JP5292014B2 - Cross-flow type exhaust heat recovery boiler and control method thereof - Google Patents

Cross-flow type exhaust heat recovery boiler and control method thereof Download PDF

Info

Publication number
JP5292014B2
JP5292014B2 JP2008204492A JP2008204492A JP5292014B2 JP 5292014 B2 JP5292014 B2 JP 5292014B2 JP 2008204492 A JP2008204492 A JP 2008204492A JP 2008204492 A JP2008204492 A JP 2008204492A JP 5292014 B2 JP5292014 B2 JP 5292014B2
Authority
JP
Japan
Prior art keywords
feed water
flow rate
value
steam
water flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008204492A
Other languages
Japanese (ja)
Other versions
JP2010038488A (en
Inventor
吉史 寺村
盛士 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2008204492A priority Critical patent/JP5292014B2/en
Publication of JP2010038488A publication Critical patent/JP2010038488A/en
Application granted granted Critical
Publication of JP5292014B2 publication Critical patent/JP5292014B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an once-through exhaust heat recovery boiler capable of stably controlling degree of superheat and starting at a high speed. <P>SOLUTION: In the control method of the once-through exhaust heat recovery boiler in which the mixed fluid of steam and water is produced by heating the water supplied from a water supply pump by an exhaust gas from a gas turbine in an evaporator, the mixed fluid is separated into steam and water by a steam separator, and the separated steam is superheated by the exhaust gas in a superheater, a value determined on the basis of a load signal of the gas turbine is added as a leading value of a supply water flow rate determined on the basis of the load signal of the gas turbine, in controlling the degree of superheat of outlet steam of the steam separator on the basis of the flow rate of supply water. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、貫流型排熱回収ボイラに係り、特に安定した過熱度制御を行うのに好適な貫流型排熱回収ボイラの制御に関する。   The present invention relates to a once-through exhaust heat recovery boiler, and more particularly to control of a once-through exhaust heat recovery boiler suitable for performing stable superheat control.

排熱回収ボイラには自然循環型と貫流型が知られており、従来の自然循環型排熱回収ボイラの概要について図7と図8を用いて説明する。図7は特許文献1などに記載されている自然循環型排熱回収ボイラの概略構成図、図8はその排熱回収ボイラでのドラム水位制御の系統図である。   A natural circulation type and a once-through type are known as exhaust heat recovery boilers, and an outline of a conventional natural circulation type exhaust heat recovery boiler will be described with reference to FIGS. 7 and 8. FIG. 7 is a schematic configuration diagram of a natural circulation type exhaust heat recovery boiler described in Patent Document 1 and the like, and FIG. 8 is a system diagram of drum water level control in the exhaust heat recovery boiler.

図7に示すように自然循環型排熱回収ボイラは、高温の排ガスGが流通する煙道70内に、その排ガスGの流れ方向上流側から下流側に向けて過熱器50、蒸発器49、節炭器47が設置されている。   As shown in FIG. 7, the natural circulation type exhaust heat recovery boiler includes a superheater 50, an evaporator 49, and an inside of the flue 70 through which the high-temperature exhaust gas G flows from the upstream side to the downstream side in the flow direction of the exhaust gas G. A economizer 47 is installed.

給水ポンプ46により供給された水は節炭器47を通り、蒸気ドラム48を経て蒸発器49に送られる。その後、供給されたドラム水は蒸気ドラム48と蒸発器49内で自然循環し、蒸気ドラム48で分離された蒸気は過熱器50に送られ、そこで過熱された蒸気は蒸気タービン51へ送られる。また、ガスタービン52からの高温の排ガスGはこの排熱回収ボイラの煙道70に供給され、過熱器50で蒸気を過熱し、蒸発器49でボイラ水を蒸発し、さらに節炭器47で水を加熱する構成になっている。図7に示すように、給水ポンプ46と節炭器47の間には給水流量調節弁37が設置されている。   The water supplied by the feed water pump 46 passes through the economizer 47 and is sent to the evaporator 49 through the steam drum 48. Thereafter, the supplied drum water naturally circulates in the steam drum 48 and the evaporator 49, and the steam separated by the steam drum 48 is sent to the superheater 50, where the superheated steam is sent to the steam turbine 51. Further, the high-temperature exhaust gas G from the gas turbine 52 is supplied to the flue 70 of the exhaust heat recovery boiler, the steam is superheated by the superheater 50, the boiler water is evaporated by the evaporator 49, and further the economizer 47 It is configured to heat water. As shown in FIG. 7, a feed water flow rate adjustment valve 37 is installed between the feed water pump 46 and the economizer 47.

次にこの自然循環型排熱回収ボイラにおける起動過程での蒸気ドラム48の水位制御について、図8を用いて説明する。   Next, the water level control of the steam drum 48 in the starting process in the natural circulation type exhaust heat recovery boiler will be described with reference to FIG.

前記蒸気ドラム48に設置したドラム水位発信器29で検出したドラム水位測定値と予め設定されているドラム規定水位31の差を減算器32で求め、そこから出力された水位制御偏差値は比例積分微分調節器33で比例・積分・微分処理される。処理された水位制御偏差値は加算器34において蒸気流量計30で検出された主蒸気流量を加算して、その結果を減算器35に出力する。   A difference between a drum water level measurement value detected by a drum water level transmitter 29 installed in the steam drum 48 and a preset drum specified water level 31 is obtained by a subtractor 32, and a water level control deviation value output therefrom is proportionally integrated. The differential controller 33 performs proportional / integral / differential processing. The processed water level control deviation value adds the main steam flow detected by the steam flow meter 30 in the adder 34 and outputs the result to the subtractor 35.

