JP5307532B2 - Frequency change measurement method and apparatus - Google Patents

Frequency change measurement method and apparatus Download PDF

Info

Publication number
JP5307532B2
JP5307532B2 JP2008336001A JP2008336001A JP5307532B2 JP 5307532 B2 JP5307532 B2 JP 5307532B2 JP 2008336001 A JP2008336001 A JP 2008336001A JP 2008336001 A JP2008336001 A JP 2008336001A JP 5307532 B2 JP5307532 B2 JP 5307532B2
Authority
JP
Japan
Prior art keywords
signal
frequency
time
measurement
dividing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008336001A
Other languages
Japanese (ja)
Other versions
JP2010139493A (en
Inventor
常生 山内
Original Assignee
常生 山内
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常生 山内 filed Critical 常生 山内
Priority to JP2008336001A priority Critical patent/JP5307532B2/en
Publication of JP2010139493A publication Critical patent/JP2010139493A/en
Application granted granted Critical
Publication of JP5307532B2 publication Critical patent/JP5307532B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Frequencies, Analyzing Spectra (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure frequency variations of a signal to be measured with low electric consumption. <P>SOLUTION: Each of a signal to be measured whose frequency changes according to change of the physical amount and an output signal from a reference oscillator are divided. Division periods of the respective signals are generated in different cycles, and cycle time differences between them are determined. The output signal from the reference oscillator in a plurality of close cycle time differences is counted, and frequency variations of the signal to be measured are measured from the total sum of the counted values. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は,被測定信号の周波数変化の測定方法,及び,測定装置に関わる.  The present invention relates to a method for measuring a frequency change of a signal under measurement and a measuring apparatus.

物理量の変化に対応して周波数が変化する被測定信号の周波数変化を測定する方法には,1)被測定信号の周波数変化を分周してゲート時間を作成し,そのゲート時間内に測定裝置内部の基準クロックをカウントする方法,2)測定装置内部の基準クロックを分周してゲート時間を作成し,そのゲート時間内に物理量の変化に対応して周波数が変化する被測定信号の周波数をカウントする方法等,が知られている.  To measure the frequency change of the signal under measurement whose frequency changes in response to changes in the physical quantity, 1) create a gate time by dividing the frequency change of the signal under measurement, and measure within the gate time. A method of counting the internal reference clock, 2) A gate time is created by dividing the internal reference clock of the measuring device, and the frequency of the signal under measurement whose frequency changes in response to a change in physical quantity within the gate time. There are known methods such as counting.

従来,例えば,精密な温度測定装置として,温度変化に対応して発振周波数が変化する水晶振動子を温度センサとして使用し,その水晶振動子を接続した発振器の発振周波数を分周し,分周信号によってゲートタイムを作成し,そのゲートタイム間に発生する測定装置内部の基準クロックをカウントして温度を測定する水晶温度計が知られている.  Conventionally, for example, as a precise temperature measurement device, a crystal resonator whose oscillation frequency changes in response to temperature changes is used as a temperature sensor, and the oscillation frequency of the oscillator connected to the crystal resonator is divided. Quartz thermometers that measure the temperature by creating a gate time using a signal and counting the reference clock inside the measuring device generated during the gate time are known.

この種の水晶温度計は,一般に,図1に示すように,温度センサとしての水晶振動子1,それを発振させる発振回路2,その発振周波数信号を分周する分周器3,その分周信号に基づきゲートタイムを作成するゲート回路5,クロック信号を発生する基準クロック発振器4,ゲートタイム間にクロックをカウントするカウンタ6,及び,カウンタ6の計数値を読み取り各種演算して温度に換算する演算手段であるマイクロコンピュータ(CPU)7等から構成されている.しかし,この種の水晶温度計では,基準クロック発振器4のクロック周波数の安定度が測定精度に大きく影響する.このため,この種の水晶温度計では,測定誤差を少なくし測定精度を保つため,基準クロック発振器4を恒温槽に入れ,クロックの出力周波数を安定化する必要があった.  As shown in FIG. 1, this type of crystal thermometer generally includes a crystal resonator as a temperature sensor, an oscillation circuit that oscillates it, a frequency divider 3 that divides the oscillation frequency signal, and its frequency division. A gate circuit for generating a gate time based on a signal, a reference clock oscillator for generating a clock signal, a counter 6 for counting a clock during the gate time, and a counter 6 for reading a count value and performing various calculations to convert it into a temperature. It consists of a microcomputer (CPU) 7 etc. that is a computing means. However, in this type of crystal thermometer, the stability of the clock frequency of the reference clock oscillator 4 greatly affects the measurement accuracy. For this reason, in this type of quartz thermometer, it is necessary to stabilize the clock output frequency by placing the reference clock oscillator 4 in a thermostat in order to reduce measurement errors and maintain measurement accuracy.

特許文献1で,基準発振器と被測定信号との相互間で非常に短い周期時間差時間を求め,その周期時間差に該当する信号により特定された短い時間差だけ,カウンタにより測定装置内部の基準クロックをカウントする方法が開示されている.この方法は,測定装置内部の基準クロックをカウントする時間が短いため,測定結果が基準クロックの不安定さの影響を受け難くする特徴がある.しかし,特許文献1の方法は,測定毎に基準発振器と被測定信号の分周回路をリセットし,2つの信号を同期させるため,リセット時に分周周期のずれによりデジタル誤差が生じる欠点があった.このデジタル誤差は,測定値の分解能を向上させるための障害になっている.特許文献2で,リセットによる分周周期の同期を避け,リセット時に発生するデジタル誤差の影響を少なくする方法が開示されている.
特許公報第2742642号 特開2002−214269号公報
In Patent Document 1, a very short period time difference time is obtained between the reference oscillator and the signal under measurement, and the reference clock inside the measuring device is counted by the counter by the short time difference specified by the signal corresponding to the period time difference. A method to do this is disclosed. This method is characterized in that the measurement result is less affected by the instability of the reference clock because the time for counting the reference clock in the measuring device is short. However, the method of Patent Document 1 has a drawback in that a digital error occurs due to a shift in the frequency division period at the time of resetting because the reference oscillator and the frequency-dividing circuit of the signal under measurement are reset for each measurement and the two signals are synchronized. . This digital error is an obstacle to improve the resolution of measured values. Patent Document 2 discloses a method of avoiding the synchronization of the frequency dividing period by reset and reducing the influence of the digital error generated at the time of reset.
Japanese Patent No. 2742642 JP 2002-214269 A

特許文献2の技術では,高い分解能で被測定信号を測定するためには,
1)被測定信号と基準発振器との作用による周期時間差信号の発生間隔を長くしてその時間差信号の間,測定装置内部の基準クロックをカウントし,周波数測定に関わるカウント値の差を大きくする,
2)特定された周期時間差信号の間,高速発振する測定装置内部の基準クロックをカウントし,周波数測定に関わるカウント値の差を大きくする,
等の方法が必要である.分解能を2倍か3倍に向上させることはできても,例えば20倍向上させることは容易ではない.1)の場合は,測定間隔が20倍になり,早い応答が必要とされる用途に適さなくなる.また,2)の場合は,基準クロックの発振周波数を20倍高くする必要があり,カウンタ等を含めて消費電流が20倍程度になり,好ましくない.また,20倍の高速発振する基準クロックが製作できない場合も想定される.
In the technique of Patent Document 2, in order to measure a signal under measurement with high resolution,
1) Increase the generation interval of the periodic time difference signal due to the action of the signal under measurement and the reference oscillator, count the reference clock inside the measuring device during the time difference signal, and increase the difference in count value related to frequency measurement.
2) Count the reference clock inside the measuring device that oscillates at high speed during the specified cycle time difference signal, and increase the difference in the count value related to frequency measurement.
Etc. are necessary. Although the resolution can be improved by 2 or 3 times, it is not easy to improve it by 20 times, for example. In the case of 1), the measurement interval is 20 times longer, making it unsuitable for applications that require a quick response. In the case of 2), it is necessary to increase the oscillation frequency of the reference clock 20 times, and the current consumption including the counter and the like becomes about 20 times, which is not preferable. It is also assumed that a reference clock that oscillates 20 times faster cannot be produced.

この発明は上記課題を解決すべくなされたものであり,この発明の第1の局面は次のように規定される.
測定の基準となる周波数信号を出力する発振手段と,その出力信号を分周する第1の分周手段と,物理量の変化に対応して周波数が変化する被測定信号を分周する第2の分周手段と,第1の分周手段と第2の分周手段の分周信号より周期時間差信号を作成する周期時間差発生回路と,該周期時間差発生回路の信号によりラッチ信号を発生するラッチ信号発生回路と,カウント用の信号を出力する基準発振器と,該基準発振器の出力信号をカウントするカウンタと,カウント値を読み取り演算する演算手段より構成され,
該発振手段による出力信号を第1の分周手段で分周した分周信号と,該被測定信号を第2の分周手段で分周した分周信号と,から周期時間差発生回路で周期時間差信号を発生させ,近接した複数の該周期時間差信号に対応してラッチ信号発生回路でラッチ信号を発生させ,該ラッチ信号をカウント用の信号を出力する基準発振器の出力信号をカウントしているカウンタに作用させ,複数の周期時間差信号間のカウンタの値を読み取り,演算手段によりこれらのカウント値の総和から被測定信号の周波数変化を測定する周波数変化測定法.
The present invention has been made to solve the above problems, and the first aspect of the present invention is defined as follows.
An oscillating means for outputting a frequency signal as a reference for measurement, a first frequency dividing means for dividing the output signal, and a second for dividing the signal under measurement whose frequency changes in response to a change in physical quantity. Frequency dividing means, a period time difference generating circuit for generating a period time difference signal from the frequency dividing signals of the first frequency dividing means and the second frequency dividing means, and a latch signal for generating a latch signal by the signal of the period time difference generating circuit A generation circuit, a reference oscillator that outputs a count signal, a counter that counts the output signal of the reference oscillator, and a calculation means that reads and calculates the count value;
A cycle time difference is generated by a cycle time difference generating circuit from a frequency-divided signal obtained by frequency-dividing the output signal from the oscillation unit by the first frequency-dividing unit and a frequency-divided signal obtained by frequency-dividing the signal under measurement by the second frequency-dividing unit. A counter that counts the output signal of a reference oscillator that generates a signal, generates a latch signal in a latch signal generation circuit in response to a plurality of adjacent time difference signals, and outputs a signal for counting the latch signal This is a frequency change measurement method that reads the value of the counter between multiple period time difference signals and measures the frequency change of the signal under measurement from the sum of these count values by means of arithmetic means.

