JP5316102B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP5316102B2
JP5316102B2 JP2009054362A JP2009054362A JP5316102B2 JP 5316102 B2 JP5316102 B2 JP 5316102B2 JP 2009054362 A JP2009054362 A JP 2009054362A JP 2009054362 A JP2009054362 A JP 2009054362A JP 5316102 B2 JP5316102 B2 JP 5316102B2
Authority
JP
Japan
Prior art keywords
timing
intake
injection end
valve opening
intake valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009054362A
Other languages
Japanese (ja)
Other versions
JP2010209716A (en
Inventor
秀幸 鈴木
民一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009054362A priority Critical patent/JP5316102B2/en
Publication of JP2010209716A publication Critical patent/JP2010209716A/en
Application granted granted Critical
Publication of JP5316102B2 publication Critical patent/JP5316102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

この発明は、バルブオーバラップを可変とする可変動弁装置を備えた内燃機関の制御装置に関し、特に、冷間始動時の制御の改良に関する。   The present invention relates to a control device for an internal combustion engine provided with a variable valve gear that makes a valve overlap variable, and more particularly, to an improvement in control at a cold start.

吸気ポートへ向かって燃料を噴射する吸気ポート噴射型燃料噴射装置においては、機関冷間時に吸気ポート内壁の温度が低いことから、燃料の霧化が悪化し、燃料壁流が増加する、という不具合があり、これに対処するために、吸気ポート内に燃焼室内の残留ガスを積極的に戻し、その熱を利用して燃料の霧化促進を行うことが知られている。例えば、特許文献1は、シリンダ内に流入した吸入空気の一部を、第2の吸気弁を介して吸気ポートへ戻すようにした特殊な構成を開示しているが、吸気弁開時期を遅進し得る可変動弁装置を吸気弁に備えた一般的な内燃機関においても、吸気弁開時期を進角させてバルブオーバラップを拡大することにより、燃焼室の熱の一部を利用して霧化促進を図ることができる。   In an intake port injection type fuel injection device that injects fuel toward the intake port, the temperature of the inner wall of the intake port is low when the engine is cold, so that the atomization of fuel deteriorates and the fuel wall flow increases. In order to cope with this, it is known that the residual gas in the combustion chamber is positively returned to the intake port and the atomization of the fuel is promoted using the heat. For example, Patent Document 1 discloses a special configuration in which a part of the intake air flowing into the cylinder is returned to the intake port via the second intake valve, but the intake valve opening timing is delayed. Even in a general internal combustion engine equipped with an intake valve with a variable valve system that can move forward, a part of the heat of the combustion chamber is utilized by advancing the intake valve opening timing to expand the valve overlap. Atomization can be promoted.

また、冷間時の燃料壁流を抑制するために、吸気弁を通過する吸気の流速が高い吸気弁開期間と重複する期間に燃料を噴射するいわゆる吸気行程噴射の技術も知られている。   In addition, a so-called intake stroke injection technique is also known in which fuel is injected during a period overlapping with an intake valve opening period in which the flow velocity of intake air passing through the intake valve is high in order to suppress a cold fuel wall flow.

特開昭63−18149号公報JP 63-18149 A

可変動弁装置を用いた場合に、機関の冷間始動の直後のごく短時間の間は、種々の制限により、可変動弁装置を駆動できず、バルブオーバラップを十分に拡大できないことがある。例えば、可変動弁装置が油圧駆動式の構成であれば、機関が始動して機関の潤滑油圧が十分に立ち上がるまでの間、可変動弁装置を動かすことができない。また、油圧駆動式でなくても、機械的に駆動される可変動弁装置の正常な動作が確保されるまで、可変動弁装置の駆動が許可されないように構成される場合もある。   When a variable valve system is used, the variable valve system cannot be driven and the valve overlap cannot be sufficiently expanded due to various limitations for a very short time immediately after the cold start of the engine. . For example, if the variable valve mechanism is of a hydraulic drive type, the variable valve mechanism cannot be moved until the engine is started and the lubricating oil pressure of the engine sufficiently rises. Even if not a hydraulic drive type, there is a case where the drive of the variable valve apparatus is not permitted until the normal operation of the mechanically driven variable valve apparatus is ensured.

