JP5291982B2 - Liquid junction and method for manufacturing the same - Google Patents

Liquid junction and method for manufacturing the same Download PDF

Info

Publication number
JP5291982B2
JP5291982B2 JP2008121685A JP2008121685A JP5291982B2 JP 5291982 B2 JP5291982 B2 JP 5291982B2 JP 2008121685 A JP2008121685 A JP 2008121685A JP 2008121685 A JP2008121685 A JP 2008121685A JP 5291982 B2 JP5291982 B2 JP 5291982B2
Authority
JP
Japan
Prior art keywords
liquid junction
liquid
titanium dioxide
electrode
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008121685A
Other languages
Japanese (ja)
Other versions
JP2009270936A (en
Inventor
忠範 橋本
篤 石原
友志 西尾
恵和 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Mie University NUC
Original Assignee
Horiba Ltd
Mie University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd, Mie University NUC filed Critical Horiba Ltd
Priority to JP2008121685A priority Critical patent/JP5291982B2/en
Publication of JP2009270936A publication Critical patent/JP2009270936A/en
Application granted granted Critical
Publication of JP5291982B2 publication Critical patent/JP5291982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、汚れが付きにくく落ちやすいとともに、目詰まりしにくく、微生物も繁殖しにくい液絡部及びその製造方法に関するものである。   The present invention relates to a liquid junction portion that is difficult to get dirty and easy to fall off, is less likely to be clogged, and is less likely to propagate microorganisms, and a method for manufacturing the same.

ガラス電極を用いてpHを測定するためには、応答ガラス膜の表面が試料溶液のpHに応じて発生する電位(電位差)を測定するための基準となる電位を提示する比較電極が必要である。従来、比較電極としては、Ag/AgCl又はHg/HgCl等からなる電極を高濃度(3.3mol/L〜飽和)のKCl溶液からなる内部液に浸漬し、この内部液がジルコニア等のセラミックスやガラス等の多孔質からなる液絡部を介して試料溶液に接触するように構成してあるものが広く用いられている(特許文献1)。
特開平11−258197号公報
In order to measure pH using a glass electrode, a reference electrode that presents a reference potential for measuring the potential (potential difference) generated on the surface of the response glass film according to the pH of the sample solution is required. . Conventionally, as a comparative electrode, an electrode made of Ag / AgCl or Hg / Hg 2 Cl 2 or the like is immersed in an internal solution made of a high concentration (3.3 mol / L to saturated) KCl solution, and this internal solution is zirconia or the like. A material configured to come into contact with a sample solution through a liquid junction made of a porous material such as ceramic or glass is widely used (Patent Document 1).
JP-A-11-258197

このような比較電極の液絡部を構成する多孔質は表面積が大きいので、有機物やタンパク質等の汚れが吸着しやすく、また、内部電極から溶出した銀イオンが温度の低下により塩化銀となって液絡部の空隙を目詰まり(閉塞)させやすい。   Since the porous material constituting the liquid junction of the comparative electrode has a large surface area, dirt such as organic matter and protein is easily adsorbed, and silver ions eluted from the internal electrode become silver chloride due to a decrease in temperature. It is easy to clog (clog) the gap in the liquid junction.

液絡部に汚れが吸着したり、液絡部が塩化銀により目詰まりしたりすると、内部液と試料溶液との流通が阻害され、KClの拡散が影響を受けて、比較電極の内部液と試料溶液とが接触することによって生じる液間電位差が変動する。この液間電位差が変動すると、比較電極の提示する基準電位も変動してしまうので、精度の高いpH測定を阻害する要因となっている。   When dirt is adsorbed on the liquid junction or the liquid junction is clogged with silver chloride, the flow between the internal solution and the sample solution is hindered, and the diffusion of KCl is affected. The potential difference between the liquids caused by contact with the sample solution varies. When this inter-liquid potential difference fluctuates, the reference potential presented by the comparison electrode also fluctuates, which is a factor that hinders highly accurate pH measurement.

また、空隙が多い液絡部に汚れが吸着すると、そこで微生物が繁殖しやすく、このことも、内部液と試料溶液との流通を阻害し液間電位差を変動させる一因となることがある。   In addition, when dirt is adsorbed to the liquid junction portion having many voids, microorganisms are likely to propagate there, and this may impede the flow between the internal solution and the sample solution, and may cause the potential difference between the liquids to fluctuate.

このため、液絡部を洗浄剤を用いて定期的に洗浄したり、短期で交換したりして、常に清浄に保つことが必要である。   For this reason, it is necessary to always keep the liquid junction part clean by periodically cleaning it with a cleaning agent or replacing it in a short time.

そこで本発明は、汚れが付きにくく落ちやすいとともに、目詰まりしにくく、微生物も繁殖しにくい液絡部及びその製造方法を提供すべく図ったものである。   Therefore, the present invention is intended to provide a liquid junction part that is difficult to get soiled and easily removed, is less likely to clog, and is less likely to propagate microorganisms, and a method for producing the same.