本発明の周波数変化測定法は,図2の構成図に示すように,測定の基準となる周波数信号を出力する発振手段13と,13からの出力信号を分周する分周手段である第1の分周器14と,周波数信号である被測定信号11を分周する分周手段である第2の分周器12と,前記2つの分周器12,14から出力される分周信号の周期時間差を持つ周期時間差信号を発生する周期時間差発生回路15と,周期時間差信号から特定された時間にラッチ信号を発生させるラッチ信号発生回路17と,カウント用の信号を出力する基準発振器16と,16の出力信号をカウンとするカウンタ18と,該ラッチ信号発生回路17に基づくラッチ信号によりラッチされたカウンタ18のカウント値を取り込み,そのカウント値に基づいて被測定信号の周波数変化を演算する演算手段19と,を備えて構成される.  As shown in the block diagram of FIG. 2, the frequency change measuring method of the present invention is a first frequency dividing means for dividing an output signal from an oscillation means 13 for outputting a frequency signal serving as a measurement reference. Frequency divider 14, a second frequency divider 12 that is a frequency dividing means for frequency-dividing the signal under measurement 11, and frequency-divided signals output from the two frequency dividers 12 and 14. A period time difference generating circuit 15 for generating a period time difference signal having a period time difference, a latch signal generating circuit 17 for generating a latch signal at a time specified from the period time difference signal, a reference oscillator 16 for outputting a counting signal, The count value of the counter 18 that counts the output signal of 16 and the counter 18 latched by the latch signal based on the latch signal generation circuit 17 is fetched, and the frequency of the signal under measurement is calculated based on the count value. Configured to include an operation unit 19 for calculating a reduction, the.

このように規定される第1の局面の周波数変化測定方法を図2の構成図と図3のタイミングチャートに基づいて説明する.図3の上段のTは,測定の基準となる周波数信号を出力する発振手段13の出力信号を分周する第1の分周器14の出力である分周信号Tのネガティブエッジ(横軸は時間であり,図示した時間は分周周期Tの連続するネガティブエッジt0,t1,t2近傍である),及び,被測定信号11を分周する第2の分周器12の出力である分周信号Qの変化を示すタイムチャートである.図3の中段は該分周信号Tのネガティブエッジt0近傍を拡大したタイムチャート,図3の下段は,同じくt1近傍を拡大したタイムチャートである.分周信号Qと分周信号Tが図3で示すような関係である場合を例に説明する.図3の横軸は時間軸とし,t0のとき,分周信号Tのネガティブエッジと分周信号Qのネガティブエッジが一致しているとする(時刻t0と時刻q00が一致しているとする).そして,分周信号Tの周期をT’,分周信号Qの周期をQ’とし,Q’のN倍(以下ではN*Q’とする)に近い時間における被測定信号の周波数変化を求めることを想定する.具体的には,カウント用の信号を出力する基準発振器16の出力信号をカウントすることを想定し,この時間にカウントしたカウント値の差から演算によりこの時間内の周波数変化を求めることとする.  The frequency change measurement method of the first aspect defined in this way will be described based on the configuration diagram of FIG. 2 and the timing chart of FIG. 3 is a negative edge of the frequency-divided signal T that is the output of the first frequency divider 14 that divides the output signal of the oscillating means 13 that outputs the frequency signal serving as a measurement reference (the horizontal axis indicates The time shown is the vicinity of negative edges t0, t1 and t2 having a continuous frequency dividing period T), and the frequency divider is the output of the second frequency divider 12 that divides the signal under measurement 11 It is a time chart which shows change of signal Q. The middle part of FIG. 3 is a time chart in which the vicinity of the negative edge t0 of the frequency-divided signal T is enlarged, and the lower part of FIG. 3 is a time chart in which the vicinity of t1 is similarly enlarged. The case where the frequency-divided signal Q and the frequency-divided signal T have the relationship shown in FIG. 3 will be described as an example. The horizontal axis in FIG. 3 is a time axis, and at t0, the negative edge of the frequency-divided signal T and the negative edge of the frequency-divided signal Q are coincident (assuming that the time t0 coincides with the time q00). . Then, T ′ is the period of the frequency-divided signal T, Q ′ is the period of the frequency-divided signal Q, and the frequency change of the signal under measurement in a time close to N times Q ′ (hereinafter referred to as N * Q ′) is obtained. Assume that. Specifically, it is assumed that the output signal of the reference oscillator 16 that outputs a counting signal is counted, and the frequency change within this time is obtained by calculation from the difference between the count values counted at this time.

周期T’と周期Q’との関係が,T’=N*Q’であるとし,測定の基準となる周波数信号を出力する発振手段13の発振周波数は安定で分周信号の周期T’が一定であると仮定する.また,以下に記載するカウント及びカウント値とは,何れも基準発振器16の出力信号をカウントすること,及び,その結果得られるカウント値を意味する.図3の中段の図で示すように,時刻t0では図2に示した構成要素である13の分周信号Tと,被測定信号11の分周信号Qが一致していると仮定した.したがって,分周信号Tの時系列上の時刻t0と,分周信号Qの時系列上の時刻q00は一致する.図示はしてないが,2つの時間間隔の関係が,T’=N*Q’であり,時間間隔T’が時間軸上でt0からt1であるとする.そして,分周信号Tのネガティブエッジに対応する時刻t0,t1,t2と同時ないしは直後に変化する分周信号Qのネガティブエッジでラッチ信号を出力しカウンタ18の値をラッチし演算手段等で読み取ることとする.この場合,N*Q’の時間だけカウント用の信号を出力する基準発振器16の出力信号をカウントすると想定すれば,この間に被測定信号11の周波数信号が変化すればその周波数変化に対応してカウント値に差が生じる.N=1000で,時刻t0からt1の間が1秒であり,16の出力信号が10MHzであったとする.t0からt1まで連続して16の出力信号をカウントする場合,
10MHz*1sec=10000000 (1)
カウントになる.また,N=1000で,t0からt1までが1秒と仮定したことで,q01−q00は1msecとなり,この間のカウント値は,
10MHz*1msec=10000 (2)
カウントになる.図3で被測定信号11の発振周波数が変化しないとすれば(この場合は下段で図示した時刻t1とq10も重なる),時刻q00から時刻q10,時刻q01からq11まで,16の出力信号をカウントしても,それぞれ,N*Q’時間に相当するカウント値,10000000になる.
Assume that the relationship between the period T ′ and the period Q ′ is T ′ = N * Q ′, and the oscillation frequency of the oscillation means 13 that outputs the frequency signal serving as a measurement reference is stable, and the period T ′ of the divided signal is Assume that it is constant. The counts and count values described below mean counting the output signal of the reference oscillator 16 and the resulting count value. As shown in the middle diagram of FIG. 3, at time t0, it was assumed that the divided signal T of 13 components shown in FIG. 2 and the divided signal Q of the signal under measurement 11 coincide. Therefore, the time t0 on the time series of the divided signal T and the time q00 on the time series of the divided signal Q coincide. Although not shown, it is assumed that the relationship between the two time intervals is T ′ = N * Q ′, and the time interval T ′ is from t0 to t1 on the time axis. Then, a latch signal is output at the negative edge of the divided signal Q that changes simultaneously with or immediately after the times t0, t1, t2 corresponding to the negative edge of the divided signal T, and the value of the counter 18 is latched and read by the arithmetic means or the like. I will. In this case, if it is assumed that the output signal of the reference oscillator 16 that outputs a counting signal for the time of N * Q ′ is counted, if the frequency signal of the signal under measurement 11 changes during this time, it corresponds to the frequency change. A difference occurs in the count value. It is assumed that N = 1000, 1 second from time t0 to t1, and 16 output signals are 10 MHz. When counting 16 output signals continuously from t0 to t1,
10MHz * 1sec = 10000000 (1)
It becomes a count. Also, assuming that N = 1000 and the time from t0 to t1 is 1 second, q01-q00 is 1 msec.
10MHz * 1msec = 10000 (2)
It becomes a count. If the oscillation frequency of the signal under measurement 11 does not change in FIG. 3 (in this case, the times t1 and q10 shown in the lower part also overlap), the 16 output signals are counted from the time q00 to the time q10 and from the time q01 to the q11. Even so, the count value corresponding to N * Q ′ time is 10000000.

