらに得られた磁性酸化鉄微粒子とリン脂質、多糖類、蛋白質あるいはデキストリン類との複合体の形で、種々の用途に用いることができ、例えば、薬物の送達法であるDDS、レントゲンやMRI(磁気共鳴)等で用いられるCT診断及び温熱治療法などの治療用等である。   Furthermore, it can be used for various applications in the form of a complex of the obtained magnetic iron oxide fine particles and phospholipids, polysaccharides, proteins or dextrins. For example, DDS, X-ray and MRI (drug delivery methods) For example, for CT diagnosis and thermotherapy used in magnetic resonance.

<作用>
本発明者は、鋭意研究を重ねた結果、磁性粒子として微細な磁性酸化鉄粒子の超常磁性に着目し、超常磁性酸化鉄微粒子からなる分散コロイド水溶液の分散安定条件を見出した。
<Action>
As a result of extensive research, the present inventor has focused on the superparamagnetism of fine magnetic iron oxide particles as magnetic particles, and has found the dispersion stability conditions of a dispersed colloidal aqueous solution composed of superparamagnetic iron oxide fine particles.

超常磁性を発現するのは保磁力がゼロの強磁性体である。即ち、強磁性体の粒子が単磁区構造であっても大きな粒子の場合は、外部磁界を印加して磁化した後外部磁界から開放すると残留磁化を生じるが、粒子が極微細になると保磁力が減少して遂にはゼロとなり、外部磁界を印加すると磁化するが外部磁界から開放した後には残留磁化を生じない。この現象は熱擾乱作用によるものであり、このような強磁性微粒子を超常磁性であるという。   Superparamagnets are manifested by ferromagnets with zero coercivity. That is, even if the ferromagnetic particles have a single magnetic domain structure, if the particles are large and magnetized by applying an external magnetic field and then released from the external magnetic field, residual magnetization occurs. It decreases to zero and finally magnetizes when an external magnetic field is applied, but no residual magnetization occurs after release from the external magnetic field. This phenomenon is due to thermal disturbance, and such ferromagnetic fine particles are said to be superparamagnetic.

本発明に係る医薬用原薬は、表面磁束10mT(100ガウス)の永久磁石を近付けても凝集せず、長期安定な単分散コロイド水溶液である。これは、磁性酸化鉄微粒子の飽和磁化が50〜90Am/kgの強磁性体であることと矛盾する現象であるように思えるが、飽和磁化値とは磁性酸化鉄微粒子を粉末状で測定した時の単位重量当たりの磁化値を表わしたものであるから、これを粒子1個当たりの磁化値に換算すると、微粒子であるほど単位重量当たりの総粒子個数が多くなり、1個当たりの磁化値は小さな値となる。 The medicinal drug substance according to the present invention is a monodispersed colloidal aqueous solution that does not aggregate even when a permanent magnet having a surface magnetic flux of 10 mT (100 gauss) is brought close thereto and is stable for a long time. This seems to be a phenomenon contradictory to the fact that the saturation magnetization of the magnetic iron oxide fine particles is a ferromagnetic material of 50 to 90 Am 2 / kg, but the saturation magnetization value is measured in a powder form of the magnetic iron oxide fine particles. Since it represents the magnetization value per unit weight of time, when this is converted into the magnetization value per particle, the finer the particle, the greater the total number of particles per unit weight, and the magnetization value per particle Is a small value.

また、磁性粒子として超常磁性酸化鉄微粒子を用いるのは、酸化鉄には生体適応性があるからであり、微粒子ほど生体内からの排泄が容易となる。   The superparamagnetic iron oxide fine particles are used as magnetic particles because iron oxide has biocompatibility, and the fine particles are more easily excreted from the living body.

ところで、原薬である磁性酸化鉄微粒子を生体適応物質に均一に分散しただけでは磁性粒子含有医薬としての磁気特性は不足であるが、製薬工程において、生体適応性物質中に単分散した磁性酸化鉄微粒子は、薬剤として造粒する際に集合して複合粒子となるので強磁性を発現する。この現象は超常磁性粒子でも粒子同士を数珠繋ぎ状にすると形状磁気異方性が生じて保磁力が大きくなり強磁性体化するという周知の現象で説明できる。即ち、超常磁性酸化鉄粒子をある特定の粒度に二次凝集状態を制御し、さらに生体適応性物質と均一に分散混合すると、造粒粒子中の磁性粒子の数や集合形態により造粒粒子の磁気特性が異なり、磁性粒子含有医薬として必要な磁気特性を調整することができることを見出した。   By the way, the magnetic properties as a drug containing magnetic particles are insufficient just by uniformly dispersing the magnetic iron oxide fine particles as the drug substance in the biocompatible substance. Since the iron fine particles are aggregated to form composite particles when granulated as a drug, they exhibit ferromagnetism. This phenomenon can be explained by the well-known phenomenon that even in superparamagnetic particles, when the particles are connected together in a rosary form, shape magnetic anisotropy occurs, the coercive force increases, and the material becomes ferromagnetic. That is, when superparamagnetic iron oxide particles are controlled in a secondary agglomeration state to a specific particle size and further uniformly dispersed and mixed with a biocompatible substance, the number of magnetic particles in the granulated particles and the aggregated form of the granulated particles It has been found that the magnetic properties are different and the magnetic properties necessary for a magnetic particle-containing pharmaceutical can be adjusted.

本原薬を、例えば、癌の温熱療法における発熱剤の発熱体として用いる場合には、磁性酸化鉄微粒子から成る凝集体をコアとし、リン脂質とカチオン性脂質から成る二重膜をシェルとするリポソーム状複合粒子を生成させて用いることができる。   For example, when the drug substance is used as a heating element of a pyrogen in cancer hyperthermia, for example, an aggregate composed of magnetic iron oxide fine particles is used as a core, and a bilayer membrane composed of phospholipids and cationic lipids is used as a shell. Liposomal composite particles can be generated and used.

以下、実施例により本発明を具体的に説明する。但し、本発明は、これらの実施例のみに限定されるものではない。   Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to these examples.

尚、生成物の構造解析にはX線回折装置を用い、一次粒子の平均粒子径はX線回折線(311)の半値幅からシェラーの式を用いて算出した。   For structural analysis of the product, an X-ray diffractometer was used, and the average particle size of the primary particles was calculated from the half width of the X-ray diffraction line (311) using Scherrer's equation.

粒度分布は透過型電子顕微鏡TEMで観測した。さらに、デジタイザー分析により、平均粒子径および標準偏差値を求め、これらの値から、下式により変動係数を求めた。
変動係数(%)=(標準偏差)×100/(平均粒子径)
The particle size distribution was observed with a transmission electron microscope TEM. Furthermore, the average particle diameter and the standard deviation value were obtained by digitizer analysis, and the coefficient of variation was obtained from these values using the following equation.
Coefficient of variation (%) = (standard deviation) × 100 / (average particle diameter)

凝集粒子径は動的光散乱法による粒度分布計FPAR−1000(大塚電子製)により測定した。   The aggregated particle diameter was measured by a particle size distribution analyzer FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.) using a dynamic light scattering method.

比表面積値はBET法により測定した。   The specific surface area value was measured by the BET method.

また、Fe2+含有量はキレート滴定法により測定した。 The Fe 2+ content was measured by chelate titration method.

磁気特性の測定には振動試料型磁力計VSMを用い10k/4πkA/mの磁場で測定した。   The magnetic characteristics were measured using a vibrating sample magnetometer VSM in a magnetic field of 10 k / 4π kA / m.

生成物はメンブランフィルター法による無菌検査及び菌の残骸有無に関するエンドトキシン検査を行った。   The product was subjected to sterility testing by membrane filter method and endotoxin testing for the presence of bacterial debris.

生成物の電気伝導度は、電気伝導度計を用いて測定した。   The electrical conductivity of the product was measured using an electrical conductivity meter.

ゼータ電位はELS−6000(大塚電子製)により測定した。   The zeta potential was measured by ELS-6000 (manufactured by Otsuka Electronics).

実施例1
撹拌装置及び加熱装置を備えた5000mlの反応容器を用い、原料鉄塩と苛性ソーダは試薬特級を用い、また水はイオン交換水を用いた。
Example 1
A 5000 ml reaction vessel equipped with a stirrer and a heating device was used, the raw iron salt and caustic soda were special grade reagents, and the water was ion-exchanged water.

(1)超常磁性酸化鉄粒子の合成工程
水溶液濃度1.5モルの塩化第一鉄水溶液75mlと、濃度1.0モルの塩化第二鉄水溶液225mlを反応容器に投入し、撹拌して第一鉄と第二鉄塩の混合水溶液を調整した後、加熱昇温した。この混合鉄塩水溶液が60℃に昇温した時、予め準備した濃度6.0モルの苛性ソーダ水溶液189mlおよび純水11mLの該混合水溶液に撹拌しながら添加した。添加が完了してから温度を60℃に保持して60分間撹拌をつづけた。生成物は磁石に感応する黒色を呈したコロイド水溶液であった。
ここに得たコロイド水溶液の一部を採取し、水洗ろ過したペーストを凍結乾燥して得られた粉末を分析した結果、平均粒子径が11nmのスピネル型結晶構造の粒子粉で、一次粒子の粒度分布の変動係数は7%であった。また、Fe2+含有量が13.8モル%の磁性酸化鉄微粒子であり、磁気特性は飽和磁化σsが64Am/kg、保磁力Hcが2.0kA/mの超常磁性酸化鉄粒子であった。凝集粒子径は85nmであった。
(1) Step of synthesizing superparamagnetic iron oxide particles 75 ml of an aqueous ferric chloride solution having a concentration of 1.5 mol and 225 ml of an aqueous ferric chloride solution having a concentration of 1.0 mol are put into a reaction vessel, stirred and first After adjusting the mixed aqueous solution of iron and ferric salt, the temperature was raised by heating. When this mixed iron salt aqueous solution was heated to 60 ° C., it was added to the prepared mixed aqueous solution of 189 ml of caustic soda solution having a concentration of 6.0 mol and 11 ml of pure water while stirring. After the addition was complete, the temperature was maintained at 60 ° C. and stirring was continued for 60 minutes. The product was a black colloidal solution that was sensitive to magnets.
As a result of analyzing a powder obtained by collecting a part of the obtained aqueous colloid solution and freeze-drying the paste obtained by washing with water, the particle size of the primary particle is a particle powder having a spinel crystal structure with an average particle size of 11 nm. The coefficient of variation of the distribution was 7%. The magnetic iron oxide fine particles had a Fe 2+ content of 13.8 mol%, and the magnetic properties were superparamagnetic iron oxide particles having a saturation magnetization σs of 64 Am 2 / kg and a coercive force Hc of 2.0 kA / m. . The aggregate particle diameter was 85 nm.

(2)コロイド粒子の精製工程
生成した黒色コロイド水溶液中には黒色コロイド粒子の合成反応で副生した可溶性塩が混在しているので、イオン交換水を用いてデカンテーション法により、副生塩を水洗除去することにより黒色コロイド水溶液を精製した。
(2) Purification process of colloidal particles The resulting aqueous solution of black colloid contains soluble salts produced as a by-product of the synthesis reaction of black colloidal particles. Therefore, by-product salt is formed by decantation using ion-exchanged water. The black colloid aqueous solution was purified by washing with water.

(3)磁性体含有医薬用原薬の精製工程(超純水への置換)
生成物の物性を評価するために採取した残りの黒色コロイド水溶液から100mlを良く攪拌しながら採取し、該コロイド水溶液を遠心分離機を用いて固液分離して分散媒を除去した。その後、同量の超純水を注入して超音波分散機を用いて再分散した。これを1サイクルとして5サイクル繰り返し行いコロイド水溶液の分散媒を超純水に置換した。次に、該コロイド水溶液に超純水を加えてコロイド粒子濃度を22mg/mlに調整して超音波分散機で分散しながら0.1規定の苛性ソーダ水溶液を添加してゼータ電位を−55mVに調整した。60分後に超音波分散機を停止してコロイド水溶液を静置し、360分間放置した。
得られたコロイド水溶液には沈殿が生じていないこと、さらに表面磁束が10mT(100ガウス)の永久磁石を用いて磁気凝集しないことを観測した。このコロイド水溶液は毒性検査及びエンドトキシン検査を行い、何れも陰性であることを確認して、超常磁性酸化鉄粒子の単分散コロイド無菌水溶液150mlを生成した。
得られたコロイド水溶液の磁性酸化鉄微粒子の濃度は20mg/mlであり、コロイド水溶液のpHは9.7、電気伝導度は210μSであった。
(3) Refining process of drug substance containing magnetic substance (substitution with ultrapure water)
100 ml of the remaining black colloid aqueous solution collected in order to evaluate the physical properties of the product was collected with good stirring, and the colloid aqueous solution was subjected to solid-liquid separation using a centrifuge to remove the dispersion medium. Thereafter, the same amount of ultrapure water was injected and redispersed using an ultrasonic disperser. This was repeated as 5 cycles, and the dispersion medium of the colloidal aqueous solution was replaced with ultrapure water. Next, ultrapure water is added to the colloidal aqueous solution to adjust the colloidal particle concentration to 22 mg / ml, and 0.1 Z caustic soda aqueous solution is added while dispersing with an ultrasonic disperser to adjust the zeta potential to -55 mV. did. After 60 minutes, the ultrasonic disperser was stopped and the aqueous colloid solution was allowed to stand, and left for 360 minutes.
It was observed that no precipitation occurred in the obtained colloidal aqueous solution and that no magnetic aggregation occurred using a permanent magnet having a surface magnetic flux of 10 mT (100 gauss). This colloidal aqueous solution was subjected to a toxicity test and an endotoxin test, both were confirmed to be negative, and 150 ml of a monodispersed colloidal sterile aqueous solution of superparamagnetic iron oxide particles was produced.
The concentration of the magnetic iron oxide fine particles in the obtained aqueous colloidal solution was 20 mg / ml, the pH of the aqueous colloidal solution was 9.7, and the electric conductivity was 210 μS.

実施例2
上記の工程(1)の超常磁性酸化鉄粒子の合成工程において、水溶液濃度が0.5モルの塩化第一鉄水溶液150mlと0.5モルの硫酸マグネシウム水溶液200mlおよび水溶液濃度が1.0モルの塩化第二鉄水溶液225mLを用いた以外は、(2)及び(3)の各工程は共に実施例1と同じ条件で磁性酸化鉄微粒子の濃度が20mg/mlの磁性粒子含有医薬用原薬を生成した。
Example 2
In the synthesis step of superparamagnetic iron oxide particles in the above step (1), 150 ml of an aqueous ferrous chloride solution having a concentration of 0.5 mol, 200 ml of an aqueous solution of 0.5 mol of magnesium sulfate, and an aqueous solution concentration of 1.0 mol Except for using 225 mL of an aqueous ferric chloride solution, each of the steps (2) and (3) was performed under the same conditions as in Example 1, and a magnetic drug substance containing a drug substance containing magnetic iron oxide particles at a concentration of 20 mg / ml was used. Generated.

ここに得たコロイド水溶液の一部を採取し水洗ろ過したペーストを凍結乾燥して得られた粉末を分析した結果、平均粒子径が12nmのスピネル型結晶構造の粒子粉で、一次粒子の粒度分布の変動係数は7%であった。また、Fe2+含有量が10モル%,Mg2+含有量が3.5モル%の磁性酸化鉄微粒子であり、磁気特性は飽和磁化σsが63Am/kg、保磁力Hcが1.4kA/mの超常磁性酸化鉄粒子であった。凝集粒子径は125nmであった。 As a result of analyzing a powder obtained by freeze-drying a paste obtained by collecting a portion of the obtained aqueous colloid solution, washing and filtering with water, the particle size distribution of primary particles is a particle powder having a spinel crystal structure with an average particle diameter of 12 nm. The variation coefficient of was 7%. Further, it is magnetic iron oxide fine particles having an Fe 2+ content of 10 mol% and an Mg 2+ content of 3.5 mol%, and the magnetic properties are a saturation magnetization σs of 63 Am 2 / kg and a coercive force Hc of 1.4 kA / m. The superparamagnetic iron oxide particles. The aggregate particle diameter was 125 nm.

また、実施例1と同様にして分散媒液は超純水に置換し、コロイド水溶液の濃度を20mg/mlに希釈すると同時に0.1規定の苛性ソーダ水溶液を添加してゼータ電位を−45mVに調整した。さらに表面磁束密度が10mT(100ガウス)の永久磁石を用いて磁気凝集しないことを観測した。このコロイド水溶液のエンドトキシン検査を行い陰性であることを確認して超常磁性酸化鉄粒子の単分散コロイド無菌水溶液150mlを生成した。
得られたコロイド水溶液のpHは9.8、電気伝導度は250μSであった。
In the same manner as in Example 1, the dispersion medium was replaced with ultrapure water, the concentration of the colloidal aqueous solution was diluted to 20 mg / ml, and at the same time, a 0.1 N aqueous sodium hydroxide solution was added to adjust the zeta potential to -45 mV. did. Furthermore, it was observed that no magnetic aggregation occurred using a permanent magnet having a surface magnetic flux density of 10 mT (100 gauss). The colloidal aqueous solution was endotoxin-checked to confirm that it was negative, and 150 ml of a monodispersed colloidal sterile aqueous solution of superparamagnetic iron oxide particles was produced.
The resulting aqueous colloidal solution had a pH of 9.8 and an electric conductivity of 250 μS.

比較例
実施例1と同様にしてコロイド水溶液を調製し、精製および超純水への置換を行った後、0.1規定の苛性ソーダ水溶液を添加して、ゼータ電位を−15mVに調製した。
得られたコロイド水溶液のpHは8.1、電気伝導度は56μS、凝集粒子径が280nmであった。
Comparative Example A colloidal aqueous solution was prepared in the same manner as in Example 1. After purification and replacement with ultrapure water, a 0.1N aqueous sodium hydroxide solution was added to adjust the zeta potential to -15 mV.
The obtained aqueous colloidal solution had a pH of 8.1, an electric conductivity of 56 μS, and an aggregate particle size of 280 nm.

本発明に係る磁性体含有医薬用原薬は、磁性酸化鉄微粒子の単分散コロイド無菌水溶液であるから、磁性体微粒子を生体適合性物質に均質に分散させた複合物からなる医薬を容易に合成することができ、しかも、製薬造粒工程においては微粒子の集合状態を調整することにより造粒粒子に強磁性体の機能を付与することができる。
また、液媒が界面活性剤などを含有しない原薬であり、しかも、超微粒子であることで投与後は体内からの排泄を容易にすることができるので、人体に投与後の安全性及び代謝・排泄に関して何ら問題を生じない原薬を提供することができる。
Since the magnetic substance-containing medicinal drug substance according to the present invention is a monodispersed, sterile aqueous solution of magnetic iron oxide fine particles, it is easy to synthesize a drug comprising a composite in which magnetic fine particles are uniformly dispersed in a biocompatible substance. In addition, in the pharmaceutical granulation step, the function of a ferromagnetic material can be imparted to the granulated particles by adjusting the aggregate state of the fine particles.
In addition, since the liquid medium is a drug substance that does not contain a surfactant or the like, and it is an ultrafine particle, it can be easily excreted from the body after administration, so that safety and metabolism after administration to the human body.・ We can provide drug substance that does not cause any problems with excretion.

Claims (2)

一次粒子の平均粒子径が5〜30nm、凝集粒子径が30〜200nmの磁性酸化鉄微粒子が分散したコロイド無菌水溶液であり、前記磁性酸化鉄微粒子がスピネル構造の組成物MOFe (Mは2価金属のFe及び/又はMg(但し、FeとMgの総和がFe 1モルに対して1モル以下))であって飽和磁化が35〜90Am /kg、保磁力が0〜6.0kA/mであって一次粒子の変動係数が10%以下であり、コロイド無菌水溶液中の磁性酸化鉄微粒子の濃度が5〜50mg/mlであり、コロイド水溶液のpHが9.0以上で、かつ、ゼータ電位が−20mV以下、電気伝導度が50μS以上であることを特徴とする磁性粒子含有医薬用原薬。 A colloid aseptic aqueous solution in which magnetic iron oxide fine particles having an average primary particle size of 5 to 30 nm and an aggregated particle size of 30 to 200 nm are dispersed, and the magnetic iron oxide fine particles are a composition having a spinel structure MOFe 2 O 3 (M is Fe and / or Mg of divalent metal (however, the sum of Fe and Mg is 1 mol or less with respect to 1 mol of Fe 2 O 3 ), the saturation magnetization is 35 to 90 Am 2 / kg, and the coercive force is 0 to 0 6.0 kA / m, the coefficient of variation of primary particles is 10% or less, the concentration of magnetic iron oxide fine particles in the colloid sterile aqueous solution is 5 to 50 mg / ml, and the pH of the colloidal aqueous solution is 9.0 or more. and zeta potential -20mV or less, the magnetic particle-containing pharmaceutical drug substance electrical conductivity, characterized in der Rukoto than 50 [mu] S. 請求項1記載の磁性酸化鉄微粒子とリン脂質、多糖類、蛋白質あるいはデキストリン類との複合体であることを特徴とする磁性粒子含有医薬用原薬。

Magnetic iron oxide particles and phospholipid of claim 1 Symbol placement, polysaccharides, magnetic particle-containing pharmaceutical drug, which is a complex of a protein or dextrins.

JP2006165168A 2005-06-15 2006-06-14 Medicinal drug substance containing magnetic particles Active JP5321772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006165168A JP5321772B2 (en) 2005-06-15 2006-06-14 Medicinal drug substance containing magnetic particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005175802 2005-06-15
JP2005175802 2005-06-15
JP2006165168A JP5321772B2 (en) 2005-06-15 2006-06-14 Medicinal drug substance containing magnetic particles

Publications (2)

Publication Number Publication Date
JP2007023027A JP2007023027A (en) 2007-02-01
JP5321772B2 true JP5321772B2 (en) 2013-10-23

Family

ID=37784267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006165168A Active JP5321772B2 (en) 2005-06-15 2006-06-14 Medicinal drug substance containing magnetic particles

Country Status (1)

Country Link
JP (1) JP5321772B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10342989B2 (en) 2013-09-20 2019-07-09 Dai-Ichi High Frequency Co., Ltd. Magnetic flux irradiation devices and components
US10500409B2 (en) 2015-03-02 2019-12-10 KAIO Therapy, LLC Systems and methods for providing alternating magnetic field therapy
US10576297B2 (en) 2013-09-20 2020-03-03 Dai-Ichi High Frequency Co., Ltd. Magnetic flux irradiation devices and components

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189966A (en) * 2007-02-02 2008-08-21 Fujifilm Corp Magnetic nanoparticle containing iron alloy and aqueous colloid composition containing the same
JP4977487B2 (en) * 2007-02-02 2012-07-18 富士フイルム株式会社 Magnetic fine particles containing platinum and / or gold and iron oxide, and aqueous colloidal composition containing the magnetic fine particles
JP2011057473A (en) * 2009-09-07 2011-03-24 Univ Of Miyazaki Method for manufacturing magnetite fine particle
WO2011062217A1 (en) 2009-11-20 2011-05-26 戸田工業株式会社 Magnetic iron oxide microparticle powder, aqueous dispersion containing magnetic particles, and process for production of same
JP5781276B2 (en) * 2010-05-12 2015-09-16 ジ・アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・ザ・ユニバーシティ・オブ・アリゾナThe Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing metal magnetic powder
JP6094991B2 (en) * 2012-11-07 2017-03-15 国立大学法人 筑波大学 Method for producing ferromagnetic iron oxide particles
JP2014156411A (en) * 2013-02-14 2014-08-28 Toda Kogyo Corp Composite magnetic particulate powder, and dispersion

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913521B2 (en) * 1975-06-19 1984-03-30 メイトウサンギヨウ カブシキガイシヤ Method for producing magnetic iron oxide/dextran complex
US5102652A (en) * 1986-07-03 1992-04-07 Advanced Magnetics Inc. Low molecular weight carbohydrates as additives to stabilize metal oxide compositions
DE3709851A1 (en) * 1987-03-24 1988-10-06 Silica Gel Gmbh Adsorptions Te NMR DIAGNOSTIC LIQUID COMPOSITIONS
JP2726520B2 (en) * 1989-10-20 1998-03-11 名糖産業株式会社 Organic magnetic composite
US5766572A (en) * 1992-08-05 1998-06-16 Meito Sangyo Kabushiki Kaisha Water-soluble carboxypolysaccharide-magnetic iron oxide complex having a small particle diameter
GB0007872D0 (en) * 2000-03-31 2000-05-17 Nycomed Imaging As Method
JP2001294538A (en) * 2000-04-12 2001-10-23 Toin Gakuen Ultrasonic wave contrast medium and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10342989B2 (en) 2013-09-20 2019-07-09 Dai-Ichi High Frequency Co., Ltd. Magnetic flux irradiation devices and components
US10576297B2 (en) 2013-09-20 2020-03-03 Dai-Ichi High Frequency Co., Ltd. Magnetic flux irradiation devices and components
US10500409B2 (en) 2015-03-02 2019-12-10 KAIO Therapy, LLC Systems and methods for providing alternating magnetic field therapy

Also Published As

Publication number Publication date
JP2007023027A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP5321772B2 (en) Medicinal drug substance containing magnetic particles
JP5765520B2 (en) Method for producing aqueous dispersion containing magnetic particles
US7670676B2 (en) Pharmaceutical raw material
Li et al. Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles
Tan et al. Synthesis of PEOlated Fe3O4@ SiO2 nanoparticles via bioinspired silification for magnetic resonance imaging
Kim et al. Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent
Castelló et al. Chitosan (or alginate)-coated iron oxide nanoparticles: A comparative study
Lodhia et al. Development and use of iron oxide nanoparticles (Part 1): Synthesis of iron oxide nanoparticles for MRI
Prozorov et al. Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria
Petri-Fink et al. Superparamagnetic iron oxide nanoparticles (SPIONs): from synthesis to in vivo studies—a summary of the synthesis, characterization, in vitro, and in vivo investigations of SPIONs with particular focus on surface and colloidal properties
Lu et al. Solid-state synthesis of monocrystalline iron oxide nanoparticle based ferrofluid suitable for magnetic resonance imaging contrast application
Mishra et al. Increased transverse relaxivity in ultrasmall superparamagnetic iron oxide nanoparticles used as MRI contrast agent for biomedical imaging
KR20120091513A (en) Preparation of hydrophilic material coated iron oxide nanoparticles and magnetic resonance contrast agent using thereof
CN110496970B (en) Composite nano material, preparation method and application thereof
Yu et al. Size‐tunable synthesis of stable superparamagnetic iron oxide nanoparticles for potential biomedical applications
JP2015519302A (en) Magnetic nanoparticle dispersant, its preparation and diagnostic and therapeutic use
Ferreira et al. One-pot ultrasound synthesis of water dispersible superparamagnetic iron oxide@ alginate nanocomposite
JP5031979B2 (en) Medicinal drug substance containing magnetic particles
Sánchez et al. Synthesis of MnxGa1− xFe2O4 magnetic nanoparticles by thermal decomposition method for medical diagnosis applications
Hermosa et al. Investigations of the effective parameters on the synthesis of monodispersed magnetic Fe3O4 by solvothermal method for biomedical applications
JP2014156411A (en) Composite magnetic particulate powder, and dispersion
Ni et al. Solvent mediated assembly of nickel crystallites: From chains to isolated spheres
EP2942064B1 (en) Mri contrast agent including t1 contrast material coated on surface of nanoparticle support
Shahri Magnetic materials and magnetic nanocomposites for biomedical application
JP2006347949A (en) Drug substance for magnetic particle-containing medicine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120229

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Ref document number: 5321772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250