すなわち本発明に係る液絡部は、液体が流通可能な液絡部基体の表面に、二酸化チタンが付着していることを特徴とする。なお、本発明において「液絡部基体の表面」とは、液体に浸漬した場合、その液体と接触可能な全ての面をいい、多孔質からなる場合はその空隙内に表出した面も含み、また、貫通孔を有する場合はその孔内に表出した面も含むものであり、本発明は、その一部に二酸化チタンが付着していてもよく、その全部に二酸化チタンが付着していてもよい。しかしながら、本発明に係る液絡部は、少なくとも、比較電極支持管に取り付けた状態においてその支持管から外側(試料溶液側)に向かって露出する最外面に、二酸化チタンが付着していることが好ましい。   That is, the liquid junction according to the present invention is characterized in that titanium dioxide is adhered to the surface of the liquid junction base through which the liquid can flow. In the present invention, the “surface of the liquid junction base” refers to all surfaces that can come into contact with the liquid when immersed in a liquid, and includes surfaces exposed in the voids when the substrate is porous. In addition, in the case of having a through hole, the surface exposed in the hole is also included. In the present invention, titanium dioxide may be attached to a part of the surface, and titanium dioxide is attached to the whole. May be. However, in the liquid junction according to the present invention, titanium dioxide is attached to at least the outermost surface exposed from the support tube toward the outside (sample solution side) in a state of being attached to the reference electrode support tube. preferable.

このようなものであると、液絡部基体表面に、優れた耐久性と光触媒能とを併せ持ち、光を吸収することにより、酸化還元作用と、超親水作用とを発現する二酸化チタン(TiO)が付着しているので、適当な波長の光を液絡部に照射すると、液絡部の親水基が増加して親水性が増す。このため、液絡部に光を照射するだけで、有機物等からなる汚れが液絡部につきにくくなり、また、増大した親水性により汚れが浮き上がるため、汚れを容易に剥離することができ、洗浄時も洗浄剤を使用しなくとも水だけである程度汚れを落とすことが可能となる。更に、酸化還元作用により液絡部に付着した有機物等を分解することもできる。このように、比較電極の液絡部に二酸化チタンを付着させることにより、液絡部にいわゆるセルフクリーニング機能(自己洗浄能)を付与することができるので、液絡部を清浄に保つことが容易となる。 In such a case, titanium dioxide (TiO 2) that has excellent durability and photocatalytic ability on the surface of the liquid junction base, and that exhibits a redox action and a superhydrophilic action by absorbing light. ) Is attached, and when the liquid junction is irradiated with light of an appropriate wavelength, the hydrophilic group of the liquid junction increases and the hydrophilicity increases. For this reason, simply irradiating the liquid junction with light makes it difficult for dirt made of organic matter to come into contact with the liquid junction, and the increased hydrophilicity raises the dirt so that it can be easily peeled off and washed. Even without using a cleaning agent, it is possible to remove dirt to some extent with water alone. Furthermore, organic substances and the like attached to the liquid junction can be decomposed by the oxidation-reduction action. In this way, by attaching titanium dioxide to the liquid junction of the reference electrode, a so-called self-cleaning function (self-cleaning ability) can be imparted to the liquid junction, so it is easy to keep the liquid junction clean. It becomes.

また、二酸化チタンの酸化還元作用により、内部電極から溶質した銀イオンを還元して塩化銀の生成を抑制し、液絡部の目詰まりを防ぐこともできる。   Further, due to the redox action of titanium dioxide, silver ions solute from the internal electrode can be reduced to suppress the formation of silver chloride, and clogging of the liquid junction can be prevented.

更に、空隙が多い液絡部に汚れが付着すると微生物が繁殖しやすいが、本発明によれば二酸化チタンの酸化還元作用により殺菌効果を発現することもできる。   Furthermore, when dirt adheres to the liquid junction with many voids, microorganisms are likely to propagate. However, according to the present invention, the bactericidal effect can be exhibited by the oxidation-reduction action of titanium dioxide.

従って、本発明によれば、これらの二酸化チタンが発現する各種作用により、液絡部の汚れや目詰まりにより内部液と試料溶液との流通が阻害されることに起因する液間電位差の変動が抑制され、常に精度の高い測定を行うことが可能となる。   Therefore, according to the present invention, fluctuations in the potential difference between the liquids caused by the various actions expressed by these titanium dioxides are caused by the flow of the internal liquid and the sample solution being hindered due to contamination and clogging of the liquid junction. It is suppressed, and it becomes possible to always perform highly accurate measurement.

二酸化チタンの結晶構造には、正方晶系のアナターゼ型、ルチル型、斜方晶系のブルッカイト型があり、また非晶質(アモルファス型)の二酸化チタンも知られている。これらのなかでもアナターゼ型の二酸化チタンは、紫外線を照射することにより、強い光触媒能が誘起され、強力な酸化還元作用と、超親水作用とを発現する。そして、紫外線の強度が0.001mW/cm程度である自然光下や通常の屋内用照明下においては、酸化還元作用が発現し、液絡部に付着した有機物等の汚れを分解することができる。この場合、親水基は殆ど増加しないので、これによる液間電位差の変動はなく、また、試料溶液の成分を分解したり変化させたりすることもない。更に、強い紫外線(例えば、0.1mW/cm程度)を照射すると、超親水作用が発現し、親水基が増加し、液絡部に汚れが吸着しにくくなり、吸着した汚れも浮き上がる。これに対して、ルチル型、ブルカット型、アモルファス型の二酸化チタンの光触媒能は、比較的弱く、充分な光触媒能を発揮させるためには、より強い紫外線を必要とする。 The crystal structure of titanium dioxide includes tetragonal anatase type, rutile type, orthorhombic brookite type, and amorphous titanium dioxide is also known. Among these, anatase-type titanium dioxide induces a strong photocatalytic ability when irradiated with ultraviolet rays, and exhibits a strong redox action and a superhydrophilic action. And under natural light where the intensity of ultraviolet rays is about 0.001 mW / cm 2 or under normal indoor lighting, oxidation-reduction action is manifested and dirt such as organic matter adhering to the liquid junction can be decomposed. . In this case, since the hydrophilic group hardly increases, there is no fluctuation of the liquid-potential difference caused by this, and the components of the sample solution are not decomposed or changed. Furthermore, when a strong ultraviolet ray (for example, about 0.1 mW / cm 2 ) is irradiated, a superhydrophilic action is exhibited, the hydrophilic group increases, dirt is hardly adsorbed on the liquid junction, and the adsorbed dirt is also lifted. On the other hand, the photocatalytic ability of rutile, bull-cut, and amorphous titanium dioxide is relatively weak, and a stronger ultraviolet ray is required to exhibit sufficient photocatalytic ability.