被測定信号11の発振周波数が変化し,10ppm程度遅くなり分周周期が長くなった状態が図3で示されているとする.何れも,分周信号Tのネガティブエッジを測定の基準時間とし,直後に変化する分周信号Qのネガティブエッジでカウンタ値を読み取ることとする.この場合,図3の中段で示す時刻t0(時刻q00と一致している)からq01までのカウント値をk01,時刻t0からq02までのカウント値をk02,t0からq03までのカウント値をk03とする.同様に,図3の下段で示す時刻t1からq10,q11,q12,q13までのカウント値をk10,k11,k12,k13とする.被測定信号11の発振周波数が変化し,分周周期が長くなったと仮定したから,時刻t0からq01までの時間は,
1msec*(1+0.000010)=1.00001msec (3)
であり,この間のカウント値は,
10MHz*1.00001msec=10000.1 (4)
カウントである.また,時刻q10からq11までの時間も,
1msec*(1+0.000010)=1.00001msec (5)
であり,この間のカウント値は,
10MHz*1.00001msec=10000.1 (6)
カウントになる.時刻t1からq10までの時間は,時刻t0を基準にすると,
1sec*(1.000010)−1sec=0.01msec (7)
であり,この間のカウント値は,
10MHz*0.001*0.01=100 (8)
カウントである.ここでは周波数変化の割合が10ppmと仮定したが,割合が無理数等の値であれば,式(8)の結果は整数にならない.時刻t0からq10までの時間は,式(7)に1秒を加算した時間であり,
0.01msec+1sec=1.00001sec (9)
である.そして,この間のカウント値は,
10MHz*1.00001=10000100 (10)
カウントとなる.また,式(3)と式(5)より,時刻差q01−t0とq11−q10が同じで,t0からt1までが1秒であることから,時刻q01からq11までの間隔は,q10−t0と同じになる.同様にして,時刻q02からq12までの間隔は,q10−t0と同じになる.このように,分周周期Tの連続するネガティブエッジ直後に変化する,分周周期Qのネガティブエッジのそれぞれに対し,個別に時間差を求めれば,式(9)と同じ値になる.言い換えれば,q01からq11までの時間は,t0からq10の時間である式(9)の結果と一致する.同様にして,時刻q02からq12,q03からq13までの時間も式(9)と一致する.
Suppose that the oscillation frequency of the signal under measurement 11 is changed, is delayed by about 10 ppm, and the frequency dividing period is long as shown in FIG. In either case, the negative edge of the frequency-divided signal T is used as a reference time for measurement, and the counter value is read at the negative edge of the frequency-divided signal Q that changes immediately thereafter. In this case, the count value from time t0 (corresponding to time q00) to q01 shown in the middle of FIG. 3 is k01, the count value from time t0 to q02 is k02, and the count value from t0 to q03 is k03. Do it. Similarly, the count values from time t1 to q10, q11, q12, q13 shown in the lower part of FIG. 3 are k10, k11, k12, k13. Since it is assumed that the oscillation frequency of the signal under measurement 11 has changed and the frequency dividing period has become longer, the time from time t0 to q01 is
1 msec * (1 + 0.000010) = 1.0001 msec (3)
The count value during this period is
10MHz * 1.00001msec = 10000.1 (4)
It is a count. Also, the time from q10 to q11 is
1 msec * (1 + 0.000010) = 1.0001 msec (5)
The count value during this period is
10 MHz * 1.00001 msec = 10000.1 (6)
It becomes a count. The time from time t1 to q10 is based on time t0.
1 sec * (1.000010) -1 sec = 0.01 msec (7)
The count value during this period is
10 MHz * 0.001 * 0.01 = 100 (8)
It is a count. Here, the rate of frequency change is assumed to be 10 ppm, but if the rate is an irrational value, the result of equation (8) will not be an integer. The time from time t0 to q10 is a time obtained by adding 1 second to the equation (7).
0.01msec + 1sec = 1.0001sec (9)
It is. And the count value during this period is
10 MHz * 1.00001 = 10000100 (10)
It becomes a count. Further, from the equations (3) and (5), the time difference q01-t0 and q11-q10 are the same and the time from t0 to t1 is 1 second, so the interval from time q01 to q11 is q10-t0. Is the same as Similarly, the interval from time q02 to q12 is the same as q10-t0. In this way, if the time difference is obtained individually for each negative edge of the frequency division period Q that changes immediately after the negative edge that continues the frequency division period T, the same value as in equation (9) is obtained. In other words, the time from q01 to q11 coincides with the result of equation (9), which is the time from t0 to q10. Similarly, the times from time q02 to q12 and from q03 to q13 also agree with equation (9).

この式(9)で示される時間,連続して基準発振器16の出力信号をカウントしてカウント値の変化から被測定信号11の周波数変化を求めてもよいが,時刻t0からt1までが時間が既知であるから,この間はカウントしなくても,測定の基準時間とした時刻t0,t1,t2からカウントを開始し,T’=N*Q’の関係から既知となるカウント値を加算すればよい.つまり,測定の基準時間である分周周期Tのネガティブエッジと同期するか,その後の分周周期Qのネガティブエッジの同期する時間にカウント値を読み取るだけで,T’=N*Q’間はカウンターでカウントしなくても,この期間の被測定信号の周波数変化が求められる.上記の議論は,分周周期Tが一定していると仮定している.測定基準としている分周周期Tが変動すればその割合で測定結果は変動する.また,上記議論は,分周周期Tに比較して分周周期Qが1000倍程度異なり,時刻q00とq01,時刻q10とq11等が時刻t0とt1の間隔に比較して充分短いことを仮定している.これらの仮定した条件が崩れれば,測定誤差の要因になることは言うまでもない.  The output signal of the reference oscillator 16 may be continuously counted for the time indicated by the equation (9), and the change in frequency of the signal under measurement 11 may be obtained from the change in the count value. Since it is known, even if it is not counted during this period, if counting is started from the time t0, t1, t2 as the measurement reference time, and a count value that is known from the relationship of T ′ = N * Q ′ is added. Good. In other words, only when the count value is read in synchronization with the negative edge of the frequency division period T, which is the reference time of measurement, or at the time when the negative edge of the frequency division period Q is synchronized thereafter, the interval between T ′ = N * Q ′ Even if it is not counted by the counter, the frequency change of the signal under measurement during this period is required. The above discussion assumes that the frequency division period T is constant. If the frequency division period T, which is the measurement standard, changes, the measurement result changes at that rate. The above discussion assumes that the frequency division period Q is about 1000 times different from the frequency division period T, and that the times q00 and q01, the time q10 and q11, etc. are sufficiently shorter than the interval between the times t0 and t1. doing. Needless to say, if these assumptions break down, they can cause measurement errors.

具体的には,分周信号Tのネガティブエッジである時刻t0を基準にしてカウントを開始し,それと同期かその直後に変化する分周信号Qのネガティブエッジである,q01,q02.q03までのカウント値,k01,k02,k03等を必要回数読み取る.そして,引き続いて分周信号Tのネガティブエッジである時刻t1を基準にしてカウントを開始し,その直後に引き続いて変化する分周信号Qのネガティブエッジ,q10,q11,q12.q13までのカウント値,k10,k11,k12,k13等を必要回数読み取る.その後,これらの該当時間のカウント値の差から,演算手段で,時刻t0からt1,時刻t1からt2等に該当する被測定信号11の周波数変化を求める.  Specifically, the counting starts on the basis of the time t0 that is the negative edge of the frequency-divided signal T, and is the negative edge of the frequency-divided signal Q that changes in synchronization with or immediately after that, q01, q02. The count value up to q03, k01, k02, k03, etc. are read as many times as necessary. Then, counting is started with reference to the time t1, which is the negative edge of the frequency-divided signal T, and immediately after that, the negative edges of the frequency-divided signal Q, q10, q11, q12. The count values up to q13, k10, k11, k12, k13, etc. are read as many times as necessary. Thereafter, the frequency change of the signal under measurement 11 corresponding to the time t0 to t1, the time t1 to t2, etc. is obtained from the difference between the count values of the corresponding times by the calculation means.

仮に,被測定信号が10ppm程度変化した場合でも,Nが1000のような大きな値であれば,カウント値k01,k02,k03,はデジタル誤差の範囲で式(4)のカウント値の整数倍に近い値になる.また,k11−k01,k12−k02,k13−k03等の値は,デジタル誤差の範囲内で,式(8)の値と一致する.したがって,測定の基準となる周波数信号を出力する発振手段13の分周信号Tとその近傍の被測定信号11の分周信号Qとの時間差に相当する時間,カウント用の信号を出力する基準発振器16の出力信号をカウントし,このカウント値とT’=N*Q’の関係に基づいて,16の出力信号を,t0からt1まで連続してカウントしなくても,演算で被測定信号11の周波数変化が求められる.言い換えれば,T’=N*Q’間は,(1)式の関係から,16の出力信号をカウントすれば10000000カウントになることが分かっているから,この間はカウントしなくても単純に10000000を加算するだけでよい.  Even if the signal under measurement changes by about 10 ppm, if N is a large value such as 1000, the count values k01, k02, k03 are an integer multiple of the count value of Equation (4) within the range of digital error. The value is close. In addition, the values of k11-k01, k12-k02, k13-k03, etc. agree with the value of equation (8) within the range of digital error. Therefore, a reference oscillator that outputs a counting signal for a time corresponding to the time difference between the frequency-divided signal T of the oscillation means 13 that outputs a frequency signal serving as a measurement reference and the frequency-divided signal Q of the signal under measurement 11 in the vicinity thereof. 16 output signals are counted, and based on the relationship between the count value and T ′ = N * Q ′, the signal under measurement 11 can be calculated by calculation without counting the 16 output signals continuously from t0 to t1. The frequency change of is required. In other words, it is known from the relationship of equation (1) that T ′ = N * Q ′ is 10000000 counts when 16 output signals are counted. Just add.

