JP5302936B2 - measuring device - Google Patents

measuring device Download PDF

Info

Publication number
JP5302936B2
JP5302936B2 JP2010150269A JP2010150269A JP5302936B2 JP 5302936 B2 JP5302936 B2 JP 5302936B2 JP 2010150269 A JP2010150269 A JP 2010150269A JP 2010150269 A JP2010150269 A JP 2010150269A JP 5302936 B2 JP5302936 B2 JP 5302936B2
Authority
JP
Japan
Prior art keywords
measured
measuring
axis
unit
drill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010150269A
Other languages
Japanese (ja)
Other versions
JP2012013538A (en
Inventor
君男 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNION TOOL Co
Original Assignee
UNION TOOL Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNION TOOL Co filed Critical UNION TOOL Co
Priority to JP2010150269A priority Critical patent/JP5302936B2/en
Publication of JP2012013538A publication Critical patent/JP2012013538A/en
Application granted granted Critical
Publication of JP5302936B2 publication Critical patent/JP5302936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、測定装置に関するものである。   The present invention relates to a measuring apparatus.

従来、外周に螺旋状の切り屑排出溝が設けられるドリルやエンドミル等の回転切削工具の溝底によって形成された部分(ウェブ若しくはコア)の厚さ(ウェブ厚若しくは心厚。以下、「心厚」という。)を測定する際に用いる測定装置としては、例えば切り屑排出溝が2つ設けられた回転切削工具において溝を両側から挟んで心厚を測定する接触式の測定装置が知られている。   Conventionally, the thickness (web thickness or core thickness) of a portion (web or core) formed by the groove bottom of a rotary cutting tool such as a drill or end mill in which a spiral chip discharge groove is provided on the outer periphery. As a measuring device used for measuring ")", for example, a contact-type measuring device is known which measures a core thickness by sandwiching a groove from both sides in a rotary cutting tool provided with two chip discharge grooves. Yes.

しかしながら、接触式では直径1mm以下の小径工具の心厚を精度良く測定することが困難であり、また、工具の折損の危険性もあることから、例えば特許文献1に開示されるように工具にレーザー光を照射しながら工具を軸心周りに少なくとも1回転させ、工具の外形を測定して心厚等を算出する非接触式の測定装置が提案されている。   However, in the contact type, it is difficult to accurately measure the core thickness of a small-diameter tool having a diameter of 1 mm or less, and there is a risk of breakage of the tool. There has been proposed a non-contact type measuring apparatus that calculates the core thickness by measuring the outer shape of the tool by rotating the tool at least once around the axis while irradiating the laser beam.

特開2003−207318号公報JP 2003-207318 A

ところで、従来の非接触式の測定装置は、上述のように工具を少なくとも1回転させる必要があることから、測定時間が長くなり、また、測定値に回転振れ成分誤差が含まれる等の問題点がある。   By the way, since the conventional non-contact type measuring apparatus needs to rotate the tool at least once as described above, the measurement time becomes long, and the measurement value includes a rotational shake component error. There is.

本発明は、上記の問題点を解決したものであり、被測定部材の軸心方向における所定位置を異なる複数の方向から同時に撮影して得られた複数の画像を用いて心厚等を測定することで、工具をほとんど回転させる必要なく、短時間で心厚等を測定可能な極めて実用性に秀れた測定装置を提供するものである。   The present invention solves the above-mentioned problems, and measures the thickness of the heart using a plurality of images obtained by simultaneously photographing a predetermined position in the axial direction of the member to be measured from a plurality of different directions. Thus, it is an object of the present invention to provide a very practical measuring apparatus that can measure the core thickness and the like in a short time without the necessity of rotating the tool.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

外周に一若しくは複数条の溝1a・1bが形成された略円筒状の被測定部材2を軸心周りに回転させる回転駆動機構と、前記被測定部材2に照明光を照射する照明部及び該照明光が照射された前記被測定部材2を撮影して画像を取得する撮影部を有し該撮影部で取得した画像から前記被測定部材2の外形を測定する測定機構とを備えた測定装置であって、前記測定機構はプリズム3a・3bを有し、前記撮影部は、前記被測定部材2の軸心方向における所定位置を前記プリズム3a・3bを介して異なる複数の方向から同時に撮影し得るように構成されていることを特徴とする測定装置に係るものである。 A rotation drive mechanism for rotating a substantially cylindrical member 2 having one or a plurality of grooves 1a and 1b formed on the outer periphery around an axis, an illumination unit for irradiating the member 2 with illumination light, and A measuring apparatus including a photographing unit that photographs the member to be measured 2 irradiated with illumination light and obtains an image, and a measurement mechanism that measures the outer shape of the member to be measured 2 from the image obtained by the photographing unit. The measuring mechanism includes prisms 3a and 3b, and the photographing unit photographs a predetermined position in the axial direction of the member 2 to be measured simultaneously from a plurality of different directions via the prisms 3a and 3b. The present invention relates to a measuring apparatus characterized by being configured to obtain.

また、請求項1記載の測定装置において、前記被測定部材2と前記測定機構とを該被測定部材2の軸心方向に相対的に移動させる相対移動機構が設けられていることを特徴とする測定装置に係るものである。   The measuring apparatus according to claim 1, further comprising a relative movement mechanism that relatively moves the member to be measured 2 and the measurement mechanism in the axial direction of the member to be measured 2. It concerns a measuring device.

また、請求項1,2いずれか1項に記載の測定装置において、前記照明部は前記被測定部材2の軸心方向における所定位置に異なる複数方向から同時に照明光を照射するように構成されていることを特徴とする測定装置に係るものである。   Further, in the measurement apparatus according to claim 1, the illumination unit is configured to irradiate illumination light simultaneously from a plurality of different directions to a predetermined position in the axial direction of the member to be measured 2. The present invention relates to a measuring device characterized in that:

また、請求項3記載の測定装置において、前記照明部はその光軸が被測定部材2の溝1a・1bの形成方向に沿うように設けられていることを特徴とする測定装置に係るものである。   4. The measuring apparatus according to claim 3, wherein the illuminating unit is provided so that an optical axis thereof is along a forming direction of the grooves 1a and 1b of the member 2 to be measured. is there.

また、請求項1〜4いずれか1項に記載の測定装置において、前記プリズム3a・3bは対向状態に設けられる一対のプリズム3a・3bであることを特徴とする測定装置に係るものである。 The measuring apparatus according to any one of claims 1 to 4 , wherein the prisms 3a and 3b are a pair of prisms 3a and 3b provided in an opposing state.

また、請求項記載の測定装置において、前記一対のプリズム3a・3bは対向離間状態に設けられ、また、前記被測定部材2の軸直角方向から照明光を照射する照明部が設けられ、前記撮影部は前記被測定部材2を挟んで前記軸直角方向から照明光を照射する照明部の対向位置に設けられ、前記プリズム3a・3b間を通じて前記被測定部材2の軸心方向における所定位置を軸直角方向から撮影できるように構成されていることを特徴とする測定装置に係るものである。 Further, in the measuring apparatus according to claim 5 , the pair of prisms 3a and 3b are provided in a state of facing and separating from each other, and an illumination unit for irradiating illumination light from a direction perpendicular to the axis of the member to be measured 2 is provided. The imaging unit is provided at a position opposed to the illumination unit that irradiates illumination light from the direction perpendicular to the axis with the measured member 2 interposed therebetween, and a predetermined position in the axial direction of the measured member 2 is interposed between the prisms 3a and 3b. The present invention relates to a measuring apparatus configured to be able to photograph from a direction perpendicular to the axis.

また、請求項1〜いずれか1項に記載の測定装置において、前記被測定部材2は外周に螺旋状の切り屑排出溝1a・1bが設けられたドリル若しくはエンドミル等の回転切削工具2であることを特徴とする測定装置に係るものである。 Further, in the measuring apparatus according to any one of claims 1 to 6, the member 2 to be measured is a rotary cutting tool 2 such as a drill or an end mill in which spiral chip discharge grooves 1a and 1b are provided on the outer periphery. The present invention relates to a measuring apparatus characterized by being.

また、請求項記載の測定装置において、前記回転切削工具2は前記切り屑排出溝1a・1bが一若しくは偶数条設けられたものであることを特徴とする測定装置に係るものである。 8. The measuring apparatus according to claim 7 , wherein the rotary cutting tool 2 is provided with one or an even number of the chip discharge grooves 1a and 1b.

また、請求項7,8いずれか1項に記載の測定装置において、前記測定機構は、前記照明部に照明され影として映し出される前記切り屑排出溝1a・1bが形成された部分における外形の最小値を求めることで前記回転切削工具2の心厚を測定するように構成されていることを特徴とする測定装置に係るものである。 The measuring device according to any one of claims 7 and 8 , wherein the measuring mechanism has an outer shape in a portion where the chip discharge grooves 1a and 1b that are illuminated and projected as shadows on the illumination unit are formed. The measurement apparatus is configured to measure the core thickness of the rotary cutting tool 2 by obtaining a minimum value.

本発明は上述のように構成したから、工具をほとんど回転させる必要なく、短時間で心厚等を測定可能な極めて実用性に秀れた測定装置となる。   Since the present invention is configured as described above, the measurement apparatus is extremely practical and capable of measuring the thickness of the heart in a short time without the need to rotate the tool.

本実施例の概略説明正面図である。It is a schematic explanatory front view of a present Example. 本実施例の概略説明平面図である。It is a schematic explanatory plan view of a present Example. 本実施例の押さえ機構の概略説明拡大平面図である。It is a schematic explanatory enlarged plan view of the pressing mechanism of the present embodiment. 本実施例の押さえ機構の概略説明拡大左側面図である。It is a schematic explanatory enlarged left side view of the pressing mechanism of the present embodiment. 本実施例の構成概略説明図である。It is a structure schematic explanatory drawing of a present Example. 本実施例の心厚の算出方法を説明する概略説明図である。It is a schematic explanatory drawing explaining the calculation method of the heart thickness of a present Example. 実際の撮像画像の一例である。It is an example of an actual captured image. 別例の要部の構成概略説明図である。It is a structure schematic explanatory drawing of the principal part of another example. 本実施例の動作フロー図である。It is an operation | movement flowchart of a present Example.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.

被測定部材2の軸心方向における所定位置を異なる複数の方向から同時に撮影して取得した画像を用いて被測定部材2の外形を測定する。この際、例えば、2つの切り屑排出溝1a・1bを有する回転切削工具2の軸心方向における所定位置の一方の切り屑排出溝1aの溝底が映る画像と、当該位置における他方の切り屑排出溝1bの溝底が映る画像とを同時に取得し、これらの画像を用いて画像処理等により各溝1a・1bの溝底間の距離を夫々算出することで、被測定部材2を軸心周りにほとんど回転させることなく心厚等を測定することが可能で、また、測定時間も短くなり、しかも、回転振れ成分誤差の影響をほとんど受けない正確な測定が可能となる。   The external shape of the member to be measured 2 is measured using images acquired by simultaneously photographing a predetermined position in the axial direction of the member to be measured 2 from a plurality of different directions. At this time, for example, an image showing a groove bottom of one chip discharge groove 1a at a predetermined position in the axial direction of the rotary cutting tool 2 having two chip discharge grooves 1a and 1b, and the other chip at the position. An image showing the groove bottom of the discharge groove 1b is obtained at the same time, and the distance between the groove bottoms of the grooves 1a and 1b is calculated by image processing using these images. It is possible to measure the heart thickness and the like with little rotation around, and the measurement time is shortened, and an accurate measurement that is hardly affected by the rotational shake component error is possible.

本発明の具体的な実施例について図面に基づいて説明する。   Specific embodiments of the present invention will be described with reference to the drawings.

本実施例は、外周に一若しくは複数条の溝1a・1bが形成された略円筒状の被測定部材2をその軸心方向に相対的に移動させる相対移動機構と、前記被測定部材2を軸心周りに回転させる回転駆動機構と、前記被測定部材2に照明光を照射する照明部及び該照明光が照射された前記被測定部材2を撮影して画像を取得する撮影部を有し該撮影部で取得した画像から前記被測定部材2の外形を測定する測定機構とを備えた測定装置であって、前記撮影部は、前記被測定部材2の軸心方向における所定位置を異なる複数の方向から同時に撮影することで当該複数の方向から見た画像が同時に得られるように構成され、前記複数の画像を用いて軸心方向における所定位置の前記被測定部材2の外形を測定するように構成されているものである。 In the present embodiment, a relative movement mechanism for relatively moving a substantially cylindrical member to be measured 2 having one or more grooves 1a and 1b formed on the outer periphery in the axial direction, and the member to be measured 2 include A rotation drive mechanism that rotates around an axis; an illumination unit that irradiates the member to be measured 2 with illumination light; and a photographing unit that photographs the member to be measured 2 irradiated with the illumination light and acquires an image. a measuring device comprising a measuring mechanism for measuring the contour of the object body 2 from the image obtained at the imaging section, the imaging section, a plurality of different predetermined positions in the axial direction of the measured member 2 By simultaneously photographing from the direction, the images viewed from the plurality of directions can be obtained simultaneously, and the outer shape of the member 2 to be measured at a predetermined position in the axial direction is measured using the plurality of images. It is configured.

具体的には、外周に一若しくは偶数条の螺旋状の切り屑排出溝1a・1bが設けられたドリル若しくはエンドミル等の回転切削工具2を被測定部材2とし、その心厚等を測定するものである。   Specifically, a rotating cutting tool 2 such as a drill or an end mill having one or an even number of spiral chip discharge grooves 1a and 1b provided on the outer periphery is used as a member 2 to be measured, and its thickness is measured. It is.

本実施例においては、2つの切り屑排出溝1a・1bを有するドリル2の心厚を測定する場合について説明する。   In the present embodiment, a case where the core thickness of the drill 2 having the two chip discharge grooves 1a and 1b is measured will be described.

本実施例の相対移動機構(軸心方向駆動機構)及び回転駆動機構は、図1,2に図示したように、テーブル送りモータ6により固定テーブル7に対して工具軸心方向に直線スライド移動せしめられる移動テーブル8上に、ドリル2を把持するチャック9を装着可能なスピンドル10を有するドリル保持体11を設け、このスピンドル10とベルト12を介して連結され該スピンドル10を回転せしめるドリル回転駆動用モータ13をドリル保持体11と共に移動テーブル8上に設けて構成している。移動テーブル8は公知のボールねじ機構により移動せしめられるように構成される。即ち、本実施例の相対移動機構は移動テーブル8とテーブル送りモータ6とボールねじ機構とで構成され、回転駆動機構はドリル保持体11(のスピンドル10)とドリル回転駆動用モータ13とベルト12とで構成される。   As shown in FIGS. 1 and 2, the relative movement mechanism (axial drive mechanism) and the rotational drive mechanism of the present embodiment are linearly moved in the tool axial direction relative to the fixed table 7 by the table feed motor 6. A drill holder 11 having a spindle 10 on which a chuck 9 for gripping the drill 2 can be mounted is provided on a movable table 8, and is connected to the spindle 10 via a belt 12 for rotating the spindle 10. The motor 13 is provided on the moving table 8 together with the drill holder 11. The moving table 8 is configured to be moved by a known ball screw mechanism. That is, the relative movement mechanism of this embodiment is composed of a moving table 8, a table feed motor 6, and a ball screw mechanism, and the rotation drive mechanism is a drill holder 11 (spindle 10 thereof), a drill rotation drive motor 13 and a belt 12. It consists of.

また、移動テーブル8上には、適宜なベアリング機構を介して設けられ、ドリル2を着脱するために、固定テーブル7上に設けられる回転切削工具2を受ける断面視略V字状の受け部を有するシャンク受け14に対して工具軸心方向に直線スライド移動可能なドリル着脱テーブル15が設けられている。本実施例においては、ドリル保持体11及びドリル回転駆動用モータ13はこのドリル着脱テーブル15に取り付けられ、移動テーブル8に対しても直線スライド移動できるように構成されている。   Further, on the moving table 8, a receiving portion having a substantially V-shaped cross-sectional view for receiving the rotary cutting tool 2 provided on the fixed table 7 in order to attach and detach the drill 2 is provided via an appropriate bearing mechanism. A drill attachment / detachment table 15 is provided that can move linearly in the tool axis direction with respect to the shank receiver 14 that the shank receiver 14 has. In the present embodiment, the drill holder 11 and the drill rotation driving motor 13 are attached to the drill attaching / detaching table 15 and configured to be linearly slidable relative to the moving table 8.

また、シャンク部がシャンク受け14の受け部に受けられたドリル2は、図3,4に図示したような押さえ機構により押さえられる。具体的には、ピン18を中心に先端側の押さえ部が起伏回動するシャンク押さえ16を、このシャンク押さえ16の基端側に枢着されるロッド17を上下動させることで作動せしめてドリル2を押さえる。図3,4に図示した構成では、ロッド17を上方に移動させることでシャンク押さえ16の押さえ部によりドリル2が押さえられる。尚、シャンク部に限らず、刃部の一部若しくは刃部とシャンク部とを連設するように設けられるボデー部の一部を受け部で受け、押さえ部で押さえる構成としても良い。また、本実施例ではシャンク受け14とシャンク押さえ16とを設けているが、これは、チャック自体に柔軟性(自由度)を持たせた状態で、被受け部(シャンク部、刃部、ボデー部)で被測定部材2を押さえて、被受け部基準で被測定部材2を回転させるための一形態を示したものである。別の実施例として、図示しないが、回転振れが小さく安定したチャックを使用して被測定部材2を把持固定する場合には、チャック基準で被測定部材2を回転させれば良いため、シャンク受け14等で前記被受け部を受ける必要もなく、よってシャンク押さえ16等も不要となる。   Further, the drill 2 whose shank portion is received by the receiving portion of the shank receiver 14 is pressed by a pressing mechanism as shown in FIGS. Specifically, the shank presser 16 in which the pressing portion on the distal end side moves up and down around the pin 18 is actuated by moving the rod 17 pivotally attached to the base end side of the shank presser 16 up and down to drill. Press 2 In the configuration shown in FIGS. 3 and 4, the drill 2 is pressed by the pressing portion of the shank presser 16 by moving the rod 17 upward. In addition, it is good also as a structure which receives not only a shank part but a part of blade part or a part of body part provided so that a blade part and a shank part may be arranged in a row by a receiving part, and hold | suppresses by a pressing part. In this embodiment, the shank receiver 14 and the shank presser 16 are provided. However, this is because the chuck itself has flexibility (degree of freedom) and the receiving part (the shank part, the blade part, the body part). 1) shows a form for pressing the member 2 to be measured and rotating the member 2 to be measured with respect to the receiving part. As another embodiment, although not shown, when the member to be measured 2 is gripped and fixed using a chuck having a small rotational shake and stable, the member to be measured 2 may be rotated with reference to the chuck. It is not necessary to receive the receiving part at 14 etc., so that the shank presser 16 or the like is also unnecessary.

また、図5に図示したように、本実施例の測定機構は、照明部と、撮影部と、照明部及び撮影部の間に設けられるプリズム3a・3bと、撮影部で撮影した被測定部材2の像A,Bを画像処理するデータ処理部23(PC)と、この被測定部材2の像A,Bや画像処理中の画面を表示する画像表示部24(モニタ)とで構成されている。 As shown in FIG. 5, the measurement mechanism of this embodiment includes an illumination unit, a photographing unit , prisms 3 a and 3 b provided between the illumination unit and the photographing unit , and a member to be measured photographed by the photographing unit. A data processing unit 23 (PC) for image processing of the two images A and B, and an image display unit 24 (monitor) for displaying the images A and B of the member 2 to be measured and a screen during image processing. Yes.

具体的には、固定テーブル7上に、照明部としての2つの光源4a・4b(LED)、撮影部としての1つのカメラ5及び前記光源4a・4bから照射された照明光をこのカメラ5に同時に入射せしめるプリズム3a・3bが設けられている。尚、図中符号19は光源支持体、20はカメラ支持体、21は支持台部、22は支持脚部である。 Specifically, on the fixed table 7, two light sources 4a and 4b (LEDs) as illumination units, one camera 5 as an imaging unit and illumination light emitted from the light sources 4a and 4b are given to the camera 5. Prisms 3a and 3b that allow simultaneous incidence are provided. In the figure, reference numeral 19 denotes a light source support, 20 denotes a camera support, 21 denotes a support base, and 22 denotes a support leg.

そして、一の光源(下側光源)4aはその光軸が工具軸心と水平方向に交差する向きで且つドリル2の一方側(下側)の溝(下溝)1aの形成方向(−α)に沿うように設けられ、他の光源(上側光源)4bはその光軸が工具軸心と水平方向に交差する向きで且つドリル2の他方側(上側)の溝(上溝)1bの形成方向(ねじれ角α)に沿うように設けられる。   One light source (lower light source) 4a has a direction in which its optical axis intersects the tool axis in the horizontal direction and the direction (-α) in which one side (lower side) groove (lower groove) 1a of the drill 2 is formed. The other light source (upper light source) 4b has a direction in which its optical axis intersects the tool axis in the horizontal direction and the formation direction of the groove (upper groove) 1b on the other side (upper side) of the drill 2 ( It is provided along the twist angle α).

即ち、各光源4a・4bは工具軸心に対して光軸が夫々±α度傾斜するように設けられる。尚、各光源が工具軸心に対して傾斜して設けられる方向は、ねじれ角αに相当する角度に完全に一致させる必要は無く、ドリル2の仕様(溝形状)によって変わるが、カメラ5に撮像し画像表示部24(モニタ)に表示した際に溝の最下点を確認できる範囲に設定すれば良い。また、下側光源4aと上側光源4bとは略同じ高さ位置に設けられる。本実施例では、各光源4a・4bの光軸及び工具軸心が交わる位置を心厚の測定位置に設定している。   That is, the light sources 4a and 4b are provided such that the optical axes are inclined by ± α degrees with respect to the tool axis. The direction in which each light source is inclined with respect to the tool axis does not need to be completely coincident with the angle corresponding to the torsion angle α, and varies depending on the specifications (groove shape) of the drill 2. What is necessary is just to set to the range which can confirm the lowest point of a groove | channel, when it images and displays on the image display part 24 (monitor). The lower light source 4a and the upper light source 4b are provided at substantially the same height. In the present embodiment, the position where the optical axis of each of the light sources 4a and 4b and the tool axis intersect is set as the measurement position of the core thickness.

また、カメラ5はその光軸が工具軸心と水平方向に直交するように設けられる。尚、本実施例においては、光源4a・4b及びカメラ5にはモータ等の駆動機構を設けず、固定状態に設けている(ねじれ角等が異なる別の回転切削工具2を測定する場合には、光源の傾斜向きを変えたり、プリズムを交換したりすることで対応する。)。   The camera 5 is provided so that its optical axis is orthogonal to the tool axis and the horizontal direction. In this embodiment, the light sources 4a and 4b and the camera 5 are not provided with a driving mechanism such as a motor, but are provided in a fixed state (when measuring another rotary cutting tool 2 having a different twist angle or the like). , Change the tilt direction of the light source, or replace the prism.)

また、本実施例の測定機構は対向する一対のプリズム3a・3bを有しており、撮影部によりプリズム3a・3bを介して被測定部材2の軸心方向所定位置(同一位置)を夫々異なる方向(工具軸心と交差する方向)から同時に撮影し得る(複数方向から見た複数の像A,Bを同時に撮像し得る)ように構成されている。尚、プリズム3a・3bはその対向面部の一部が当接した状態で一体となるように連結されている。 Further, the measurement mechanism of the present embodiment has a pair of opposing prisms 3a and 3b, and a predetermined position (the same position) in the axial direction of the member 2 to be measured is different by the photographing unit via the prisms 3a and 3b. It is configured so that images can be taken simultaneously from the direction (direction intersecting the tool axis) (a plurality of images A and B viewed from a plurality of directions can be taken simultaneously). The prisms 3a and 3b are connected so as to be integrated with a part of the opposed surface portions in contact with each other.

具体的には、下側光源4a及び上側光源4bからの光は、各光源4a・4bの光軸上に設けられる対応する各プリズム3a・3bの先端入射面25a・25bに入射して第一反射面26a・26bにより反射されて第二反射面27a・27bへ導かれ該第二反射面27a・27bにより反射されて基端出射面28a・28bから出射され、撮影部のレンズ29(テレセントリックレンズ)へと夫々入射せしめられ、各光により照明されて影として映し出される各像A,Bがカメラセンサ30に結像せしめられる。 Specifically, the light from the lower light source 4a and the upper light source 4b is incident on the tip incident surfaces 25a and 25b of the corresponding prisms 3a and 3b provided on the optical axes of the light sources 4a and 4b. Reflected by the reflecting surfaces 26a and 26b, led to the second reflecting surfaces 27a and 27b, reflected by the second reflecting surfaces 27a and 27b and emitted from the base end emitting surfaces 28a and 28b, and the lens 29 (telecentric lens) of the photographing unit ), The images A and B illuminated by the respective lights and projected as shadows are formed on the camera sensor 30.

本実施例においては、カメラセンサ30の左側領域に下溝1aを照明する下側光源4aの光により影として映し出されるドリル2の像Aが結像され、右側領域に上溝1bを照明する上側光源4bの光により影として映し出されるドリル2の像Bが結像されるように設定している。図7は、夫々結像された像A,Bを画像表示部24(モニタ)に表示した、実際の撮像画像の例である。   In this embodiment, the image A of the drill 2 projected as a shadow by the light of the lower light source 4a that illuminates the lower groove 1a is formed on the left region of the camera sensor 30, and the upper light source 4b that illuminates the upper groove 1b on the right region. The image B of the drill 2 projected as a shadow by the light of is set to be formed. FIG. 7 is an example of an actual captured image in which the formed images A and B are displayed on the image display unit 24 (monitor).

即ち、本実施例は、同じ測定位置における上下2つの溝1a・1bを、1つのカメラ5により同時に撮像しこれらを同一画面上に表示して、対応する上下2つの溝1a・1bの最下点(最底点)位置における厚さ(外形の最小値)を測定することで、心厚を測定するものである。   That is, in this embodiment, the upper and lower grooves 1a and 1b at the same measurement position are simultaneously imaged by one camera 5 and displayed on the same screen, and the bottom of the corresponding upper and lower grooves 1a and 1b. The core thickness is measured by measuring the thickness (minimum outer shape value) at the point (bottom point) position.

また、本実施例においては、測定位置からカメラセンサ30までの光学距離(光路長)が等しくなるようにプリズム3a・3b等が設計されている。また、このプリズム3a・3bを取り除いた際に、カメラ5により該カメラ5の光軸心方向のドリル2の画像(ドリル2の軸直角方向の画像)を焦点が合った状態で得られるようにプリズム3a・3bが設計されている。この場合、レンズの焦点やテーブルの送り位置を変更する必要がなく(カメラを前後させる必要がなく)、例えば被測定部材の外径など、軸直角方向視の外形を高精度で容易に求めることができ、被測定部材として基準ゲージを用いて前記カメラ5の光軸と被測定部材の軸心の位置関係の調整にも容易に利用できる。またこの場合、より明瞭に被測定部材の外形を撮像するため、カメラ5の光軸上にして被測定部材の軸心を挟むように図示しない光源を配置して被測定部材に照明光を照射すれば良い。   In the present embodiment, the prisms 3a and 3b are designed so that the optical distance (optical path length) from the measurement position to the camera sensor 30 is equal. Further, when the prisms 3a and 3b are removed, an image of the drill 2 in the optical axis direction of the camera 5 (an image perpendicular to the axis of the drill 2) can be obtained with the camera 5 in focus. The prisms 3a and 3b are designed. In this case, it is not necessary to change the focal point of the lens or the feed position of the table (no need to move the camera back and forth). For example, the outer shape of the member to be measured, such as the outer diameter, can be easily obtained with high accuracy. It can be easily used for adjusting the positional relationship between the optical axis of the camera 5 and the axis of the member to be measured using a reference gauge as the member to be measured. In this case, in order to more clearly capture the outer shape of the member to be measured, a light source (not shown) is arranged on the optical axis of the camera 5 so as to sandwich the axis of the member to be measured, and the member to be measured is irradiated with illumination light. Just do it.

また、本実施例においては当接状態に設けたプリズム3a・3bを、対向離間状態で設置できるように設計し、このプリズム3a・3b間を通じて、上記のカメラ5の光軸上にして被測定部材2の軸心を挟むように配置した光源から軸直角方向の照明を照射し、プリズムを介さずに直接軸直角方向視の像を撮像できるように構成しても良い。即ち、被測定部材2に軸直角方向から照明を照射する照明部と撮影部とを被測定部材2を挟んで照明部の対向位置に配置して前記プリズム3a・3b間を通じて被測定部材2の軸心方向所定位置(心厚の測定位置)における軸直角方向から撮影して(軸直角方向視の像を撮像して)その外形を求めるように構成しても良い。 Further, in this embodiment, the prisms 3a and 3b provided in the contact state are designed so that they can be installed in a facing and separated state, and are measured on the optical axis of the camera 5 between the prisms 3a and 3b. It may be configured such that illumination in the direction perpendicular to the axis is emitted from a light source arranged so as to sandwich the axis of the member 2 and an image viewed in the direction perpendicular to the axis can be taken directly without using a prism. That is, an illumination unit that illuminates the member to be measured 2 from a direction perpendicular to the axis and a photographing unit are arranged at positions opposite to the illumination unit with the member to be measured 2 interposed therebetween, and the member 2 to be measured is interposed between the prisms 3a and 3b. The outer shape may be obtained by photographing from a direction perpendicular to the axis at a predetermined position in the axial direction (measurement position of the core thickness) (taking an image viewed in the direction perpendicular to the axis).

この場合、像A,B及び軸直角方向視の像を同時に撮像してモニタに表示することが可能となり、また、測定する方向のみ照明を点灯するなどの切替も可能となり、物理的にプリズムを外すなどの作業も不要となるため、測定の汎用性が広がることになる。尚、この場合も、プリズムを介した場合の光路長及びプリズムを介さない場合(軸直角)の光路長が等しくなるようにプリズムを設計する。   In this case, the images A and B and the image viewed in the direction perpendicular to the axis can be simultaneously captured and displayed on the monitor, and the illumination can be switched only in the measuring direction. Since the work such as removal is not necessary, the versatility of measurement is expanded. In this case as well, the prism is designed so that the optical path length when the prism is used and the optical path length when the prism is not used (axis perpendicular) are equal.

測定機構のデータ処理部23は、照明部に照明されて影として映し出される切り屑排出溝1a・1bが形成された部分における外形の最小値を求めることで回転切削工具の心厚を測定し得る心厚算出手段を備えている。   The data processing unit 23 of the measurement mechanism can measure the core thickness of the rotary cutting tool by obtaining the minimum value of the outer shape in the portion where the chip discharge grooves 1a and 1b that are illuminated and projected as shadows are formed. A heart thickness calculating means is provided.

具体的には、図6に図示したように、測定位置における上下の溝1a・1bの最下点間の距離(左側の像Aの溝1aの最下点から右側の像Bの溝1bの最下点までの長さ)を画像処理により求めて(例えば像Aの測定位置における画面上端から溝1aの最下点までの長さと像Bの測定位置における画面上端から溝1bの最下点までの長さの差を求める)心厚を算出するように心厚算出手段を構成している。   Specifically, as shown in FIG. 6, the distance between the lowest points of the upper and lower grooves 1a and 1b at the measurement position (from the lowest point of the groove 1a of the left image A to the groove 1b of the right image B). The length from the upper end of the screen to the lowest point of the groove 1a at the measurement position of the image A and the lowermost point of the groove 1b from the upper end of the screen at the measurement position of the image B The heart thickness calculating means is configured to calculate the thickness of the heart).

尚、同一画面上に同時に表示したドリル2の2つの像A,Bは、基準ゲージを映し込み校正することで、具体的には本実施例においては、ドリル2の測定前に基準ゲージの2つの像A,Bを前記画面上に映し込み、その座標位置をもとに校正することで、ドリル2の各像A,Bの座標を一致させることができ、正確に心厚を求めることができる。   Note that the two images A and B of the drill 2 displayed simultaneously on the same screen are calibrated by reflecting the reference gauge. Specifically, in this embodiment, before the measurement of the drill 2, the two images of the reference gauge 2 By displaying two images A and B on the screen and calibrating them based on their coordinate positions, the coordinates of the images A and B of the drill 2 can be matched, and the heart thickness can be accurately obtained. it can.

更に、本実施例においては、一方の溝の最下点位置を測定位置と一致させた際に、他の溝の最下点位置が測定位置と一致しない場合には、ドリル2を回転駆動機構により若干(数°程度)回転させて各溝1a・1bの最下点を夫々探り、各溝1a・1bの最下点位置から工具軸心までの距離を合算して心厚を求めるように心厚算出手段を構成している。例えば、溝1a・1bの最下点位置をドリル2を回転させつつ画面を見ながら目視で判断しても良いし、所定範囲で溝底から工具軸心までの距離を所定間隔で自動的に測定し、最も値の小さいものを各溝1a・1bの最下点位置から軸心までの距離として合算しても良い。尚、この際のドリル2の回転は極僅かであるため、この操作により、回転振れ成分誤差の影響を受けることはほとんどない。   Further, in the present embodiment, when the lowest point position of one groove is coincident with the measurement position, the drill 2 is rotated when the lowest point position of the other groove does not coincide with the measurement position. Rotate slightly (about several degrees) to find the lowest point of each groove 1a and 1b, and add the distance from the lowest point position of each groove 1a and 1b to the tool axis to obtain the core thickness. It constitutes a heart thickness calculation means. For example, the lowest point position of the grooves 1a and 1b may be determined visually while viewing the screen while rotating the drill 2, or the distance from the groove bottom to the tool axis is automatically determined at predetermined intervals within a predetermined range. It is also possible to measure and add the smallest value as the distance from the lowest point position of each groove 1a, 1b to the axis. In this case, since the rotation of the drill 2 is very small, the operation is hardly affected by the rotational shake component error.

また、本実施例においては2つの切り屑排出溝を有するドリルの心厚測定について説明しているが、切り屑排出溝が偶数(2n)の場合には、2溝ずつn回測定することで、同様に測定することができる。更に、溝が1つの場合はその形状より、切り屑排出溝が偶数(2n)のドリルのような2つの溝の最下点の距離として定義される心厚は存在しないが、像A,Bいずれか一方の像だけで外形の最小値(溝の最下点から軸心を通り外周縁までの距離)を心厚として測定できる。また、ドリルに限らず、エンドミル等の他の回転切削工具を測定することも可能であり、更に、樹脂や透明なアクリル等、金属以外の素材であっても同様に測定できる。また、徐々にねじれ角が変わる不等ねじれや2段ねじれの回転切削工具であっても同様に測定でき、不等分割仕様の回転切削工具であっても、例えば画像を見ながら補正することで測定できる。また、溝は被測定部材を1周(1回転)していなくても問題なく測定できる。   Moreover, although the present Example demonstrates the core thickness measurement of the drill which has two chip discharge grooves, when a chip discharge groove is an even number (2n), it measures by measuring 2 times every 2 grooves. Can be measured as well. Furthermore, in the case of a single groove, there is no core thickness defined as the distance between the lowest points of two grooves, such as a drill with an even number (2n) of chips, because of its shape. With only one of the images, the minimum value of the outer shape (the distance from the lowest point of the groove to the outer peripheral edge through the axis) can be measured as the core thickness. Moreover, it is possible to measure not only a drill but also other rotary cutting tools such as an end mill. Furthermore, even a material other than metal, such as resin and transparent acrylic, can be measured in the same manner. In addition, it is possible to measure in the same way even with non-uniform torsional and two-stage torsional rotary cutting tools whose torsion angle gradually changes. It can be measured. Further, the groove can be measured without any problem even if the member to be measured does not make one turn (one rotation).

また、本実施例においてはプリズム3a・3bを用いて同時に撮像した複数の像A,Bを同一画面上に表示できるようにしているが、図8に図示したように、例えば撮影部としてのカメラ5a・5bを照明部としての各光源4a・4bに1対1に設け、夫々のカメラ5a・5bで同時に撮像した像の溝底の最下点から工具軸心までの距離を夫々算出しこれらを合算することで心厚を求めるようにデータ処理部を構成しても良い。 In the present embodiment, a plurality of images A and B captured simultaneously using the prisms 3a and 3b can be displayed on the same screen. However, as shown in FIG. 5a and 5b are provided for each of the light sources 4a and 4b as illumination units in a one-to-one manner, and the distances from the lowest point of the groove bottom of the image captured simultaneously by the respective cameras 5a and 5b to the tool axis are calculated. The data processing unit may be configured to obtain the core thickness by adding together.

本実施例は上述のように構成したから、例えば、図9に図示したように、ドリル2をチャック9に取り付け、ドリル着脱テーブル15を移動してドリル2をシャンク受け14の位置まで送り、シャンク押さえ16によりドリル2をシャンク受け14に押さえ、テーブル送りモータ6で(移動)テーブル8を移動し、ドリル2を測定する位置まで送り、ドリル回転モータ13でドリル2を半回転(溝数が2つの場合。4つの場合は1/4回転)しながら1°毎に照明で照らしたドリル2の影の画像をカメラ5で取得し、取得した画像毎に測定位置のドリル2の外形を求め、求めたドリル2の外形の最小値を求めることで、心厚を測定することが可能となる。   Since the present embodiment is configured as described above, for example, as shown in FIG. 9, the drill 2 is attached to the chuck 9, the drill attachment / detachment table 15 is moved, and the drill 2 is sent to the position of the shank receiver 14. Hold the drill 2 against the shank receiver 14 with the presser 16, move the table 8 with the table feed motor 6 (moving), feed the drill 2 to the position to measure, and rotate the drill 2 half-turn with the drill rotating motor 13 (the number of grooves is 2) In the case of four (1/4 rotation in the case of four), an image of the shadow of the drill 2 illuminated with illumination every 1 ° is acquired by the camera 5, and the outer shape of the drill 2 at the measurement position is obtained for each acquired image, By obtaining the minimum value of the outer shape of the obtained drill 2, the heart thickness can be measured.

よって、本実施例は、工具をほとんど回転させる必要なく、短時間で心厚等を測定可能な極めて実用性に秀れたものとなる。   Therefore, the present embodiment is extremely practical because it is possible to measure the thickness of the heart in a short time without the necessity of rotating the tool.

1a・1b 溝
2 被測定部材
3a・3b プリズム
1a and 1b groove 2 member to be measured 3a and 3b prism

Claims (9)

外周に一若しくは複数条の溝が形成された略円筒状の被測定部材を軸心周りに回転させる回転駆動機構と、前記被測定部材に照明光を照射する照明部及び該照明光が照射された前記被測定部材を撮影して画像を取得する撮影部を有し該撮影部で取得した画像から前記被測定部材の外形を測定する測定機構とを備えた測定装置であって、前記測定機構はプリズムを有し、前記撮影部は、前記被測定部材の軸心方向における所定位置を前記プリズムを介して異なる複数の方向から同時に撮影し得るように構成されていることを特徴とする測定装置。 A rotation drive mechanism for rotating a substantially cylindrical member to be measured having one or more grooves formed on the outer periphery around an axis, an illumination unit for irradiating the member to be measured with illumination light, and the illumination light A measuring device having a photographing unit for photographing the member to be measured and obtaining an image, and a measuring mechanism for measuring the outer shape of the member to be measured from the image obtained by the photographing unit , the measuring mechanism Includes a prism, and the imaging unit is configured to be capable of simultaneously imaging a predetermined position in the axial direction of the member to be measured from a plurality of different directions via the prism. . 請求項1記載の測定装置において、前記被測定部材と前記測定機構とを該被測定部材の軸心方向に相対的に移動させる相対移動機構が設けられていることを特徴とする測定装置。   The measuring apparatus according to claim 1, further comprising a relative movement mechanism that relatively moves the member to be measured and the measuring mechanism in an axial direction of the member to be measured. 請求項1,2いずれか1項に記載の測定装置において、前記照明部は前記被測定部材の軸心方向における所定位置に異なる複数方向から同時に照明光を照射するように構成されていることを特徴とする測定装置。   The measurement apparatus according to claim 1, wherein the illumination unit is configured to irradiate illumination light simultaneously from a plurality of different directions to a predetermined position in the axial direction of the member to be measured. Characteristic measuring device. 請求項3記載の測定装置において、前記照明部はその光軸が被測定部材の溝の形成方向に沿うように設けられていることを特徴とする測定装置。   The measuring apparatus according to claim 3, wherein the illuminating unit is provided so that an optical axis thereof is along a groove forming direction of the member to be measured. 請求項1〜4いずれか1項に記載の測定装置において、前記プリズムは対向状態に設けられる一対のプリズムであることを特徴とする測定装置。 The measurement apparatus according to claim 1, wherein the prism is a pair of prisms provided in an opposing state. 請求項記載の測定装置において、前記一対のプリズムは対向離間状態に設けられ、また、前記被測定部材の軸直角方向から照明光を照射する照明部が設けられ、前記撮影部は前記被測定部材を挟んで前記軸直角方向から照明光を照射する照明部の対向位置に設けられ、前記プリズム間を通じて前記被測定部材の軸心方向における所定位置を軸直角方向から撮影できるように構成されていることを特徴とする測定装置。 In the measurement apparatus according to claim 5, wherein the pair of prisms provided on the counter separated state, also, the lighting unit is provided for irradiating the illumination light from the direction perpendicular to the axis of the object body, said imaging unit is the object to be measured It is provided at a position opposite to the illumination unit that irradiates illumination light from the direction perpendicular to the axis across the member, and is configured so that a predetermined position in the axial direction of the member to be measured can be photographed from the direction perpendicular to the axis through the prisms. A measuring device. 請求項1〜いずれか1項に記載の測定装置において、前記被測定部材は外周に螺旋状の切り屑排出溝が設けられたドリル若しくはエンドミル等の回転切削工具であることを特徴とする測定装置。 The measuring apparatus according to claim 1-6 any one, the measured member is characterized by helical chip flutes are drill or rotary cutting tool such as an end mill provided around the measurement apparatus. 請求項記載の測定装置において、前記回転切削工具は前記切り屑排出溝が一若しくは偶数条設けられたものであることを特徴とする測定装置。 The measuring apparatus according to claim 7 , wherein the rotary cutting tool is provided with one or an even number of the chip discharge grooves. 請求項7,8いずれか1項に記載の測定装置において、前記測定機構は、前記照明部に照明され影として映し出される前記切り屑排出溝が形成された部分における外形の最小値を求めることで前記回転切削工具の心厚を測定するように構成されていることを特徴とする測定装置。 9. The measurement device according to claim 7 , wherein the measurement mechanism obtains a minimum value of an outer shape in a portion where the chip discharge groove formed to be illuminated and projected as a shadow on the illumination unit is formed. The measuring apparatus is configured to measure the core thickness of the rotary cutting tool.
JP2010150269A 2010-06-30 2010-06-30 measuring device Active JP5302936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010150269A JP5302936B2 (en) 2010-06-30 2010-06-30 measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010150269A JP5302936B2 (en) 2010-06-30 2010-06-30 measuring device

Publications (2)

Publication Number Publication Date
JP2012013538A JP2012013538A (en) 2012-01-19
JP5302936B2 true JP5302936B2 (en) 2013-10-02

Family

ID=45600150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010150269A Active JP5302936B2 (en) 2010-06-30 2010-06-30 measuring device

Country Status (1)

Country Link
JP (1) JP5302936B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7080261B2 (en) 2017-06-30 2022-06-03 レクトラ A method for determining the dimension between the back and the cutting edge of a vibrating blade attached to a cutting tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114734309B (en) * 2022-04-25 2023-04-25 深圳数马电子技术有限公司 Cutter core thickness measuring method, device, equipment and readable storage medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200907A (en) * 1983-04-28 1984-11-14 Riide Denki Kk Optical method for measuring external size
JPS6486532A (en) * 1987-09-28 1989-03-31 Dakku Eng Kk Two-field image sensing method
JPH06147834A (en) * 1992-11-02 1994-05-27 Mitsubishi Heavy Ind Ltd Thread discriminating system
JP3303501B2 (en) * 1994-02-08 2002-07-22 いすゞ自動車株式会社 Liquid spray volume measurement device
JP2000074644A (en) * 1998-08-31 2000-03-14 Nachi Fujikoshi Corp Measuring apparatus of rod type cutting tool and measuring method of drill which uses the measuring apparatus
JP2003207318A (en) * 2002-01-16 2003-07-25 Sumitomo Electric Ind Ltd Method and device for measuring drill sectional shape
JP2010122086A (en) * 2008-11-20 2010-06-03 Fa Vision Corp Shape measurement apparatus and shape measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7080261B2 (en) 2017-06-30 2022-06-03 レクトラ A method for determining the dimension between the back and the cutting edge of a vibrating blade attached to a cutting tool

Also Published As

Publication number Publication date
JP2012013538A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
US8520066B2 (en) Automated optical inspection system for the runout tolerance of circular saw blades
US20100328435A1 (en) Method and apparatus for 3-dimensional vision and inspection of ball and like protrusions of electronic components
JP4791118B2 (en) Image measuring machine offset calculation method
CN107607059B (en) One-key type 3D contour measurement equipment and measurement calculation method thereof
US8654351B2 (en) Offset amount calibrating method and surface profile measuring machine
JP2022176220A (en) Spectacle frame shape measurement device, and lens processing device
JP2016061631A (en) Screw groove shape measurement device and tool machine using the same
KR20110010749A (en) Observation device and observation method
US20150192528A1 (en) Method and apparatus for determining coplanarity in integrated circuit packages
JP5302936B2 (en) measuring device
JP5328025B2 (en) Edge detection apparatus, machine tool using the same, and edge detection method
JP2000074644A (en) Measuring apparatus of rod type cutting tool and measuring method of drill which uses the measuring apparatus
TWI413755B (en) Automated optical inspection system for the runout tolerance of circular saw blades
US20120127483A1 (en) Thread form measurement device
US20120236139A1 (en) Destructive web thickness measuring system of microdrills and method thereof
ES2936797T3 (en) Spectacle frame shape measuring device and lens processing device
US9784564B2 (en) Deployment mechanism for optical measurement system
JP7052567B2 (en) Eyeglass lens processing control data acquisition device
JP2019098484A (en) Axial alignment device, device for lens processing, spectacle lens processing system, and spectacle lens processing method
US10776950B2 (en) Alignment system for imaging sensors in multiple orientations
JP7181028B2 (en) Machining equipment maintenance method and machining equipment
TWI413756B (en) Destructive web thickness measuring system of microdrills and method thereof
JP7172029B2 (en) Alignment device
JP2008046010A (en) Contour measurement method of round bar-shaped work
JP7225644B2 (en) lens measuring device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130621

R150 Certificate of patent or registration of utility model

Ref document number: 5302936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250