このため本発明では、これらの各種二酸化チタンのうち、強い光触媒能を発現しうることより、アナターゼ型の二酸化チタンが好適に用いられる。   Therefore, in the present invention, among these various titanium dioxides, anatase-type titanium dioxide is preferably used because it can exhibit a strong photocatalytic ability.

なお、アナターゼ型の二酸化チタンに超親水作用を発現させたり、ルチル型、ブルカット型、アモルファス型の二酸化チタンに光触媒能を誘起したりするための紫外線の光源としては、例えば、LED、水素放電管、キセノン放電管、水銀ランプ、ルビーレーザ、YAGレーザ、エキシマレーザ、色素レーザ等を用いることができる。   In addition, as an ultraviolet light source for causing anatase type titanium dioxide to exhibit a superhydrophilic action, or inducing photocatalytic activity to rutile type, bullcut type, or amorphous type titanium dioxide, for example, LED, hydrogen discharge tube A xenon discharge tube, a mercury lamp, a ruby laser, a YAG laser, an excimer laser, a dye laser, or the like can be used.

二酸化チタンに親水基が生ずるとマイナスの電荷が発生するが、この電荷が液間電位差の変動を引き起こすおそれのあるときは、二酸化チタンにアルミナ(酸化アルミニウム、Al)を添加することが好ましい。アルミナはプラスの電荷を生じるので、二酸化チタンから生じたマイナスの電荷をアルミナから生じたプラスの電荷で相殺することができる。とりわけ、用いる二酸化チタンが強力な酸化作用と超親水作用を有するアナターゼ型である場合は、アルミナと併用することによりその光触媒能を調整することも可能となる。 When a hydrophilic group is generated in titanium dioxide, a negative charge is generated. When this charge may cause a change in the liquid-potential difference, alumina (aluminum oxide, Al 2 O 3 ) may be added to titanium dioxide. preferable. Since alumina generates a positive charge, the negative charge generated from titanium dioxide can be offset by the positive charge generated from alumina. In particular, when the titanium dioxide used is an anatase type having a strong oxidizing action and a superhydrophilic action, the photocatalytic ability can be adjusted by using it together with alumina.

二酸化チタンにアルミナを混合又は固溶させて用いる場合、アルミナの配合量としては、原料粉末の50重量%以下であることが好ましい。より好ましくは10重量%以下である。50重量%を超えると、液絡部基体がガラスからなるものである場合、ガラスとの熱膨張の差により、ガラスに融着することが困難となる。   When alumina is mixed or dissolved in titanium dioxide, the amount of alumina is preferably 50% by weight or less of the raw material powder. More preferably, it is 10% by weight or less. When it exceeds 50% by weight, when the liquid junction base is made of glass, it becomes difficult to fuse it to the glass due to a difference in thermal expansion from the glass.

前記液絡部基体としては、例えば、多孔質からなるものや、貫通孔を有しているものが用いられる。   As the liquid junction base, for example, one made of a porous material or one having a through hole is used.

このような本発明の液絡部を備えている比較電極もまた、本発明の1つである。   The comparative electrode provided with such a liquid junction part of the present invention is also one aspect of the present invention.

本発明に係る液絡部は、例えば、以下のように、いわゆるゾルゲル法を用いて製造することができる。すなわち、溶媒中でチタン化合物に加水分解を行い、コーティング溶液を生成してから(溶液生成工程)、前記液絡部基体の表面に前記コーティング溶液を塗布し(塗布工程)、得られたコーティング膜を焼結する(焼結工程)といった各工程を経て本発明に係る液絡部を製造する。   The liquid junction according to the present invention can be manufactured by using a so-called sol-gel method, for example, as follows. That is, the titanium compound is hydrolyzed in a solvent to form a coating solution (solution generation step), and then the coating solution is applied to the surface of the liquid junction base (application step), and the resulting coating film The liquid junction according to the present invention is manufactured through each process of sintering (sintering process).

前記塗布工程において前記液絡部基体の表面にコーティング溶液を塗布する方法としては、ディップコーティング法、スピンコーティング法、溶射法、パウダージェット法等が挙げられる。   Examples of the method for applying the coating solution on the surface of the liquid junction base in the application step include a dip coating method, a spin coating method, a thermal spraying method, and a powder jet method.

また、前記焼結工程において前記コーティング膜の多孔性を制御するには、前記コーティング溶液にポリビニルピロリドンやポリエチレングリコール、ポリビニルアルコール等を含有させることが考えられる。   In order to control the porosity of the coating film in the sintering step, it is considered that the coating solution contains polyvinyl pyrrolidone, polyethylene glycol, polyvinyl alcohol or the like.

また、本発明に係る液絡部の基体が貫通孔を有しているものである場合は、以下ようにしても、本発明に係る液絡部を製造することができる。すなわち、バインダに二酸化チタン粉末を分散して分散液を生成し(分散液生成工程)、次いで、前記分散液を前記液絡部基体の貫通孔の孔内表面に塗布する(塗布工程)か、又は、バインダを前記液絡部基体の貫通孔の孔内表面に塗布し(塗布工程)、二酸化チタン粉末を気体中に浮遊させて、前記孔内表面に塗布された前記バインダに付着させる(浮遊工程)。   Further, when the substrate of the liquid junction part according to the present invention has a through hole, the liquid junction part according to the present invention can be manufactured as follows. That is, the titanium dioxide powder is dispersed in a binder to produce a dispersion (dispersion production process), and then the dispersion is applied to the inner surface of the through hole of the liquid junction base (application process), Alternatively, a binder is applied to the inner surface of the through hole of the liquid junction base (application process), and the titanium dioxide powder is suspended in a gas and attached to the binder applied to the inner surface of the hole (floating). Process).