仮に,被測定信号が20ppm程度変化した場合でも,時刻t1−t0に比べて,時刻q01−q00,q02−q00,q11−q10,q12−q10等が充分小さな値(短い時間)であればカウント値の差,k11−k01,k12−k02,k13−k03は概ね一致し,時刻t0からq10までの間の周波数変化を反映する.つまり,時刻t0からq10まで連続して基準発振器16の出力信号をカウントしなくても,時刻t0,t1近傍で,被測定信号11の分周信号に同期してカウント用の信号を出力する基準発振器16の出力信号をカウントしているカウンタのカウント値を読み取れば,被測定信号11の周波数変化の情報(この例ではカウント値k10が該当する)が得られる.しかも,カウント値の差,k11−k01,k12−k02,k13−k03のように,複数の近接したデータの平均値を得れば,1回の読み取りで得られる結果より,分解能が高い分周周期変化情報が得られ,結果として,分解能が高い周波数変化が得られる.なお,時間差q10−t0は,t1−t0と概ね一致するから,時刻t0から時刻q10までの被測定信号11の周波数変化は,時刻t0からt1までの周波数変化と同じであると考えてよい.  Even if the signal under measurement changes by about 20 ppm, the time q01-q00, q02-q00, q11-q10, q12-q10, etc. are counted if they are sufficiently small (short time) compared to the time t1-t0. The difference in values, k11-k01, k12-k02, and k13-k03 are almost the same, and reflect the frequency change from time t0 to q10. That is, even if the output signal of the reference oscillator 16 is not counted continuously from time t0 to q10, the reference signal that outputs a counting signal in synchronism with the frequency-divided signal of the signal to be measured 11 near the times t0 and t1. If the count value of the counter counting the output signal of the oscillator 16 is read, information on the frequency change of the signal under measurement 11 (corresponding to the count value k10 in this example) can be obtained. Moreover, if an average value of a plurality of adjacent data is obtained, such as a difference in count values, k11−k01, k12−k02, and k13−k03, a frequency division with higher resolution than the result obtained by one reading. Periodic change information is obtained, and as a result, frequency changes with high resolution are obtained. Since the time difference q10-t0 substantially coincides with t1-t0, it can be considered that the frequency change of the signal under measurement 11 from time t0 to time q10 is the same as the frequency change from time t0 to t1.

例えば,Nが1000の如く充分大きければ,分周信号Tのネガティブエッジを基準にした,そのエッジ近傍の10パルス程度離れた時間における分周信号Qのネガティブエッジを個別に利用しカウント値の差を求め,カウント値の差の単純な積算を行えば,従前の特許文献1や2の方法に比較して,分解能が10倍の周波数変化が得られる.従前の方法では,カウント値の差は1回しか求められないが,本発明による方法であれば,10回のデータが求められ,その積算ができるためである.この実施例では,N=1000の場合,分周信号Qの10パルスに相当する時間は,分周信号Tの1パルスの相当する時間の1%であり,この時間だけカウント用の信号を出力する基準発振器16の出力信号をカウントすることになる.具体的に,基準発振器16の出力信号が10MHzであるとし,±20ppm程度の乱れがある場合,カウント値には,
±20ppm*0.01=±0.2ppm
相当の影響が生じることになる.16の出力信号の周波数が安定していることが望ましいが,この例のように,±20ppm相当の周波数の乱れがある場合でも,その影響を±0.2ppm相当にすることができる.仮に,時刻t0からt1まで16の出力信号をカウントする場合,この実施例と同様の精度の周波数測定を実施するためには,16の出力信号の周波数の安定度として,±0.2ppmが要求され,恒温槽のある水晶発振器が必要である.恒温槽のある水晶発振器は高価であるし,消費電流が多くなる欠点がある.しかし,量産されている安価な水晶発振器でも±20ppm程度の周波数の安定度は簡単に得ることが可能で,本発明による手法であれば,その安価な水晶発振器使用する場合でも,従前の手法で恒温槽付きの水晶発振器を使用する場合と実質的に同じ精度の測定が実施できる.このことは実用的に大きな利点である.
この例の様に10パルスに相当する時間測定を実施し,分解能を10倍にした場合でも,測定間隔は1パルス相当の場合と変わらず,対応できる応答速度は同じである.また,基準クロックの発振周波数を10倍にする必要はなく,カウント時間が0.9%長くなり,その長くなった割合だけ消費電流が増加する.
For example, if N is sufficiently large, such as 1000, the negative edge of the frequency-divided signal Q at a time about 10 pulses away from the negative edge of the frequency-divided signal T is used as a reference, and the difference in count value is individually used. And a simple integration of the difference between the count values, a frequency change with 10 times the resolution can be obtained compared to the methods of the previous patent documents 1 and 2. This is because the difference between the count values can be obtained only once in the conventional method, but the data according to the present invention can be obtained 10 times and can be integrated. In this embodiment, when N = 1000, the time corresponding to 10 pulses of the frequency-divided signal Q is 1% of the time corresponding to 1 pulse of the frequency-divided signal T, and a counting signal is output only during this time. The output signal of the reference oscillator 16 is counted. Specifically, when the output signal of the reference oscillator 16 is 10 MHz and there is a disturbance of about ± 20 ppm, the count value is
± 20ppm * 0.01 = ± 0.2ppm
A considerable impact will occur. Although it is desirable that the frequency of the 16 output signals is stable, even if there is a frequency disturbance equivalent to ± 20 ppm as in this example, the influence can be equivalent to ± 0.2 ppm. If 16 output signals are counted from time t0 to time t1, ± 0.2 ppm is required as the frequency stability of the 16 output signals in order to perform frequency measurement with the same accuracy as in this embodiment. A crystal oscillator with a thermostatic chamber is required. A crystal oscillator with a thermostatic chamber is expensive and has the disadvantage of increasing current consumption. However, even a cheap crystal oscillator that is mass-produced can easily obtain a stability of a frequency of about ± 20 ppm. If the method according to the present invention is used, even if the inexpensive crystal oscillator is used, the conventional method is used. Measurements can be performed with substantially the same accuracy as when using a crystal oscillator with a temperature chamber. This is a great practical advantage.
Even when the time measurement corresponding to 10 pulses is performed and the resolution is increased 10 times as in this example, the measurement interval is the same as in the case of 1 pulse, and the response speed is the same. In addition, it is not necessary to increase the oscillation frequency of the reference clock 10 times, the count time is increased by 0.9%, and the current consumption increases by the increased rate.

通常,カウント用の信号を出力する基準発振器16の出力信号にはジッタが含まれるため,複数の分周周期を利用してカウントした総和を測定値とすれば,ジッタの影響を統計的に小さくすることができ,測定精度が向上する効果がある.なお,本発明の場合,周波数変化の測定には,測定の基準となる周波数信号を出力する発振手段13の分周信号Tのネガティブエッジを測定基準に用いるため,13の出力周波数が安定していることが好ましい.もちろん,分周信号Tのポジティブエッジを測定基準とすることもできるし,分周信号Qのポジティブエッジでカウント値を読み取ってもよい.  Usually, since the output signal of the reference oscillator 16 that outputs a counting signal contains jitter, the influence of jitter is statistically reduced if the sum total counted using a plurality of division periods is used as a measurement value. Can improve the measurement accuracy. In the case of the present invention, the frequency change is measured by using the negative edge of the frequency-divided signal T of the oscillating means 13 that outputs a frequency signal as a measurement reference as the measurement reference, so that the output frequency of 13 is stabilized. It is preferable. Of course, the positive edge of the frequency-divided signal T can be used as a measurement reference, or the count value can be read by the positive edge of the frequency-divided signal Q.

この発明の第2の局面は次のように規定される.すなわち,
測定の基準となる周波数信号を出力する発振手段の出力信号を分周する分周手段の出力信号と,標準時間を刻時する刻時手段による出力信号との,同期をとる信号同期手段を備え,標準時間を測定基準とし前記の第1の局面における工程で被測定信号の周波数変化を測定する周波数変化測定法であり,
このように規定される本発明の周波数変化測定法は,図4の構成図に示すように,測定の基準となる周波数信号を出力する発振手段13と,13からの出力信号を分周する第1の分周器14と,14の周波数出力と標準時間を刻時する刻時手段(ここでは図示してない)による出力信号との同期をとる信号同期手段13Aと,周波数信号である被測定信号11を分周する第2の分周器12と,前記2つの分周器12,14から出力される分周信号の周期時間差を持つ周期時間差信号を発生する周期時間差発生回路15と,周期時間差信号から特定された時間にラッチ信号を発生させるラッチ信号発生回路17と,カウント用の信号を出力する基準発振器16からの出力信号をカウンとするカウンタ18と,該ラッチ信号発生回路17に基づくラッチ信号により,ラッチされたカウンタ18のカウント値を取り込み,そのカウント値に基づいて被測定信号の変化を演算処理する演算手段19と,を備えて構成される.
The second aspect of the present invention is defined as follows. That is,
Provides signal synchronization means for synchronizing the output signal of the frequency dividing means for dividing the output signal of the oscillating means for outputting the frequency signal used as a measurement reference with the output signal of the clock means for clocking the standard time , A frequency change measurement method for measuring a frequency change of a signal under measurement in the process in the first aspect using a standard time as a measurement reference;
The frequency change measuring method of the present invention defined as described above includes an oscillating means 13 for outputting a frequency signal serving as a reference for measurement, and a first output for frequency-dividing the output signal from 13, as shown in the block diagram of FIG. 1 frequency divider 14, a signal synchronization means 13 A for synchronizing the output of the frequency of 14 and an output signal by a clocking means (not shown here) for clocking a standard time, and a measured signal which is a frequency signal A second frequency divider 12 that divides the signal 11, a period time difference generation circuit 15 that generates a period time difference signal having a period time difference between the frequency division signals output from the two frequency dividers 12 and 14, and a period Based on a latch signal generation circuit 17 that generates a latch signal at a time specified from a time difference signal, a counter 18 that counts an output signal from a reference oscillator 16 that outputs a counting signal, and the latch signal generation circuit 17 The pitch signal, captures the count value of the latched counter 18, and includes a calculating means 19 for processing the change of the signal under measurement based on the count value.

このように規定される第2の局面の周波数変化測定方法を,図3のタイムチャートと図4を用いて説明する.すなわち,この周波数測定方法は,図2の測定の基準となる周波数信号を出力する発振手段13の出力信号を分周する分周器14を,図4で示すように,標準時間を刻時する刻時手段に同期する信号同期手段13Aで制御する.例えば,標準時刻に同期した信号で,分周器14を構成しているカウンタをリセットし,分周器14の出力信号を標準時刻に同期させる.このようにすれば,第1の局面におけると同様の工程で標準時刻に同期した時間を測定基準とする周波数変化のデータが得られる.標準時間を刻時する手段に同期した信号を測定基準とすれば,基準発振器をデータロガー等で使用する時計と併用できる.また,離れた場所における測定結果であっても,標準時間に同期してサンプリングされたデータであり同じ時間軸上で時系列解析できる.なお,ここでは,標準時間を刻時する刻時手段として,測地衛星の電波を受信して標準時刻の情報を得るGPS時計等を想定しているが,ここでは図示してない.GPS時計を基準にすれば,常時,±5μsec程度の精度で,絶対時刻と測定の基準となる周波数信号を出力する発振手段13の出力信号を分周する分周器14の出力信号を同期させることが可能で,長期間にわたり精度の高い周波数変化の測定ができる.20分間(1200秒間)で±6μsecの精度がある場合,
6μsec/1200sec=0.005ppm (11)
の精度に相当し,恒温槽付きの水晶発振器でも容易に達成できない精度である.
The frequency change measurement method of the second aspect defined in this way will be described with reference to the time chart of FIG. 3 and FIG. That is, in this frequency measurement method, the frequency divider 14 that divides the output signal of the oscillation means 13 that outputs the frequency signal serving as a reference of measurement in FIG. 2 is clocked with a standard time as shown in FIG. Control is performed by signal synchronization means 13A which is synchronized with the clock means. For example, the counter constituting the frequency divider 14 is reset with a signal synchronized with the standard time, and the output signal of the frequency divider 14 is synchronized with the standard time. In this way, frequency change data using the time synchronized with the standard time as the measurement reference in the same process as in the first phase can be obtained. If a signal synchronized with the means for clocking the standard time is used as a measurement reference, the reference oscillator can be used in combination with a clock used in a data logger or the like. In addition, even the measurement results at remote locations are data sampled in synchronization with the standard time and can be analyzed in time series on the same time axis. Here, as a clocking means for clocking the standard time, a GPS clock or the like that obtains standard time information by receiving radio waves from a geodetic satellite is assumed, but it is not shown here. If the GPS clock is used as a reference, the output signal of the frequency divider 14 that divides the output signal of the oscillating means 13 that outputs the absolute time and the frequency signal serving as a reference for measurement is always synchronized with an accuracy of about ± 5 μsec. It is possible to measure frequency changes with high accuracy over a long period of time. If there is an accuracy of ± 6μsec in 20 minutes (1200 seconds),
6μsec / 1200sec = 0.005ppm (11)
This accuracy cannot be easily achieved even with a crystal oscillator with a thermostatic chamber.

この発明の第3の局面は次のように規定される.
物理量の変化に対応して出力周波数が変化する被測定信号が,発振式温度センサの周波数出力信号であることを特徴とし,前記の第1の局面,及び,第2の局面と同様の工程で周波数変化測定法に基づき温度の変化を測定する温度変化測定装置.
The third aspect of the present invention is defined as follows.
The signal under measurement whose output frequency changes in response to a change in physical quantity is the frequency output signal of the oscillation type temperature sensor, and is the same as in the first and second aspects described above. Temperature change measurement device that measures temperature change based on frequency change measurement method.

このように規定される第3の局面の温度変化測定装置を,図5を用いて説明する.本発明の温度変化測定装置は,図5の構成図に示すように,測定の基準となる周波数信号を出力する発振手段13と,13からの出力信号を分周する第1の分周器14と,14の周波数出力と標準時間を刻時する刻時手段(ここでは図示してない)による出力信号との同期をとる信号同期手段13A,測定する温度に応じた局波数信号を発生する発振式温度センサを有する温度測定用発振器11B,11Bから出力された周波数信号を分周する第2の分周器12と,前記2つの分周器12,14から出力される分周信号の周期時間差を持つ周期時間差信号を発生する周期時間差発生回路15と,カウント用の信号を出力する基準発振器16と,15から出力される周期時間差信号により特定された時間に,16からの出力信号をカウンとしているカウンタ18にラッチ信号を送るラッチ信号発生回路17と,16からの出力信号をカウントしたカウンタ18からカウント値を取り込み,そのカウント値に基づいて対象とする温度の変化を演算する演算手段19と,を備えて構成される.  The temperature change measuring apparatus of the third aspect defined in this way will be described with reference to FIG. As shown in the configuration diagram of FIG. 5, the temperature change measuring apparatus of the present invention includes an oscillation means 13 that outputs a frequency signal serving as a measurement reference, and a first frequency divider 14 that divides the output signal from the frequency divider 13. And a signal synchronization means 13A for synchronizing the frequency output of 14 with an output signal by a clock means (not shown here) for clocking a standard time, and an oscillation for generating a local wave number signal corresponding to the temperature to be measured Difference between the second frequency divider 12 that divides the frequency signal output from the temperature measuring oscillators 11B and 11B having a temperature sensor and the frequency divided signal output from the two frequency dividers 12 and 14 A period time difference generating circuit 15 for generating a period time difference signal having a reference time, a reference oscillator 16 for outputting a count signal, and an output signal from 16 at the time specified by the period time difference signal output from 15 as a count A latch signal generating circuit 17 for sending a latch signal to the counter 18; an arithmetic means 19 for taking in a count value from the counter 18 counting the output signals from 16 and calculating a change in the target temperature based on the count value; , Is configured.

このように規定される第3の局面の温度変化測定装置による温度測定方法を,図3のタイムチャートと図5を用いて説明する.すなわち,第1及び第2の局面における被測定信号を環境温度の変化によって発振周波数が変化する発振式温度センサ(図では,温度測定用発振器11Bとした)に置き換えれば,第1の局面及び第2局面の工程と同様の工程で,温度変化に対応する周波数変化が測定できる.周波数変化が測定できれば,測定した周波数変化を,ここでは図示してないが,前もって作成した「周波数変化と環境温度の変化との間の関係」を示す関係式,あるいは,変換表を用いて演算手段19により環境温度を求める.図5の構成であれば,信号同期手段13Aにより,分周器14の出力信号のタイミングを制御することが可能で,図4で説明した工程により標準時間に同期した時間を測定の基準時間にできる.  The temperature measuring method by the temperature change measuring apparatus of the third aspect defined in this way will be described with reference to the time chart of FIG. 3 and FIG. That is, if the signal under measurement in the first and second aspects is replaced with an oscillation type temperature sensor (in the figure, the temperature measuring oscillator 11B) whose oscillation frequency changes according to a change in environmental temperature, the first aspect and the first The frequency change corresponding to the temperature change can be measured in the same process as the process of 2 phases. If the frequency change can be measured, the measured frequency change is not shown here, but can be calculated using a relational expression or "conversion table" indicating the "relationship between frequency change and environmental temperature change" created in advance. The environmental temperature is obtained by means 19. With the configuration of FIG. 5, the timing of the output signal of the frequency divider 14 can be controlled by the signal synchronization means 13A, and the time synchronized with the standard time by the process described in FIG. 4 is used as the reference time for measurement. it can.

本発明の場合,温度変化測定装置では,測定の基準となる周波数信号を出力する発振手段13の分周周期Tを測定基準に用いるため,13を温度測定用発振器11Bの近傍に設置する場合,11Bと13が同じ環境温度の影響で変化し,13の周波数変化も環境温度を反映するため,ここでは図示しない「周波数変化と環境温度の変化との間の関係」や換算表を作成する際,13に与える環境温度の影響も考慮した関係や換算表が作成できる.11Bと13の環境温度の変化が異なっていれば,温度変化による13の周波数変化が,僅かであるが測定結果に影響を与える.  In the case of the present invention, in the temperature change measuring apparatus, since the frequency dividing period T of the oscillation means 13 that outputs a frequency signal serving as a measurement reference is used as a measurement reference, when 13 is installed in the vicinity of the temperature measurement oscillator 11B, 11B and 13 change under the influence of the same environmental temperature, and the frequency change of 13 also reflects the environmental temperature. Therefore, when creating a “relation between frequency change and environmental temperature change” and a conversion table, not shown here, , 13 can be created in consideration of the influence of environmental temperature on the conversion and conversion table. If the environmental temperature changes between 11B and 13 are different, the frequency change of 13 due to the temperature change will affect the measurement result although it is slight.

本発明では,第1,第2,第3の局面において,カウンタが作動する時間は,被測定信号11,及び,温度測定用発振器11Bと,測定の基準となる周波数信号を出力する発振手段13の分周信号の周期時間差信号の間のみで,図3で示したタイムチャートにおいて,Nの値が大きくなる比率に分周周期を設定すれば,周期時間差信号が占める割合は短くなり,その割合に対応する短時間だけ基準発振器16の出力信号をカウンタでカウントすれば周波数変化が測定できる.カウンタ回路では高速発振する信号が作動する時間が短ければその割合に応じて消費電力を軽減できる.したがって,被測定信号11及び,発振式温度センサを測定手段とする温度測定用発振器11Bの分周周期と,13の分周周期が1000倍違う設定にすれば,1回の測定には,分周周期の0.1%の時間をカウンタでカウントすればよい.測定を10回実施し分解能を10倍にする場合でも,測定時間はゲート時間t1−t0の間カウントを持続する方法に比較し,
10*0.1%=1%
であり,この時間だけカウンタが作動することになり,エネルギーを節約する効果がある.また,短い時間だけカウントするため,周波数出力の安定度が高い基準発振器をカウント用に使用する必要はない.
In the present invention, in the first, second, and third aspects, the time during which the counter operates is the signal under measurement 11, the temperature measuring oscillator 11B, and the oscillating means 13 that outputs the frequency signal serving as a measurement reference. In the time chart shown in FIG. 3, only when the divided period is set to a ratio in which the value of N increases, the ratio occupied by the periodic time difference signal is shortened. The frequency change can be measured by counting the output signal of the reference oscillator 16 with a counter for a short time corresponding to. In the counter circuit, the power consumption can be reduced according to the proportion of the signal that oscillates at high speed. Therefore, if the frequency division period of the signal under measurement 11 and the temperature measuring oscillator 11B using the oscillation type temperature sensor as the measuring means and the frequency division period of 13 are set to be 1000 times different from each other, the measurement can be performed for one measurement. It is only necessary to count the time of 0.1% of the circumferential period with a counter. Even when the measurement is performed 10 times and the resolution is increased 10 times, the measurement time is compared with the method in which the count is maintained during the gate time t1 to t0.
10 * 0.1% = 1%
And the counter will operate only during this time, which has the effect of saving energy. In addition, since it counts only for a short time, it is not necessary to use a reference oscillator with high frequency output stability for counting.

一方,汎用のカウンタ用のICの1つであるHC590は,カウントを持続しつつ必要に応じて外部信号でカウント値をラッチできる機能がある.このような構成のカウンタ回路を利用すれば,複数回の測定を同じカウンタ回路で実施できる.すなわち,図2,図4,図5の構成であれば,時刻t0の時に分周器14の信号に基づいてカウンタの値を読み取り時刻t0の基準値とし,t0に同期ないしはその直後の分周周期Qのネガティブエッジでカウンターの値をラッチしながら,例えば10回のカウント値を読み取り保存する.また,時刻t1の時に分周器14の信号に基づいて,カウンターの値を読み取り時刻t1の基準値とし,t1に同期ないしはその直後の分周周期Qのネガティブエッジでカウンターの値をラッチしながら,先と同じく10回のカウント値を読み取る.そして,時刻t0とt1の2回の近接した分周周期Tのネガティブエッジを測定の基準時間とする10組のカウント値の差を演算に用いれば,周波数変化や温度変化が10回測定できる.したがって,本発明の構成であれば回路の部品総数を増やすことなく測定手法と演算方法を変更すれば測定回数を増やすことが可能であり,得られたデータを平均化することで分解能が向上する.  On the other hand, HC590, which is one of general-purpose counter ICs, has a function capable of latching the count value with an external signal as needed while maintaining the count. Using the counter circuit with this configuration, multiple measurements can be performed with the same counter circuit. That is, in the configuration shown in FIGS. 2, 4, and 5, the counter value is set as the reference value for the read time t0 based on the signal from the frequency divider 14 at time t0, and is divided in synchronization with or immediately after t0. For example, 10 count values are read and stored while latching the counter value at the negative edge of period Q. Further, based on the signal from the frequency divider 14 at time t1, the counter value is used as a reference value for reading time t1, and the counter value is latched at the negative edge of the frequency dividing period Q in synchronization with or immediately after t1. Read the count value of 10 times as before. If the difference between 10 sets of count values using the negative edges of the two adjacent frequency division periods T at times t0 and t1 as the measurement reference time is used in the calculation, the frequency change and the temperature change can be measured 10 times. Therefore, with the configuration of the present invention, it is possible to increase the number of measurements by changing the measurement method and calculation method without increasing the total number of circuit components, and the resolution is improved by averaging the obtained data. .

ここでは図示してないが,測定の基準となる周波数信号を出力する発振手段13の出力信号を分周する分周器14の信号を複数の周期時間差発生回路に作用させ,複数の周波数信号である被測定信号11を分周する複数の分周器12との間で周期時間差信号を作成すれば,13,分周器14を兼用でき,多チャンネル構成にした場合でも,電子部品の個数が軽減でき,プリント基板を小型化できる効果がある.  Although not shown here, the signal of the frequency divider 14 that divides the output signal of the oscillating means 13 that outputs the frequency signal serving as a reference for measurement is applied to a plurality of period time difference generating circuits, and a plurality of frequency signals are used. If a periodic time difference signal is created with a plurality of frequency dividers 12 that divide a signal under test 11, the frequency divider 13 and the frequency divider 14 can be used together. This can be reduced and the printed circuit board can be downsized.

この発明の第1実施例として,演算手段にCPUを用いる周波数変化測定法について,図6の周波数変化測定手段の構成図で説明する.図6では,11から19までは図2と同じ構成であり,カウンタ回路18にはラッチ回路が含まれている.また,分周器14であるカウンタのビットをビット選択回路20で選択する構成である.さらに周波数変化測定用の回路の電源21も図示してある.図6の22は,11,12,13,14,15,17,20を含む第1実施例としての周波数変化測定手段のセンサ部であり,図6の23は,16,18,19を含む該周波数変化測定手段のデータ処理部である.  As a first embodiment of the present invention, a frequency change measurement method using a CPU as a calculation means will be described with reference to the block diagram of the frequency change measurement means in FIG. In FIG. 6, the configuration from 11 to 19 is the same as that in FIG. 2, and the counter circuit 18 includes a latch circuit. Further, the bit of the counter which is the frequency divider 14 is selected by the bit selection circuit 20. Further, a power supply 21 for the circuit for measuring the frequency change is also shown. 6 in FIG. 6 is a sensor part of the frequency change measuring means as the first embodiment including 11, 12, 13, 14, 15, 17, 20 and 23 in FIG. 6 includes 16, 18, 19 A data processing unit of the frequency change measuring means.

被測定信号11を分周して分周信号を作成する際に,カウンタ用のICを利用すると,ビットの選択により,測定に利用する分周信号より分周周期が長い信号が簡単に作成できる.例えば分周器14が2進カウンタの場合,第1のビット選択回路20により選択したn乗のビットとm乗のビットの負論理のAND信号より,n乗の負論理のビット信号は短い間隔で出力する.仮に,n乗の負論理のビット信号で演算手段19であるCPUをウエイクアップさせ,その信号によりデータ処理部23に電源を入れる.その後,n乗とm乗の負論理のAND信号を,図3で記した測定の基準となる周波数信号を出力する発振手段13の分周信号Tのレベルが変化するタイミングと見なし,この変化時間を基準として,分周器12の出力である分周信号Qを利用しラッチ信号を発生させ,カウンタの値を演算手段に取り込む,なお,上記したn乗,m乗は,2のn乗,2のm乗を意味する.  When a divided signal is created by dividing the signal under measurement 11, if a counter IC is used, a signal having a longer division cycle than the divided signal used for measurement can be easily created by selecting a bit. . For example, when the frequency divider 14 is a binary counter, the negative logic bit signal of the nth power is shorter than the negative logic AND signal of the nth power bit selected by the first bit selection circuit 20 and the mth power bit. To output. Temporarily, the CPU which is the arithmetic means 19 is woken up by an n-th power negative logic bit signal, and the data processor 23 is turned on by the signal. Thereafter, the negative logic AND signal of the n-th power and the m-th power is regarded as a timing at which the level of the frequency-divided signal T of the oscillating means 13 for outputting the frequency signal serving as a measurement reference shown in FIG. Is used as a reference to generate a latch signal by using the frequency-divided signal Q that is the output of the frequency divider 12, and the value of the counter is taken into the calculation means. It means 2 to the power of m.

測定に利用した分周信号が予め設定した予定回数に達した後,演算手段であるCPUの制御でデータ処理部23の電源を切る.このような構成であれば,高速発振する信号が使用され消費電力が大きな,基準発振器16やカウンタ回路18,演算手段であるCPUを必要な時間だけ作動させることで測定ができる.その結果,測定装置全体の消費電流を軽減でき,野外等で電池を電源とする長時間の測定が可能になる.  After the frequency-divided signal used for the measurement reaches a preset scheduled number of times, the data processing unit 23 is turned off under the control of the CPU as the calculation means. With such a configuration, measurement can be performed by operating the reference oscillator 16, the counter circuit 18, and the CPU, which is a calculation means, for a required time, which uses a signal that oscillates at high speed and consumes a large amount of power. As a result, the current consumption of the entire measuring device can be reduced, and long-time measurement using a battery as a power source in the field is possible.

この発明の第2実施例として,演算手段にCPUを用いる周波数変化測定手段について,図7を用いて説明する.図7では,11から23までは図6と同じ構成であり,第2のビット選択回路24を付加し、第1のビット選択回路20の出力信号が周期時間差発生回路15に入力される前に,24によりn乗のビットとk乗のビットの負論理のAND信号を発生させ,ラッチ信号発生回路17に入力する.さらに,24より発生する信号を,図3のタイムチャートで記した測定時間の基準である発振手段の分周信号Tのレベルが変化するタイミングと見なす.この実施例では測定基準である信号が複数回出力され測定基準が複数回になる(図8参照,図8のt10だけでなく,t11,t12,t13等が測定の基準時間になる).そして,その後発生する周期時間差発生回路15及びラッチ信号発生回路17によるラッチ信号に基づいて,カウンタの値を演算手段に取り込み,演算処理して周波数変化を求める.演算処理では,図8のタイミングチャートで示すように(図3のタイムチャートのt1近郷に相当する時間を拡大した),t10,t11,t12のように,測定の基準となる周波数信号を出力する発振手段13の信号が複数で,それぞれ分周器14の分周比に基づいて遅延して出力され,カウントを開始する測定基準の時間が順次遅延する.したがって,ラッチされたデータの総和を取る際,測定基準の時間が遅延するタイミングを考慮して演算する必要がある.測定時間の基準である発振手段の分周周期Tが一定していれば,図8の時刻t10,t11,t12,t13は一定の間隔であり,上記の遅延によるカウント値は予め予測できる値である.  As a second embodiment of the present invention, a frequency change measuring means using a CPU as a calculating means will be described with reference to FIG. In FIG. 7, 11 to 23 have the same configuration as FIG. 6, the second bit selection circuit 24 is added, and the output signal of the first bit selection circuit 20 is input to the cycle time difference generation circuit 15. , 24 generate a negative logic AND signal of the n-th power bit and the k-th power bit and input it to the latch signal generation circuit 17. Further, a signal generated from 24 is regarded as a timing at which the level of the frequency-divided signal T of the oscillating means, which is the reference of the measurement time shown in the time chart of FIG. In this embodiment, the measurement standard signal is output a plurality of times, and the measurement standard is a plurality of times (see FIG. 8, not only t10 in FIG. 8, but t11, t12, t13, etc. are measurement reference times). Then, based on the latch signal generated by the cycle time difference generation circuit 15 and the latch signal generation circuit 17 generated thereafter, the value of the counter is taken into the calculation means, and the calculation process is performed to obtain the frequency change. In the calculation process, as shown in the timing chart of FIG. 8 (time corresponding to t1 neighborhood in the time chart of FIG. 3 is expanded), frequency signals serving as a measurement reference are output as t10, t11, and t12. A plurality of signals from the oscillating means 13 are output after being delayed based on the frequency division ratio of the frequency divider 14, and the measurement reference time for starting the counting is sequentially delayed. Therefore, when taking the sum of the latched data, it is necessary to take into account the timing at which the measurement reference time is delayed. If the frequency division period T of the oscillation means, which is the reference for the measurement time, is constant, the times t10, t11, t12, and t13 in FIG. 8 are constant intervals, and the count value due to the delay is a value that can be predicted in advance. is there.