減算器35には給水流量計28より検出された給水流量測定値が入力されて、前記加算器34からの出力との偏差値が求められ、給水流量制御偏差値を出力する。この給水流量制御偏差値は比例積分調節器36で比例・積分処理された後、制御指令として給水流量調節弁37に入力されて、それの開度調節により給水流量を調節して蒸気ドラム48の水位制御が行われていた。
特開2000−146108号公報
The subtractor 35 receives the feed water flow rate measurement value detected by the feed water flow meter 28, obtains a deviation value from the output from the adder 34, and outputs a feed water flow rate control deviation value. The feed water flow rate control deviation value is proportionally / integrated by the proportional integral controller 36 and then input to the feed water flow rate adjustment valve 37 as a control command. The water level was controlled.
JP 2000-146108 A

従来の自然循環型排熱回収ボイラは前述のように、主蒸気流量計測値を給水流量指令の先行値として、蒸気ドラムの水位を安定に保つように給水流量を制御していた。自然循環型排熱回収ボイラの主蒸気流量はガスタービンからの入熱によって決まり、給水流量には影響されないため、給水流量から主蒸気流量への強い相関関係はない。   As described above, the conventional natural circulation type exhaust heat recovery boiler controls the feed water flow rate so as to keep the water level of the steam drum stable by using the main steam flow rate measurement value as the preceding value of the feed water flow rate command. Since the main steam flow rate of the natural circulation type exhaust heat recovery boiler is determined by the heat input from the gas turbine and is not affected by the feed water flow rate, there is no strong correlation between the feed water flow rate and the main steam flow rate.

一方、貫流型排熱回収ボイラは、前記自然循環型排熱回収ボイラよりもプラント起動停止時間の短縮が図れるという特長を有している。これは自然循環型排熱回収ボイラで使用されていた肉厚の蒸気ドラムの代わりに薄肉の汽水分離器を使用することで、負荷上昇率に対する制限が緩和されることから、プラント起動停止時間の短縮につながっている。   On the other hand, the once-through exhaust heat recovery boiler has a feature that the plant start-up stop time can be shortened as compared with the natural circulation exhaust heat recovery boiler. This is because the use of a thin brackish water separator instead of the thick steam drum used in natural circulation heat recovery steam generators eases restrictions on the rate of increase in load. It leads to shortening.

貫流型排熱回収ボイラではプラント起動過程において水位制御を行った後、過熱度制御へと移行するが、過熱度制御が不安定であれば起動時間にも影響が出る。   In the once-through type exhaust heat recovery boiler, the water level control is performed in the process of starting the plant and then the superheat control is performed. However, if the superheat control is unstable, the start-up time is also affected.

貫流型排熱回収ボイラでは、貫流運転すなわち給水流量によって過熱度を制御する蒸発器出口過熱度制御を行う。貫流運転中、給水は蒸発器を通過する間にすべて蒸発を完了して蒸気となるため、給水流量から主蒸気流量への強い相関関係がある。貫流運転中、前記自然循環型排熱回収ボイラのドラム水位制御に使用していた主蒸気流量計測値を給水流量指令の先行値として使用した場合、制御装置側と機械本体側において以下に示す一巡ループが形成される。   In the once-through exhaust heat recovery boiler, the evaporator outlet superheat degree control is performed to control the degree of superheat according to the once-through operation, that is, the feed water flow rate. During the once-through operation, the feed water completely evaporates while passing through the evaporator to become steam, so there is a strong correlation from the feed water flow rate to the main steam flow rate. When the main steam flow rate measurement value used for the drum water level control of the natural circulation heat recovery steam generator is used as the preceding value of the feed water flow rate command during the once-through operation, the following cycle is performed on the controller side and machine body side. A loop is formed.

すなわち、制御装置側において、主蒸気流量計測値(給水流量指令の先行値)と過熱度制御部出力による給水流量指令修正分によって給水流量指令値を算出し、前記給水流量指令値を基に機械本体側において給水流量を調整する。給水流量はガスタービンからの入熱よって蒸気(主蒸気流量)となり一連のループとなる。このループにおいて、主蒸気流量が増加すると給水流量指令値も増加し、増加した給水流量によって主蒸気流量も増加する。このように蒸気流量計測値を給水流量指令の先行値として用いた場合、制御装置側の演算周期ごとに加算または減算が繰り返されて値が一方向に走ってしまい、制御が不安定になる。   That is, on the control device side, the feed water flow command value is calculated from the main steam flow rate measurement value (preceding value of the feed water flow command) and the feed water flow command correction by the superheat degree control unit output, and based on the feed water flow command value, the machine Adjust the water supply flow rate on the main unit side. The feed water flow rate becomes steam (main steam flow rate) due to heat input from the gas turbine, forming a series of loops. In this loop, when the main steam flow rate increases, the feed water flow rate command value also increases, and the main steam flow rate also increases due to the increased feed water flow rate. In this way, when the steam flow rate measurement value is used as the preceding value of the feed water flow rate command, the addition or subtraction is repeated every calculation cycle on the control device side, the value runs in one direction, and the control becomes unstable.

貫流型排熱回収ボイラの特長として高速起動停止が挙げられているが、前述のように過熱度制御が不安定となった場合には過熱度を確保できず水位制御に移行する恐れがあり、起動時間延長といった悪影響が懸念され、貫流型排熱回収ボイラの特長が十分に発揮されないという欠点がある。   As a feature of the once-through type exhaust heat recovery boiler, high-speed start / stop is mentioned, but if the superheat degree control becomes unstable as described above, the superheat degree cannot be secured and there is a risk of shifting to the water level control. There is a concern that the start-up time may be adversely affected, and there is a drawback that the features of the once-through exhaust heat recovery boiler are not fully exhibited.

本発明の目的は、このような従来技術の欠点を解消し、安定な過熱度制御を行うことができて高速起動が可能な貫流型排熱回収ボイラおよびその制御方法を提供することにある。   An object of the present invention is to provide a once-through exhaust heat recovery boiler that eliminates the disadvantages of the prior art, can perform stable superheat control, and can be started at high speed, and a control method therefor.

前記目的を達成するため本発明の第1の手段は、
ガスタービンからの排ガスが流通する煙道内の前記排ガス流れ方向上流側に過熱器が配置され、その過熱器の排ガス流れ方向下流側に蒸発器が配置されて、
給水ポンプにより供給された給水が前記蒸発器で前記排ガスにより加熱されて蒸気と水の混合流体を生成し、その混合流体を汽水分離器で蒸気と水に分離して、分離された蒸気を前記過熱器で前記排ガスにより過熱する貫流型排熱回収ボイラにおいて、
前記汽水分離器の出口蒸気の過熱度を前記給水の流量によって制御するための制御偏差値を演算する制御偏差値演算手段と、
前記ガスタービンの負荷信号と大気温度から給水流量の先行値を演算するか、または、前記ガスタービンの燃料量指令信号と大気温度から給水流量の先行値を演算する先行値演算手段と、
その給水流量の先行値を前記制御偏差値に加算して過熱度制御時の給水流量指令信号を出力する加算手段と、
過熱度制御時の給水流量を測定する給水流量計と、
その測定された給水流量と前記給水流量指令信号の偏差値に基づいて給水流量調節弁の開度を調節する開度調節手段と
を備えたことを特徴とするものである。
In order to achieve the above object, the first means of the present invention is as follows:
A superheater is disposed upstream of the exhaust gas flow direction in the flue through which the exhaust gas from the gas turbine flows, and an evaporator is disposed downstream of the superheater in the exhaust gas flow direction,
Feed water supplied by a feed water pump is heated by the exhaust gas in the evaporator to produce a mixed fluid of steam and water, the mixed fluid is separated into steam and water by a brackish water separator, and the separated steam is In the once-through type exhaust heat recovery boiler that is heated by the exhaust gas in the superheater,
Control deviation value calculating means for calculating a control deviation value for controlling the superheat degree of the outlet steam of the brackish water separator by the flow rate of the feed water;
A leading value calculating means for calculating a leading value of the feed water flow rate from the load signal of the gas turbine and the atmospheric temperature, or calculating a leading value of the feed water flow rate from the fuel amount command signal of the gas turbine and the atmospheric temperature ;
Adding means for adding a preceding value of the feed water flow rate to the control deviation value and outputting a feed water flow rate command signal at the time of superheat control;
A feed water flow meter for measuring the feed water flow rate during superheat control,
An opening degree adjusting means for adjusting the opening degree of the feed water flow rate control valve based on the measured feed water flow rate and the deviation value of the feed water flow rate command signal is provided.

本発明の第2の手段は前記第1の手段において、前記給水流量の先行値に、当該排熱回収ボイラの伝熱時間遅れ時定数を含めた値を加算する手段を設けたことを特徴とするものである。 The second means of the present invention is characterized in that, in the first means, means for adding a value including a heat transfer time delay time constant of the exhaust heat recovery boiler to the preceding value of the feed water flow rate is provided. To do.

本発明の第3の手段は、
給水ポンプにより供給された給水を蒸発器でガスタービンからの排ガスにより加熱して蒸気と水の混合流体を生成し、その混合流体を汽水分離器で蒸気と水に分離して、分離された蒸気を過熱器で前記排ガスにより過熱する貫流型排熱回収ボイラの制御方法において、
前記汽水分離器の出口蒸気の過熱度を前記給水の流量によって制御する際、前記ガスタービンの負荷信号と大気温度から求まる値を給水流量の先行値として、または、前記ガスタービンの燃料量指令信号と大気温度から求まる値を給水流量の先行値として加算するものである。
The third means of the present invention is:
The feed water supplied by the feed water pump is heated by the exhaust gas from the gas turbine in the evaporator to produce a mixed fluid of steam and water, and the mixed fluid is separated into steam and water by the brackish water separator, and the separated steam In the control method of the once-through type exhaust heat recovery boiler in which the exhaust gas is superheated by the exhaust gas in a superheater,
When the superheat degree of the outlet steam of the brackish water separator is controlled by the flow rate of the feed water, a value obtained from the load signal and the atmospheric temperature of the gas turbine is used as a preceding value of the feed water flow rate or the fuel amount command signal of the gas turbine And the value obtained from the atmospheric temperature is added as the preceding value of the feed water flow rate .

本発明の第4の手段は前記第3の手段において、
前記給水流量の先行値に、当該排熱回収ボイラの伝熱時間遅れ時定数を含めた値を加算することを特徴とするものである。
According to a fourth means of the present invention, in the third means,
A value including a heat transfer time delay time constant of the exhaust heat recovery boiler is added to the preceding value of the feed water flow rate .

貫流型排熱回収ボイラでは過熱度制御時は貫流運転となるが、その場合に給水流量から主蒸気流量への強い結合があり、そのために給水流量によって主蒸気流量が変動することがある。   In a once-through type exhaust heat recovery boiler, a once-through operation is performed during superheat control. In this case, there is a strong coupling from the feed water flow rate to the main steam flow rate, and the main steam flow rate may vary depending on the feed water flow rate.

本発明は前述のように主蒸気流量に依存しない給水流量指令の先行値が得られ、これに基づいて過熱度制御することにより、安定した過熱度制御を行うことができ、高速起動が可能な貫流型排熱回収ボイラおよびその制御方法を提供することができる。   In the present invention, the preceding value of the feed water flow rate command that does not depend on the main steam flow rate is obtained as described above, and by controlling the superheat degree based on this, stable superheat degree control can be performed and high-speed startup is possible. A once-through exhaust heat recovery boiler and its control method can be provided.

本発明の実施形態に係る貫流型排熱回収ボイラの過熱度制御について、図面を参照しながら以下に詳細を示す。図1ないし図3は第1実施形態に係る貫流型排熱回収ボイラの制御系統図、図4は本発明の各実施形態に係る貫流型排熱回収ボイラの概略構成図である。   The superheat degree control of the once-through type exhaust heat recovery boiler according to the embodiment of the present invention will be described in detail below with reference to the drawings. 1 to 3 are control system diagrams of the once-through exhaust heat recovery boiler according to the first embodiment, and FIG. 4 is a schematic configuration diagram of the once-through exhaust heat recovery boiler according to each embodiment of the present invention.

まず、本発明の実施形態に係る貫流型排熱回収ボイラの概要構成を図4とともに説明する。同図に示すようにガスタービン38からの排ガスGが流通する煙道70内には、排ガスGの流れ方向上流側から下流側に向けて過熱器44、蒸発器41ならびに節炭器40が設置されている。給水ポンプ39により供給された水が節炭器40を通り、蒸発器41に送られ、高温の排ガスGによって蒸発器41で水と蒸気の混合流体が生成されて、汽水分離器42に供給される。   First, a schematic configuration of a once-through exhaust heat recovery boiler according to an embodiment of the present invention will be described with reference to FIG. As shown in the figure, in the flue 70 through which the exhaust gas G from the gas turbine 38 circulates, the superheater 44, the evaporator 41 and the economizer 40 are installed from the upstream side to the downstream side in the flow direction of the exhaust gas G. Has been. The water supplied by the feed pump 39 passes through the economizer 40 and is sent to the evaporator 41, and a mixed fluid of water and steam is generated in the evaporator 41 by the high temperature exhaust gas G and supplied to the brackish water separator 42. The

汽水分離器42で分離された蒸気は過熱器44に送られ、過熱された蒸気は蒸気タービン45へ供給される。ガスタービン38からの高温の排ガスGは前記煙道70を通る間に過熱器44、蒸発器41ならびに節炭器40により熱が回収される。   The steam separated by the brackish water separator 42 is sent to the superheater 44, and the superheated steam is supplied to the steam turbine 45. The hot exhaust gas G from the gas turbine 38 is recovered by the superheater 44, the evaporator 41 and the economizer 40 while passing through the flue 70.

なお、同図において破線で示されているように、汽水分離器42から蒸発器41の入口側に向けて再循環ライン43が設けられている。この再循環ライン43は貫流運転中でないときに使用されるラインで、汽水分離器42で分離された飽和水が蒸発器41に循環するシステムになっている。   In addition, as shown with the broken line in the figure, the recirculation line 43 is provided toward the inlet side of the evaporator 41 from the brackish water separator 42. As shown in FIG. This recirculation line 43 is a line that is used when the through-flow operation is not being performed, and is a system in which saturated water separated by the brackish water separator 42 is circulated to the evaporator 41.

同図に示されているように、給水ポンプ39と節炭器40の間には給水流量調節弁27と給水流量計23が付設され、汽水分離器42の出口側には汽水分離器出口圧力計2と汽水分離器出口蒸気温度計3が付設されている。   As shown in the figure, a feed water flow rate adjusting valve 27 and a feed water flow meter 23 are provided between the feed water pump 39 and the economizer 40, and the brackish water separator outlet pressure is provided at the outlet side of the brackish water separator 42. A total 2 and a steam separator outlet steam thermometer 3 are attached.

図4に示す貫流型排熱回収ボイラの構成は、以降で述べる本発明の他の実施形態においても適用されるものである。   The configuration of the once-through type exhaust heat recovery boiler shown in FIG. 4 is also applied to other embodiments of the present invention described below.

次に第1の実施形態に係る制御系統について説明する。図3は、給水流量を制御する制御系統全般のブロック図である。同図に示すようにこの制御ブロックは本発明の主体である過熱度制御部100と、水位制御部200と、制御切替部300とから主に構成されている。   Next, the control system according to the first embodiment will be described. FIG. 3 is a block diagram of the overall control system for controlling the feed water flow rate. As shown in the figure, this control block is mainly composed of a superheat degree control unit 100, a water level control unit 200, and a control switching unit 300 which are the subject of the present invention.

本発明の貫流型排熱回収ボイラの全般的な制御方式は、起動初期は前記水位制御部200により汽水分離器42の水位制御を行い、その後切替条件が揃った時点で、前記制御切替部300により過熱度制御部100に切り替えて貫流運転へ移行して蒸発器出口の過熱度を制御する方式となっている。   The general control method of the once-through type exhaust heat recovery boiler according to the present invention is that the water level control unit 200 controls the water level of the brackish water separator 42 at the initial stage of startup, and then the control switching unit 300 when the switching conditions are met. Therefore, the superheat degree control unit 100 is switched to the once-through operation to control the superheat degree at the outlet of the evaporator.

最初、水位制御部200の機能について図2を用いて説明する。
汽水分離器42の水位設定器80によって設定された汽水分離器水位設定値81と水位設定バイアス器82によって設定された水位設定バイアス値83が、加算器84によって加算される。その加算値がアナログスイッチ85を通り、変化率制限器86に入力され、変化率制限器86からは変化率制限された補正水位設定値87が出力される。
First, the function of the water level control unit 200 will be described with reference to FIG.
The water level setting value 81 set by the water level setting device 80 of the water separator 42 and the water level setting bias value 83 set by the water level setting device 82 are added by the adder 84. The added value passes through the analog switch 85 and is input to the change rate limiter 86. The change rate limiter 86 outputs a corrected water level set value 87 with the change rate limited.

一方、汽水分離器42には水位測定器88が付設されており、そこから出力される汽水分離器水位測定値89と前記補正水位設定値87が減算器90で比較され、その比較結果が水位偏差値91として出力される。この水位偏差値91は比例積分微分調節器93においてガスタービン負荷による制御ゲイン補正手段92を用いて比例・積分・微分処理され、比例積分微分調節器93から制御偏差値94が出力される。   On the other hand, the brackish water separator 42 is provided with a water level measuring device 88, and the brackish water separator water level measurement value 89 and the corrected water level set value 87 outputted therefrom are compared by the subtractor 90, and the comparison result is the water level. A deviation value 91 is output. The water level deviation value 91 is subjected to proportional / integral / differential processing in the proportional-integral-derivative controller 93 using the control gain correction means 92 based on the gas turbine load, and the proportional-integral-derivative controller 93 outputs a control deviation value 94.

この制御偏差値94は、蒸気流量計95で計測された蒸気流量96と加算器97で加算され、加算器97からは水位制御時の給水流量指令信号20として、前記制御切替部300を構成するアナログスイッチ21に信号bとして印加される(図1参照)。   The control deviation value 94 is added by the adder 97 with the steam flow 96 measured by the steam flow meter 95, and the adder 97 constitutes the control switching unit 300 as the feed water flow command signal 20 at the time of water level control. It is applied as a signal b to the analog switch 21 (see FIG. 1).