このように本発明によれば、液絡部がセルフクリーニング機能を発現しうるので、液絡部に汚れが付きにくく、かつ、汚れを落としやすくすることができるので、液絡部を常に清浄に保つことができる。更に、二酸化チタンが発現する酸化還元作用により、塩化銀による液絡部の目詰まりを防いだり、液絡部を殺菌したりすることができる。これらの各種作用により、内部液と試料溶液との流通が確保されて液間電位差の変動が防止され、酸性からアルカリ性まで幅広いpHの試料溶液に対して精度の高いpH測定を行うことができる。   As described above, according to the present invention, since the liquid junction can exhibit a self-cleaning function, the liquid junction is difficult to get dirty and can be easily removed. Can keep. Furthermore, due to the oxidation-reduction action expressed by titanium dioxide, clogging of the liquid junction due to silver chloride can be prevented, or the liquid junction can be sterilized. By these various actions, the flow between the internal solution and the sample solution is ensured, the fluctuation of the liquid potential difference is prevented, and a highly accurate pH measurement can be performed on a wide range of pH sample solutions from acidic to alkaline.

以下、本発明の実施形態に係る比較電極を図面を参照して説明する。   Hereinafter, reference electrodes according to embodiments of the present invention will be described with reference to the drawings.

第1の実施形態にかかる比較電極2は、図1及び図2に示すように、pH電極3と一体となって複合電極1を構成しているものであり、複合電極1には、円筒状のpH電極支持管31と、その外周を取り巻くように比較電極支持管21及び温度補償電極支持管4が一体に設けてある。なお、これらpH電極支持管31、比較電極支持管21及び温度補償電極支持管4はいずれも同一組成のガラスから構成されている。   As shown in FIGS. 1 and 2, the comparison electrode 2 according to the first embodiment forms a composite electrode 1 integrally with the pH electrode 3, and the composite electrode 1 has a cylindrical shape. The pH electrode support tube 31 and the comparison electrode support tube 21 and the temperature compensation electrode support tube 4 are integrally provided so as to surround the outer periphery thereof. The pH electrode support tube 31, the comparison electrode support tube 21 and the temperature compensation electrode support tube 4 are all made of glass having the same composition.

前記比較電極支持管21の外周壁には液絡部22が設けてあり、比較電極支持管21及び温度補償電極支持管4よりも若干先端部が突出させてあるpH電極支持管31の先端部には応答ガラス膜32が接合されている。   A liquid junction portion 22 is provided on the outer peripheral wall of the comparison electrode support tube 21, and the distal end portion of the pH electrode support tube 31 is slightly protruded from the comparison electrode support tube 21 and the temperature compensation electrode support tube 4. A response glass film 32 is bonded to the substrate.

前記比較電極支持管21及びpH電極支持管31には、例えば塩化銀電極からなる比較電極内極23及びpH電極内極33がそれぞれ収容してあり、内部液として例えばpH7のKCl溶液が充填してある。また、温度補償電極支持管4の内部には、温度に応じた電気信号を出力する温度素子41が収容してある。これら比較電極内極23、pH電極内極33及び温度素子41には、それぞれ図示しないリード線が接続してあり、それらリード線はケーブル束5としてpH電極支持管31の基端部から外部に延出し図示しないpH計本体に接続されるようにしてある。   The comparison electrode support tube 21 and the pH electrode support tube 31 contain a comparison electrode inner electrode 23 and a pH electrode inner electrode 33 made of, for example, a silver chloride electrode, and are filled with, for example, a KCl solution of pH 7 as an internal solution. It is. A temperature element 41 that outputs an electrical signal corresponding to the temperature is accommodated inside the temperature compensation electrode support tube 4. The comparative electrode inner electrode 23, the pH electrode inner electrode 33, and the temperature element 41 are connected to lead wires (not shown), respectively, and these lead wires are connected to the outside as a cable bundle 5 from the base end portion of the pH electrode support tube 31. It is extended and connected to a pH meter main body (not shown).

前記液絡部22は、ジルコニア(二酸化ジルコニウム、ZrO)やアルミナ(酸化アルミニウム、Al)等を主成分とする多孔質セラミックスからなる液絡部基体221の表面に、二酸化チタンがコーティングされているものであり、比較電極支持管21の外周壁にあらかじめ設けられた穴に封着されている。 The liquid junction 22 is coated with titanium dioxide on the surface of a liquid junction base 221 made of porous ceramics mainly composed of zirconia (zirconium dioxide, ZrO 2 ), alumina (aluminum oxide, Al 2 O 3 ), or the like. It is sealed in a hole provided in advance on the outer peripheral wall of the comparison electrode support tube 21.

液絡部基体221の表面には、アナターゼ型の二酸化チタンがコーティングされており、このようにコーティングを施すには、例えば、溶媒中でチタン化合物に加水分解を行い、コーティング溶液を生成してから(溶液生成工程)、液絡部基体221の表面に前記コーティング溶液を塗布し(塗布工程)、得られたコーティング膜を焼結する(焼結工程)といった各工程を備えた、いわゆるゾルゲル法を用いることができる。   The surface of the liquid junction base 221 is coated with anatase-type titanium dioxide, and in order to apply such coating, for example, a titanium compound is hydrolyzed in a solvent to form a coating solution. (Solution generation step), a so-called sol-gel method including each step of applying the coating solution to the surface of the liquid junction base 221 (application step) and sintering the obtained coating film (sintering step) Can be used.

より具体的には、アルコール等の溶媒中で、例えばチタンテトライソプロポキシド、テトライソプロピルオルソチタネート、チタンテトライソプロポキシド、チタンテトラエトキシド、チタンテトラブトキシド、シクロペンタジエニルチタントリイソプロポキシド、チタンジイソプロポキシドビス(2,4−ペンタンジオナート)等のチタンアルコキシドに穏やかに加水分解を行い、適度な粘性を有し、かつ安定なコーティング溶液を生成する(溶液生成工程)。次に、液絡部基体221の表面にコーティング溶液をディップコーティング法により塗布する(塗布工程)。このとき、コーティング膜の多孔性を制御するために、コーティング溶液に例えばポリビニルピロリドンやポリエチレングリコール、ポリビニルアルコール等を含有させることが有効である。そして、液絡部基体221の表面にコーティング溶液を塗布した後に、熱処理を施し、約450〜500℃で水分やアルコールを揮散させてコーティング膜を焼結する(焼結工程)。   More specifically, in a solvent such as alcohol, for example, titanium tetraisopropoxide, tetraisopropyl orthotitanate, titanium tetraisopropoxide, titanium tetraethoxide, titanium tetrabutoxide, cyclopentadienyl titanium triisopropoxide, A titanium alkoxide such as titanium diisopropoxide bis (2,4-pentanedionate) is gently hydrolyzed to produce a coating solution having an appropriate viscosity and a stable viscosity (solution generation step). Next, a coating solution is applied to the surface of the liquid junction base 221 by a dip coating method (application process). At this time, in order to control the porosity of the coating film, it is effective to contain, for example, polyvinyl pyrrolidone, polyethylene glycol, polyvinyl alcohol or the like in the coating solution. And after apply | coating a coating solution to the surface of the liquid junction base | substrate 221, it heat-processes, volatilizes a water | moisture content and alcohol at about 450-500 degreeC, and sinters a coating film (sintering process).

なお、pH電極支持管31の先端部に応答ガラス膜32が接合され、かつ、比較電極支持管21の外周壁に液絡部基体221が封着された状態で、複合電極1の先端を前記コーティング溶液に浸漬(ディッピング)して、応答ガラス膜32と液絡部基体221の表面に前記コーティング溶液を塗布してから、前記焼結工程を行うことにより、応答ガラス膜32と液絡部基体221とに同時にアナターゼ型の二酸化チタンをコーティングすることができる。   Note that the tip of the composite electrode 1 is connected to the tip of the composite electrode 1 in a state where the response glass film 32 is bonded to the tip of the pH electrode support tube 31 and the liquid junction base 221 is sealed to the outer peripheral wall of the comparison electrode support tube 21. By immersing (dipping) in the coating solution and applying the coating solution to the surfaces of the response glass film 32 and the liquid junction base 221, the sintering process is performed, whereby the response glass film 32 and the liquid junction base are obtained. 221 and the anatase-type titanium dioxide can be coated at the same time.

液絡部22を洗浄する際には、LED、水素放電管、キセノン放電管、水銀ランプ、ルビーレーザ、YAGレーザ、エキシマレーザ、色素レーザ等を光源として紫外線を照射すると、二酸化チタンに強い光触媒能が誘起され、酸化還元作用により、付着した有機物等が分解され、かつ、超親水作用により、付着物が剥離しやすくなり、いわゆるセルフクリーニング機能が発揮される。また、二酸化チタンの酸化還元作用により、塩化銀による目詰まりが解消され、微生物等も除去される。   When the liquid junction 22 is cleaned, if it is irradiated with ultraviolet rays using an LED, a hydrogen discharge tube, a xenon discharge tube, a mercury lamp, a ruby laser, a YAG laser, an excimer laser, a dye laser or the like as a light source, the photocatalytic ability strong against titanium dioxide Is induced, the attached organic matter is decomposed by the oxidation-reduction action, and the attachment is easily peeled off by the superhydrophilic action, so that a so-called self-cleaning function is exhibited. Further, due to the redox action of titanium dioxide, clogging due to silver chloride is eliminated, and microorganisms and the like are also removed.

このような二酸化チタンの光触媒能による酸化作用の概念を図3に、超親水作用の概念を図4に示す。図3に示すように、バンドギャップより大きなエネルギの光を照射すると、これが吸収され、価電子帯の電子が伝導帯に励起するとともに、価電子帯に正孔が生じる。そしてその励起電子が光触媒の外部にある化学物質に移動すると、その化学物質は還元され、正孔が移動すると酸化が起こる。また、図4に示すように、正孔による反応により、二酸化チタン等の表面に比較的不安定な水酸基が生じ、このために親水性になると考えられている。更に、光を照射することにより二酸化チタンの硬さが増すという点も付言しておく。   FIG. 3 shows the concept of the oxidation action by the photocatalytic activity of titanium dioxide, and FIG. 4 shows the concept of the superhydrophilic action. As shown in FIG. 3, when light having energy larger than the band gap is irradiated, this is absorbed, and electrons in the valence band are excited to the conduction band, and holes are generated in the valence band. When the excited electrons move to a chemical substance outside the photocatalyst, the chemical substance is reduced, and when holes move, oxidation occurs. In addition, as shown in FIG. 4, it is considered that a reaction due to holes generates a relatively unstable hydroxyl group on the surface of titanium dioxide or the like, which makes it hydrophilic. Further, it should be noted that the hardness of titanium dioxide is increased by irradiating light.

このような構成の複合電極1を、pHを求めたい試料溶液に浸すと、複合電極1の内部液と試料溶液との間にpH差に応じた起電力が生じ、その起電力が、比較電極内極23とpH電極内極33との電位差となって表れる。この起電力は温度によって変動するため、前記pH計本体は、その電位差に加えて、前記温度素子41の出力信号値をパラメータとして、試料溶液のpHを算出し表示する。   When the composite electrode 1 having such a configuration is immersed in a sample solution whose pH is to be determined, an electromotive force is generated between the internal solution of the composite electrode 1 and the sample solution, and the electromotive force is the reference electrode. This appears as a potential difference between the inner electrode 23 and the pH electrode inner electrode 33. Since the electromotive force varies depending on the temperature, the pH meter body calculates and displays the pH of the sample solution using the output signal value of the temperature element 41 as a parameter in addition to the potential difference.

次に本発明の第2の実施形態について図面を参照して説明する。なお、以下の説明中、前記第1の実施形態に対応する部材には同一の符号を付している。   Next, a second embodiment of the present invention will be described with reference to the drawings. In the following description, members corresponding to those of the first embodiment are denoted by the same reference numerals.

第2の実施形態においては、図5に示すように、液絡部22が、内部液側と試料液側とにわたって貫通する微細径の貫通孔Hを有しており、例えば、ジルコニアを主成分とするセラミックにピンホールを開けたものや、ガラスキャピラリー等からなる液絡部基体221の貫通孔Hの孔内を含む表面に、二酸化チタンがコーティングされているものである。   In the second embodiment, as shown in FIG. 5, the liquid junction portion 22 has a through hole H having a fine diameter penetrating over the internal liquid side and the sample liquid side, and for example, zirconia is the main component. The surface of the ceramic including the inside of the through hole H of the liquid junction base 221 made of a glass capillary or the like is coated with titanium dioxide.

液絡部基体221に設けられた各貫通孔Hは、10〜100μm程度のストレートな単孔状である。   Each through-hole H provided in the liquid junction base 221 has a straight single hole shape of about 10 to 100 μm.

このような貫通孔Hを有している液絡部基体221に、二酸化チタンをコーティングするには、ゾルゲル法以外に、以下のような方法を用いてもよい。すなわち、バインダに二酸化チタン粉末を分散して分散液を生成し(分散液生成工程)、次いで、前記分散液を液絡部基体221の貫通孔Hの孔内表面に塗布する(塗布工程)か、又は、バインダを液絡部基体221の貫通孔Hの孔内表面に塗布し(塗布工程)、二酸化チタン粉末を気体中に浮遊させて、前記孔内表面に塗布された前記バインダに付着させる(浮遊工程)。なお、更に貫通孔Hの孔内表面以外の液絡部基体221表面にも二酸化チタンがコーティングされてもよい。   In order to coat titanium dioxide on the liquid junction base 221 having such a through hole H, the following method may be used in addition to the sol-gel method. That is, is it possible to produce a dispersion by dispersing titanium dioxide powder in a binder (dispersion production process), and then apply the dispersion to the inner surface of the through hole H of the liquid junction base 221 (application process)? Alternatively, a binder is applied to the inner surface of the through hole H of the liquid junction base 221 (application process), and the titanium dioxide powder is suspended in the gas and adhered to the binder applied to the inner surface of the hole. (Floating process). Further, the surface of the liquid junction base 221 other than the inner surface of the through hole H may be coated with titanium dioxide.

前記バインダとしては、フッ素樹脂系のコーティング剤等が用いられ、前記二酸化チタン粉末としては、例えば粒径1〜100nmの微細粒子であることが好ましく、より好ましくは粒径10〜50nmの微細粒子である。つまり、前記二酸化チタン粉末223がナノ粒子であることが好ましい。二酸化チタン粉末の粒径が小さいほど、より広い表面積を確保することができるので、より光触媒能を発揮しやすくなる。   As the binder, a fluororesin-based coating agent or the like is used, and the titanium dioxide powder is preferably, for example, fine particles having a particle diameter of 1 to 100 nm, more preferably fine particles having a particle diameter of 10 to 50 nm. is there. That is, the titanium dioxide powder 223 is preferably nanoparticles. As the particle size of the titanium dioxide powder is smaller, a wider surface area can be secured, and thus the photocatalytic ability is more easily exhibited.

なお、本発明は、前記各実施形態に限られるものではない。   The present invention is not limited to the above embodiments.

紫外線の光源は、本発明の比較電極2とは別個に設けてもよいが、本発明の比較電極2自体が紫外線の光源を備えていてもよい。   Although the ultraviolet light source may be provided separately from the comparative electrode 2 of the present invention, the comparative electrode 2 itself of the present invention may include an ultraviolet light source.

前記複合電極1とpH計本体と紫外線の光源とを組み合わせて、pH測定装置を構成してもよい。   The composite electrode 1, the pH meter main body, and an ultraviolet light source may be combined to constitute a pH measuring device.

また、前記各実施形態では、二酸化チタンとして、アナターゼ型のものを用いているが、ルチル型、ブルカット型、アモルファス型の二酸化チタンを用いてもよい。   Moreover, in each said embodiment, although the anatase type thing is used as titanium dioxide, you may use a rutile type, a bull cut type, and an amorphous type titanium dioxide.

液絡部基体221に設けられた貫通孔Hの数は特に限定されず、目的に応じて適宜変更するができる。   The number of through holes H provided in the liquid junction base 221 is not particularly limited, and can be appropriately changed according to the purpose.

その他、本発明は、その趣旨を逸脱しない範囲で種々の変形が可能であることは言うまでもない。   In addition, it goes without saying that the present invention can be variously modified without departing from the spirit of the present invention.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

液絡部にゾルゲル法を用いてアナターゼ型の二酸化チタン(P−25、日本エアロジル社製)をコーティングした複合電極を、金魚や藻の生息する水槽中に太陽光照射下で1ヶ月間浸漬し、その前後における感度の変化を評価した(実施例)。比較として、液絡部に二酸化チタンによるコーティング処理が施されていない複合電極についても、同様な試験を行い、その前後における感度の変化を評価した(比較例)。結果を表1に示した。   Immerse the composite electrode, which is coated with anatase-type titanium dioxide (P-25, manufactured by Nippon Aerosil Co., Ltd.) using a sol-gel method on the liquid junction for 1 month under sunlight irradiation in the aquarium where goldfish and algae live. The change in sensitivity before and after that was evaluated (Example). For comparison, a similar test was performed on a composite electrode in which the liquid junction was not coated with titanium dioxide, and the change in sensitivity before and after the evaluation was evaluated (comparative example). The results are shown in Table 1.

液絡部に二酸化チタンがコーティングされている複合電極(実施例)では、試験前後において感度に変化はなかった。一方、液絡部にコーティング処理が施されていない複合電極(比較例)では、感度が85%程度まで低下した。これは、比較例では液絡部の詰まりにより液間電位差の変動が生じたことに起因すると考えられる。   In the composite electrode (Example) in which the liquid junction was coated with titanium dioxide, the sensitivity did not change before and after the test. On the other hand, the sensitivity decreased to about 85% in the composite electrode (comparative example) in which the liquid junction was not coated. This is considered to be due to the fluctuation of the liquid potential difference caused by clogging of the liquid junction in the comparative example.

本発明によれば、測定対象の試料溶液には影響を与えずに、比較電極の液絡部に汚れが付着したり、塩化銀による目詰まりが生じたり、微生物が繁殖したりするのを防止し、かつ、液絡部の洗浄を簡便に行うことができるので、汚れの残留や影響が少なくなるとともに、内部液と試料溶液との流通が確保されて、液間電位差の変動が防止され、安定して精度の高い測定を行うことができる。   According to the present invention, it is possible to prevent contamination of the liquid junction of the reference electrode, clogging due to silver chloride, and propagation of microorganisms without affecting the sample solution to be measured. In addition, since the liquid junction can be easily cleaned, the residue and influence of dirt are reduced, the flow between the internal liquid and the sample solution is ensured, and fluctuations in the liquid potential difference are prevented, Stable and accurate measurement can be performed.

本発明の一実施形態に係る複合電極の内部構造を1部示す部分破断図。The fragmentary broken view which shows 1 part of the internal structure of the composite electrode which concerns on one Embodiment of this invention. 図1における液絡部22近傍(A)の拡大図。The enlarged view of the liquid junction part 22 vicinity (A) in FIG. 光触媒能による酸化作用の概念図。The conceptual diagram of the oxidation effect | action by photocatalytic ability. 光触媒能による超親水作用の概念図。The conceptual diagram of the superhydrophilic effect | action by photocatalytic ability. 他の実施形態における液絡部を示す平面図(a)及びAA線における縦断面図(b)。The top view (a) which shows the liquid junction part in other embodiment, and the longitudinal cross-sectional view in the AA line (b).

符号の説明Explanation of symbols

1…複合電極
2…比較電極
21…比較電極支持管
22…液絡部
221…液絡部基体
222…二酸化チタン粉末
H…貫通孔
DESCRIPTION OF SYMBOLS 1 ... Composite electrode 2 ... Comparative electrode 21 ... Comparative electrode support tube 22 ... Liquid junction part 221 ... Liquid junction base | substrate 222 ... Titanium dioxide powder H ... Through-hole

Claims (5)

内部電極と、前記内部電極が浸漬した内部液と、前記内部電極及び内部液を収容し、外周壁に液絡部が設けられた支持管と、を備え、
前記液絡部は、液体が流通可能な多孔質セラミックスからなる液絡部基体の表面に、アナターゼ型の二酸化チタンがコーティングされているものである比較電極。
An internal electrode, an internal liquid in which the internal electrode is immersed, and a support tube that contains the internal electrode and the internal liquid and is provided with a liquid junction on the outer peripheral wall;
The liquid junction is a comparative electrode in which an anatase-type titanium dioxide is coated on the surface of a liquid junction base made of porous ceramics through which liquid can flow .
前記液絡部基体は、貫通孔を有している請求項1記載の比較電極。 The comparative electrode according to claim 1, wherein the liquid junction base has a through hole . 請求項1又は2記載の比較電極の製造方法であって、
溶媒中でチタン化合物に加水分解を行い、コーティング溶液を生成する溶液生成工程と、
前記液絡部基体の表面に前記コーティング溶液を塗布する塗布工程と、
得られたコーティング膜を450〜500℃で焼結する焼結工程と、を有する前記液絡部の作製工程を備えている比較電極の製造方法。
It is a manufacturing method of the comparative electrode according to claim 1 or 2,
A solution generating step of hydrolyzing the titanium compound in a solvent to generate a coating solution;
An application step of applying the coating solution on the surface of the liquid junction base;
A method for producing a comparative electrode , comprising: a sintering step of sintering the obtained coating film at 450 to 500 ° C.
請求項2記載の比較電極の製造方法であって、
バインダに二酸化チタン粉末を分散して分散液を生成する分散液生成工程と、
前記分散液を前記液絡部基体の貫通孔の孔内表面に塗布する塗布工程と、を有する前記液絡部の作製工程を備えている比較電極の製造方法。
A method for producing a comparative electrode according to claim 2,
A dispersion producing step for producing a dispersion by dispersing titanium dioxide powder in a binder;
Method for manufacturing a reference electrode and a manufacturing process of the liquid junction having a coating step of coating the dispersion liquid on the bore surface of the through hole of the liquid junction substrate.
請求項2記載の比較電極の製造方法であって、
バインダを前記液絡部基体の貫通孔の孔内表面に塗布する塗布工程と、
二酸化チタン粉末を気体中に浮遊させて、前記孔内表面に塗布された前記バインダに付着させる浮遊工程と、を有する前記液絡部の作製工程を備えている比較電極の製造方法。
A method for producing a comparative electrode according to claim 2,
An application step of applying a binder to the inner surface of the through hole of the liquid junction base;
A method of manufacturing a comparative electrode , comprising: a floating step of floating a titanium dioxide powder in a gas and adhering the titanium dioxide powder to the binder applied to the inner surface of the hole.
JP2008121685A 2008-05-07 2008-05-07 Liquid junction and method for manufacturing the same Active JP5291982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008121685A JP5291982B2 (en) 2008-05-07 2008-05-07 Liquid junction and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008121685A JP5291982B2 (en) 2008-05-07 2008-05-07 Liquid junction and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2009270936A JP2009270936A (en) 2009-11-19
JP5291982B2 true JP5291982B2 (en) 2013-09-18

Family

ID=41437621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008121685A Active JP5291982B2 (en) 2008-05-07 2008-05-07 Liquid junction and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5291982B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5930974B2 (en) * 2011-01-07 2016-06-08 国立大学法人三重大学 Reference electrode

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416216Y2 (en) * 1986-12-11 1992-04-10
JPH04125460A (en) * 1990-09-18 1992-04-24 Mitsubishi Petrochem Co Ltd Electrolytic cell for coulometer
JPH05296964A (en) * 1991-04-04 1993-11-12 Mitsubishi Petrochem Co Ltd Detector for electrochemically testing and/or analyzing sample in solution and chromatographic device using the same
JP3851389B2 (en) * 1996-09-28 2006-11-29 株式会社堀場製作所 Liquid junction member for comparison electrode and comparison electrode using the same
JP3771707B2 (en) * 1998-03-07 2006-04-26 株式会社堀場製作所 Liquid junction member for reference electrode and reference electrode
JP4819784B2 (en) * 1998-04-14 2011-11-24 独立行政法人産業技術総合研究所 Coating composition containing photocatalyst
JP2000289456A (en) * 1999-04-09 2000-10-17 Bosch Automotive Systems Corp Humidifying and dehumidifying rotor, manufacture thereof, and air conditioning system for vehicle
JP2001213608A (en) * 2000-01-31 2001-08-07 Sharp Corp Chemical converter
JP2002038054A (en) * 2000-05-16 2002-02-06 Kansai Paint Co Ltd Coating agent for forming titanium oxide film, method for forming titanium oxide film and photocatalyst
JP4226371B2 (en) * 2003-04-02 2009-02-18 株式会社堀場製作所 Electrode body
JP2004323739A (en) * 2003-04-25 2004-11-18 Bridgestone Corp Method for controlling contact angle of photocatalyst coating film with water and photocatalyst coating film
JP4937534B2 (en) * 2005-06-21 2012-05-23 合資会社 ヨシヒコ Porous molded body
JP4815324B2 (en) * 2006-10-23 2011-11-16 株式会社堀場製作所 Liquid junction and reference electrode
JP4857288B2 (en) * 2006-11-08 2012-01-18 株式会社堀場製作所 Cleaning preservation solution for glass electrodes, etc.

Also Published As

Publication number Publication date
JP2009270936A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP5121012B2 (en) Response glass and glass electrode
JP4876123B2 (en) Method for producing response glass membrane for ion electrode, response glass membrane for ion electrode, and ion electrode
JP4900833B2 (en) Responsive glass for ion-selective electrode and ion-selective electrode
JPH09228765A (en) Blind and manufacture thereof
CN102946993A (en) Sensor including a photocatalyst
JP5291982B2 (en) Liquid junction and method for manufacturing the same
JP4815324B2 (en) Liquid junction and reference electrode
JP5971152B2 (en) Method for forming a titanium oxide film on the surface of a molded article made of glass
JP4814048B2 (en) Photocatalyst production method
JP4824609B2 (en) Ion selective electrode
JP2017026637A (en) Ion selective electrode
CN210123411U (en) Electrode assembly
JP2008019156A (en) BiVO4 COLLOID DISPERSION AND METHOD OF MANUFACTURING THE SAME
CN103641512A (en) Method for dispersing anatase nano-TiO2 on surface of building material
JP2004085375A (en) Evaluation method and evaluation apparatus for photocatalyst activity and layer including photocatalyst
CN108007993A (en) A kind of photoelectricity pH sensors and preparation method thereof
JP3024749B2 (en) Hydrophilic member
JP3024748B2 (en) Hydrophilic member
Sandúa Fernández et al. A comparative study in the design of TIO2 assisted photocatalytic coatings monitored by controlling hydrophilic behavior and rhodamine b degradation
JPWO2010107087A1 (en) Photocatalyst member
JP2006164592A (en) Ion generating element
JP2004203692A (en) Method for forming titanium oxide film
JP5225009B2 (en) Photocatalyst film produced by utilizing tin plating method and method for producing photocatalyst material
JPH09276694A (en) Production of titanium dioxide photocatalyst
JPH10214985A (en) Solar-cell cover

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Ref document number: 5291982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250