この場合,演算に利用する複数の測定基準としてのタイミング(t10,t11,t12等)が,図8で示したように,図3のタイムチャートのq01時間の前に終了するような分周比の設定と,ビット選択回路20,24に入力するビットを選択をすることが好ましい.なお,上記したn乗,k乗は,2のn乗,2のk乗を意味する.  In this case, the division ratio is such that the timings (t10, t11, t12, etc.) as a plurality of measurement references used for the calculation end before q01 time in the time chart of FIG. 3, as shown in FIG. And the bit input to the bit selection circuits 20 and 24 are preferably selected. The n-th power and k-th power mentioned above mean 2 n power and 2 k power.

第1施例である周波数変化測定手段では,図6で記した発振手段13の分周信号Tのレベルが変化するタイミングを基準として,分周信号Qのネガティブエッジを利用しカウンタの値を演算手段に取り込み,温度変化を演算していた.この場合,分周信号Tのレベルが変化するタイミングである測定基準の検出にデジタル誤差がある場合,この基準時間に基づいて測定したカウント値にはデジタル誤差が重畳する.すなわち,この基準時間を利用する測定回数が10回の場合,この測定基準に基づいて測定した10回の測定の総和を取ると,デジタル誤差が累積し,10倍になる可能性がある.このデジタル誤差の影響を避けるため,図8のタイムチャートで示した第2の実施例のように測定基準を複数回設ければ,測定基準のデジタル誤差が平均化され,誤差の累積が避けられる.また,測定基準に偶発誤差が生じる場合も,複数回の測定基準を設けることで統計的に偶発誤差の大きさを軽減できる効果がある.一方,目的とする周波数帯域の信号を取り出す目的でフィルター効果を持たせるように測定の基準時間を遅延させ,この遅延に対応させてカウント値の読み取りも遅延させる方法もある.  In the frequency change measuring means according to the first embodiment, the counter value is calculated using the negative edge of the divided signal Q with reference to the timing at which the level of the divided signal T of the oscillating means 13 shown in FIG. 6 changes. Incorporated into the means, the temperature change was calculated. In this case, if there is a digital error in the detection of the measurement reference, which is the timing at which the level of the frequency-divided signal T changes, the digital error is superimposed on the count value measured based on this reference time. In other words, if the number of measurements using this reference time is 10, the sum of the 10 measurements measured based on this measurement reference may accumulate a digital error, which can be multiplied by ten. In order to avoid the influence of this digital error, if the measurement standard is provided a plurality of times as in the second embodiment shown in the time chart of FIG. 8, the digital error of the measurement standard is averaged, and accumulation of errors can be avoided. . In addition, even if an accidental error occurs in the measurement standard, it is possible to statistically reduce the magnitude of the random error by providing multiple measurement standards. On the other hand, there is also a method of delaying the reading of the count value corresponding to this delay by delaying the reference time of measurement so as to have a filter effect for the purpose of extracting the signal of the target frequency band.

この発明の第3の実施例として,基準発振器として標準時間を刻時する刻時手段に同期する周波数出力手段を,演算手段にCPUを用いる温度変化測定装置について,図9を用いて説明する.図9では,図5の構成要素である温度測定用発振器11Bとその出力信号の分周器12をセンサ部30とし,他の構成要素を第2のデータ処理部23Aに移動し,図5におけると同様に測定の基準となる周波数信号を出力する発振手段13の出力信号を分周する分周器14の出力信号が標準時間を刻時する刻時手段に同期する信号同期手段13Aの制御を受け,図示してない標準時間を刻時する刻時手段の信号と,14の出力信号が同期する構成になっている.図9には記してないが,図7と同様にビット選択回路20を付加した場合であれば,図8で示したタイムチャートに準じて,分周器14のn乗の負論理のビット信号で演算手段19であるCPUをウエイクアップさせ,その信号によりデータ処理部23に電源を入れる.なお,図9では図6,7に図示した電源21は図示してない.  A third embodiment of the present invention will be described with reference to FIG. 9, which is a temperature change measuring apparatus using a frequency output means synchronized with a clocking means for clocking a standard time as a reference oscillator and a CPU as a computing means. In FIG. 9, the temperature measurement oscillator 11B and the output signal frequency divider 12 which are the components of FIG. 5 are used as the sensor unit 30, and the other components are moved to the second data processing unit 23A. In the same manner as described above, the signal synchronizing means 13A is controlled so that the output signal of the frequency divider 14 that divides the output signal of the oscillating means 13 that outputs the frequency signal to be used as a measurement reference is synchronized with the clocking means that clocks the standard time. The signal of the clock means for clocking the standard time (not shown) is synchronized with the 14 output signals. Although not shown in FIG. 9, if a bit selection circuit 20 is added as in FIG. 7, the n-th power negative bit signal of the frequency divider 14 is applied in accordance with the time chart shown in FIG. Then, the CPU which is the calculation means 19 is woken up, and the data processor 23 is turned on by the signal. In FIG. 9, the power supply 21 shown in FIGS. 6 and 7 is not shown.

この場合,図9では図示してないが図7の場合と同様に第2のビット選択回路24を付加した場合であれば,24により発振手段13の出力信号を分周した分周器14のn乗のビットとk乗のビットの負論理のAND信号を発生させ,ラッチ信号発生回路17に入力する.17による複数のラッチ信号を,図3で記した測定の基準となる周波数信号を出力する発振手段13の分周信号Tのレベルが変化するタイミングと見なし,この複数の変化時間を基準とする.その後,分周器14のn乗とm乗の負論理の複数のAND信号によるラッチ利用し,複数のカウント値を得る.そして,演算処理では,図8のタイムチャートで示すと同様に(図8は図3のタイムチャートのt1近郷に相当する時間を拡大した),t10,t11,t12のように,測定の基準となる周波数信号を出力する発振手段13の信号を分周する分周器14の分周比に基づいて,測定基準が遅延するタイミングを考慮して演算する.  In this case, although not shown in FIG. 9, if the second bit selection circuit 24 is added in the same manner as in FIG. 7, the frequency divider 14 that divides the output signal of the oscillation means 13 by 24 is used. A negative logical AND signal of the nth power bit and the kth power bit is generated and input to the latch signal generation circuit 17. The plurality of latch signals according to 17 are regarded as timings at which the level of the divided signal T of the oscillating means 13 for outputting the frequency signal serving as a reference for measurement shown in FIG. 3 changes, and the plurality of change times are used as a reference. After that, a plurality of count values are obtained by using a latch by a plurality of negative AND logic signals of the nth power and mth power of the frequency divider 14. Then, in the calculation process, as shown in the time chart of FIG. 8 (FIG. 8 is an enlarged time corresponding to the t1 neighborhood in the time chart of FIG. 3), the measurement standards and t10, t11, t12 Based on the division ratio of the frequency divider 14 that divides the signal of the oscillation means 13 that outputs the frequency signal, the calculation is performed in consideration of the timing at which the measurement reference is delayed.

第3の実施例では,標準時計の出力信号が測定基準である信号に同期する構成である.データロガー等の測定では,通常,標準時刻にしたがってデータ処理する.したがって,GPS時計等の標準時刻に基づいて,データ処理部23に電源を入れ,基準発振器を作動させ,その信号に基づいて複数の温度測定用発振器からの複数の周波数変化を測定でき,測定に必要な時間だけ,データ処理部23に電源を入れることで消費電流を節減できる.また,時分割処理をする場合であれば,13から24まで,全ての構成要素を複数設ける必要が無く,多くの構成要素を兼用できる.この場合,演算に利用する複数の測定基準としてのタイミング(t10,t11,t12等)が,図8のタイムチャートで示したように,図3のタイムチャートのq01時間の前に終了するような分周比の設定と,ビット選択回路20,24に入力するビットを選択をすることが好ましい.なお,上記したn乗,m乗,k乗は,2のn乗,2のm乗,2のk乗を意味する.  In the third embodiment, the output signal of the standard clock is synchronized with the signal that is the measurement reference. In data logger measurement, data processing is usually performed according to the standard time. Therefore, based on the standard time of a GPS clock or the like, the data processing unit 23 is turned on, the reference oscillator is operated, and a plurality of frequency changes from a plurality of temperature measuring oscillators can be measured based on the signal. The current consumption can be reduced by turning on the data processing unit 23 for the required time. In the case of time-sharing processing, it is not necessary to provide all the constituent elements from 13 to 24, and many constituent elements can be shared. In this case, the timings (t10, t11, t12, etc.) as a plurality of measurement references used for the calculation are finished before q01 hours in the time chart of FIG. 3, as shown in the time chart of FIG. It is preferable to set the division ratio and select the bits to be input to the bit selection circuits 20 and 24. The above-mentioned n-th power, m-th power, and k-th power mean 2 n-th power, 2 m-th power, and 2 k-th power.