次に過熱度制御部100の機能について図1を用いて説明する。
汽水分離器42の出口側に圧力計2が設置されており(図4参照)、その圧力計2により測定された汽水分離器出口圧力測定値60が関数発生器4に入力され、その圧力に対応した飽和蒸気温度7が算出される。この飽和蒸気温度7は加算器6により過熱度設定値5に加算され、得られた蒸気温度値61はアナログスイッチ8に信号aとして入力される。
Next, the function of the superheat degree control unit 100 will be described with reference to FIG.
The pressure gauge 2 is installed on the outlet side of the brackish water separator 42 (see FIG. 4), and the brackish water separator outlet pressure measurement value 60 measured by the pressure gauge 2 is input to the function generator 4, and the pressure is A corresponding saturated steam temperature 7 is calculated. The saturated steam temperature 7 is added to the superheat setting value 5 by the adder 6, and the obtained steam temperature value 61 is input to the analog switch 8 as a signal a.

アナログスイッチ8では過熱度制御時には信号a(蒸気温度値61)が選択され、過熱度制御時に制限が有効になる変化率制限器9によって変化率が制限されて、その蒸気温度値61が減算器10に入力される。   In the analog switch 8, the signal a (steam temperature value 61) is selected at the time of superheat control, the rate of change is limited by the rate of change limiter 9 which becomes effective at the time of superheat control, and the steam temperature value 61 is subtracted. 10 is input.

汽水分離器42の出口側に温度計3が設置され(図4参照)、その温度計3により測定された汽水分離器出口温度測定値62が減算器10に入力され、前記蒸気温度値61と汽水分離器出口温度測定値62に基づいて、減算器10から温度制御偏差値63を出力する。この温度制御偏差値63は比例積分微分調節器14で比例・積分・微分処理した後、制御偏差値64として出力し、過熱度制御時の給水流量指令の先行値15と前記制御偏差値64が加算器16で加算され、過熱度制御時の給水流量指令値17としてアナログスイッチ21に信号aとして出力される。   A thermometer 3 is installed on the outlet side of the brackish water separator 42 (see FIG. 4), and a brackish water separator outlet temperature measurement value 62 measured by the thermometer 3 is input to the subtractor 10, and the steam temperature value 61 and Based on the brackish water separator outlet temperature measurement value 62, a temperature control deviation value 63 is output from the subtractor 10. The temperature control deviation value 63 is proportionally / integrated / differentiated by the proportional-integral-derivative controller 14 and then output as a control deviation value 64. The preceding value 15 of the feed water flow rate command and the control deviation value 64 at the time of superheat control are obtained. The signal is added by the adder 16 and output as a signal a to the analog switch 21 as a feed water flow rate command value 17 at the time of superheat control.

なお、前記比例積分微分調節器14では、過熱度制御時の給水流量指令の先行値15を入力信号として制御ゲイン補正手段13を用いて処理を行う。この過熱度制御時の給水流量指令の先行値15の算出方法としては、ガスタービンの負荷指令信号又は燃焼量指令信号1を基にして関数発生器11で信号を発生させ、その信号に一次遅れ要素(関数発生器)12を作用させて、過熱度制御時の給水流量指令の先行値15とする。前記関数発生器11と一次遅れ要素12の間には関数発生器18が設けられており、関数発生器18で発生した信号を過熱度制御時の給水流量の先行値の時定数57として使用する。   The proportional integral derivative controller 14 performs processing using the control gain correction means 13 with the preceding value 15 of the feed water flow rate command at the time of superheat control as an input signal. As a method of calculating the leading value 15 of the feed water flow command at the time of superheat control, a signal is generated by the function generator 11 based on the load command signal or the combustion amount command signal 1 of the gas turbine, and a first order lag is generated from the signal. The element (function generator) 12 is operated to set the leading value 15 of the feed water flow rate command at the time of superheat control. A function generator 18 is provided between the function generator 11 and the first-order lag element 12, and the signal generated by the function generator 18 is used as the time constant 57 of the preceding value of the feed water flow rate during superheat control. .

過熱度制御時、アナログスイッチ21は信号aを選択し、前記過熱度制御時の給水流量指令値17は給水流量上下限制限器22で上下限値が制限される。   During the superheat control, the analog switch 21 selects the signal a, and the upper and lower limit values of the feed water flow rate command value 17 during the superheat control are limited by the feed water flow upper / lower limiter 22.

給水ポンプ39の出口側には給水流量計23が設置されており(図4参照)、その給水流量計23による給水流量測定値65と前記過熱度制御時給水流量指令値17が減算器24で比較減算され、減算器24から給水流量偏差値66を出力する。この給水流量偏差値66は比例積分調節器25で比例積分処理を行った後、自動/手動切替器26を通過し、給水流量指令信号67として給水流量調節弁27に入力されて、弁開度調節に基づく過熱度制御時の給水流量調整がなされる。   A feed water flow meter 23 is installed on the outlet side of the feed water pump 39 (see FIG. 4). A feed water flow rate measurement value 65 by the feed water flow meter 23 and a superheat degree control feed water flow rate command value 17 are subtracted by a subtractor 24. The comparison subtraction is performed, and the feed water flow rate deviation value 66 is output from the subtracter 24. This feed water flow rate deviation value 66 is subjected to proportional integral processing by the proportional integral controller 25, then passes through the automatic / manual switch 26, and is input to the feed water flow rate control valve 27 as a feed water flow rate command signal 67, and the valve opening degree. The feed water flow rate is adjusted during superheat control based on the adjustment.

請求項に記載されている汽水分離器の出口蒸気の過熱度を給水の流量によって制御するための制御偏差値を演算する制御偏差値演算手段は、本実施形態においては具体的に、汽水分離器出口圧力計2、関数発生器4、加算器6、アナログスイッチ8、変化制限器9、汽水分離器出口温度計3、減算器10、比例積分微分調節器14などで構成されている。   The control deviation value calculating means for calculating the control deviation value for controlling the superheat degree of the outlet steam of the brackish water separator described in the claims by the flow rate of the feed water is specifically the brackish water separator in the present embodiment. It comprises an outlet pressure gauge 2, a function generator 4, an adder 6, an analog switch 8, a change limiter 9, a brackish water separator outlet thermometer 3, a subtractor 10, a proportional integral derivative controller 14, and the like.

またガスタービンの負荷信号から給水流量の先行値を演算する先行値演算手段は具体的に、関数発生器11、関数発生器18、関数発生器(一次遅れ要素)12などで構成されている。さらに給水流量調節弁の開度を調節する開度調節手段は、具体的には比例積分調節器25で構成されている。   Further, the preceding value calculation means for calculating the preceding value of the feed water flow rate from the load signal of the gas turbine specifically includes a function generator 11, a function generator 18, a function generator (first-order lag element) 12, and the like. Furthermore, the opening degree adjusting means for adjusting the opening degree of the feed water flow rate adjustment valve is specifically constituted by a proportional-plus-integral controller 25.

図5は、第2実施形態に係る貫流型排熱回収ボイラの制御系統図である。第1実施形態では図1に示すように、ガスタービンの負荷指令信号又は燃焼量指令信号1に基づいて、過熱度制御時の給水流量の先行値15を算出した。   FIG. 5 is a control system diagram of the once-through exhaust heat recovery boiler according to the second embodiment. In the first embodiment, as shown in FIG. 1, the leading value 15 of the feed water flow rate at the time of superheat control is calculated based on the load command signal or the combustion amount command signal 1 of the gas turbine.

第2実施形態では図5に示すように、ガスタービンの負荷指令信号又は燃焼量指令信号1と温度計19からの大気温度測定値58とに基づいて、関数発生器53、過熱度制御時の給水流量の先行値の時定数57を発生する関数発生器18、一次遅れ要素12で過熱度制御時の給水流量の先行値15を算出する。   In the second embodiment, as shown in FIG. 5, based on the load command signal or combustion amount command signal 1 of the gas turbine and the atmospheric temperature measurement value 58 from the thermometer 19, the function generator 53 and the superheat degree control time are controlled. The function generator 18 that generates the time constant 57 of the preceding value of the feed water flow rate and the primary delay element 12 calculate the preceding value 15 of the feed water flow rate during the superheat control.

図6は、第3実施形態に係る貫流型排熱回収ボイラの制御系統図である。本実施形態では、計測または計算により得られたガスタービン排ガス流量54とガスタービン出口又は排熱回収ボイラ入口ガス温度55とに基づいて、関数発生器56、過熱度制御時の給水流量の先行値の時定数57を発生する関数発生器18、一次遅れ要素12で過熱度制御時の給水流量の先行値15を算出する。   FIG. 6 is a control system diagram of the once-through exhaust heat recovery boiler according to the third embodiment. In the present embodiment, based on the gas turbine exhaust gas flow rate 54 and the gas turbine outlet or exhaust heat recovery boiler inlet gas temperature 55 obtained by measurement or calculation, the function generator 56, the preceding value of the feed water flow rate at the time of superheat control. The leading value 15 of the feed water flow rate at the time of superheat control is calculated by the function generator 18 that generates the time constant 57 and the primary delay element 12.

なお、図5ならびに図6において、過熱度制御時給水流量指令の先行値15を算出する系統以外は、前述した図1ないし図3に示した制御系統と同じであるから、それらの重複する説明は省略する。   5 and 6, the system is the same as the control system shown in FIGS. 1 to 3 described above except for the system that calculates the leading value 15 of the superheat degree control feed water flow rate command. Is omitted.

本発明の第1の実施形態に係る貫流型排熱回収ボイラの制御系統図である。1 is a control system diagram of a once-through exhaust heat recovery boiler according to a first embodiment of the present invention. 本発明の実施形態に係る水位制御部の制御系統図である。It is a control system diagram of a water level control unit according to an embodiment of the present invention. 本発明の実施形態に係る制御系統全般のブロック図である。It is a block diagram of the whole control system concerning the embodiment of the present invention. 本発明の実施形態に係る貫流型排熱回収ボイラの概略構成図である。It is a schematic structure figure of a once-through type exhaust heat recovery boiler concerning an embodiment of the present invention. 本発明の第2の実施形態に係る貫流型排熱回収ボイラの制御系統図である。It is a control system figure of the once-through type exhaust heat recovery boiler concerning a 2nd embodiment of the present invention. 本発明の第3の実施形態に係る貫流型排熱回収ボイラの制御系統図である。It is a control system diagram of a once-through type exhaust heat recovery boiler concerning a 3rd embodiment of the present invention. 従来の自然循環型排熱回収ボイラの概略構成図である。It is a schematic block diagram of the conventional natural circulation type waste heat recovery boiler. その排熱回収ボイラの制御系統図である。It is a control system diagram of the exhaust heat recovery boiler.

符号の説明Explanation of symbols

1:ガスタービンの負荷指令信号又は燃焼量指令信号、2:汽水分離器出口圧力計、3:汽水分離器出口蒸気温度計、4:関数発生器、5:過熱度設定値、6:加算器、7:飽和蒸気温度、8:アナログスイッチ、9:変化率制限器、10:減算器、11:関数発生器、12:一次遅れ要素12、13:制御ゲイン補正手段、14:比例積分微分調節器、15:給水流量指令先行値、16:加算器、17:過熱度制御時の給水流量指令値、18:関数発生器、19:温度計、20:水位制御時の給水流量指令値、21:アナログスイッチ、22:給水流量上下減制限器、23:給水流量計、24:減算器、25:比例積分調節器、26:自動/手動切替器、27:水給水流量調節弁、28:給水流量計、29:ドラム水位発振器、30:主蒸気流量計、31:ドラム規定水位、32:減算器、33:比例積分微分調節器、34:加算器、35:減算器、36:比例積分調節器、37:給水流量調節弁、38:ガスタービン、39:給水ポンプ、40:節炭器、41:蒸発器、42:汽水分離器、43:再循環ライン、44:過熱器、45:蒸気タービン、46:給水ポンプ、47:節炭器、48:蒸気ドラム、49:蒸発器、50:過熱器、51:蒸気タービン、52:ガスタービン、53:関数発生器、54:ガスタービン排ガス流量、55:ガスタービン出口又は排熱回収ボイラ入口ガス温度、58:関数発生器、57:過熱度制御時給水流量の先行値の時定数、58:大気温度測定値、60:汽水分離器出口圧力測定値、61:蒸気温度値、62:汽水分離器出口温度測定値、63:温度制御偏差値、64:制御偏差値、65:給水流量測定値、66:給水流量偏差値、67:給水流量指令信号、70:煙道、100:過熱度制御部、200:水位制御部、300:制御切替部、G:排ガス。   1: Gas turbine load command signal or combustion amount command signal, 2: brackish water separator outlet pressure gauge, 3: brackish water separator outlet steam thermometer, 4: function generator, 5: superheat setting value, 6: adder 7: saturated steam temperature, 8: analog switch, 9: change rate limiter, 10: subtractor, 11: function generator, 12: first-order lag element 12, 13: control gain correction means, 14: proportional integral differential adjustment 15: Feed water flow command leading value, 16: Adder, 17: Feed water flow command value during superheat control, 18: Function generator, 19: Thermometer, 20: Feed water flow command value during water level control, 21 : Analog switch, 22: Feed water flow up / down limiter, 23: Feed water flow meter, 24: Subtractor, 25: Proportional integral regulator, 26: Automatic / manual switch, 27: Water feed water flow control valve, 28: Water feed Flow meter, 29: Drum water level oscillator, 30: Main steam Flow meter, 31: Drum specified water level, 32: Subtractor, 33: Proportional integral derivative controller, 34: Adder, 35: Subtractor, 36: Proportional integral controller, 37: Feed water flow control valve, 38: Gas turbine 39: feed pump, 40: economizer, 41: evaporator, 42: brackish water separator, 43: recirculation line, 44: superheater, 45: steam turbine, 46: feed pump, 47: economizer 48: Steam drum, 49: Evaporator, 50: Superheater, 51: Steam turbine, 52: Gas turbine, 53: Function generator, 54: Gas turbine exhaust gas flow rate, 55: Gas turbine outlet or exhaust heat recovery boiler inlet gas Temperature, 58: Function generator, 57: Time constant of preceding value of feed water flow rate during superheat control, 58: Air temperature measured value, 60: Steam separator outlet pressure measured value, 61: Steam temperature value, 62: Brack water separation Unit outlet temperature measurement, 3: temperature control deviation value, 64: control deviation value, 65: feed water flow rate measurement value, 66: feed water flow rate deviation value, 67: feed water flow rate command signal, 70: flue, 100: superheat control unit, 200: water level control Part, 300: control switching part, G: exhaust gas.

Claims (4)

ガスタービンからの排ガスが流通する煙道内の前記排ガス流れ方向上流側に過熱器が配置され、その過熱器の排ガス流れ方向下流側に蒸発器が配置されて、
給水ポンプにより供給された給水が前記蒸発器で前記排ガスにより加熱されて蒸気と水の混合流体を生成し、その混合流体を汽水分離器で蒸気と水に分離して、分離された蒸気を前記過熱器で前記排ガスにより過熱する貫流型排熱回収ボイラにおいて、
前記汽水分離器の出口蒸気の過熱度を前記給水の流量によって制御するための制御偏差値を演算する制御偏差値演算手段と、
前記ガスタービンの負荷信号と大気温度から給水流量の先行値を演算するか、または、前記ガスタービンの燃料量指令信号と大気温度から給水流量の先行値を演算する先行値演算手段と、
その給水流量の先行値を前記制御偏差値に加算して過熱度制御時の給水流量指令信号を出力する加算手段と、
過熱度制御時の給水流量を測定する給水流量計と、
その測定された給水流量と前記給水流量指令信号の偏差値に基づいて給水流量調節弁の開度を調節する開度調節手段と
を備えたことを特徴とする貫流型排熱回収ボイラ。
A superheater is disposed upstream of the exhaust gas flow direction in the flue through which the exhaust gas from the gas turbine flows, and an evaporator is disposed downstream of the superheater in the exhaust gas flow direction,
Feed water supplied by a feed water pump is heated by the exhaust gas in the evaporator to produce a mixed fluid of steam and water, the mixed fluid is separated into steam and water by a brackish water separator, and the separated steam is In a once-through exhaust heat recovery boiler that is heated by the exhaust gas in a superheater,
Control deviation value calculating means for calculating a control deviation value for controlling the superheat degree of the outlet steam of the brackish water separator by the flow rate of the feed water;
A leading value calculating means for calculating a leading value of the feed water flow rate from the load signal of the gas turbine and the atmospheric temperature, or calculating a leading value of the feed water flow rate from the fuel amount command signal of the gas turbine and the atmospheric temperature ;
Adding means for adding a preceding value of the feed water flow rate to the control deviation value and outputting a feed water flow rate command signal at the time of superheat control;
A feed water flow meter for measuring the feed water flow rate during superheat control,
An once-through exhaust heat recovery boiler, comprising: an opening degree adjusting means for adjusting an opening degree of the feed water flow rate control valve based on a deviation value between the measured feed water flow rate and the feed water flow rate command signal.
請求項1に記載の貫流型排熱回収ボイラにおいて、前記給水流量の先行値に、当該排熱回収ボイラの伝熱時間遅れ時定数を含めた値を加算する手段を設けたことを特徴とする貫流型排熱回収ボイラ。 2. The once-through exhaust heat recovery boiler according to claim 1, wherein means for adding a value including a heat transfer time delay time constant of the exhaust heat recovery boiler to the preceding value of the feed water flow rate is provided. A once-through exhaust heat recovery boiler. 給水ポンプにより供給された給水を蒸発器でガスタービンからの排ガスにより加熱して蒸気と水の混合流体を生成し、その混合流体を汽水分離器で蒸気と水に分離して、分離された蒸気を過熱器で前記排ガスにより過熱する貫流型排熱回収ボイラの制御方法において、
前記汽水分離器の出口蒸気の過熱度を前記給水の流量によって制御する際、前記ガスタービンの負荷信号と大気温度から求まる値を給水流量の先行値として、または、前記ガスタービンの燃料量指令信号と大気温度から求まる値を給水流量の先行値として加算することを特徴とする貫流型排熱回収ボイラの制御方法
The feed water supplied by the feed water pump is heated by the exhaust gas from the gas turbine in the evaporator to produce a mixed fluid of steam and water, and the mixed fluid is separated into steam and water by the brackish water separator, and the separated steam In the control method of the once-through type exhaust heat recovery boiler in which the exhaust gas is superheated by the exhaust gas in a superheater,
When the superheat degree of the outlet steam of the brackish water separator is controlled by the flow rate of the feed water, a value obtained from the load signal and the atmospheric temperature of the gas turbine is used as a preceding value of the feed water flow rate or the fuel amount command signal of the gas turbine And a value obtained from the atmospheric temperature is added as a preceding value of the feed water flow rate .
請求項3に記載の貫流型排熱回収ボイラの制御方法において、前記給水流量の先行値に、当該排熱回収ボイラの伝熱時間遅れ時定数を含めた値を加算することを特徴とする貫流型排熱回収ボイラの制御方法 The flow-through exhaust heat recovery boiler control method according to claim 3, wherein a value including a heat transfer time delay time constant of the exhaust heat recovery boiler is added to the preceding value of the feed water flow rate. Control method for the type exhaust heat recovery boiler .
JP2008204492A 2008-08-07 2008-08-07 Cross-flow type exhaust heat recovery boiler and control method thereof Expired - Fee Related JP5292014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008204492A JP5292014B2 (en) 2008-08-07 2008-08-07 Cross-flow type exhaust heat recovery boiler and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008204492A JP5292014B2 (en) 2008-08-07 2008-08-07 Cross-flow type exhaust heat recovery boiler and control method thereof

Publications (2)

Publication Number Publication Date
JP2010038488A JP2010038488A (en) 2010-02-18
JP5292014B2 true JP5292014B2 (en) 2013-09-18

Family

ID=42011238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008204492A Expired - Fee Related JP5292014B2 (en) 2008-08-07 2008-08-07 Cross-flow type exhaust heat recovery boiler and control method thereof

Country Status (1)

Country Link
JP (1) JP5292014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104214792A (en) * 2014-08-31 2014-12-17 贵州电力试验研究院 Compensation method for realizing dynamic precise matching ratio between direct-current boiler water supply flow rate and fuel amount

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062390B (en) * 2010-12-30 2012-10-17 中国恩菲工程技术有限公司 Three-impulse control method of waste heat boiler steam drum water level
CN102062387B (en) * 2010-12-30 2012-09-19 中国恩菲工程技术有限公司 Method for controlling drum pressure of exhaust-heat boiler
JP6080567B2 (en) * 2013-01-29 2017-02-15 三菱日立パワーシステムズ株式会社 Operation control method for coal gasification combined cycle plant and coal gasification combined cycle plant
KR101928374B1 (en) * 2017-05-26 2019-02-26 비에이치아이 주식회사 Hrsg
CN113446649B (en) * 2021-07-30 2022-09-09 西安热工研究院有限公司 Logic control system and method of high-energy water inlet regulating valve in double control modes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55150401A (en) * 1979-04-09 1980-11-22 Mitsui Shipbuilding Eng Control method of waste heat regeneration system
JPS6419201A (en) * 1987-07-10 1989-01-23 Nippon Kokan Kk Control of boiler
JP2839195B2 (en) * 1989-08-31 1998-12-16 バブコツク日立株式会社 Waste heat recovery boiler water supply control device
JP2003314298A (en) * 2002-04-18 2003-11-06 Mitsubishi Heavy Ind Ltd Waste heat recovery boiler and its control method for supplying amount of water
JP2004301366A (en) * 2003-03-28 2004-10-28 Mitsubishi Heavy Ind Ltd Once-through exhaust heat recovery boiler
JP4854422B2 (en) * 2006-07-31 2012-01-18 バブコック日立株式会社 Control method for once-through exhaust heat recovery boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104214792A (en) * 2014-08-31 2014-12-17 贵州电力试验研究院 Compensation method for realizing dynamic precise matching ratio between direct-current boiler water supply flow rate and fuel amount

Also Published As

Publication number Publication date
JP2010038488A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
JP4909853B2 (en) Power plant and control method thereof
KR101607722B1 (en) Method for operating a waste heat steam generator
JP5292014B2 (en) Cross-flow type exhaust heat recovery boiler and control method thereof
KR101606293B1 (en) Method for operating a recirculating waste heat steam generator
JP5318880B2 (en) Method for operation of once-through boiler and forced once-through boiler
KR20130115281A (en) Method for operating a combined gas and steam turbine system, gas and steam turbine system for carrying out said method, and corresponding control device
JP5840032B2 (en) Power generation system and steam temperature control method thereof
JP2011027036A (en) Combined power generation plant and method for controlling the same
JP5276973B2 (en) Once-through exhaust heat recovery boiler
JP5818963B2 (en) Method for operating once-through boiler and boiler configured to carry out this method
JP2006046874A (en) Drum level control system
JP5221971B2 (en) A once-through exhaust heat recovery boiler with water level control and superheat control.
JP2008292119A (en) Power generator
JP4453858B2 (en) Steam temperature control method and apparatus for once-through boiler
RU2315871C1 (en) System of automatic control of power of steam boiler-turbine power unit
JP2000257809A (en) Pressurized fluidized bed boiler and starting method of same
JP2008075996A (en) Exhaust heat recovery boiler and its steam pressure control method
JP2002147711A (en) Reheat steam temperature controller for boiler
JP6287568B2 (en) Boiler device and control method of boiler device
JP2007285220A (en) Combined cycle power generation facility
JPS5870007A (en) Apparatus for controlling combined cycle power plant
JP2004019963A (en) Once-through waste-heat boiler
JPH0861605A (en) Turbine bypass steam temperature controller
JPH0226122B2 (en)
JP3544384B2 (en) Boiler start control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Ref document number: 5292014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees