JP5285008B2 - Internal reflection type optical deflector - Google Patents

Internal reflection type optical deflector Download PDF

Info

Publication number
JP5285008B2
JP5285008B2 JP2010051877A JP2010051877A JP5285008B2 JP 5285008 B2 JP5285008 B2 JP 5285008B2 JP 2010051877 A JP2010051877 A JP 2010051877A JP 2010051877 A JP2010051877 A JP 2010051877A JP 5285008 B2 JP5285008 B2 JP 5285008B2
Authority
JP
Japan
Prior art keywords
crystal
incident
light
ktn
total reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010051877A
Other languages
Japanese (ja)
Other versions
JP2011186219A (en
Inventor
生剛 八木
誠治 豊田
欽之 今井
和則 長沼
純 宮津
正弘 笹浦
宗範 川村
和夫 藤浦
雄三 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Advanced Technology Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Advanced Technology Corp
Priority to JP2010051877A priority Critical patent/JP5285008B2/en
Publication of JP2011186219A publication Critical patent/JP2011186219A/en
Application granted granted Critical
Publication of JP5285008B2 publication Critical patent/JP5285008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

光の方向を変える光偏向器に関する。   The present invention relates to an optical deflector that changes the direction of light.

光の進行方向を変える光偏向器のうち、2次の電気光学効果を利用するKTN光偏向器やKLTN光偏向器、1次の電気光学効果を利用する電気光学光偏向器、および、超音波と光弾性効果を利用する音響光学光偏向器は、ガルバノミラーやポリゴンミラー、MEMSミラー等と異なり、可動部を有さない固体素子である。従って、偏向角度を変更する際に慣性質量を有するミラーの加速減速の必要が無く、従って、剛性も要求しない為、小型で高速の光偏向器となる。これら固体素子の光偏向器は、振れ角が小さく、解像度を大きくすることができないという欠点があるが、KTN光偏向器やKLTN光偏向器には、素子内での相互作用長が長いほど偏向角が大きくなると言う特徴があり、光を素子内で複数回往復させることにより相互作用長を伸ばす工夫がなされている。(特許文献1参照)   Among optical deflectors that change the traveling direction of light, KTN optical deflectors and KLTN optical deflectors that use secondary electro-optic effects, electro-optic optical deflectors that use primary electro-optic effects, and ultrasonic waves Unlike a galvano mirror, a polygon mirror, a MEMS mirror, or the like, an acoustooptic light deflector that utilizes the photoelastic effect is a solid element that does not have a movable part. Accordingly, when changing the deflection angle, there is no need to accelerate or decelerate the mirror having the inertial mass, and therefore no rigidity is required, so that the optical deflector is small and high-speed. These solid-state optical deflectors have the disadvantage that the deflection angle is small and the resolution cannot be increased. However, KTN optical deflectors and KLTN optical deflectors are deflected as the interaction length in the element increases. There is a feature that the angle becomes large, and a device has been devised to extend the interaction length by reciprocating light several times in the element. (See Patent Document 1)

国際公開第06/137408号パンフレットInternational Publication No. 06/137408 Pamphlet

しかしながら、素子内を複数回往復させるための手段として反射ミラーを使用する場合、ミラーが金属である場合は素子に電圧を印加する為に、放電や電圧降下を避けるためには素子から離してミラーを設置せざるを得ず、高屈折率のKTNやKLTNから偏向して出射される光がスネルの法則により空気中でさらに大きく偏向され、ミラーに達するまで空気中を伝搬することになる。光は偏向により電圧印加方向に位置も移動するが、その位置は素子の厚みにより制限されており、空気中を伝搬することにより無駄に移動可能距離を消費していることになる。   However, when a reflecting mirror is used as a means for reciprocating a plurality of times in the element, in order to apply a voltage to the element when the mirror is made of metal, the mirror is separated from the element in order to avoid discharge or voltage drop. Therefore, the light emitted from the high refractive index KTN or KLTN is further deflected in the air by Snell's law and propagates in the air until it reaches the mirror. Light also moves in the voltage application direction due to deflection, but the position is limited by the thickness of the element, and the travelable distance is wasted by propagating through the air.

ミラーを誘電体多層膜にする場合、電圧降下や放電の危険は避けられる。しかし、誘電体多層膜ミラーは、膜形成に先立ち、使用波長や入射角度を予め決定しておく必要があり、特定の波長用途以外には使用しづらくなる。汎用品としての一般性を失うことを意味する。さらには、分光器など複数の波長に亘って同時に入射するような場合には、狭い波長帯域のミラーでは使用ができない。一方、波長範囲や入射角度範囲を広くすればするほど、多層膜の層数が増加し成膜コストが高くなる。特に、空気中での光の伝搬を避けるために、KTNやKLTNの側面に誘電体多層膜ミラーを直に成膜する場合、総膜厚が増加することは膜によるKTNやKLTNへの応力の増加を避けられず、電歪を伴う該素子の性能を下げることを意味する。さらには、応力に伴い、誘電体多層膜が剥がれやすくなることも懸念される。   When the mirror is made of a dielectric multilayer film, the risk of voltage drop and discharge can be avoided. However, prior to film formation, the dielectric multilayer mirror needs to determine the wavelength used and the incident angle in advance, and is difficult to use except for specific wavelength applications. It means losing generality as a general-purpose product. Furthermore, in the case of simultaneous incidence over a plurality of wavelengths such as a spectroscope, a mirror with a narrow wavelength band cannot be used. On the other hand, the wider the wavelength range and the incident angle range, the greater the number of layers of the multilayer film and the higher the film formation cost. In particular, in order to avoid the propagation of light in the air, when the dielectric multilayer mirror is directly formed on the side of the KTN or KLTN, the total film thickness increases because of the stress on the KTN or KLTN by the film. This means that an increase cannot be avoided and the performance of the device with electrostriction is lowered. Furthermore, there is a concern that the dielectric multilayer film easily peels off due to stress.

本発明は、金属ミラーや誘電体多層膜ミラーの欠点に鑑み、KTNやKLTN結晶内での全反射による折返しによる相互作用長延伸を基本原理とする内部反射型光偏向器を提供することを目的とする。   SUMMARY OF THE INVENTION In view of the drawbacks of metal mirrors and dielectric multilayer mirrors, an object of the present invention is to provide an internal reflection type optical deflector based on the principle of interaction length extension due to folding by total reflection in KTN or KLTN crystals. And

KTNやKLTNは、0.4μm〜4μmの波長範囲で透明であり、2μm以下の波長では、その屈折率は2.18を下回ることはない。屈折率が2.18の時、空気との界面において全反射条件は、θ>27.3゜であるから、KTNやKLTN結晶の内部の光が壁面の法線と27.3゜以上の角度をなす場合、2μm以下の波長の光は全反射され、結晶内で再び相互作用を繰り返すことになる。その様な状況を作り出すため、光の入出力を行う請求項1に関わる斜めカット面が必要になる。   KTN and KLTN are transparent in the wavelength range of 0.4 μm to 4 μm, and the refractive index does not fall below 2.18 at wavelengths of 2 μm or less. When the refractive index is 2.18, the total reflection condition at the interface with air is θ> 27.3 °, so the light inside the KTN or KLTN crystal is at an angle of 27.3 ° or more with the normal of the wall surface. In this case, light having a wavelength of 2 μm or less is totally reflected, and the interaction is repeated within the crystal. In order to create such a situation, an oblique cut surface according to claim 1 for inputting and outputting light is required.

従って、上述の目的を達成するために、本発明の請求項1に記載の内部反射型光偏向器は、KTN(KTa1-xNbx3)結晶、若しくは、KLTN(K1-yLiyTa1-xNbx3)結晶を使用した光偏向器において、上記KTN結晶若しくは上記KLTN結晶が互いに平行な一対の電極面と、上記電極面対に垂直で、かつ、少なくとも3対の互いに平行な側面からなり、上記電極面に投影した入射光の光軸と出射光の光軸が一致するよう、上記側面の角度と上記入射光の方向が調整されていることを特徴とする。 Therefore, in order to achieve the above object, an internal reflection type optical deflector according to claim 1 of the present invention is a KTN (KTa 1-x Nb x O 3 ) crystal or KLTN (K 1-y Li). y Ta 1-x Nb x O 3 ) crystal, wherein the KTN crystal or the KLTN crystal is parallel to each other, a pair of electrode surfaces parallel to each other, and perpendicular to the electrode surface pairs, and at least three pairs Ri Do from parallel sides to one another, so that the optical axis of the outgoing light of the incident light projected to the electrode surface are the same, characterized in that the angle and direction of the incident light of the above aspect is adjusted .

また、本発明の請求項2に記載の内部反射型光偏向器は、上記3対の側面のうち、1対の入出射面を除く残り2対が互いに垂直であり、上記互いに垂直な2対の側面は、KTNもしくはKLTN結晶を透過する光を全反射することを特徴とする。 Further, in the internal reflection type optical deflector according to claim 2 of the present invention, of the three pairs of side surfaces, the remaining two pairs excluding one pair of incident / exit surfaces are perpendicular to each other, and the two pairs perpendicular to each other The side surface is characterized by totally reflecting the light transmitted through the KTN or KLTN crystal.

本発明によれば、全反射構造を採用することにより、外部ミラー使用時に問題となる偏向方向へのビーム移動距離を浪費することも、誘電体多層膜ミラー形成に伴うコスト上昇や応力発生を生じることもなく、結晶と光の相互作用長を延伸させ、偏向角を増大させることが可能となる。あるいは、偏向角を増大させない場合でも、必要な偏向角度を得るのに必要な印加電圧が減少し、電源コストの低下を期待できる。   According to the present invention, by adopting the total reflection structure, the beam movement distance in the deflection direction, which is a problem when using the external mirror, is wasted, which causes an increase in cost and stress generation due to the formation of the dielectric multilayer mirror. Without any problem, the interaction length between the crystal and the light can be extended, and the deflection angle can be increased. Alternatively, even when the deflection angle is not increased, the applied voltage required to obtain the necessary deflection angle is reduced, and a reduction in power supply cost can be expected.

本発明の請求項1に記載の光偏向器の基本構成を示す図であり、図1(a)は、従来のKTN若しくはKLTN結晶の直方体を示す図であり、図1(b)は、本発明の請求項1に記載の基本形状を示す図であり、図1(c)は、本発明の光入出力方向を説明する説明図である。It is a figure which shows the basic composition of the optical deflector of Claim 1 of this invention, FIG. 1 (a) is a figure which shows the rectangular parallelepiped of the conventional KTN or KLTN crystal | crystallization, FIG.1 (b) is this figure It is a figure which shows the basic shape of Claim 1 of invention, FIG.1 (c) is explanatory drawing explaining the light input / output direction of this invention. 本発明の請求項2に記載の光偏向器の基本構成図である。FIG. 3 is a basic configuration diagram of an optical deflector according to claim 2 of the present invention. 本発明の全反射回数が多い場合の光路図を示す図であり、図3(a)は、8回の全反射を繰り返す場合の光路図300を示す図であり、図3(b)は、14回の全反射を繰り返す場合の光路図310を示す図である。FIG. 3A is a diagram showing an optical path when the total number of total reflections of the present invention is large, FIG. 3A is a diagram showing an optical path diagram 300 when eight times of total reflection are repeated, and FIG. It is a figure which shows the optical path diagram 310 in the case of repeating 14 times of total reflection. 6回の全反射を繰り返し、結晶長を4mmに固定し、全反射角を変化させたときの結晶幅と入射可能ビーム幅の全反射角度依存性を示す図である。It is a figure which shows the total reflection angle dependence of the crystal width and incident beam width when repeating 6 times of total reflection, fixing the crystal length to 4 mm, and changing the total reflection angle. 6回の全反射を繰り返し、結晶長を4mmに固定し、全反射角を変化させたときの相互作用長および相互作用長/結晶長比の全反射角度依存性を示す図である。It is a figure which shows the total reflection angle dependence of interaction length and interaction length / crystal length ratio when repeating total reflection 6 times, fixing a crystal length to 4 mm, and changing a total reflection angle. 本発明の請求項3,4に記載の光偏向器の構成を示す図であり、図6(a)は、入射光が入射面に垂直に入射する場合の光路図600を示す図であり、図6(b)は、入射光と出射光の光軸が一致している場合の光路図610を示す図である。FIG. 6A is a diagram showing a configuration of an optical deflector according to claims 3 and 4 of the present invention, and FIG. 6A is a diagram showing an optical path diagram 600 when incident light is perpendicularly incident on an incident surface; FIG. 6B is a diagram showing an optical path diagram 610 in the case where the optical axes of incident light and outgoing light coincide. 本発明の実施例1の光偏向器の構成を示す図である。It is a figure which shows the structure of the optical deflector of Example 1 of this invention. 本発明の実施例2の光偏向器の構成を示す図である。It is a figure which shows the structure of the optical deflector of Example 2 of this invention.

図1は、本発明の請求項1に記載の光偏向器の基本構成を示す図であり、図1(a)は、従来のKTN若しくはKLTN結晶の直方体100を示す図であり、図1(b)は、本発明の請求項1に記載の基本形状110を示す図であり、図1(c)は、本発明の光入出力方向と電圧印加方向を説明する説明図120である。従来のKTN/KLTNデバイスは、図1(a)に示すような、直方体100であって、その表面は、1対の電極面と、電極面に垂直でかつ互いに平行な2対の側面の計6面から構成されている。本発明において、最も簡単な構成は、電極面101に垂直で互いに平行な面102、103を追加形成することである。   FIG. 1 is a diagram showing a basic configuration of an optical deflector according to claim 1 of the present invention, and FIG. 1A is a diagram showing a conventional rectangular parallelepiped 100 of KTN or KLTN crystal, and FIG. FIG. 1B is a diagram showing the basic shape 110 according to claim 1 of the present invention, and FIG. 1C is an explanatory diagram 120 for explaining the light input / output direction and the voltage application direction of the present invention. A conventional KTN / KLTN device is a rectangular parallelepiped 100 as shown in FIG. 1 (a), and its surface is composed of a pair of electrode surfaces and two pairs of side surfaces perpendicular to the electrode surfaces and parallel to each other. It consists of six sides. In the present invention, the simplest configuration is to additionally form surfaces 102 and 103 which are perpendicular to the electrode surface 101 and parallel to each other.

結果として、計8面からなる立体110が形成される。新たに形成された面112、113は、電極面111とは直交するが、従来の側面114、115、116、117とは直交しない。図1(c)に示すように、直方体100の一部を切り取って新たに追加された1対の平行面112及び113のいずれかの1面に入射光122を入射し、内部で全反射を繰り返して出射光123を出射する。平行な電極面121に印加電圧124を印加するので、電圧印加方向にビームが偏向する。   As a result, a solid 110 consisting of a total of eight surfaces is formed. The newly formed surfaces 112 and 113 are orthogonal to the electrode surface 111, but not orthogonal to the conventional side surfaces 114, 115, 116, and 117. As shown in FIG. 1C, a part of the rectangular parallelepiped 100 is cut out, and incident light 122 is incident on one of the newly added pair of parallel surfaces 112 and 113, and total internal reflection is performed. The emitted light 123 is emitted repeatedly. Since the applied voltage 124 is applied to the parallel electrode surfaces 121, the beam is deflected in the voltage application direction.

図2に、全反射の様子を示す。図2は、光路を電極面方向に投影したものであって、電圧印加による偏向は見えない。入射光201は入射面202において、スネルの法則に従って屈折し、KTNもしくはKLTN結晶内に入っていく。全反射を起こすのは211、212、213、214面である。入射光は、まず全反射部204において全反射する。211面の法線と光のなす角θは全反射条件であるsinθ>nでなければならない。nは、KTNもしくはKLTN結晶の屈折率である。前述のように、2μm以下の波長ではn>2.18であるから、θ>27.3゜であることが要請される。次いで、全反射した光は213面の全反射部205で全反射される。この例の場合、211面と213面は直交しているから、213面の法線と光のなす角φは、φ=90゜−θである。213面での全反射条件は、φ>27.3゜であるから、θ<90゜−27.3゜=62.7゜でなければならない。従って、
27.3゜<θ<62.7゜ (1)
が満足されなければならない。
FIG. 2 shows the state of total reflection. In FIG. 2, the optical path is projected in the direction of the electrode surface, and deflection due to voltage application is not visible. Incident light 201 is refracted on the incident surface 202 in accordance with Snell's law, and enters the KTN or KLTN crystal. It is the surfaces 211, 212, 213, and 214 that cause total reflection. First, the incident light is totally reflected by the total reflection portion 204. The angle θ between the normal line of the 211 surface and the light must satisfy sin θ> n, which is a total reflection condition. n is the refractive index of the KTN or KLTN crystal. As described above, since n> 2.18 at a wavelength of 2 μm or less, θ> 27.3 ° is required. Next, the totally reflected light is totally reflected by the total reflection portion 205 on the 213 surface. In this example, since the 211 surface and the 213 surface are orthogonal to each other, the angle φ formed by the normal line of the 213 surface and the light is φ = 90 ° −θ. Since the total reflection condition on the 213 plane is φ> 27.3 °, θ <90 ° −27.3 ° = 62.7 ° must be satisfied. Therefore,
27.3 ° <θ <62.7 ° (1)
Must be satisfied.

入射面202から入射された光は、引き続き、全反射部206、207、208、209で全反射を繰り返し、最後に出射面203から結晶外に放出される。202面と203面は平行であるから、電圧印加の有無に関わらず入射光201と出射光210を電極面へ投影した場合、その角度は投影面内では平行である。電極面の法線方向に、電圧が印加されている場合には平行ではない。この図では、6回の全反射を繰り返すが、反射を伴わない場合に比較して、ほぼ5倍の距離を結晶内で透過することになり、結果として同じ印加電圧であるなら、ほぼ5倍の偏向角をもたらすことになる。   The light incident from the incident surface 202 continues to be totally reflected by the total reflection portions 206, 207, 208, and 209, and is finally emitted from the emission surface 203 to the outside of the crystal. Since the 202 plane and the 203 plane are parallel, when the incident light 201 and the outgoing light 210 are projected onto the electrode surface regardless of whether or not a voltage is applied, the angles are parallel within the projection plane. When a voltage is applied in the normal direction of the electrode surface, it is not parallel. In this figure, the total reflection is repeated six times, but the distance is transmitted through the crystal approximately five times as compared with the case where no reflection is involved. Will result in a deflection angle of.

図3は、全反射回数が多い場合の光路図を示す図であり、図3(a)は、8回の全反射を繰り返す場合の光路図300を示す図であり、図3(b)は、14回の全反射を繰り返す場合の光路図310を示す図である。それぞれ、入射光301と311が入射され、出射光302と312が出射される。ここで、図3(a)、図3(b)ともに、全反射位置に番号が順番に振られている。この図のように、必要に応じて全反射回数、ひいては偏向角度を大きくすることは容易である。   FIG. 3 is a diagram showing an optical path diagram when the total number of total reflections is large, FIG. 3A is a diagram showing an optical path diagram 300 when eight times of total reflection are repeated, and FIG. FIG. 36 is a diagram showing an optical path diagram 310 when 14 total reflections are repeated. Incident lights 301 and 311 are incident and outgoing lights 302 and 312 are emitted, respectively. Here, in FIGS. 3A and 3B, numbers are assigned to the total reflection positions in order. As shown in this figure, it is easy to increase the total number of reflections, and hence the deflection angle, as necessary.

図4は、図2における結晶長(L)を4mmに、全反射回数を6回に固定し、全反射角度(θ)を31゜から45゜まで変化させたときの、最適結晶幅(W)と入射可能ビーム幅の全反射角度依存性400を示す図である。この場合、それぞれの全反射角度において、入出力面202、203の角度、長さは入射可能ビーム幅が最大になるように調節されている。図4によれば、全反射角度が大きい場合には、入射可能ビーム幅が大きくなることが分かる。しかし、同時に結晶幅(W)も大きくなり、より大きな結晶が必要とされることが分かる。   FIG. 4 shows the optimum crystal width (W) when the crystal length (L) in FIG. 2 is fixed to 4 mm, the total number of reflections is fixed to 6, and the total reflection angle (θ) is changed from 31 ° to 45 °. ) And the total reflection angle dependence 400 of the incident beam width. In this case, at each total reflection angle, the angles and lengths of the input / output surfaces 202 and 203 are adjusted so that the incident beam width is maximized. As can be seen from FIG. 4, the incident beam width increases when the total reflection angle is large. However, at the same time, the crystal width (W) also increases, indicating that a larger crystal is required.

図5は、同上の条件で結晶内を光が通過する距離、即ち結晶と光との相互作用長、および、相互作用長/結晶幅比の全反射角度依存性500を示す図である。相互作用長は、θが大きくなると長くなるが、相互作用長/結晶幅比は逆に小さくなっていることが分かる。即ち、結晶単位大きさあたりの偏向角度は全反射角度が小さいほど大きく有利であることが分かる。   FIG. 5 is a diagram showing the total reflection angle dependence 500 of the distance that light passes through the crystal under the same conditions, that is, the interaction length between the crystal and light, and the interaction length / crystal width ratio. It can be seen that the interaction length increases as θ increases, but the interaction length / crystal width ratio decreases. That is, it can be seen that the deflection angle per crystal unit size is more advantageous as the total reflection angle is smaller.

しかし、結晶内で6回の反射を繰り返しているので、側面の角度や長さが設計値からずれていると出射位置で大きくビーム位置が変わってしまい、ケラレが生じてしまう。光偏向器としての性能指数(Ξ)はビームの直径(D)と最大偏向角(ξ)を使用して、
Ξ=Dtanξ (2)
で表されるから、本発明による全反射構造によって偏向角ξを大きくしたとしても、製造誤差によるビームのケラレによってDが小さくなってしまうと性能向上は難しい。従って、全反射角度の大きさの決定には、実現可能なKTNもしくはKLTN結晶の研磨精度を勘案しなければならない。
However, since the reflection is repeated six times in the crystal, if the angle or length of the side surface is deviated from the design value, the beam position is greatly changed at the emission position, resulting in vignetting. The figure of merit (Ξ) as an optical deflector uses the beam diameter (D) and the maximum deflection angle (ξ),
Ξ = Dtanξ (2)
Therefore, even if the deflection angle ξ is increased by the total reflection structure according to the present invention, it is difficult to improve the performance if D decreases due to beam vignetting due to manufacturing errors. Therefore, in determining the size of the total reflection angle, it is necessary to consider the polishing accuracy of KTN or KLTN crystal that can be realized.

さらに、入射光と入射面との関係において、光学的に特別な配置が少なくとも2種類存在する。1つは請求項3に記載されている入射光が入射面に垂直に入射する場合である。この場合、入射面における屈折に伴う波長分散が存在しない。偏向方向への波長分散、即ち、偏向角度の波長依存性は避けられないが、少なくとも、電極面に投影した光路に波長依存性は存在しない。   Furthermore, there are at least two types of optically special arrangements in relation to the incident light and the incident surface. One is a case where the incident light described in claim 3 is incident perpendicularly to the incident surface. In this case, there is no chromatic dispersion associated with refraction at the entrance surface. Although wavelength dispersion in the deflection direction, that is, wavelength dependence of the deflection angle is inevitable, there is no wavelength dependence at least in the optical path projected on the electrode surface.

もう1つは請求項4に記載されている入射光と出射光の光軸が電極面への投影において一致している場合である。これは、光軸が一致するよう屈折角を調整する必要があるため、設計時の屈折率である波長のときのみ実現される。   The other is a case where the optical axes of incident light and outgoing light described in claim 4 coincide in projection onto the electrode surface. Since it is necessary to adjust the refraction angle so that the optical axes coincide with each other, this is realized only when the wavelength is the refractive index at the time of design.

これら請求項3および4に関わる図を図6に示す。図6(a)は、請求項3に記載されているものに対応する光路図であって、入射光が入射面に垂直に入射する場合の光路図600を示す図である。この図は電極面への投影である。太い実線がKTNもしくはKLTN結晶の側面を示している。破線が光路である。この場合、全反射条件を満たす限り、電極面に投影された光路に波長依存性はない。しかし、出射光は一点鎖線で示された入射光軸に対して平行移動しており、用途によっては扱いづらいことがある。図6(b)は、光軸一致を優先させた構成であり請求項4に関する光路図600を示す図である。入射光が単色であれば、破線で示される光路をたどり、入射光と出射光の光軸を一致させることが可能である。しかし、複数の波長を含んだ光を入射させた場合、屈折率の波長分散に伴い、入射面での角度ずれが生じる。その結果、太い破線で示される出射光1と細い実線で示される出射光2のように、出射点が異なってしまうことがあるので、複数波長を偏向させる場合には注意が必要である。また、必要に応じて入出力面に無反射コートを施すことも可能である。   A diagram relating to these claims 3 and 4 is shown in FIG. FIG. 6A is an optical path diagram corresponding to the third aspect of the present invention, and shows an optical path diagram 600 when incident light is perpendicularly incident on the incident surface. This figure is a projection onto the electrode surface. The thick solid line indicates the side of the KTN or KLTN crystal. A broken line is an optical path. In this case, as long as the total reflection condition is satisfied, the optical path projected on the electrode surface has no wavelength dependency. However, the emitted light is translated with respect to the incident optical axis indicated by the alternate long and short dash line, and may be difficult to handle depending on the application. FIG. 6B is a diagram showing an optical path diagram 600 related to claim 4 in which the optical axis coincidence is prioritized. If the incident light is monochromatic, it is possible to follow the optical path indicated by the broken line and to match the optical axes of the incident light and the emitted light. However, when light including a plurality of wavelengths is incident, an angular shift occurs on the incident surface with the wavelength dispersion of the refractive index. As a result, the exit point may be different, as in the case of the exit light 1 indicated by a thick broken line and the exit light 2 indicated by a thin solid line, so care must be taken when deflecting a plurality of wavelengths. In addition, a non-reflective coating can be applied to the input / output surface as necessary.

(実施例1)
図7に、入射光が入射面に垂直入射する場合の実施例700を示す。図面は、電極面への投影図である。電極面間、即ち、紙面に垂直な方向へのKTNもしくはKLTN結晶の厚みは2mmである。全反射角度θは31゜である。結晶長(L)は4mm、結晶幅(W)は4.197mm、入射面の傾斜角は全反射角度と同じ31゜である。入射面と出射面の形状は同じであり、面間隔は4.665mmである。この場合、出射光は入射光軸に対して1.04mmずれることになる。相互作用長は22.7mmである。150V/mmの電界印加により1mmの相互作用長あたり0.25度の偏向角度を使用すると、±300Vの印加によって、±11.3゜の偏向角度が得られる。
Example 1
FIG. 7 shows an embodiment 700 in which incident light is perpendicularly incident on the incident surface. The drawing is a projection onto the electrode surface. The thickness of the KTN or KLTN crystal between the electrode surfaces, that is, in the direction perpendicular to the paper surface is 2 mm. The total reflection angle θ is 31 °. The crystal length (L) is 4 mm, the crystal width (W) is 4.197 mm, and the inclination angle of the incident surface is 31 °, which is the same as the total reflection angle. The shapes of the entrance surface and the exit surface are the same, and the surface interval is 4.665 mm. In this case, the emitted light is shifted by 1.04 mm with respect to the incident optical axis. The interaction length is 22.7 mm. If a deflection angle of 0.25 degrees per 1 mm interaction length is applied by applying an electric field of 150 V / mm, a deflection angle of ± 11.3 ° is obtained by applying ± 300 V.

(実施例2)
図8に、入射光と出射光の光軸が一致する場合の実施例800を示す。図面は、電極面への投影図である。電極面間、即ち、紙面に垂直な方向へのKTNもしくはKLTN結晶の厚みは2mmである。全反射角度θは35゜である。結晶長(L)は4mm、結晶幅(W)は4.92mm、入射面の傾斜角は24.2゜であり、入出射角度は図に示されるように側面に対して47.4゜である。屈折率は、2.25である。この場合、相互作用長は23.8mmである。150V/mmの電界印加により1mmの相互作用長あたり0.25゜の偏向角度を使用すると、±300Vの印加によって、±11.9゜の偏向角度が得られる。
(Example 2)
FIG. 8 shows an embodiment 800 in which the optical axes of incident light and outgoing light coincide. The drawing is a projection onto the electrode surface. The thickness of the KTN or KLTN crystal between the electrode surfaces, that is, in the direction perpendicular to the paper surface is 2 mm. The total reflection angle θ is 35 °. The crystal length (L) is 4 mm, the crystal width (W) is 4.92 mm, the inclination angle of the incident surface is 24.2 °, and the incident / exit angle is 47.4 ° with respect to the side surface as shown in the figure. is there. The refractive index is 2.25. In this case, the interaction length is 23.8 mm. When a deflection angle of 0.25 ° per 1 mm interaction length is applied by applying an electric field of 150 V / mm, a deflection angle of ± 11.9 ° is obtained by applying ± 300 V.

以上説明したように、本発明による全反射構造を採用することにより、外部ミラー使用時に問題となる偏向方向へのビーム移動距離を浪費することも、誘電体多層膜ミラー形成に伴うコスト上昇や応力発生を生じることもなく、結晶と光の相互作用長を延伸させ、偏向角を増大させることが可能となる。あるいは、偏向角を増大させない場合でも、必要な偏向角度を得るのに必要な印加電圧が減少し、電源コストの低下を期待できる。   As described above, by employing the total reflection structure according to the present invention, the beam movement distance in the deflection direction, which is a problem when using an external mirror, is wasted. Without generating, it is possible to extend the interaction length between the crystal and light and increase the deflection angle. Alternatively, even when the deflection angle is not increased, the applied voltage required to obtain the necessary deflection angle is reduced, and a reduction in power supply cost can be expected.

Claims (2)

KTN(KTa1-xNbx3)結晶、若しくは、KLTN(K1-yLiyTa1-xNbx3)結晶を使用した光偏向器において、
前記KTN結晶若しくは前記KLTN結晶が互いに平行な一対の電極面と、
前記電極面対に垂直で、かつ、少なくとも3対の互いに平行な側面からなり、
前記電極面に投影した入射光の光軸と出射光の光軸が一致するよう、前記側面の角度と前記入射光の方向が調整されていることを特徴とする内部反射型光偏向器。
In an optical deflector using a KTN (KTa 1-x Nb x O 3 ) crystal or a KLTN (K 1-y Li y Ta 1-x Nb x O 3 ) crystal,
A pair of electrode surfaces in which the KTN crystal or the KLTN crystal is parallel to each other;
The electrode surface pair is perpendicular, and Ri Do from each other parallel sides of the at least three pairs,
An internal reflection type optical deflector characterized in that the angle of the side surface and the direction of the incident light are adjusted so that the optical axis of the incident light projected onto the electrode surface coincides with the optical axis of the emitted light .
前記3対の側面のうち、1対の入出射面を除く残り2対が互いに垂直であり、前記互いに垂直な2対の側面は、KTNもしくはKLTN結晶を透過する光を全反射することを特徴とする請求項1に記載の内部反射型光偏向器。 Of the three pairs of side surfaces, the remaining two pairs excluding one pair of incident / exit surfaces are perpendicular to each other, and the two pairs of side surfaces perpendicular to each other totally reflect light transmitted through the KTN or KLTN crystal. The internal reflection type optical deflector according to claim 1.
JP2010051877A 2010-03-09 2010-03-09 Internal reflection type optical deflector Active JP5285008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010051877A JP5285008B2 (en) 2010-03-09 2010-03-09 Internal reflection type optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010051877A JP5285008B2 (en) 2010-03-09 2010-03-09 Internal reflection type optical deflector

Publications (2)

Publication Number Publication Date
JP2011186219A JP2011186219A (en) 2011-09-22
JP5285008B2 true JP5285008B2 (en) 2013-09-11

Family

ID=44792565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010051877A Active JP5285008B2 (en) 2010-03-09 2010-03-09 Internal reflection type optical deflector

Country Status (1)

Country Link
JP (1) JP5285008B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6276649B2 (en) * 2014-05-20 2018-02-07 日本電信電話株式会社 Electro-optic device
JP2016038465A (en) * 2014-08-07 2016-03-22 日本電信電話株式会社 Electrooptic device
JP2016045400A (en) * 2014-08-25 2016-04-04 日本電信電話株式会社 Electrooptic device
JP6294796B2 (en) * 2014-09-01 2018-03-14 日本電信電話株式会社 Optical deflector and apparatus including optical deflector
JP6535295B2 (en) * 2016-04-14 2019-06-26 日本電信電話株式会社 Electro-optical device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3899411B2 (en) * 2004-02-19 2007-03-28 独立行政法人情報通信研究機構 Slab-type solid-state laser medium or slab-type nonlinear optical medium using an optical path composed of multiple reflections by three reflecting surfaces
CA2829445C (en) * 2005-06-20 2016-05-03 Nippon Telegraph And Telephone Corporation Electrooptic device

Also Published As

Publication number Publication date
JP2011186219A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5285008B2 (en) Internal reflection type optical deflector
CN109477953B (en) Efficient optical path folding device
US11460628B2 (en) Projector integrated with a scanning mirror
JP5265757B2 (en) Prism beam splitter
JP5855323B1 (en) Optical collimator array and optical switch device
JP6793194B2 (en) Optical scanning element
US20090207480A1 (en) Wavelength converting apparatus
JP5899881B2 (en) Tunable laser light source device
WO2018037700A1 (en) Detection light generation element and detection light irradiation method
JP2015102796A (en) Optical branching device
JP6444640B2 (en) Optical element
JP5558927B2 (en) Spectrometer
US20230020133A1 (en) Optical device for controlling light from an external light source
JP6084797B2 (en) Surface light source device and display device
JP2011059341A (en) Light deflector
KR20210042217A (en) Augmented reality device including a flat combiner and electronic device including the same
JP2011059342A (en) Light deflector
JP5742331B2 (en) Laser light scanner
JP2018072486A (en) Optical switch and method for using optical switch
JP7041903B2 (en) Optical wave device
JPWO2004111693A1 (en) Diffraction grating and manufacturing method thereof
JP2023178056A (en) Optical element, eyepiece optical system having the same, and image display device
JP2019015930A (en) Electro-optic light deflector
US10591669B2 (en) Wave plate and divided prism member
JP2012014119A (en) Light deflector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130530

R150 Certificate of patent or registration of utility model

Ref document number: 5285008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350