本発明は,上記の実施例の説明に何ら限定されるものではない.特許請求の範囲を逸脱せず,当事者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる.  The present invention is not limited to the description of the above embodiments. Various modifications are also included in the present invention within the scope that can be easily conceived by a party without departing from the scope of the claims.

従前の技術で使用される水晶温度計の構成図.  A block diagram of a crystal thermometer used in conventional technology. 本発明による周波数変化測定法を適用する第1の構成図.  The 1st block diagram which applies the frequency change measuring method by this invention. 本発明による周波数変化測定法を説明するためのタイムチャート.  The time chart for demonstrating the frequency change measuring method by this invention. 本発明による周波数変化測定法を適用する第2の構成図.  The 2nd block diagram which applies the frequency change measuring method by this invention. 本発明による周波数変化測定法を適用する第3の構成図.  The 3rd block diagram which applies the frequency change measuring method by this invention. 本発明による周波数変化測定法を適用する第1実施例.  A first embodiment to which a frequency change measuring method according to the present invention is applied. 本発明による周波数変化測定法を適用する第2実施例.  Second embodiment to which a frequency change measuring method according to the present invention is applied. 本発明による周波数変化測定法を説明するためのタイムチャート.  The time chart for demonstrating the frequency change measuring method by this invention. 本発明による温度変化測定装置の実施例.  Embodiment of temperature change measuring apparatus according to the present invention.

符号の説明Explanation of symbols

1 … 水晶振動子
2 … 発振回路
3,12,14 … 分周器
4 … 基準クロック発振器
5 … ゲート回路
6,18 … カウンタ
7 … マイクロコンピュータ
11 … 被測定信号
13 … 発振手段
13A … 信号同期手段
15 … 周期時間差発生回路
16 … 基準発振器
17 … ラッチ信号発生回路
19 … 演算手段
20,24 … ビット選択回路
21 … 電源
22,30 … センサ部
23,23A … データ処理部
DESCRIPTION OF SYMBOLS 1 ... Crystal oscillator 2 ... Oscillation circuit 3, 12, 14 ... Divider 4 ... Reference clock oscillator 5 ... Gate circuit 6, 18 ... Counter 7 ... Microcomputer 11 ... Signal under test 13 ... Oscillating means 13A ... Signal synchronization means DESCRIPTION OF SYMBOLS 15 ... Period time difference generation circuit 16 ... Reference oscillator 17 ... Latch signal generation circuit 19 ... Arithmetic means 20, 24 ... Bit selection circuit 21 ... Power supply 22, 30 ... Sensor part 23, 23A ... Data processing part

Claims (3)

測定の基準となる周波数信号を出力する発振手段と,その出力信号を分周する第1の分周手段と,物理量の変化に対応して周波数が変化する被測定信号を分周する第2の分周手段と,第1の分周手段と第2の分周手段の分周信号より周期時間差信号を作成する周期時間差発生回路と,該周期時間差発生回路の信号によりラッチ信号を発生するラッチ信号発生回路と,カウント用の信号を出力する基準発振器と,該基準発振器の出力信号をカウントするカウンタと,カウント値を読み取り演算する演算手段より構成され,
該発振手段による出力信号を第1の分周手段で分周した分周信号と,該被測定信号を第2の分周手段で分周した分周信号と,から周期時間差発生回路で周期時間差信号を発生させ,近接した複数の該周期時間差信号に対応してラッチ信号発生回路でラッチ信号を発生させ,該ラッチ信号をカウント用の信号を出力する基準発振器の出力信号をカウントしているカウンタに作用させ,複数の周期時間差信号間のカウンタの値を読み取り,演算手段によりこれらのカウント値の差分から被測定信号の周波数変化を測定することを特徴とする周波数変化測定法.
An oscillating means for outputting a frequency signal as a reference for measurement, a first frequency dividing means for dividing the output signal, and a second for dividing the signal under measurement whose frequency changes in response to a change in physical quantity. Frequency dividing means, a period time difference generating circuit for generating a period time difference signal from the frequency dividing signals of the first frequency dividing means and the second frequency dividing means, and a latch signal for generating a latch signal by the signal of the period time difference generating circuit A generation circuit, a reference oscillator that outputs a count signal, a counter that counts the output signal of the reference oscillator, and a calculation means that reads and calculates the count value;
A cycle time difference is generated by a cycle time difference generating circuit from a frequency-divided signal obtained by frequency-dividing the output signal from the oscillation unit by the first frequency-dividing unit and a frequency-divided signal obtained by frequency-dividing the signal under measurement by the second frequency-dividing unit. A counter that counts the output signal of a reference oscillator that generates a signal, generates a latch signal in a latch signal generation circuit in response to a plurality of adjacent time difference signals, and outputs a signal for counting the latch signal A frequency change measuring method, characterized in that a counter value between a plurality of cycle time difference signals is read and a frequency change of a signal under measurement is measured from a difference between these count values by a calculation means.
測定の基準となる周波数信号を出力する前記第1の分周手段の出力信号と,標準時間を刻時する刻時手段による出力信号との,同期をとる信号同期手段を備えることを特徴とする請求項1に記載の周波数変化測定法.  And a signal synchronizing means for synchronizing the output signal of the first frequency dividing means for outputting a frequency signal as a measurement reference with the output signal of the time-clocking means for clocking the standard time. The frequency change measuring method according to claim 1. 物理量の変化に対応して出力周波数が変化する被測定信号が,発振式温度センサの周波数出力信号であることを特徴とし,請求項1,及び,請求項2に記載の周波数変化測定法に基づき温度の変化を測定する温度変化測定装置.  The signal under measurement whose output frequency changes in response to a change in physical quantity is a frequency output signal of an oscillation type temperature sensor, and is based on the frequency change measuring method according to claim 1 and 2. A temperature change measurement device that measures temperature changes.
JP2008336001A 2008-12-10 2008-12-10 Frequency change measurement method and apparatus Expired - Fee Related JP5307532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008336001A JP5307532B2 (en) 2008-12-10 2008-12-10 Frequency change measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008336001A JP5307532B2 (en) 2008-12-10 2008-12-10 Frequency change measurement method and apparatus

Publications (2)

Publication Number Publication Date
JP2010139493A JP2010139493A (en) 2010-06-24
JP5307532B2 true JP5307532B2 (en) 2013-10-02

Family

ID=42349746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008336001A Expired - Fee Related JP5307532B2 (en) 2008-12-10 2008-12-10 Frequency change measurement method and apparatus

Country Status (1)

Country Link
JP (1) JP5307532B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6685480B1 (en) * 2017-04-11 2020-04-22 シグニファイ ホールディング ビー ヴィSignify Holding B.V. Thermal detection system and method
CN109490624B (en) * 2018-10-19 2020-11-10 陕西长岭电子科技有限责任公司 Pulse signal frequency measurer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257928A (en) * 1988-08-23 1990-02-27 Seiko Instr Inc Detecting method of temperature and temperature detector using quartz oscillator
JP2742642B2 (en) * 1991-06-13 1998-04-22 山内 友子 Oscillation-synchronous frequency change measurement method and apparatus
US5836691A (en) * 1996-07-17 1998-11-17 Techno Togo Limited Company Method of thermometry and apparatus for the thermometry
JP2000180482A (en) * 1998-12-15 2000-06-30 Koko Res Kk Frequency variation computing unit
JP3355370B2 (en) * 2000-03-31 2002-12-09 名古屋大学長 Frequency change measuring device
JP2003106906A (en) * 2001-09-28 2003-04-09 Tsuneo Yamauchi Temperature measuring method

Also Published As

Publication number Publication date
JP2010139493A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
US10754370B2 (en) Fine-grained clock resolution using low and high frequency clock sources in a low-power system
RU2451391C2 (en) Circuit device and method to measure clock signal shaking
CN109387776B (en) Method of measuring clock jitter, clock jitter measuring circuit, and semiconductor device
KR102224031B1 (en) A circuit delay monitoring apparatus and method
US9134752B2 (en) Time measurement device, micro-controller and method of measuring time
US9116204B2 (en) On-die all-digital delay measurement circuit
KR20150007522A (en) Clock delay detecting circuit and semiconductor apparatus using the same
US10082824B2 (en) Method and device for clock calibration and corresponding apparatus
Chaberski et al. Comparison of interpolators used for time-interval measurement systems based on multiple-tapped delay line
Szplet et al. A 45 ps time digitizer with a two-phase clock and dual-edge two-stage interpolation in a field programmable gate array device
JP5307532B2 (en) Frequency change measurement method and apparatus
TWI768384B (en) Circuit and method for generating pulse output
JP5914718B2 (en) Time base with oscillator, frequency division circuit and clock pulse suppression circuit
US9143315B2 (en) Predictive periodic synchronization using phase-locked loop digital ratio updates
JP2006115274A (en) Slight time difference circuit using two plls and time measurement circuit
KR101643497B1 (en) A multiplying delay locked loop circuit using time registers and a method for synthesizing a frequency
Zieliński et al. Accumulated jitter measurement of standard clock oscillators
US20070172009A1 (en) Timing device with coarse-duration and fine-phase measurement
CN108318809B (en) Built-in self-test circuit for frequency jitter
US6972608B2 (en) Clock generating circuit with a frequency multiplying circuit
CN112152596B (en) Circuit and method for generating pulse output
Szplet et al. Precise three-channel integrated time counter
US20080267016A1 (en) Electric Counter Circuit
JP2002214323A (en) Device for generating reference frequency
US6989696B2 (en) System and method for synchronizing divide-by counters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees