JP5292668B2 - Shape measuring apparatus and method - Google Patents

Shape measuring apparatus and method Download PDF

Info

Publication number
JP5292668B2
JP5292668B2 JP2006001888A JP2006001888A JP5292668B2 JP 5292668 B2 JP5292668 B2 JP 5292668B2 JP 2006001888 A JP2006001888 A JP 2006001888A JP 2006001888 A JP2006001888 A JP 2006001888A JP 5292668 B2 JP5292668 B2 JP 5292668B2
Authority
JP
Japan
Prior art keywords
guide
mounting table
measured
shape measuring
stylus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006001888A
Other languages
Japanese (ja)
Other versions
JP2007183189A (en
Inventor
忠晴 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2006001888A priority Critical patent/JP5292668B2/en
Publication of JP2007183189A publication Critical patent/JP2007183189A/en
Application granted granted Critical
Publication of JP5292668B2 publication Critical patent/JP5292668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small shape measuring apparatus that can further accurately measure the surface shape and easily supports a stylus. <P>SOLUTION: An X driving device 50 disposed in an X-Y stage device 82 supports a movable section 52 in noncontact by air slide, and drives the movable section 52 with linear motors 51a and 51b, so that the motion related to the XY axial direction of a mounting stand 82a becomes smooth and highly accurate. A micro displacement in the Z-axis direction hardly occurs when an optical element OE is moved on the XY plane, the displacement amount measurement of the stylus 11 can be made accurate, and the measurement accuracy of the surface shape of the optical element OE can be raised. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、レンズその他の光学素子の表面形状等を測定するための形状測定装置及び形状測定方法に関するものである。 The present invention relates to a shape measuring apparatus and a shape measuring method for measuring the surface shape and the like of a lens and other optical elements.

従来、被測定物として50mm以下のサイズの光学素子、いわゆるマイクロレンズについて3次元形状(立体形状)を測定するための技術として、様々な技術が提案されてきた。例えば、被測定物の表面に対して触針を直接接触させて、その変位量を測定する接触式測定方法がある(特許文献1参照)。また、被測定物の表面にレーザ光線等を入射させて、その反射光を受光することにより表面の凹凸を測定する非接触式測定方法も提案されている(特許文献2参照)。前者の接触式測定方法は、触針を被測定物に直接接触させるので、被測定物の表面物性に依存しない。このため、接触式測定方法は、多様な被測定物に対して正確な計測が可能である。
特開平5−209741号公報 特許3046635号公報
Conventionally, various techniques have been proposed as techniques for measuring a three-dimensional shape (three-dimensional shape) of an optical element having a size of 50 mm or less, that is, a so-called microlens, as an object to be measured. For example, there is a contact-type measurement method in which a stylus is brought into direct contact with the surface of an object to be measured and the amount of displacement is measured (see Patent Document 1). In addition, a non-contact measurement method has been proposed in which a laser beam or the like is incident on the surface of an object to be measured and the surface irregularities are measured by receiving the reflected light (see Patent Document 2). The former contact-type measurement method does not depend on the surface physical properties of the object to be measured because the stylus is brought into direct contact with the object to be measured. For this reason, the contact-type measurement method can accurately measure various objects to be measured.
JP-A-5-209741 Japanese Patent No. 3046635

上記接触式測定方法において、(1)被測定物を載置する載置台側をボールネジ、モータ等からなるXY駆動装置を利用して水平面内で移動させつつ触針の変位量を計測する方法と、(2)被測定物に接触する触針側をXY駆動装置を利用して水平面内で移動させつつ触針の変位量を計測する方法とが考えられる。   In the contact measurement method, (1) a method of measuring a displacement amount of the stylus while moving the mounting table side on which the object to be measured is placed in a horizontal plane using an XY driving device including a ball screw, a motor and the like. (2) A method of measuring the displacement amount of the stylus while moving the stylus side in contact with the object to be measured in a horizontal plane using an XY driving device is conceivable.

載置台側をXY駆動装置で変位させた場合、XY駆動装置によって被測定物を変位させる際にXY駆動装置が微細な上下動(具体的には100nm程度の上下振動)を発生させ、このような上下動が触針の変位量計測に影響して、表面形状の計測精度や再現性を低下させる。   When the mounting table side is displaced by the XY driving device, the XY driving device generates fine vertical movement (specifically, vertical vibration of about 100 nm) when the object to be measured is displaced by the XY driving device. Smooth vertical movement affects the displacement measurement of the stylus, reducing the measurement accuracy and reproducibility of the surface shape.

一方、触針側をXY駆動装置で変位させた場合、XY駆動装置が触針の変位量計測自体に悪影響を及ぼすことはないが、XY駆動装置が触針側すなわち上側に位置することになるので、XY駆動装置を支持する構造体等を含めて形状測定装置の大型化を招くとともに精度確保が困難になる。   On the other hand, when the stylus side is displaced by the XY driving device, the XY driving device does not adversely affect the stylus displacement measurement itself, but the XY driving device is positioned on the stylus side, that is, on the upper side. Therefore, the shape measuring device including the structure that supports the XY drive device is increased in size and accuracy is difficult to ensure.

そこで、本発明は、表面形状の計測を高精度化することができ、触針を簡易に支持することによって小型の形状測定装置及び形状測定方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a compact shape measuring device and a shape measuring method by which surface shape can be measured with high accuracy and a stylus is simply supported.

上記課題を解決するため、本発明に係る形状測定装置は、被測定物として最大寸法が50mm以下の光学素子を上面側に載置可能であって、水平方向に互いに直交して延びるX方向及びY方向に移動可能な載置台と、X方向及びY方向に関して固定的に配置され、被測定物の表面に当接可能であり、X方向及びY方向に垂直なZ方向に移動可能な触針と、載置台に載置した被測定物を水平方向に2次元的に移動させることにより、被測定物と当接する触針がZ方向に移動する量を測定することにより単一のZ計測値から対応するZ位置を得る移動量計測手段と、を有する形状測定装置であって、載置台を水平方向に2次元的に移動させる駆動手段が、載置台を非接触で支持しつつ水平方向に案内する案内部を有しており、案内部は、水平方向に直交して延びるX方向及びY方向に載置台を案内する2つの案内機構を備えており、2つの案内機構がそれぞれ、非接触状態で各方向への駆動力を付与するリニアモータと、エアスライドとを有し、案内部は、2つの案内機構を上下2段に有し、該2つの案内機構のうち上側の案内機構は、被測定物のサイズ以上のストローク量であって、下側の案内機構に比較して同等以下のストローク量を実現することを特徴とする。 In order to solve the above-described problem, the shape measuring apparatus according to the present invention can mount an optical element having a maximum dimension of 50 mm or less as an object to be measured on the upper surface side, and extend in the X direction extending orthogonally to each other in the horizontal direction. A mounting table that can move in the Y direction, and a stylus that is fixedly arranged in the X and Y directions, can contact the surface of the object to be measured, and can move in the Z direction perpendicular to the X and Y directions And a single Z measurement value by measuring the amount of movement of the stylus in contact with the measurement object in the Z direction by moving the measurement object mounted on the mounting table in a two-dimensional manner in the horizontal direction. And a movement measuring means for obtaining a corresponding Z position from the driving means for moving the mounting table in a two-dimensional manner in a horizontal direction while supporting the mounting table in a non-contact manner in the horizontal direction. It has a guide part to guide, the guide part is horizontal Has two guide mechanisms for guiding the mounting table in the X and Y directions orthogonal to extend, each of the two guiding mechanism comprises a linear motor for applying a driving force in each direction in a non-contact state, air slide The guide unit has two guide mechanisms in two upper and lower stages, and the upper guide mechanism of the two guide mechanisms has a stroke amount equal to or larger than the size of the object to be measured, and the lower guide mechanism Compared to the guide mechanism, the stroke amount is equivalent or less.

上記形状測定装置では、駆動手段が、載置台に対して非接触状態でX方向及びY方向への駆動力を付与するリニアモータ及びエアスライドを有するので、載置台のX方向及びY方向に関する運動が滑らかで高精度になる。よって、被測定物をX方向及びY方向に移動させる際に、これらに垂直な上下方向であるZ方向の微小変位が生じにくいので、触針の移動量すなわち変位量の計測を正確にすることができ、表面形状の計測精度や再現性を向上させることができる。
また、上記形状測定装置において、載置台が、被測定物として最大寸法が50mm以下の光学素子を載置可能である。この場合、被測定物を触針に対してXY方向に移動させると、Z方向に関する微小変位が計測に影響を与える可能性が大きくなるが、上記のような案内部を用いて被測定物を移動させることにより、計測精度を効果的に向上させることができる。
また、上記形状測定装置において、案内部が、所定方向として水平方向に直交して延びる2軸方向に載置台を案内する2つの案内機構を上下2段に有し、当該2つの案内機構のうち上側の案内機構が、被測定物のサイズ以上のストローク量であって、下側の案内機構に比較して同等以下のストローク量を実現する。この場合、上側の案内機構が大型化して形状測定装置の安定した設置が妨げられることを防止できる。
In the shape measuring apparatus, since the driving means includes the linear motor and the air slide that apply driving force in the X direction and the Y direction in a non-contact state with respect to the mounting table, the movement of the mounting table in the X direction and the Y direction. Is smooth and accurate. Therefore, when moving the object to be measured in the X direction and the Y direction, minute displacements in the Z direction , which is the vertical direction perpendicular to these, are unlikely to occur, so that the movement of the stylus, that is, the amount of displacement is accurately measured. Thus, measurement accuracy and reproducibility of the surface shape can be improved.
Further, in the shape measuring apparatus, the mounting table can mount an optical element having a maximum dimension of 50 mm or less as an object to be measured. In this case, if the object to be measured is moved in the X and Y directions with respect to the stylus, there is a high possibility that a minute displacement in the Z direction will affect the measurement. By making it move, measurement accuracy can be improved effectively.
Further, in the shape measuring apparatus, the guide unit has two guide mechanisms in two upper and lower stages for guiding the mounting table in a biaxial direction extending orthogonally to the horizontal direction as a predetermined direction. Of the two guide mechanisms, The upper guide mechanism realizes a stroke amount that is equal to or larger than the size of the object to be measured and is equal to or smaller than the lower guide mechanism. In this case, it is possible to prevent the upper guide mechanism from becoming large and preventing stable installation of the shape measuring apparatus.

本発明の具体的な態様又は観点では、載置台上に、被測定物を保持するための保持具が設けられる。

In a specific aspect or viewpoint of the present invention, a holder for holding an object to be measured is provided on the mounting table.

本発明の別の態様では、案内部をロックして載置台を固定するロック手段を有する。この場合、必要なタイミング、具体的には計測の非常停止時や被測定物の脱着時に、ロック手段によって載置台を固定して案内部、触針、被測定物等の損傷を防止できる。   In another aspect of the present invention, there is a lock means for locking the guide table and fixing the mounting table. In this case, it is possible to prevent the guide part, the stylus, the object to be measured, and the like from being damaged by fixing the mounting table by the locking means at the necessary timing, specifically, at the time of an emergency stop of measurement or when the object to be measured is attached or detached.

本発明の別の態様では、案内部に設けた相対的に変位する可動部分が、セラミック材料で形成されている。この場合、リニアモータ等の発熱に起因して温度変化が生じてもサイズが変化することを防止できるので、案内部を高精度で動作させることができ、表面形状の計測精度を高めることができる。   In another aspect of the present invention, the relatively displaceable movable portion provided in the guide portion is formed of a ceramic material. In this case, it is possible to prevent the size from being changed even if a temperature change occurs due to heat generated by the linear motor or the like, so that the guide portion can be operated with high accuracy and the measurement accuracy of the surface shape can be improved. .

本発明のさらに別の態様では、載置台上に設けられたミラーと当該ミラーに対して測長用のレーザ光を射出するレーザ光源とを有するともに、ミラーからの戻り光に基づいて所定方向である水平方向に関する載置台の変位を検出する補助計測手段をさらに備え、レーザ光源及びミラーが、触針に対応する高さ位置に配置される。この場合、触針の高さ位置で載置台の水平変位を検出することができ、触針に対する被測定物の水平位置をより正確に検出することができる。なお、レーザ光源等は、触針の先端に対応する高さ位置に配置されることがより望ましい。   In yet another aspect of the present invention, a mirror provided on the mounting table and a laser light source that emits laser light for length measurement to the mirror are provided, and in a predetermined direction based on return light from the mirror. Auxiliary measuring means for detecting the displacement of the mounting table in a certain horizontal direction is further provided, and the laser light source and the mirror are arranged at a height position corresponding to the stylus. In this case, the horizontal displacement of the mounting table can be detected at the height position of the stylus, and the horizontal position of the object to be measured with respect to the stylus can be detected more accurately. It is more desirable that the laser light source or the like is disposed at a height position corresponding to the tip of the stylus.

本発明のさらに別の態様では、レーザ光源からミラーにかけての光路をカバーするとともに軸方向の伸縮を可能にする2重の筒部を有する遮蔽手段をさらに備え、各筒部の長さが、駆動手段による載置台のストローク量以上である。この場合、遮蔽手段によって計測ノイズの発生を防止して安定した動作を確保でき、各筒部の長さ設定によって載置台の移動を確保することができる。   In still another aspect of the present invention, the optical system further includes shielding means having a double cylindrical portion that covers the optical path from the laser light source to the mirror and enables expansion and contraction in the axial direction, and the length of each cylindrical portion is driven. It is more than the stroke amount of the mounting table by the means. In this case, generation of measurement noise can be prevented by the shielding means to ensure stable operation, and movement of the mounting table can be ensured by setting the length of each cylindrical portion.

本発明のさらに別の態様では、リニアモータが、マグネット部を有し、当該マグネット部が、案内部の可動部側に固定される。この場合、案内部の固定部側にリニアモータのコイル部が設けられるので、可動部側の移動の自由度を高めることができ、コイル部への配線の取り回しが容易になる。   In still another aspect of the present invention, the linear motor has a magnet part, and the magnet part is fixed to the movable part side of the guide part. In this case, since the coil portion of the linear motor is provided on the fixed portion side of the guide portion, the degree of freedom of movement on the movable portion side can be increased, and the wiring to the coil portion can be easily performed.