このような場合には、その間、バルブオーバラップを十分に確保することができず、上述したように吸気ポート内へ噴射された燃料の霧化の悪化による燃料壁流が一時的に増加し、HCが悪化する、という問題がある。   In such a case, the valve overlap cannot be secured sufficiently during that time, and the fuel wall flow due to the deterioration of atomization of the fuel injected into the intake port as described above temporarily increases. There is a problem that HC deteriorates.

また一般的な吸気行程噴射の技術にあっては、可変動弁装置と組み合わせた場合に、バルブオーバラップの状態によっては、却ってHCが増加したり運転性が悪化したりする不具合がある。   Further, in general intake stroke injection technology, when combined with a variable valve operating device, there is a problem that HC increases or operability deteriorates depending on the state of valve overlap.

この発明に係る内燃機関の制御装置は、内燃機関の吸気ポートに向けて燃料を噴射供給する燃料噴射弁と、排気弁閉時期との間のバルブオーバラップを機関運転条件に応じたものとするために吸気弁開時期を変更する可変動弁装置と、燃料噴射終了時期を機関運転条件に応じて変更する噴射時期制御手段と、機関の温度条件を検出する手段と、を備えている。   In the control apparatus for an internal combustion engine according to the present invention, the valve overlap between the fuel injection valve that injects fuel toward the intake port of the internal combustion engine and the exhaust valve closing timing depends on the engine operating conditions. Therefore, a variable valve operating device that changes the intake valve opening timing, an injection timing control means that changes the fuel injection end time according to the engine operating conditions, and a means that detects the engine temperature condition are provided.

そして、機関の冷間始動時に、最小オーバラップにて始動した直後に、そのときの吸気弁開時期に対してHCが最小となる所定の噴射終了時期に制御する第1段階と、上記可変動弁装置の駆動が開始したときに、逐次変化する吸気弁開時期に対応して、各々の吸気弁開時期の下でHCが最小となる所定の噴射終了時期に制御する第2段階と、機関温度が所定温度に達したときに噴射終了時期を通常の吸気弁開時期前の時期に制御する第3段階と、を実行するように構成されている。   When the engine is cold-started, immediately after starting with a minimum overlap, a first stage of controlling to a predetermined injection end timing at which HC is minimum with respect to the intake valve opening timing at that time, and the variable motion A second stage for controlling to a predetermined injection end timing at which HC is minimized under each intake valve opening timing in response to the intake valve opening timing that sequentially changes when driving of the valve device is started; And a third stage for controlling the injection end timing to a timing before the normal intake valve opening timing when the temperature reaches a predetermined temperature.

一つの望ましい形態では、上記の第1段階においては、噴射終了時期が吸気弁開時期より遅れた吸気行程噴射となる。 In one preferred form, Oite the first stage floor above, the injection end timing becomes the intake stroke injection which is delayed from the intake valve opening timing.

機関の始動の際には、最小オーバラップで始動され、完爆後に、第1段階として、噴射終了時期が所定の噴射終了時期となるように制御される。噴射時期の変更は可変動弁装置のように機械的な機構の作動を伴わないので、直ちに実行開始できる。このとき、噴射終了時期が吸気弁開時期の前あるいはその近傍となり、吸気弁を通過する高速の吸気流を利用して燃料の霧化が促進される。そして、可変動弁装置の駆動が開始したら、第2段階として、実際に変化する吸気弁開時期に対しHCが最小となる最適点に噴射終了時期を制御していく。これにより、過渡的なHCの悪化が回避される。そして、機関の温度が所定温度に達したら、第3段階に移行し、噴射終了時期を吸気弁開時期前の通常の時期に戻す。   When the engine is started, the engine is started with a minimum overlap. After the complete explosion, as a first stage, the injection end timing is controlled to be a predetermined injection end timing. Since the change of the injection timing is not accompanied by the operation of a mechanical mechanism unlike the variable valve operating device, the execution can be started immediately. At this time, the injection end timing is before or in the vicinity of the intake valve opening timing, and the atomization of the fuel is promoted using the high-speed intake flow passing through the intake valve. When the driving of the variable valve apparatus starts, as the second stage, the injection end timing is controlled to the optimum point at which HC is minimum with respect to the actually changing intake valve opening timing. Thereby, the transient deterioration of HC is avoided. When the engine temperature reaches a predetermined temperature, the process proceeds to the third stage, and the injection end timing is returned to the normal timing before the intake valve opening timing.

この発明によれば、機関の冷間始動から暖機完了に至るまでの間の吸気ポート壁面の壁流による過渡的なHCの悪化を最小限に抑制することができる。   According to the present invention, transient deterioration of HC due to the wall flow on the wall surface of the intake port from the cold start of the engine to the completion of warm-up can be suppressed to a minimum.

この発明に係る内燃機関の制御装置のシステム構成図。The system block diagram of the control apparatus of the internal combustion engine which concerns on this invention. バルブオーバラップと噴射終了時期とに対するHCならびに燃焼安定性の特性を示す特性図。The characteristic view which shows the characteristic of HC and combustion stability with respect to valve overlap and injection end timing. 図2において第1,第2,第3段階の移行を矢印で示した説明図。Explanatory drawing which showed the transfer of the 1st, 2nd, 3rd step in FIG. 2 with the arrow. 吸排気弁の開閉時期を示したバルブタイミングチャート。The valve timing chart which showed the opening / closing timing of the intake / exhaust valve. 一実施例の制御の流れを示すフローチャート。The flowchart which shows the flow of control of one Example. 始動後の噴射終了時期等の変化を示すタイムチャート。The time chart which shows changes, such as the injection end time after a start.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、この発明に係る内燃機関のシステム構成を示す構成説明図であって、内燃機関1は、吸気弁3と排気弁4とを有し、かつ吸気弁3の可変動弁装置として、吸気弁3のリフト・作動角を連続的に拡大・縮小させることが可能な第1可変動弁機構(VEL)5と、作動角の中心角を連続的に遅進させることが可能な位相可変機構すなわち第2可変動弁機構(VTC)6と、を備えている。また、吸気通路7には、モータ等のアクチュエータにより開度が制御される電子制御スロットル弁2が設けられている。これらの第1,第2可変動弁機構5,6および電子制御スロットル弁2は、コントロールユニット10によって制御されている。   FIG. 1 is a configuration explanatory view showing a system configuration of an internal combustion engine according to the present invention. The internal combustion engine 1 has an intake valve 3 and an exhaust valve 4, and as a variable valve operating apparatus for the intake valve 3, A first variable valve mechanism (VEL) 5 capable of continuously expanding / reducing the lift / operation angle of the intake valve 3 and a phase variable capable of continuously delaying the central angle of the operation angle. A mechanism, that is, a second variable valve mechanism (VTC) 6. The intake passage 7 is provided with an electronically controlled throttle valve 2 whose opening degree is controlled by an actuator such as a motor. The first and second variable valve mechanisms 5 and 6 and the electronic control throttle valve 2 are controlled by the control unit 10.

また、吸気ポート内へ向けて燃料を噴射する燃料噴射弁8が吸気通路7に配設されており、吸入空気量に応じた量の燃料が、この燃料噴射弁8から噴射される。   A fuel injection valve 8 for injecting fuel into the intake port is disposed in the intake passage 7, and an amount of fuel corresponding to the intake air amount is injected from the fuel injection valve 8.

上記のコントロールユニット10には、運転者により操作されるアクセルペダルに設けられたアクセル開度センサ11からのアクセル開度信号APO、エンジン回転速度センサ12からのエンジン回転速度信号Ne、吸入空気量センサ13からの吸入空気量信号、水温センサ14からの冷却水温信号Twなどが入力されており、コントロールユニット10は、これらの信号に基づいて、燃料噴射量、燃料噴射時期、点火時期、スロットル弁開度、作動角目標値、中心角目標値、等を演算し、燃料噴射弁8、点火プラグ9、スロットル弁2、第1,第2可変動弁機構5,6、等を制御する。   The control unit 10 includes an accelerator opening signal APO from an accelerator opening sensor 11 provided on an accelerator pedal operated by a driver, an engine rotation speed signal Ne from an engine rotation speed sensor 12, and an intake air amount sensor. An intake air amount signal from 13, a coolant temperature signal Tw from the water temperature sensor 14, and the like are input. Based on these signals, the control unit 10 performs fuel injection amount, fuel injection timing, ignition timing, throttle valve opening. The fuel injection valve 8, the spark plug 9, the throttle valve 2, the first and second variable valve mechanisms 5, 6 and the like are controlled by calculating the degree, the operating angle target value, the center angle target value, and the like.

上記第1可変動弁機構5および第2可変動弁機構6は、その機械的な構成は公知であり(例えば、特開2007−285308号公報、特開2002−256905号公報等)、特に、ここでは、第1,第2可変圧縮比機構5,6ともに油圧駆動式の構成であり、機関の潤滑油圧が油圧源として利用されている。なお、本発明においては、少なくとも吸気弁3の開時期のみを遅進する可変動弁装置であれば足り、例えば、上記の第1,第2可変圧縮比機構5,6のいずれか一方のみでもよく、あるいは、他の形式の可変動弁装置であってもよい。   The mechanical configuration of the first variable valve mechanism 5 and the second variable valve mechanism 6 is well known (for example, JP 2007-285308 A, JP 2002-256905 A, etc.). Here, both the first and second variable compression ratio mechanisms 5 and 6 are hydraulically driven, and the lubricating oil pressure of the engine is used as a hydraulic pressure source. In the present invention, it is sufficient that the variable valve operating device delays at least the opening timing of the intake valve 3, and for example, only one of the first and second variable compression ratio mechanisms 5 and 6 is used. Alternatively, other types of variable valve gears may be used.

次に、本発明の要部である冷間始動の際の制御について説明する。   Next, the control at the time of cold start which is the main part of the present invention will be described.

図4は、上記の可変動弁装置5,6によって実現される吸気弁3のバルブタイミングの一例を示しており、図(a)は、冷間時に残留ガスの吹き戻しにより燃料噴霧の霧化促進を行うために、吸排気弁3,4のバルブオーバラップを比較的大きく確保したときの特性例を示している。具体的には、バルブオーバラップは、14°CAである。   FIG. 4 shows an example of the valve timing of the intake valve 3 realized by the variable valve gears 5 and 6, and FIG. 4 (a) shows the atomization of the fuel spray by blowing back the residual gas when cold. In order to promote, the characteristic example when the valve overlap of the intake-exhaust valves 3 and 4 is ensured comparatively large is shown. Specifically, the valve overlap is 14 ° CA.

一方、図(b)は、負荷の高いときの特性例であり、吸気弁3の開時期が最も遅角側にあり、従って、バルブオーバラップが最小、例えば−6°CA、となっている。可変動弁装置5,6は、油圧が供給されない機関停止時には、この特性(b)に復帰する構成となっており、従って、機関始動時には、基本的に、この特性(b)でもって始動が行われる。そして、機関始動後、油圧が十分に高くなるまでは、バルブリフト特性の可変制御は開始されず、その間、特性(b)での運転が継続される。また、その可変制御が開始されると、吸気弁開時期が徐々に進角し、バルブオーバラップが拡大していって、特性(a)へと変化することになる。   On the other hand, FIG. (B) is an example of characteristics when the load is high. The opening timing of the intake valve 3 is on the most retarded side, and therefore the valve overlap is minimum, for example, −6 ° CA. . The variable valve gears 5 and 6 are configured to return to this characteristic (b) when the engine is not supplied with hydraulic pressure. Therefore, when the engine is started, the start is basically performed with this characteristic (b). Done. Then, after the engine is started, until the hydraulic pressure becomes sufficiently high, the variable control of the valve lift characteristic is not started, and during that time, the operation with the characteristic (b) is continued. When the variable control is started, the intake valve opening timing is gradually advanced, the valve overlap is expanded, and the characteristic (a) is changed.

図2は、機関冷機時における(i)HC排出量および(ii)燃焼安定性と上記のようなバルブオーバラップの大小との関係を示したものであり、ここでは、バルブオーバラップが14°CAの特性(a)と−6°CAの特性(b)のみを代表として示している。また、横軸は、変数として、噴射時期、特に噴射終了時期を示しており、図左側が進角側、右側が遅角側であって、1目盛りが20°CAである。また、図には、参考として、固定的な排気弁閉時期(EVC)、特性(a)のときの吸気弁開時期(IVO(a)として示す)および特性(b)のときの吸気弁開時期(IVO(b)として示す)を図示してある。   FIG. 2 shows the relationship between (i) HC emissions and (ii) combustion stability and the magnitude of the valve overlap as described above when the engine is cold. Here, the valve overlap is 14 °. Only the characteristic (a) of CA and the characteristic (b) of −6 ° CA are shown as representatives. The horizontal axis indicates the injection timing, particularly the injection end timing, as a variable. The left side of the drawing is the advance side, the right side is the retard side, and one scale is 20 ° CA. Also, in the figure, for reference, a fixed exhaust valve closing timing (EVC), an intake valve opening timing (shown as IVO (a)) at the characteristic (a), and an intake valve opening at the characteristic (b) The timing (shown as IVO (b)) is illustrated.

図示するように、冷機時には、バルブオーバラップが小さい(−6°CA)と、燃料の霧化が悪いことから、HC排出量が多い傾向があり、全体として、バルブオーバラップが大きい(例えば14°CA)方が、残留ガスの熱による霧化向上により、HCは少なくなる。しかし、特性(b)のようにバルブオーバラップが小さいときに、噴射終了時期を遅らせて吸気弁開時期に近付けていくと、HC排出量は急激に減少し、噴射終了時期が吸気弁開時期よりも僅かに遅れたときに極小点(P1)となる。しかし、図から明らかなように、過度に噴射終了時期が遅いと、HCは逆に悪化し、かつ燃焼安定性も悪化してしまう。   As shown in the figure, when the engine is cold, if the valve overlap is small (−6 ° CA), the atomization of the fuel is bad, so there is a tendency that the HC emission amount is large, and the valve overlap is large as a whole (for example, 14 In the case of ° CA), HC is reduced due to the improvement of atomization due to the heat of the residual gas. However, when the valve overlap is small as in the characteristic (b), if the injection end timing is delayed to approach the intake valve opening timing, the HC emission amount decreases rapidly, and the injection end timing becomes the intake valve opening timing. The minimum point (P1) is reached when it is slightly delayed. However, as is apparent from the figure, if the injection end timing is excessively late, HC deteriorates conversely and combustion stability also deteriorates.

噴射終了時期を変化させたときの上記のHC排出量の極小点は、バルブオーバラップが増加すると、それに伴って、進角側に移動する。図では必ずしも明確ではないが、バルブオーバラップが14°CAの特性(a)では、点P2が極小点となる。   As the valve overlap increases, the minimum point of the HC emission amount when the injection end timing is changed moves to the advance side. Although it is not necessarily clear in the figure, in the characteristic (a) where the valve overlap is 14 ° CA, the point P2 is a minimum point.

従って、本発明では、図3の矢印Y1,Y2,Y3に示すように、HC排出量が最小となるように、バルブオーバラップの変化に合わせて、噴射終了時期を可変制御する。図3のIT0は、暖機後の通常の噴射終了時期を示しており、図示するように、吸気弁3が閉じている期間内に燃料噴射が開始・終了する。また、始動(クランキング)の際は、この噴射終了時期IT0でもって燃料噴射が行われる。従って、図3の点P3で冷機時の運転が開始するが、この点P3ではHC排出量が大であるので、直ちに、極小点P1へと向かうように噴射終了時期を遅角させる。つまり、第1段階として、矢印Y1のような移行がなされる。この噴射時期の変更は、可変動弁装置5,6のような機械的な動作を必要としないので、直ちに実行可能である。やがて、機関の潤滑油圧が上昇し、可変動弁装置5,6の駆動が開始したら、逐次変化するバルブオーバラップ(吸気弁開時期IVO)に対応して、各々のバルブオーバラップの下でHCが最小となる所定の噴射終了時期つまり各々の極小点を連ねた形で、噴射終了時期を徐々に進角させる。これが第2段階となり、矢印Y2のような移行がなされる。そして、その後、機関温度条件が所定の条件に達したら、第3段階として矢印Y3のように、噴射終了時期を通常の噴射終了時期IT0に戻す。これにより、図3から明らかなように、HC排出量が最小となり、かつ過渡的な燃焼安定性の悪化を確実に回避できる。   Therefore, in the present invention, as shown by arrows Y1, Y2, and Y3 in FIG. 3, the injection end timing is variably controlled in accordance with the change in the valve overlap so that the HC discharge amount is minimized. IT0 in FIG. 3 indicates the normal injection end timing after warm-up, and as shown in the figure, fuel injection starts and ends within a period in which the intake valve 3 is closed. Further, at the start (cranking), fuel injection is performed at this injection end timing IT0. Therefore, although the operation at the time of cold start is started at the point P3 in FIG. 3, since the HC discharge amount is large at this point P3, the injection end timing is immediately retarded so as to go to the minimum point P1. That is, as the first stage, the transition as indicated by the arrow Y1 is performed. This change in the injection timing can be executed immediately because it does not require mechanical operation like the variable valve gears 5 and 6. Eventually, when the lubricating oil pressure of the engine rises and driving of the variable valve gears 5 and 6 starts, the HC under each valve overlap corresponds to the valve overlap (intake valve opening timing IVO) that changes sequentially. The injection end timing is gradually advanced in a form in which the predetermined injection end times at which the minimum is reached, that is, the respective minimum points are connected. This is the second stage, and a transition as indicated by an arrow Y2 is made. Thereafter, when the engine temperature condition reaches a predetermined condition, the injection end timing is returned to the normal injection end timing IT0 as indicated by an arrow Y3 as a third stage. Thereby, as is apparent from FIG. 3, the amount of HC emission is minimized, and the transient deterioration of combustion stability can be reliably avoided.

図5は、冷間始動時に行われる制御の流れを示すフローチャートであり、まずはじめに、ステップ1のように、図4の特性(b)でもって機関の始動が行われる。なお、噴射終了時期は上記の通常の噴射終了時期IT0である。完爆して自立運転に移行したら、ステップ2に進み、噴射終了時期ITを遅角し、特性(b)の下でHC排出量が最小となる所定の噴射終了時期とする(第1段階)。ステップ3では、所定の時間の経過あるいは油圧の検出などに基づき、可変動弁装置5,6の駆動を許可する。これにより、可変動弁装置5,6は、図4の特性(a)に向かって実際に動作する。ステップ4では、可変動弁装置5,6の動作に伴って変化する吸気弁開時期を逐次読み込み、この吸気弁開時期に対応して、各々の吸気弁開時期の下でHCが最小となる所定の噴射終了時期に制御する(第2段階)。そして、機関温度条件が所定の条件に達したら、ステップ5において、噴射終了時期を通常の噴射終了時期IT0に戻す(第3段階)。さらに、暖機が完了したら、ステップ6において、可変動弁装置5,6を通常の制御に移行し、運転条件によるが、例えば、バルブオーバラップが縮小する。   FIG. 5 is a flowchart showing a flow of control performed at the time of cold start. First, as in step 1, the engine is started with the characteristic (b) of FIG. The injection end time is the normal injection end time IT0. When the explosion is completed and the operation shifts to the self-sustained operation, the process proceeds to Step 2 where the injection end timing IT is retarded to be a predetermined injection end timing at which the HC emission amount is minimized under the characteristic (b) (first stage) . In step 3, the drive of the variable valve gears 5 and 6 is permitted based on the passage of a predetermined time or the detection of the hydraulic pressure. Thereby, the variable valve gears 5 and 6 actually operate toward the characteristic (a) in FIG. In step 4, the intake valve opening timing that changes with the operation of the variable valve gears 5 and 6 is sequentially read, and HC is minimized under each intake valve opening timing corresponding to the intake valve opening timing. Control is performed at a predetermined injection end timing (second stage). When the engine temperature condition reaches a predetermined condition, in step 5, the injection end timing is returned to the normal injection end timing IT0 (third stage). Further, when the warm-up is completed, in step 6, the variable valve gears 5 and 6 are shifted to normal control, and, for example, the valve overlap is reduced depending on the operating conditions.

図6は、冷間始動後に上記のような制御により変化していく吸気弁開時期IVOと噴射終了時期ITの一例を示すタイムチャートであって、機関回転速度REVと車速Vと冷却水温Twの変化を併せて示してある。図のT0の時点で機関が始動し、直ちに第1段階に移行し、T1の時点までは、吸気行程噴射となる。T1の時点で可変動弁装置5,6の駆動が許可されると同時に第2段階に移行し、HC排出量を最小としつつ、吸気弁開時期IVOが進角して、例えば14°CAのオーバラップとなる。その後、冷却水温Twに基づき、T2の時点で、第3段階として、噴射終了時期の遅角が終了し、基準の噴射終了時期IT0に復帰する。そして、同じく冷却水温Twに基づき、T3の時点で、可変動弁装置5,6が通常の制御に移行し、バルブオーバラップが縮小する。   FIG. 6 is a time chart showing an example of the intake valve opening timing IVO and the injection end timing IT that are changed by the control as described above after the cold start, and shows the engine rotational speed REV, the vehicle speed V, and the cooling water temperature Tw. The changes are also shown. The engine starts at the time T0 in the figure, and immediately shifts to the first stage, and the intake stroke injection is performed until the time T1. At the time of T1, the driving of the variable valve gears 5 and 6 is permitted, and at the same time, the process proceeds to the second stage, and the intake valve opening timing IVO is advanced while minimizing the HC discharge amount, for example, 14 ° CA. Overlap. Thereafter, based on the cooling water temperature Tw, at the time point T2, as a third stage, the delay of the injection end timing ends and returns to the reference injection end timing IT0. Similarly, based on the cooling water temperature Tw, at time T3, the variable valve gears 5 and 6 shift to normal control, and the valve overlap is reduced.

3…吸気弁
5,6…可変動弁装置
8…燃料噴射弁
10…コントロールユニット
14…水温センサ
DESCRIPTION OF SYMBOLS 3 ... Intake valve 5, 6 ... Variable valve operating apparatus 8 ... Fuel injection valve 10 ... Control unit 14 ... Water temperature sensor

Claims (4)

内燃機関の吸気ポートに向けて燃料を噴射供給する燃料噴射弁と、
排気弁閉時期との間のバルブオーバラップを機関運転条件に応じたものとするために吸気弁開時期を変更する可変動弁装置と、
燃料噴射終了時期を機関運転条件に応じて変更する噴射時期制御手段と、
機関の温度条件を検出する手段と、
を備えてなる内燃機関の制御装置において、
機関の冷間始動時に、最小オーバラップにて始動した直後に、そのときの吸気弁開時期に対してHCが最小となる所定の噴射終了時期に制御する第1段階と、
上記可変動弁装置の駆動が開始したときに、逐次変化する吸気弁開時期に対応して、各々の吸気弁開時期の下でHCが最小となる所定の噴射終了時期に制御する第2段階と、
機関温度が所定温度に達したときに噴射終了時期を通常の吸気弁開時期前の時期に制御する第3段階と、を実行することを特徴とする内燃機関の制御装置。
A fuel injection valve that injects fuel toward the intake port of the internal combustion engine;
A variable valve gear that changes the intake valve opening timing in order to make the valve overlap between the exhaust valve closing timing and the engine operating conditions,
An injection timing control means for changing the fuel injection end timing according to the engine operating conditions;
Means for detecting engine temperature conditions;
In a control device for an internal combustion engine comprising:
A first stage of controlling to a predetermined injection end timing at which HC is minimum with respect to the intake valve opening timing immediately after starting with a minimum overlap at the time of cold start of the engine;
A second stage of controlling to a predetermined injection end time at which HC is minimized under each intake valve opening timing in response to the intake valve opening timing that sequentially changes when driving of the variable valve device starts. When,
And a third step of controlling the injection end timing to a timing before the normal intake valve opening timing when the engine temperature reaches a predetermined temperature.
第1段階においては、噴射終了時期が吸気弁開時期より遅れた吸気行程噴射となることを特徴とする請求項1に記載の内燃機関の制御装置。   2. The control apparatus for an internal combustion engine according to claim 1, wherein in the first stage, the injection end timing is intake stroke injection delayed from the intake valve opening timing. 第2段階の終了時点においては、噴射終了時期が吸気弁開時期より進角側にあることを特徴とする請求項2に記載の内燃機関の制御装置。 3. The control apparatus for an internal combustion engine according to claim 2, wherein at the end of the second stage, the injection end timing is more advanced than the intake valve opening timing. 上記可変動弁装置のアクチュエータが、油圧駆動機構であることを特徴とする請求項1〜3のいずれかに記載の内燃機関の制御装置。   4. The control apparatus for an internal combustion engine according to claim 1, wherein the actuator of the variable valve operating apparatus is a hydraulic drive mechanism.
JP2009054362A 2009-03-09 2009-03-09 Control device for internal combustion engine Active JP5316102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054362A JP5316102B2 (en) 2009-03-09 2009-03-09 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009054362A JP5316102B2 (en) 2009-03-09 2009-03-09 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010209716A JP2010209716A (en) 2010-09-24
JP5316102B2 true JP5316102B2 (en) 2013-10-16

Family

ID=42970144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054362A Active JP5316102B2 (en) 2009-03-09 2009-03-09 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5316102B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8595502B2 (en) 1995-09-29 2013-11-26 Intarsia Software Llc Data management system
US9245260B2 (en) 1994-10-27 2016-01-26 Xylon Llc Data copyright management

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5885232B2 (en) * 2011-05-09 2016-03-15 シナプティクス・ディスプレイ・デバイス合同会社 Touch sensor panel controller and semiconductor device
JP2013050061A (en) * 2011-08-30 2013-03-14 Nippon Soken Inc Valve timing control device for internal combustion engine
JP6213379B2 (en) * 2014-06-02 2017-10-18 マツダ株式会社 Engine fuel injection timing control device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318149A (en) * 1986-07-10 1988-01-26 Mazda Motor Corp Suction device for engine
JP3525737B2 (en) * 1998-05-06 2004-05-10 日産自動車株式会社 In-cylinder injection gasoline engine
JP2001221083A (en) * 2000-02-07 2001-08-17 Unisia Jecs Corp Fuel injection controller for engine
JP2004353557A (en) * 2003-05-29 2004-12-16 Hitachi Unisia Automotive Ltd Variable valve system control device of internal combustion engine
JP2005061279A (en) * 2003-08-08 2005-03-10 Mitsubishi Motors Corp Variable valve control device of engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9245260B2 (en) 1994-10-27 2016-01-26 Xylon Llc Data copyright management
US8595502B2 (en) 1995-09-29 2013-11-26 Intarsia Software Llc Data management system

Also Published As

Publication number Publication date
JP2010209716A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP4525517B2 (en) Internal combustion engine
JP5660143B2 (en) Control device for internal combustion engine
JP5316102B2 (en) Control device for internal combustion engine
JP2010138898A (en) Variable valve gear
JP4605512B2 (en) Control device for internal combustion engine
JP2006322371A (en) Engine control device, vehicle control device and engine control method
JP3841058B2 (en) Engine starter
JP3966204B2 (en) Engine starter
JP4103649B2 (en) Engine starter
JP2007327366A (en) Variable valve timing device
JP4221001B2 (en) Control device for internal combustion engine
JP4770705B2 (en) Engine fuel injection amount control device
JP4306586B2 (en) Valve characteristic control device for internal combustion engine
JP2007126992A (en) Control device of internal combustion engine
JP5429148B2 (en) Premixed compression self-ignition engine
JP2012041901A (en) Variable valve timing control apparatus of internal combustion engine
JP2008095610A (en) Valve timing control device for internal combustion engine
JP4702143B2 (en) Engine starter
JP2014066227A (en) Control unit for internal combustion engine
JP4103664B2 (en) Engine starter
JP2010031803A (en) Control device of multi-cylinder internal combustion engine
JP4396253B2 (en) Intake control device for internal combustion engine
JP4386199B2 (en) Variable valve timing device
JP2006046285A (en) Intake air control device for internal combustion engine
JP7135434B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R150 Certificate of patent or registration of utility model

Ref document number: 5316102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150