上記課題を解決するため、本発明に係る形状測定装置は、被測定物として最大寸法が50mm以下の光学素子を上面側に載置可能で、水平方向に互いに直交して延びるX方向及びY方向に移動可能な載置台と、X方向及びY方向に関して固定的に配置され、被測定物の表面に当接可能であり、X方向及びY方向に垂直なZ方向に移動可能な触針と、を備えた形状測定装置を用いる光学素子の形状測定方法であって、載置台を水平方向に2次元的に移動させる駆動手段は、載置台を非接触で支持しつつ水平方向に案内する案内部を有しており、該案内部は、水平方向に直交して延びるX方向及びY方向に載置台を案内する2つの案内機構を備えており、該2つの案内機構がそれぞれ、非接触状態で各方向への駆動力を付与するリニアモータと、エアスライドとを有しており、案内部は、2つの案内機構を上下2段に有し、該2つの案内機構のうち上側の案内機構は、被測定物のサイズ以上のストローク量であって、下側の案内機構に比較して同等以下のストローク量を実現するものであり、載置台に被測定物として最大寸法が50mm以下の光学素子を載置し、載置台を駆動手段によって駆動することで、光学素子を水平方向に2次元的に移動させ、光学素子と当接する触針がZ方向に移動する量を測定することにより単一のZ計測値から対応するZ位置を得る。  In order to solve the above-described problems, the shape measuring apparatus according to the present invention can mount an optical element having a maximum dimension of 50 mm or less as an object to be measured on the upper surface side, and extend in the X direction and the Y direction extending orthogonally to each other in the horizontal direction. And a stylus that is fixedly arranged in the X and Y directions, can contact the surface of the object to be measured, and is movable in the Z direction perpendicular to the X and Y directions, A method for measuring the shape of an optical element using a shape measuring apparatus comprising: a driving means for moving a mounting table in a two-dimensional manner in a horizontal direction, wherein the driving unit guides the mounting table in a horizontal direction while supporting the mounting table in a non-contact manner. The guide section includes two guide mechanisms that guide the mounting table in the X direction and the Y direction extending orthogonally to the horizontal direction, and the two guide mechanisms are in a non-contact state, respectively. A linear motor that applies driving force in each direction; The guide unit has two guide mechanisms in two upper and lower stages, and the upper guide mechanism of the two guide mechanisms has a stroke amount larger than the size of the object to be measured. Compared with the lower guide mechanism, the stroke amount is equal to or less than that. An optical element having a maximum dimension of 50 mm or less is placed on the mounting table as a measurement object, and the mounting table is driven by a driving means. Thus, the optical element is moved two-dimensionally in the horizontal direction, and the corresponding Z position is obtained from the single Z measurement value by measuring the amount of movement of the stylus in contact with the optical element in the Z direction.

以下、本発明の一実施形態に係る形状測定装置を図面を用いて説明する。図1(a)及び1(b)は、形状測定装置の構造を説明する正面図及び側面図である。   Hereinafter, a shape measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIGS. 1A and 1B are a front view and a side view for explaining the structure of the shape measuring apparatus.

この形状測定装置100は、定盤81上に、XYステージ装置82と、Z駆動装置84とを固定した構造を有する。ここで、XYステージ装置82やZ駆動装置84等の動作は、駆動制御部98及び制御装置99によって制御されている。   This shape measuring apparatus 100 has a structure in which an XY stage device 82 and a Z driving device 84 are fixed on a surface plate 81. Here, the operations of the XY stage device 82 and the Z drive device 84 are controlled by the drive control unit 98 and the control device 99.

XYステージ装置82は、制御装置99の制御下で駆動制御部98に駆動されて動作する。XYステージ装置82は、XYステージ装置82の上部に設けた載置台82a上に着脱可能に固定された測定用治具HDを、XY面内で2次元的に任意の位置に滑らかに移動させることができる。測定用治具HDには、被測定対象である光学素子OEが保持されている。なお、測定用治具HDに保持される光学素子OEは、最大寸法が50mm以下のいわゆるマイクロレンズと呼ばれるものである。ここで、最大寸法とは、光学素子OEが円形の輪郭を有する場合その直径を意味し、光学素子OEが矩形の輪郭を有する場合その長辺を意味する。   The XY stage device 82 is driven and operated by the drive control unit 98 under the control of the control device 99. The XY stage device 82 smoothly moves the measurement jig HD, which is detachably fixed on the mounting table 82a provided on the top of the XY stage device 82, to an arbitrary position two-dimensionally in the XY plane. Can do. The measuring jig HD holds an optical element OE to be measured. The optical element OE held by the measurement jig HD is a so-called micro lens having a maximum dimension of 50 mm or less. Here, the maximum dimension means the diameter when the optical element OE has a circular outline, and means the long side when the optical element OE has a rectangular outline.

XYステージ装置82は、下側の駆動手段であるX駆動装置50と、上側の駆動手段であるY駆動装置60とを上下2段に備えてなる。前者のX駆動装置50は、定盤81側に固定された固定側支持部51と、固定側支持部51の上方に配置されて固定側支持部51に対して所定方向に相当するX軸方向にスライド移動する可動部52とを備える。また、後者のY駆動装置60は、X駆動装置50の可動部52上に固定された固定側支持部61と、固定側支持部61の上方に配置されて固定側支持部61に対して所定方向に相当するY軸方向にスライド移動する可動部62とを備える。   The XY stage device 82 includes an X driving device 50 as a lower driving means and a Y driving device 60 as an upper driving means in two upper and lower stages. The former X driving device 50 includes a fixed-side support 51 fixed to the surface plate 81 side, and an X-axis direction that is disposed above the fixed-side support 51 and corresponds to a predetermined direction with respect to the fixed-side support 51. And a movable portion 52 that slides. Further, the latter Y driving device 60 has a fixed side support portion 61 fixed on the movable portion 52 of the X drive device 50 and a fixed side support portion 61 disposed above the fixed side support portion 61. And a movable portion 62 that slides in the Y-axis direction corresponding to the direction.

X駆動装置50において、固定側支持部51の中央に設けた溝底部には、リニアモータの固定子であるコイル部51aが固設されている。一方、可動部52の底面の適所には、上記コイル部51aに対向して、リニアモータの可動子であるマグネット部51bが固設されている。固定側支持部51に設けたコイル部51aに駆動制御部98からの電力を供給することにより、マグネット部51bに推力を与えることができ、可動部52をX軸方向の任意の位置に自在かつ精密に移動させることができる。なお、可動部52の一端には、可動部52を固定側支持部51に対して必要なタイミングで固定するためのロック部材LM1がロック手段として設けられている。ロック部材LM1は、計測の非常停止時や被測定物である測定用治具HDの脱着時にオペレータが動作させる。具体的には、オペレータが不図示のロックボタンを押すと、制御装置99から駆動制御部98に制御信号が出力されてリニアモータのコイル部51aへの給電を停止させるとともに、制御装置99からロック部材LM1を駆動する信号が出力されてロック部材LM1が動作し、X駆動装置50のスライド移動を停止させる。ロック部材LM1を動作させることにより、可動部分51,52、触針11、被測定物である光学素子OE等に損傷が発生することを確実に防止できる。また、図示を省略しているが、X駆動装置50には、フィードバック用のリニアスケールを設けてあり、可動部52の精密な位置制御が可能になっている。   In the X drive device 50, a coil portion 51a, which is a stator of the linear motor, is fixed to the bottom of the groove provided in the center of the fixed side support portion 51. On the other hand, at an appropriate position on the bottom surface of the movable portion 52, a magnet portion 51b which is a mover of the linear motor is fixedly provided so as to face the coil portion 51a. By supplying electric power from the drive control unit 98 to the coil unit 51a provided on the fixed side support unit 51, a thrust can be applied to the magnet unit 51b, and the movable unit 52 can be freely moved to an arbitrary position in the X-axis direction. It can be moved precisely. At one end of the movable part 52, a lock member LM1 for fixing the movable part 52 to the fixed side support part 51 at a necessary timing is provided as a locking means. The lock member LM1 is operated by an operator at the time of an emergency stop of measurement or at the time of attaching / detaching the measurement jig HD which is the object to be measured. Specifically, when the operator presses a lock button (not shown), a control signal is output from the control device 99 to the drive control unit 98 to stop power feeding to the coil portion 51a of the linear motor and to lock from the control device 99. A signal for driving the member LM1 is output, the lock member LM1 operates, and the sliding movement of the X driving device 50 is stopped. By operating the lock member LM1, it is possible to reliably prevent damage to the movable parts 51 and 52, the stylus 11, the optical element OE that is the object to be measured, and the like. Although not shown, the X drive device 50 is provided with a linear scale for feedback so that the position of the movable portion 52 can be precisely controlled.

固定側支持部51上面の適所には、エアスライド吐出口51gが設けられている。エアスライド吐出口51gには、駆動制御部98からの制御された圧縮空気が供給されており、固定側支持部51上面と、可動部52下面との間に制御された薄い空気層が形成される。これにより、固定側支持部51上に可動部52を非接触で支持することができ、リニアモータ51a,51bとの協働によって、可動部52ひいては載置台82aのX軸方向に関する運動が滑らかで高精度になる。なお、リニアモータ51a,51bに非接触で支持する機能を持たせることもでき、この場合、リニアモータ51a,51bが案内部の機能を一部兼ねることになる。   An air slide discharge port 51g is provided at an appropriate position on the upper surface of the fixed support 51. Controlled compressed air from the drive control unit 98 is supplied to the air slide discharge port 51g, and a controlled thin air layer is formed between the upper surface of the fixed side support unit 51 and the lower surface of the movable unit 52. The Accordingly, the movable portion 52 can be supported on the fixed-side support portion 51 in a non-contact manner, and the movement of the movable portion 52 and the mounting table 82a in the X-axis direction is smooth by cooperation with the linear motors 51a and 51b. High accuracy. The linear motors 51a and 51b can be provided with a non-contact support function. In this case, the linear motors 51a and 51b also partially serve as a guide unit.

Y駆動装置60において、固定側支持部61の中央に設けた溝底部には、リニアモータの固定子であるコイル部61aが固設されている。一方、可動部62の底面の適所には、上記コイル部61aに対向して、リニアモータの可動子であるマグネット部61bが固設されている。固定側支持部61に設けたコイル部61aに駆動制御部98からの電力を供給することにより、マグネット部61bに推力を与えることができ、可動部62をY軸方向の任意の位置に自在かつ精密に移動させることができる。なお、可動部62の一端には、可動部62を固定側支持部61に対して必要なタイミングで固定するためのロック部材LM2がロック手段として設けられている。ロック部材LM2は、上記ロック部材LM1と同様のものであり、計測の非常停止時や被測定物の脱着時にオペレータが動作させる。ロック部材LM2を動作させることにより、可動部分61,62、触針11、被測定物である光学素子OE等に損傷が発生することを確実に防止できる。また、図示を省略しているが、Y駆動装置60には、フィードバック用のリニアスケールを設けてあり、可動部62の精密な位置制御が可能になっている。   In the Y drive device 60, a coil portion 61 a that is a stator of the linear motor is fixed to the groove bottom portion provided in the center of the fixed side support portion 61. On the other hand, at an appropriate position on the bottom surface of the movable portion 62, a magnet portion 61b which is a mover of the linear motor is fixedly provided so as to face the coil portion 61a. By supplying electric power from the drive control unit 98 to the coil unit 61a provided on the fixed side support unit 61, a thrust can be applied to the magnet unit 61b, and the movable unit 62 can be freely moved to an arbitrary position in the Y-axis direction. It can be moved precisely. At one end of the movable part 62, a lock member LM2 for fixing the movable part 62 to the fixed side support part 61 at a necessary timing is provided as a locking means. The lock member LM2 is the same as the lock member LM1, and is operated by an operator at the time of an emergency stop of measurement or when the object to be measured is attached or detached. By operating the lock member LM2, it is possible to reliably prevent damage to the movable parts 61 and 62, the stylus 11, the optical element OE that is the object to be measured, and the like. Although not shown, the Y driving device 60 is provided with a linear scale for feedback, and precise position control of the movable portion 62 is possible.

固定側支持部61上面の適所には、エアスライド吐出口61gが設けられている。エアスライド吐出口61gには、駆動制御部98からの制御された圧縮空気が供給されており、固定側支持部61上面と、可動部62下面との間に制御された薄い空気層が形成される。これにより、固定側支持部61上に可動部62を非接触で支持することができ、リニアモータ61a,61bとの協働によって、可動部62ひいては載置台82aのY軸方向に関する運動が滑らかで高精度になる。なお、リニアモータ61a,61bに非接触で支持する機能を持たせることもでき、この場合、リニアモータ61a,61bが案内部の機能を一部兼ねることになる。   An air slide discharge port 61g is provided at an appropriate position on the upper surface of the fixed support 61. Controlled compressed air from the drive control unit 98 is supplied to the air slide discharge port 61g, and a controlled thin air layer is formed between the upper surface of the fixed side support unit 61 and the lower surface of the movable unit 62. The Thereby, the movable part 62 can be supported on the fixed side support part 61 in a non-contact manner, and the movement of the movable part 62 and the mounting table 82a in the Y-axis direction is smooth by cooperation with the linear motors 61a and 61b. High accuracy. Note that the linear motors 61a and 61b may be provided with a non-contact support function, and in this case, the linear motors 61a and 61b also partially serve as a guide portion.

以上において、固定側支持部51,61及び可動部52,62は、相対的に変位する案内部の可動部分であり、その本体部分は、窒化珪素等のセラミック材料で形成されている。このように可動部分を窒化珪素等で形成することにより、可動部分を軽量化しつつその剛性を高めることができる。結果的に、リニアモータ51a,51b,61a,61b等の発熱に起因して温度変化が生じても可動部分51,52,61,62のサイズが変化することを防止できるので、X駆動装置50やY駆動装置60を高精度で動作させることができ、測定用治具HDに保持された光学素子OEの表面形状の計測精度を高めることができる。なお、固定側支持部51,61や可動部52,62は、窒化珪素等に限らず、様々な材料で形成することができる。ただし、これらの可動部分51,52,61,62の剛性は、上下振動防止の観点から、180N/μm以上であることが望ましい。また、リニアモータ51a,51b,61a,61bへの配線や、エアスライド吐出口51g,61gへの配管は、X駆動装置50やY駆動装置60の動作を妨げないようになされており、載置台82aの移動に際して負荷を無くすようにしている。   In the above, the fixed side support portions 51 and 61 and the movable portions 52 and 62 are movable portions of the guide portion that are relatively displaced, and the main body portion is formed of a ceramic material such as silicon nitride. Thus, by forming the movable part with silicon nitride or the like, the rigidity of the movable part can be increased while reducing the weight. As a result, the size of the movable parts 51, 52, 61, 62 can be prevented from changing even if the temperature changes due to the heat generated by the linear motors 51a, 51b, 61a, 61b, etc. In addition, the Y driving device 60 can be operated with high accuracy, and the measurement accuracy of the surface shape of the optical element OE held by the measurement jig HD can be increased. The fixed support portions 51 and 61 and the movable portions 52 and 62 are not limited to silicon nitride or the like, and can be formed of various materials. However, the rigidity of these movable parts 51, 52, 61, 62 is desirably 180 N / μm or more from the viewpoint of preventing vertical vibration. Further, the wiring to the linear motors 51a, 51b, 61a, 61b and the piping to the air slide discharge ports 51g, 61g are made so as not to disturb the operation of the X driving device 50 and the Y driving device 60. The load is eliminated when moving 82a.

なお、X駆動装置50のX方向のストローク量と、Y駆動装置60のY方向のストローク量とを比較すると、両者のストローク量は、ともに150mm以内に設定したが、X駆動装置50のストローク量の方がY駆動装置60のストローク量よりも大きくなっている。つまり、下側の案内機構51,52の方が上側の案内機構61,62よりも大きくなっており、XYステージ装置82の構造を安定したものとできる。つまり、上側の案内機構61,62案内機構が大型化して形状測定装置100の安定した設置が妨げられることを防止できる。   Note that, when the stroke amount in the X direction of the X drive device 50 and the stroke amount in the Y direction of the Y drive device 60 are compared, both stroke amounts are set within 150 mm. This is larger than the stroke amount of the Y drive device 60. That is, the lower guide mechanisms 51 and 52 are larger than the upper guide mechanisms 61 and 62, and the structure of the XY stage device 82 can be stabilized. That is, it is possible to prevent the upper guide mechanisms 61 and 62 from becoming large and preventing the stable installation of the shape measuring apparatus 100 from being hindered.

XYステージ装置82上の測定用治具HD、すなわち光学素子OEの位置は、載置台82aに設けたXミラー部材83aと、Yミラー部材83bとを利用して検出される。すなわち、Xミラー部材83aに対向して定盤81上に取り付けたレーザ干渉計83dを利用して載置台82aのX軸方向の位置が分かる。また、Yミラー部材83bに対向して定盤81側に取り付けたレーザ干渉計83eを利用して載置台82aのY軸方向の位置が分かる。   The position of the measurement jig HD on the XY stage device 82, that is, the optical element OE is detected by using the X mirror member 83a and the Y mirror member 83b provided on the mounting table 82a. That is, the position of the mounting table 82a in the X-axis direction can be determined using the laser interferometer 83d attached on the surface plate 81 so as to face the X mirror member 83a. Further, the position of the mounting table 82a in the Y-axis direction can be determined by using a laser interferometer 83e attached to the surface plate 81 side so as to face the Y mirror member 83b.

X軸用のレーザ干渉計83dは、レーザ光LLを発生するレーザ光源83fと、図示を省略する干渉用光学系及びセンサを備え、Xミラー部材83aのミラー面で反射されたレーザ光LLの位相変化に基づいてXミラー部材83aのX軸方向の変位量を算出することができるようなっている。つまり、レーザ干渉計83dとXミラー部材83aとは、測定用治具HDのX変位を検出するための補助計測手段となっている。レーザ干渉計83dは、制御装置99の制御下で動作しており、レーザ干渉計83dの計測信号は、リアルタイムで制御装置99に出力され、X駆動装置50の動作が監視される。ここで、レーザ干渉計83d側には、第1の筒部S11が固定されており、Xミラー部材83a側には、第2の筒部S12が固定されている。両筒部S11,S12は、同軸で2重に配置されており、互いに干渉することなくX軸方向すなわち軸方向に伸縮可能となっている。つまり、両筒部S11,S12は、レーザ干渉計83dからXミラー部材83aにかけての光路をカバーする遮蔽手段となっている。このような筒部S11,S12を設けることで、レーザ光LLの検出に際して計測ノイズの発生を防止することができ、レーザ干渉計83dによる検出精度を高めることができる。なお、両筒部S11,S12の長さは、互いに略等しく、X駆動装置50のストローク量、すなわち可動部52や載置台82aの最大移動量以上となっている。これにより、載置台82aのX方向の移動を確保しつつ両筒部S11,S12によって常時レーザ光LLの光路をカバーすることができる。   The X-axis laser interferometer 83d includes a laser light source 83f that generates the laser light LL, an interference optical system and a sensor (not shown), and the phase of the laser light LL reflected by the mirror surface of the X mirror member 83a. Based on the change, the amount of displacement of the X mirror member 83a in the X-axis direction can be calculated. That is, the laser interferometer 83d and the X mirror member 83a serve as auxiliary measurement means for detecting the X displacement of the measurement jig HD. The laser interferometer 83d operates under the control of the control device 99, and the measurement signal of the laser interferometer 83d is output to the control device 99 in real time, and the operation of the X drive device 50 is monitored. Here, the first tube portion S11 is fixed to the laser interferometer 83d side, and the second tube portion S12 is fixed to the X mirror member 83a side. Both cylinder parts S11 and S12 are coaxially arranged in a double manner, and can expand and contract in the X-axis direction, that is, in the axial direction without interfering with each other. That is, both cylinder parts S11 and S12 serve as shielding means for covering the optical path from the laser interferometer 83d to the X mirror member 83a. By providing such cylindrical portions S11 and S12, generation of measurement noise can be prevented when detecting the laser beam LL, and detection accuracy by the laser interferometer 83d can be increased. Note that the lengths of both the cylindrical portions S11 and S12 are substantially equal to each other and are equal to or greater than the stroke amount of the X drive device 50, that is, the maximum movement amount of the movable portion 52 and the mounting table 82a. Thereby, the optical path of the laser beam LL can always be covered by both the cylindrical portions S11 and S12 while ensuring the movement of the mounting table 82a in the X direction.

Y軸用のレーザ干渉計83eは、レーザ光LLを発生するレーザ光源83gと、図示を省略する干渉用光学系及びセンサを備え、Yミラー部材83bのミラー面で反射されたレーザ光LLの位相変化に基づいてXミラー部材83bのY軸方向の変位量を算出することができるようなっている。つまり、レーザ干渉計83eとYミラー部材83bとは、測定用治具HDのY変位を検出するための補助計測手段となっている。レーザ干渉計83eは、制御装置99の制御下で動作しており、レーザ干渉計83eの計測信号は、リアルタイムで制御装置99に出力され、Y駆動装置60の動作が監視される。ここで、レーザ干渉計83e側には、第1の筒部S21が固定されており、Yミラー部材83b側には、第2の筒部S22が固定されている。両筒部S21,S22は、遮蔽手段として、同軸で2重に配置されており、互いに干渉することなくX軸方向すなわち軸方向に伸縮可能となっている。このような筒部S21,S22を設けることで、レーザ光LLの検出に際して計測ノイズの発生を防止することができ、レーザ干渉計83eによる検出精度を高めることができる。なお、両筒部S21,S22の長さは、互いに略等しく、Y駆動装置60のストローク量、すなわち可動部62や載置台82aの最大移動量以上となっている。これにより、載置台82aのY方向の移動を確保しつつ、両筒部S21,S22によって常時レーザ光LLの光路をカバーすることができる。   The Y-axis laser interferometer 83e includes a laser light source 83g that generates the laser light LL, an interference optical system and a sensor (not shown), and the phase of the laser light LL reflected by the mirror surface of the Y mirror member 83b. Based on the change, the amount of displacement of the X mirror member 83b in the Y-axis direction can be calculated. That is, the laser interferometer 83e and the Y mirror member 83b serve as auxiliary measuring means for detecting the Y displacement of the measuring jig HD. The laser interferometer 83e operates under the control of the control device 99, and the measurement signal of the laser interferometer 83e is output to the control device 99 in real time, and the operation of the Y drive device 60 is monitored. Here, the first cylindrical portion S21 is fixed on the laser interferometer 83e side, and the second cylindrical portion S22 is fixed on the Y mirror member 83b side. Both cylinder parts S21, S22 are coaxially arranged as a double as a shielding means, and can expand and contract in the X-axis direction, that is, the axial direction without interfering with each other. By providing such cylindrical portions S21 and S22, generation of measurement noise can be prevented when detecting the laser beam LL, and detection accuracy by the laser interferometer 83e can be increased. Note that the lengths of both the cylindrical portions S21 and S22 are substantially equal to each other and are equal to or greater than the stroke amount of the Y drive device 60, that is, the maximum movement amount of the movable portion 62 and the mounting table 82a. Thereby, the optical path of the laser beam LL can always be covered by both the cylindrical portions S21 and S22 while securing the movement of the mounting table 82a in the Y direction.

Z駆動装置84は、フレーム85上に昇降機構86を固定したものであり、昇降機構86は、フレーム85上部に固定されZ方向に伸びる支持軸86aと、支持軸86aに支持されてZ軸方向に移動する昇降部材86bと、昇降部材86bを昇降させる昇降駆動装置86cと、昇降部材86bに支持されたプローブ装置10とを備える。ここで、支持軸86aと昇降部材86bとは、プローブ装置10をZ軸方向に変位可能に支持する支持装置として機能する。   The Z drive device 84 has a lifting mechanism 86 fixed on a frame 85. The lifting mechanism 86 is fixed to the upper portion of the frame 85 and extends in the Z direction, and is supported by the support shaft 86a to be in the Z axis direction. And an elevating member 86b that moves up and down, an elevating drive device 86c that elevates and lowers the elevating member 86b, and a probe device 10 supported by the elevating member 86b. Here, the support shaft 86a and the elevating member 86b function as a support device that supports the probe device 10 so as to be displaceable in the Z-axis direction.

昇降機構86において、昇降駆動装置86cは、支持軸86a側に固定されたコイル固定子CSと、昇降部材86b側に固定されたマグネット可動子MMとを備えるリニアモータである。これにより、昇降部材86bが支持軸86aに支持されて滑らかに昇降運動する。プローブ装置10は、支持装置であり、触針11を重力と略バランスした状態に保持しつつ所定の力で昇降運動を許容する軸受部89aを備える。軸受部89aは、空気を利用した静圧軸受けになっており、触針11は、昇降部材86bに非接触で支持されて滑らかに昇降運動する。また、昇降駆動装置86cは、プローブ装置10に内蔵した差動センサ(不図示)の検出結果に基づいてフィードバックをかけつつ昇降部材86bとともにプローブ装置10を昇降させる。これにより、触針11の先端に一定の低負荷を掛けた状態で触針11を広範囲に亘って昇降させることができる。   In the elevating mechanism 86, the elevating drive device 86c is a linear motor including a coil stator CS fixed to the support shaft 86a side and a magnet mover MM fixed to the elevating member 86b side. Thereby, the elevating member 86b is supported by the support shaft 86a and moves up and down smoothly. The probe device 10 is a support device and includes a bearing portion 89a that allows the stylus 11 to move up and down with a predetermined force while maintaining the stylus 11 in a substantially balanced state. The bearing portion 89a is a hydrostatic bearing using air, and the stylus 11 is supported in a non-contact manner by the elevating member 86b and smoothly moves up and down. Further, the lift drive device 86c moves the probe device 10 up and down together with the lift member 86b while applying feedback based on the detection result of a differential sensor (not shown) built in the probe device 10. Thereby, the stylus 11 can be raised and lowered over a wide range in a state where a constant low load is applied to the tip of the stylus 11.

プローブ装置10に設けた触針11の上下位置は、触針11の上端に設けられて触針11とともに昇降するZミラー部材91aと、フレーム85側に固定されたレーザ干渉計91bとを利用して検出される。ここで、Zミラー部材91aとレーザ干渉計91bとは、触針11のZ軸方向の変位量を測定するための変位計測手段すなわち移動量計測手段として機能する。   The vertical position of the stylus 11 provided in the probe device 10 is obtained by using a Z mirror member 91a which is provided at the upper end of the stylus 11 and moves up and down together with the stylus 11 and a laser interferometer 91b fixed to the frame 85 side. Detected. Here, the Z mirror member 91a and the laser interferometer 91b function as displacement measuring means for measuring the displacement amount of the stylus 11 in the Z-axis direction, that is, movement amount measuring means.

Z軸用のレーザ干渉計91bは、詳細を省略するが、レーザ光LL’を発生するレーザ光源のほか、干渉用光学系やセンサを備え、Zミラー部材91aのミラー面で反射されたレーザ光LL’の位相変化に基づいてZミラー部材91aのZ軸方向の変位量すなわち触針11の下端の変位を算出することができるようなっている。レーザ干渉計91bは、制御装置99の制御下で動作しており、レーザ干渉計91bの計測信号は、リアルタイムで制御装置99に出力され、昇降機構86の動作が監視される。   Although not described in detail, the laser interferometer 91b for the Z axis includes a laser light source that generates the laser light LL ′, an interference optical system and a sensor, and the laser light reflected by the mirror surface of the Z mirror member 91a. The displacement amount of the Z mirror member 91a in the Z-axis direction, that is, the displacement of the lower end of the stylus 11 can be calculated based on the phase change of LL ′. The laser interferometer 91b operates under the control of the control device 99, and the measurement signal of the laser interferometer 91b is output to the control device 99 in real time, and the operation of the lifting mechanism 86 is monitored.

以上説明した形状測定装置100では、触針11下部の尖端が光学素子OEの表面に対して一定の負荷がかかるようにした状態で触針11を昇降させつつ、XYステージ装置82を適宜動作させて測定用治具HDを載置した光学素子OEをXY面内で2次元的に走査するように移動させる。これにより、触針11の尖端を測定用治具HDに載置した光学素子OEの光学面に沿って2次元的に移動させることができる。つまり、レーザ干渉計83d,83eを利用して得た載置台82aのXY座標と、レーザ干渉計91bを利用して得た触針11のZ座標とを、制御装置99で対応付けつつ必要な演算処理を行うことにより、光学素子OEの光学面の3次元的な表面形状を測定することができる。   In the shape measuring apparatus 100 described above, the XY stage device 82 is appropriately operated while the stylus 11 is moved up and down while the tip of the stylus 11 is placed at a certain load on the surface of the optical element OE. Then, the optical element OE on which the measuring jig HD is placed is moved so as to scan two-dimensionally in the XY plane. Thereby, the tip of the stylus 11 can be moved two-dimensionally along the optical surface of the optical element OE placed on the measurement jig HD. That is, the control device 99 associates the XY coordinates of the mounting table 82a obtained using the laser interferometers 83d and 83e with the Z coordinate of the stylus 11 obtained using the laser interferometer 91b. By performing the arithmetic processing, the three-dimensional surface shape of the optical surface of the optical element OE can be measured.

この際、上記形状測定装置100では、XYステージ装置82に設けたX駆動装置50がエアスライドによって可動部52を非接触で支持しリニアモータ51a,51bによって可動部52を駆動するので、載置台82aのXY軸方向に関する運動が滑らかで高精度になる。よって、光学素子OEをXY面内で移動させる際にZ軸方向の微小変位が生じにくくなり、触針11の変位量計測を正確にすることができ、光学素子OEの表面形状の計測精度を向上させることができる。具体的には、ボールネジやLMガイドを用いた従来型のXYステージで計測を行った場合のZ方向振動成分が100nmであったのに対し、本実施形態のXYステージ装置82で同様の計測を行った場合のZ方向振動成分は、50nmに向上するという結果を得た。   At this time, in the shape measuring apparatus 100, the X driving device 50 provided in the XY stage device 82 supports the movable portion 52 in a non-contact manner by air slide and drives the movable portion 52 by the linear motors 51a and 51b. The movement of the 82a in the XY axis directions is smooth and highly accurate. Therefore, when the optical element OE is moved in the XY plane, a minute displacement in the Z-axis direction is less likely to occur, the displacement amount of the stylus 11 can be accurately measured, and the surface shape measurement accuracy of the optical element OE can be increased. Can be improved. Specifically, the Z-direction vibration component when the measurement was performed with a conventional XY stage using a ball screw or an LM guide was 100 nm, whereas the XY stage apparatus 82 of the present embodiment performed the same measurement. The result was that the Z-direction vibration component in this case was improved to 50 nm.

以上、実施形態に即して本発明を説明したが、本発明は、上記実施形態に限定されるものではない。例えば、上記実施形態では、形状測定装置100によって光学素子OEの光学面を計測したが、光学素子OEに限らず多様な被測定物について表面形状を測定することができる。   As described above, the present invention has been described according to the embodiment, but the present invention is not limited to the above embodiment. For example, in the above-described embodiment, the optical surface of the optical element OE is measured by the shape measuring apparatus 100. However, the surface shape can be measured for various objects to be measured without being limited to the optical element OE.

(a)、(b)は、本発明に係る形状測定装置の構造を説明する正面図及び側面図である。(A), (b) is the front view and side view explaining the structure of the shape measuring apparatus which concerns on this invention.

符号の説明Explanation of symbols

10…プローブ装置、 11…触針、 50…駆動装置、 51…固定側支持部、 51a,51b…リニアモータ、 51b…マグネット部、 51g…エアスライド吐出口、 51g,61g…エアスライド吐出口、 52…可動部、 52,62…可動部、 60…駆動装置、 61…固定側支持部、 61a…コイル部、 61b…マグネット部、 81…定盤、 82…ステージ装置、 82a…載置台、 83a,83b…ミラー部材、 83d,83e…レーザ干渉計、 84…駆動装置、 86…昇降機構、 86b…昇降部材、 86c…昇降駆動装置、 91a…ミラー部材、 91b…レーザ干渉計、 98…駆動制御部、 99…制御装置、 100…形状測定装置、 HD…測定用治具、 LL…レーザ光、 LM1,LM2…ロック部材、 OE…光学素子、 S11,S12…筒部
DESCRIPTION OF SYMBOLS 10 ... Probe apparatus, 11 ... Stylus, 50 ... Drive apparatus, 51 ... Fixed side support part, 51a, 51b ... Linear motor, 51b ... Magnet part, 51g ... Air slide discharge port, 51g, 61g ... Air slide discharge port, 52 ... Movable part 52,62 ... Movable part 60 ... Drive device 61 ... Fixed side support part 61a ... Coil part 61b ... Magnet part 81 ... Surface plate 82 ... Stage device 82a ... Place table 83a , 83b ... Mirror member, 83d, 83e ... Laser interferometer, 84 ... Driving device, 86 ... Lifting mechanism, 86b ... Lifting member, 86c ... Lifting drive device, 91a ... Mirror member, 91b ... Laser interferometer, 98 ... Drive control 99: Control device, 100: Shape measuring device, HD: Measuring jig, LL: Laser light, LM1, LM2: Lock member, OE: Optical element , S11, S12 ... tube portion

Claims (9)

被測定物として最大寸法が50mm以下の光学素子を上面側に載置可能であって、水平方向に互いに直交して延びるX方向及びY方向に移動可能な載置台と、
前記X方向及びY方向に関して固定的に配置され、被測定物の表面に当接可能であり、前記X方向及びY方向に垂直なZ方向に移動可能な触針と、
前記載置台に載置した被測定物を前記水平方向に2次元的に移動させることにより、前記被測定物と当接する前記触針が前記Z方向に移動する量を測定することにより単一のZ計測値から対応するZ位置を得る移動量計測手段と、
を有する形状測定装置において、
前記載置台を前記水平方向に2次元的に移動させる駆動手段は、前記載置台を非接触で支持しつつ前記水平方向に案内する案内部を有しており、該案内部は、前記水平方向に直交して延びるX方向及びY方向に前記載置台を案内する2つの案内機構を備えており、該2つの案内機構がそれぞれ、非接触状態で前記各方向への駆動力を付与するリニアモータと、エアスライドとを有し、
前記案内部は、前記2つの案内機構を上下2段に有し、該2つの案内機構のうち上側の案内機構は、前記被測定物のサイズ以上のストローク量であって、下側の案内機構に比較して同等以下のストローク量を実現することを特徴とする形状測定装置。
An optical element having a maximum dimension of 50 mm or less as an object to be measured, which can be placed on the upper surface side, and a stage that can move in the X and Y directions extending perpendicular to each other in the horizontal direction;
A stylus that is fixedly arranged with respect to the X direction and the Y direction, is capable of contacting the surface of the object to be measured, and is movable in the Z direction perpendicular to the X direction and the Y direction;
By measuring the amount of movement of the stylus in contact with the object to be measured in the Z direction by moving the object to be measured placed on the mounting table two-dimensionally in the horizontal direction, A movement amount measuring means for obtaining a corresponding Z position from the Z measurement value ;
In the shape measuring device having
The driving means for two-dimensionally moving the mounting table in the horizontal direction includes a guide unit that guides the mounting table in the horizontal direction while supporting the mounting table in a non-contact manner. Linear motors that include two guide mechanisms that guide the table in the X direction and the Y direction that extend orthogonally to each other, and that each of the two guide mechanisms applies a driving force in the respective directions in a non-contact state. If, it possesses an air slide,
The guide section has the two guide mechanisms in two upper and lower stages, and the upper guide mechanism of the two guide mechanisms has a stroke amount equal to or larger than the size of the object to be measured, and the lower guide mechanism. A shape measuring device that realizes a stroke amount equal to or less than that of the above.
前記載置台上に、被測定物を保持するための保持具が設けられることを特徴とする請求項1記載の形状測定装置。   The shape measuring apparatus according to claim 1, wherein a holder for holding an object to be measured is provided on the mounting table. 前記案内部をロックして前記載置台を固定するロック手段を有する請求項1及び請求項2のいずれか一項記載の形状測定装置。 The shape measuring apparatus according to claim 1, further comprising a lock unit that locks the guide unit and locks the mounting table. 前記ロック手段は、計測の非常停止時及び被測定物の脱着時に動作する請求項3記載の形状測定装置。 The shape measuring apparatus according to claim 3 , wherein the locking means operates at the time of emergency stop of measurement and when the object to be measured is attached or detached. 前記案内部に設けた相対的に変位する可動部分は、セラミック材料で形成されている請求項1から請求項4のいずれか一項記載の形状測定装置。 The shape measuring apparatus according to any one of claims 1 to 4 , wherein the relatively displaceable movable portion provided in the guide portion is formed of a ceramic material. 前記載置台に設けられたミラーと当該ミラーに対して測長用のレーザ光を射出するレーザ光源とを有するとともに、前記ミラーからの戻り光に基づいて前記所定方向である水平方向に関する前記載置台の変位を検出する補助計測手段をさらに備え、前記レーザ光源及び前記ミラーは、前記触針に対応する高さ位置に配置される請求項1から請求項5のいずれか一項記載の形状測定装置。 The mounting table related to the horizontal direction that is the predetermined direction based on the return light from the mirror, and a mirror provided on the mounting table and a laser light source that emits laser light for length measurement to the mirror The shape measuring device according to any one of claims 1 to 5 , further comprising auxiliary measuring means for detecting a displacement of the laser beam, wherein the laser light source and the mirror are arranged at a height position corresponding to the stylus. . 前記レーザ光源から前記ミラーにかけての光路をカバーするとともに軸方向の伸縮を可能にする2重の筒部を有する遮蔽手段をさらに備え、各筒部の長さは、前記駆動手段による前記載置台のストローク量以上である請求項6記載の形状測定装置。 The apparatus further comprises shielding means having a double cylindrical portion that covers an optical path from the laser light source to the mirror and allows axial expansion and contraction, and the length of each cylindrical portion is determined by the driving means. The shape measuring apparatus according to claim 6 , wherein the shape measuring apparatus is greater than or equal to a stroke amount. 前記リニアモータは、マグネット部を有し、当該マグネット部は、前記案内部の可動部側に固定される請求項1から請求項7のいずれか一項記載の形状測定装置。 The shape measuring apparatus according to claim 1 , wherein the linear motor has a magnet part, and the magnet part is fixed to a movable part side of the guide part. 被測定物として最大寸法が50mm以下の光学素子を上面側に載置可能で、水平方向に互いに直交して延びるX方向及びY方向に移動可能な載置台と、前記X方向及びY方向に関して固定的に配置され、被測定物の表面に当接可能であり、前記X方向及びY方向に垂直なZ方向に移動可能な触針と、を備えた形状測定装置を用いる光学素子の形状測定方法であって、  An optical element having a maximum dimension of 50 mm or less as an object to be measured can be placed on the upper surface side, and is placed with respect to the X direction and the Y direction, which is movable in the X direction and the Y direction, and extends in the horizontal direction. The shape measuring method of the optical element using the shape measuring device provided with a stylus disposed on the surface of the object to be measured and movable in the Z direction perpendicular to the X direction and the Y direction Because
前記載置台を前記水平方向に2次元的に移動させる駆動手段は、前記載置台を非接触で支持しつつ前記水平方向に案内する案内部を有しており、該案内部は、前記水平方向に直交して延びるX方向及びY方向に前記載置台を案内する2つの案内機構を備えており、該2つの案内機構がそれぞれ、非接触状態で前記各方向への駆動力を付与するリニアモータと、エアスライドとを有しており、  The driving means for two-dimensionally moving the mounting table in the horizontal direction includes a guide unit that guides the mounting table in the horizontal direction while supporting the mounting table in a non-contact manner. Linear motors that include two guide mechanisms that guide the table in the X direction and the Y direction that extend orthogonally to each other, and that each of the two guide mechanisms applies a driving force in the respective directions in a non-contact state. And an air slide,
前記案内部は、前記2つの案内機構を上下2段に有し、該2つの案内機構のうち上側の案内機構は、前記被測定物のサイズ以上のストローク量であって、下側の案内機構に比較して同等以下のストローク量を実現するものであり、  The guide section has the two guide mechanisms in two upper and lower stages, and the upper guide mechanism of the two guide mechanisms has a stroke amount equal to or larger than the size of the object to be measured, and the lower guide mechanism. Compared to
前記載置台に被測定物として最大寸法が50mm以下の光学素子を載置し、前記載置台を前記駆動手段によって駆動することで、前記光学素子を前記水平方向に2次元的に移動させ、前記光学素子と当接する前記触針が前記Z方向に移動する量を測定することにより単一のZ計測値から対応するZ位置を得ることを特徴とする形状測定方法。  An optical element having a maximum dimension of 50 mm or less is placed on the mounting table as an object to be measured, and the driving device is driven by the driving unit to move the optical element two-dimensionally in the horizontal direction, A shape measuring method, wherein a corresponding Z position is obtained from a single Z measurement value by measuring an amount of movement of the stylus in contact with an optical element in the Z direction.
JP2006001888A 2006-01-06 2006-01-06 Shape measuring apparatus and method Active JP5292668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006001888A JP5292668B2 (en) 2006-01-06 2006-01-06 Shape measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006001888A JP5292668B2 (en) 2006-01-06 2006-01-06 Shape measuring apparatus and method

Publications (2)

Publication Number Publication Date
JP2007183189A JP2007183189A (en) 2007-07-19
JP5292668B2 true JP5292668B2 (en) 2013-09-18

Family

ID=38339413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006001888A Active JP5292668B2 (en) 2006-01-06 2006-01-06 Shape measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP5292668B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4629134B2 (en) * 2008-09-25 2011-02-09 株式会社東芝 XY stage device
JP5747180B2 (en) * 2012-12-06 2015-07-08 パナソニックIpマネジメント株式会社 Shape measuring method and shape measuring apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083410B2 (en) * 1985-09-03 1996-01-17 株式会社ニコン Three-dimensional coordinate measuring machine
JPS6272034U (en) * 1985-10-23 1987-05-08
JP3032334B2 (en) * 1991-08-30 2000-04-17 キヤノン株式会社 Method and apparatus for measuring surface profile
JP3508240B2 (en) * 1994-09-13 2004-03-22 株式会社ニコン Laser interference distance measuring device
JP2000263365A (en) * 1999-03-11 2000-09-26 Ntn Corp Linear motor driven air slide
TW550375B (en) * 2001-09-07 2003-09-01 Olympus Optical Co Apparatus for measuring a surface profile
JP4509604B2 (en) * 2004-03-05 2010-07-21 株式会社リコー Shape data acquisition method and shape measuring apparatus

Also Published As

Publication number Publication date
JP2007183189A (en) 2007-07-19

Similar Documents

Publication Publication Date Title
TW528881B (en) Position measuring apparatus
EP2708843B1 (en) Shape measuring apparatus
JP5143931B2 (en) 3D shape measuring device
KR102338759B1 (en) metrology system
JP2009216548A (en) Measurement apparatus
KR20120026444A (en) Three dimensional shape measuring apparatus
JP5292668B2 (en) Shape measuring apparatus and method
KR101244264B1 (en) Form measurement device
JP2001317933A (en) Shape-measuring apparatus
US20050086821A1 (en) Coordinate measuring device
JP5252777B2 (en) Scanning mechanism and scanning method for vertical two-dimensional surface
JP2014130059A (en) Contact type three-dimensional shape measuring apparatus and probe control method
JP6830997B1 (en) Multi-axis machining equipment and its compensation method
JP2002228411A (en) Two-dimensional measuring apparatus
JP2007218881A (en) Shape measuring apparatus
TW202004129A (en) Shape measuring probe
JP5103775B2 (en) Detector, shape measuring device, and shape measuring method
JP2007271368A (en) Detector, shape measuring instrument, and shape measuring method
JP5645349B2 (en) Shape measuring device
TW202322949A (en) Stage device for optical instrument
JP2011064464A (en) Shape measuring device
Ishizu et al. MINUTE FORM MEASURING SYSTEM
JPH0630707U (en) Automatic dimension measuring device
JPH10339785A (en) Device for supporting slider
JP2007218815A (en) Shape measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Ref document number: 5292668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150