JP5282955B2 - Ultrasonic flow meter correction method and ultrasonic flow meter - Google Patents

Ultrasonic flow meter correction method and ultrasonic flow meter Download PDF

Info

Publication number
JP5282955B2
JP5282955B2 JP2008313952A JP2008313952A JP5282955B2 JP 5282955 B2 JP5282955 B2 JP 5282955B2 JP 2008313952 A JP2008313952 A JP 2008313952A JP 2008313952 A JP2008313952 A JP 2008313952A JP 5282955 B2 JP5282955 B2 JP 5282955B2
Authority
JP
Japan
Prior art keywords
ultrasonic
flow rate
measurement
flow
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008313952A
Other languages
Japanese (ja)
Other versions
JP2010139291A (en
Inventor
賢治 流田
尚孝 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Electronics Co Ltd
Original Assignee
Honda Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Electronics Co Ltd filed Critical Honda Electronics Co Ltd
Priority to JP2008313952A priority Critical patent/JP5282955B2/en
Publication of JP2010139291A publication Critical patent/JP2010139291A/en
Application granted granted Critical
Publication of JP5282955B2 publication Critical patent/JP5282955B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flowmeter capable of accurately correcting a flow rate even when the kind or concentration of a measuring fluid changes. <P>SOLUTION: The ultrasonic flowmeter 1 includes: a pipe having two straight portions 2 and 3; first ultrasonic transducers 5a and 5b provided in the first straight portion 2; second ultrasonic transducers 6a and 6b provided in the second straight portion 3; and a control apparatus 7 connected to the individual ultrasonic transducers 5a, 5b, 6a, and 6b. The control apparatus 7 measures flow rates in the individual straight portions 2 and 3, by performing transmission and reception of ultrasonic waves So by the use of the individual ultrasonic transducers 5a, 5b, 6a, and 6b, and flow-rate correction is performed on the basis of the difference between those measurement values. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、超音波の伝搬時間差により流体の流量を測定する超音波流量計の補正方法、及び超音波流量計に関するものである。   The present invention relates to a method for correcting an ultrasonic flowmeter that measures a flow rate of a fluid based on a difference in propagation time of ultrasonic waves, and an ultrasonic flowmeter.

従来の超音波流量計では、測定用流体が流れる配管の上流側及び下流側に超音波送受信器を設け、超音波送受信器を用いて超音波を送受信し、上流側から下流側に伝搬する超音波の伝搬時間と下流側から上流側に伝搬する超音波の伝搬時間との時間差に基づいて測定用流体の流量を求めている。この種の超音波流量計において、測定用流体の温度や濃度が変化すると、その変化に伴って流体の動粘度が変化するため、流量の測定誤差が生じてしまう。この対策として、温度変化に対応した動粘度に基づいて流量の補正を行う技術が提案されている(例えば、特許文献1参照)。   In the conventional ultrasonic flowmeter, ultrasonic transmitters / receivers are provided on the upstream side and downstream side of the pipe through which the measurement fluid flows, and ultrasonic waves are transmitted / received using the ultrasonic transmitter / receiver, and are transmitted from the upstream side to the downstream side. The flow rate of the measurement fluid is obtained based on the time difference between the propagation time of the sound wave and the propagation time of the ultrasonic wave propagating from the downstream side to the upstream side. In this type of ultrasonic flowmeter, when the temperature or concentration of the measurement fluid changes, the kinematic viscosity of the fluid changes with the change, which causes a flow measurement error. As a countermeasure, a technique for correcting the flow rate based on the kinematic viscosity corresponding to the temperature change has been proposed (for example, see Patent Document 1).

特許文献1に開示されている補正方法では、超音波流量計により流速及び音速を計測し、音速をパラメータとした温度テーブルを使用して流体の温度を求める。そして、温度をパラメータとした動粘度テーブルを使用して動粘度を求め、その動粘度に応じた比率で流量を補正している。
特開2007−51913号公報
In the correction method disclosed in Patent Document 1, the flow velocity and sound velocity are measured by an ultrasonic flowmeter, and the temperature of the fluid is obtained using a temperature table using the sound velocity as a parameter. And kinematic viscosity is calculated | required using the kinematic viscosity table which made temperature the parameter, and the flow volume is correct | amended by the ratio according to the kinematic viscosity.
JP 2007-51913 A

ところが、上述した特許文献1の補正方法では、予め決められた測定用流体とは異なる種類の流体や濃度が変化した測定用流体を測定する場合、使用されるテーブルデータがその測定用流体に対応していないため、誤った補正を行ってしまい測定誤差が大きくなってしまう。また、流体の種類によっては、音速と温度との関係に極大点P1を持つ場合がある(図7参照)。この場合には、測定した音速から温度が一意に求まらないため、測定可能な温度範囲が制限されるといった問題も生じてしまう。   However, in the correction method of Patent Document 1 described above, when measuring a fluid of a type different from a predetermined measurement fluid or a measurement fluid whose concentration has changed, the table data used corresponds to the measurement fluid. As a result, incorrect correction is performed, resulting in a large measurement error. Further, depending on the type of fluid, there may be a maximum point P1 in the relationship between the speed of sound and temperature (see FIG. 7). In this case, since the temperature cannot be uniquely obtained from the measured sound speed, there is a problem that the measurable temperature range is limited.

本発明は上記の課題に鑑みてなされたものであり、その目的は、測定用流体の種類や濃度が変化した場合でも流量補正を的確に行うことができる超音波流量計の補正方法、及び超音波流量計を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an ultrasonic flowmeter correction method capable of accurately performing flow rate correction even when the type and concentration of a measurement fluid change, and a super To provide a sonic flow meter.

上記課題を解決するために、手段1に記載の発明は、測定用流体が流れる配管の上流側及び下流側に設けられた超音波送受信器を用いて超音波を送受信し、上流側から下流側に伝搬する超音波の伝搬時間と下流側から上流側に伝搬する超音波の伝搬時間との時間差に基づいて、前記測定用流体の流量を求める超音波流量計の補正方法であって、前記配管において流路断面積が異なる測定部位、または前記配管において内面の表面粗さが異なる測定部位に設けられた複数の超音波送受信器を用いて超音波の送受信を行うことにより、前記測定用流体の流速または流量を前記複数の超音波送受信器でそれぞれ計測する計測ステップと、前記複数の超音波送受信器による計測値の比または差に基づいて前記測定用流体の流量を補正する補正ステップとを含むことを特徴とする超音波流量計の補正方法をその要旨とする。 In order to solve the above-mentioned problem, the invention described in the means 1 transmits / receives ultrasonic waves using ultrasonic transmitters / receivers provided on the upstream side and downstream side of a pipe through which the measurement fluid flows, and from the upstream side to the downstream side An ultrasonic flowmeter correction method for obtaining a flow rate of the measurement fluid based on a time difference between a propagation time of an ultrasonic wave propagating to the upstream side and a propagation time of an ultrasonic wave propagating from a downstream side to an upstream side, the pipe The measurement fluid is measured by transmitting and receiving ultrasonic waves using a plurality of ultrasonic transmitters / receivers provided in measurement sites having different flow path cross-sectional areas or measurement sites having different inner surface roughnesses in the pipe. correction step of correcting a measurement step, the flow rate of the measurement fluid based on a ratio or a difference of the measurement value by the plurality of ultrasonic transducers for measuring respectively the flow velocity or flow rate at the plurality of ultrasonic transducers Correction method of the ultrasonic flowmeter which comprises a as its gist the.

従って、手段1に記載の発明によると、測定用流体が流れる配管において測定用流体の流れの特性が異なる測定部位に複数の超音波送受信器が設けられており、計測ステップでは、それら超音波送受信器により、超音波の伝搬時間差が求められ、その伝搬時間差に応じた測定用流体の流速または流量が計測される。そして、補正ステップでは、各音波送受信器による計測値の差に基づいて測定用流体の流量が補正される。このようにすれば、測定用流体の種類や濃度が変化した場合であっても、温度計や粘度計などの他のセンサを用いることなく、流量補正を的確に行うことができる。   Therefore, according to the invention described in the means 1, a plurality of ultrasonic transmitters / receivers are provided in measurement parts having different flow characteristics of the measurement fluid in the pipe through which the measurement fluid flows, and in the measurement step, the ultrasonic transmission / reception is performed. The ultrasonic wave propagation time difference is obtained by the measuring device, and the flow velocity or flow rate of the measurement fluid corresponding to the propagation time difference is measured. In the correction step, the flow rate of the measurement fluid is corrected based on the difference between the measurement values obtained by the sound wave transmitters / receivers. In this way, even when the type and concentration of the measurement fluid change, the flow rate can be corrected accurately without using other sensors such as a thermometer and a viscometer.

上記手段1では、配管において流路断面積が異なる測定部位、または内面の表面粗さが異なる測定部位に複数の超音波送受信器が設けられている。この場合、測定用流体の流れの状態を表すレイノルズ数はそれぞれの測定部位で異なるため、測定用流体の動粘度が変化すると各超音波送受信器を用いて計測される流量は異なる計測値となる。従って、各計測値の差を利用して補正することにより、測定用流体の温度や濃度が変化した場合でもその測定用流体の流量を正確に求めることができる。 In the above means 1, a plurality of ultrasonic transmitters / receivers are provided in measurement sites having different flow path cross-sectional areas in piping or measurement sites having different inner surface roughnesses . In this case, since the Reynolds number representing the flow state of the measurement fluid is different at each measurement site, the flow rate measured using each ultrasonic transceiver becomes a different measurement value when the kinematic viscosity of the measurement fluid changes. . Therefore, by correcting using the difference between the measurement values, the flow rate of the measurement fluid can be accurately obtained even when the temperature or concentration of the measurement fluid changes.

手段に記載の発明は、手段において、前記複数の超音波送受信器による計測値の差に基づいて、前記測定用流体の動粘度を算出する動粘度算出ステップをさらに含み、前記補正ステップにおいて、前記動粘度により前記流量を補正することをその要旨とする。 The invention described in the means 2 further includes a kinematic viscosity calculating step of calculating a kinematic viscosity of the measurement fluid based on a difference between measured values by the plurality of ultrasonic transceivers in the means 1 , and in the correcting step, The gist is to correct the flow rate by the kinematic viscosity.

前記複数の超音波送受信器で計測される補正前の各流量の比率は、測定用流体の動粘度に依存して変化する。従って、手段に記載の発明のように、動粘度算出ステップにおいて、複数の超音波送受信器による計測値の差に基づいて、測定用流体の動粘度が算出される。そして、補正ステップでは、その動粘度により流量が補正される。このようにすれば、測定用流体の温度や濃度が変化した場合でもその測定用流体の流量を正確に求めることができる。 The ratio of each flow rate before correction measured by the plurality of ultrasonic transceivers varies depending on the kinematic viscosity of the measurement fluid. Therefore, as in the invention described in the means 2 , in the kinematic viscosity calculation step, the kinematic viscosity of the measurement fluid is calculated based on the difference between the measurement values obtained by the plurality of ultrasonic transceivers. In the correction step, the flow rate is corrected by the kinematic viscosity. In this way, even when the temperature or concentration of the measurement fluid changes, the flow rate of the measurement fluid can be accurately obtained.

手段に記載の発明は、手段1または2において、前記複数の超音波送受信器が設けられる複数の測定部位は、直列的に繋がる流路上に位置していることをその要旨とする。 The gist of the invention described in the means 3 is that, in the means 1 or 2 , the plurality of measurement parts provided with the plurality of ultrasonic transmitters / receivers are positioned on a flow path connected in series.

従って、手段に記載の発明によると、複数の超音波送受信器が設けられる複数の測定部位は、直列的に繋がる流路上に位置しているので、各流路を流れる実際の流量は等しくなる。従って、その流量の関係を利用して、各超音波送受信器で計測された計測値を補正することにより、正確な流量を求めることができる。 Therefore, according to the invention described in the means 3 , since the plurality of measurement sites provided with the plurality of ultrasonic transceivers are located on the channels connected in series, the actual flow rates flowing through the respective channels are equal. . Therefore, an accurate flow rate can be obtained by correcting the measurement value measured by each ultrasonic transceiver using the relationship between the flow rates.

手段に記載の発明は、手段1または2において、前記複数の超音波送受信器が設けられる複数の測定部位は、並列的に繋がる流路上に位置していることをその要旨とする。 The gist of the invention described in the means 4 is that, in the means 1 or 2 , the plurality of measurement sites provided with the plurality of ultrasonic transceivers are located on the flow paths connected in parallel.

従って、手段に記載の発明によると、複数の超音波送受信器が設けられる複数の測定部位は、並列的に繋がる流路上に位置しているので、各流路を流れる実際の流速は等しくなる。従って、その流速の関係を利用して、各超音波送受信器で計測された計測値を補正することにより、正確な流量を求めることができる。 Therefore, according to the invention described in the means 4 , since the plurality of measurement parts provided with the plurality of ultrasonic transceivers are located on the flow paths connected in parallel, the actual flow velocities flowing through the respective flow paths are equal. . Therefore, an accurate flow rate can be obtained by correcting the measurement value measured by each ultrasonic transceiver using the relationship between the flow rates.

手段に記載の発明は、測定用流体が流れる配管の上流側及び下流側に設けられた超音波送受信器を備え、前記超音波送受信器を用いて超音波を送受信し、上流側から下流側に伝搬する超音波の伝搬時間と下流側から上流側に伝搬する超音波の伝搬時間との時間差に基づいて、前記測定用流体の流量を求める超音波流量計であって、前記配管において流路断面積が異なる測定部位、または前記配管において内面の表面粗さが異なる測定部位に設けられた複数の超音波送受信器を用いて超音波の送受信を行うことにより、前記測定用流体の流速または流量を前記複数の超音波送受信器でそれぞれ計測し、各計測値の比または差に基づいて前記測定用流体の流量を補正する演算手段を備えたことを特徴とする超音波流量計をその要旨とする。 The invention described in the means 5 includes ultrasonic transmitters / receivers provided on the upstream side and the downstream side of the pipe through which the measurement fluid flows, and transmits / receives ultrasonic waves using the ultrasonic transmitter / receiver. from the propagation time and the downstream side of the ultrasonic wave propagating on the basis of the time difference between the propagation time of the ultrasonic wave propagating on the upstream side, an ultrasonic flow meter for determining the flow rate of the measurement fluid in the flow path in the pipe The flow rate or flow rate of the measurement fluid is measured by transmitting and receiving ultrasonic waves using a plurality of ultrasonic transmitters / receivers provided at measurement sites with different cross-sectional areas or measurement surfaces with different inner surface roughness in the pipe. And an ultrasonic flowmeter comprising a calculation means for correcting the flow rate of the measurement fluid based on a ratio or difference between the measurement values. To do.

従って、手段に記載の発明によると、測定用流体が流れる配管において、測定用流体の流れの特性が異なる測定部位に複数の超音波送受信器が設けられている。そして、演算手段により、それら超音波送受信器を用いて超音波の伝搬時間差が求められ、その伝搬時間差に応じた測定用流体の流速または流量が計測される。その後、演算手段により、各音波送受信器による計測値の差に基づいて測定用流体の流量が補正される。このようにすれば、測定用流体の種類や濃度が変化した場合でも、流量補正を的確に行うことができる。 Therefore, according to the invention described in the means 5 , in the piping through which the measurement fluid flows, a plurality of ultrasonic transmitters / receivers are provided at measurement sites having different flow characteristics of the measurement fluid. Then, the calculation means calculates the ultrasonic propagation time difference using the ultrasonic transmitter / receiver, and measures the flow velocity or flow rate of the measurement fluid according to the propagation time difference. Thereafter, the flow rate of the measurement fluid is corrected by the calculation means based on the difference between the measurement values obtained by the respective sound wave transceivers. In this way, even when the type or concentration of the measurement fluid changes, flow rate correction can be performed accurately.

以上詳述したように、請求項1〜に記載の発明によると、測定用流体の種類や濃度が変化した場合でも流量補正を的確に行うことができる。 As described above in detail, according to the first to fifth aspects of the invention, the flow rate can be accurately corrected even when the type and concentration of the measurement fluid change.

[第1の実施の形態] [First Embodiment]

以下、本発明を具体化した第1の実施の形態を図面に基づき詳細に説明する。図1は本実施の形態の超音波流量計1を示す概略構成図である。超音波流量計1は、超音波伝搬時間差方式で測定用流体W1(具体的には、例えば半導体洗浄用の薬液)の流量を測定する測定器であって、測定用流体W1を供給するための供給配管の途中に設けられている。   DESCRIPTION OF EMBODIMENTS A first embodiment embodying the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an ultrasonic flow meter 1 of the present embodiment. The ultrasonic flowmeter 1 is a measuring instrument that measures the flow rate of the measurement fluid W1 (specifically, for example, a chemical solution for semiconductor cleaning) by an ultrasonic propagation time difference method, and is used to supply the measurement fluid W1. It is provided in the middle of the supply piping.

超音波流量計1は、2つの直管部2,3を有する配管4と、第1の直管部2の上流側及び下流側に設けられる第1の超音波送受信器5a,5bと、第2の直管部3の上流側及び下流側に設けられる第2の超音波送受信器6a,6bと、各超音波送受信器5a,5b,6a,6bと接続される制御装置7(演算手段)とを備える。   The ultrasonic flowmeter 1 includes a pipe 4 having two straight pipe portions 2 and 3, first ultrasonic transceivers 5 a and 5 b provided on the upstream side and the downstream side of the first straight pipe portion 2, Second ultrasonic transmitters / receivers 6a, 6b provided on the upstream and downstream sides of the straight pipe section 3 of the second control unit 7 and a control device 7 (calculation means) connected to the ultrasonic transmitters / receivers 5a, 5b, 6a, 6b. With.

配管4において、第1の直管部2と第2の直管部3とでは管径が異なり、それら直管部2,3内に形成される流路10,11の断面積が異なっている。具体的には、第1の直管部2内の流路10は、第2の直管部3の流路11の断面積よりも大きくなるよう形成されている。また、第1の直管部2と第2直管部3とは、流路方向が平行であり、各直管部2,3と垂直に交わる連結部12を介して連結されている。つまり、超音波流量計1の配管4において、第1の直管部2の流路10と第2直管部3の流路11とは直列的に繋がっている。そして、測定用流体W1は、流路断面積が大きな第1の直管部2の流路10から流路断面積の小さな第2の直管部3の流路11の順に流れるようになっている。   In the pipe 4, the first straight pipe portion 2 and the second straight pipe portion 3 have different pipe diameters, and the cross-sectional areas of the flow paths 10 and 11 formed in the straight pipe portions 2 and 3 are different. . Specifically, the flow path 10 in the first straight pipe portion 2 is formed to be larger than the cross-sectional area of the flow path 11 of the second straight pipe portion 3. The first straight pipe portion 2 and the second straight pipe portion 3 are connected to each other through a connecting portion 12 that has a parallel flow path direction and perpendicularly intersects with the straight pipe portions 2 and 3. That is, in the pipe 4 of the ultrasonic flowmeter 1, the flow path 10 of the first straight pipe portion 2 and the flow path 11 of the second straight pipe portion 3 are connected in series. Then, the measurement fluid W1 flows in the order from the flow path 10 of the first straight pipe portion 2 having a large flow path cross-sectional area to the flow path 11 of the second straight pipe portion 3 having a small flow cross-section area. Yes.

第1の超音波送受信器5a,5bは、第1の直管部2における上流側及び下流側の端部にそれぞれ設けられており、超音波を送受信するためのセンサ面が第1の直管部2内の流路10を介して対向するよう配置されている。これら第1の超音波送受信器5a,5bは、相互に超音波を送信するとともに、流路10中の測定用流体W1を伝搬した超音波を受信する。また、第2の超音波送受信器6a,6bは、第2の直管部3における上流側及び下流側の端部にそれぞれ設けられており、超音波を送受信するためのセンサ面が第2の直管部3内の流路11を介して対向するよう配置されている。これら第2の超音波送受信器6a,6bは、相互に超音波を発信するとともに、流路11中の測定用流体W1を伝搬した超音波を受信する。   The first ultrasonic transmitters / receivers 5a and 5b are respectively provided at the upstream and downstream ends of the first straight pipe part 2, and the sensor surface for transmitting / receiving ultrasonic waves is the first straight pipe. It arrange | positions through the flow path 10 in the part 2 so that it may oppose. These first ultrasonic transmitters / receivers 5 a and 5 b transmit ultrasonic waves to each other and receive ultrasonic waves propagated through the measurement fluid W <b> 1 in the flow path 10. The second ultrasonic transmitters / receivers 6a and 6b are provided at the upstream and downstream ends of the second straight pipe portion 3, respectively, and the sensor surface for transmitting / receiving ultrasonic waves is the second. It arrange | positions so that it may oppose through the flow path 11 in the straight pipe part 3. FIG. These second ultrasonic transmitters / receivers 6a and 6b transmit ultrasonic waves to each other and receive ultrasonic waves propagated through the measurement fluid W1 in the flow path 11.

制御装置7は、CPU20、信号処理回路21,22、メモリ23、表示装置24等を備える。信号処理回路21,22は、各超音波送受信器5a,5b,6a,6bを駆動するための駆動信号を出力したり、超音波の伝搬時間を検出したりする回路である。CPU20は、メモリ23を利用して制御プログラムを実行し、装置全体を統括的に制御する。制御プログラムとしては、測定用流体W1の流量を算出するためのプログラムや流量の測定値を表示装置24に表示するためのプログラムなどを含む。なお、CPU20が実行するプログラムとしては、メモリカードなどの記憶媒体に記憶されたプログラムや、通信媒体を介してダウンロードしたプログラムでもよく、その実行時には、メモリ23に読み込んで使用する。   The control device 7 includes a CPU 20, signal processing circuits 21, 22, a memory 23, a display device 24, and the like. The signal processing circuits 21 and 22 are circuits that output drive signals for driving the ultrasonic transceivers 5a, 5b, 6a, and 6b, and detect ultrasonic propagation time. The CPU 20 executes a control program using the memory 23 and controls the entire apparatus in an integrated manner. The control program includes a program for calculating the flow rate of the measurement fluid W1, a program for displaying the measurement value of the flow rate on the display device 24, and the like. The program executed by the CPU 20 may be a program stored in a storage medium such as a memory card or a program downloaded via a communication medium, and is read into the memory 23 and used at the time of execution.

本実施の形態の超音波流量計1では、流路断面積が異なる2つの測定部位(第1の直管部2及び第2の直管部3内の流路10,11)において、各超音波送受信器5a,5b,6a,6bを用いて超音波の送受信を行い、超音波の伝搬時間差に基づいてそれぞれ流量を同時に計測する。   In the ultrasonic flowmeter 1 according to the present embodiment, each of the superfluous components is measured at two measurement sites (the first straight pipe part 2 and the second straight pipe part 3 in the second straight pipe part 3) having different flow path cross-sectional areas. Ultrasonic waves are transmitted and received using the sound wave transmitters / receivers 5a, 5b, 6a and 6b, and the flow rates are simultaneously measured based on the propagation time difference of the ultrasonic waves.

ここで、第1の直管部2で計測される流量と第2の直管部3で計測される流量とは、所定の動粘度を有する校正用流体を流した状態で実際の流量とのズレがないように、予め校正を実施しておく。この場合、測定用流体W1の動粘度が校正用流体と同じ動粘度であるときには、第1の直管部2で計測される流量と第2の直管部3で計測される流量とは一致することとなる。ところが、測定用流体W1の動粘度が校正用流体と異なるときには、第1の直管部2で計測される流量と第2の直管部3で計測される流量とは、計測差が生じる。この理由は、次式(1)で規定されるレイノルズ数Reが流路の内径に依存して異なるためである。

Figure 0005282955
Here, the flow rate measured by the first straight pipe portion 2 and the flow rate measured by the second straight pipe portion 3 are the actual flow rate in a state where a calibration fluid having a predetermined kinematic viscosity is flowed. Calibration is performed in advance so that there is no deviation. In this case, when the dynamic viscosity of the measurement fluid W1 is the same as that of the calibration fluid, the flow rate measured by the first straight pipe portion 2 and the flow rate measured by the second straight pipe portion 3 are the same. Will be. However, when the kinematic viscosity of the measurement fluid W1 is different from that of the calibration fluid, there is a measurement difference between the flow rate measured by the first straight pipe portion 2 and the flow rate measured by the second straight pipe portion 3. This is because the Reynolds number Re defined by the following equation (1) differs depending on the inner diameter of the flow path.
Figure 0005282955

ここで、Vは流速、dは流路の内径、vは動粘度である。   Here, V is the flow velocity, d is the inner diameter of the flow path, and v is the kinematic viscosity.

また、流量Qは、次式(2)のように示される。

Figure 0005282955
Further, the flow rate Q is represented by the following equation (2).
Figure 0005282955

ここで、πは円周率である。そして、上式(2)を用いて上式(1)を変更すると、レイノルズ数Reは次式(3)のように示される。

Figure 0005282955
Here, π is the circumference ratio. When the above equation (1) is changed using the above equation (2), the Reynolds number Re is expressed as the following equation (3).
Figure 0005282955

従って、直列に配置された流路上で同じ流量を測定する場合、レイノルズ数Reは、流路の内径dに反比例することになる。このレイノルズ数Reは、流れの状態を表す指数であり、流路の内径dが異なる測定部位(第1の直管部2及び第2の直管部3)で計測すると、それら測定部位での流れの状態に応じて計測差が生じる。そして、各直管部2,3で計測した流量の比率は、測定用流体W1の動粘度vに依存して変わることとなる。   Accordingly, when the same flow rate is measured on the channels arranged in series, the Reynolds number Re is inversely proportional to the inner diameter d of the channel. This Reynolds number Re is an index representing the flow state, and when measured at measurement sites (the first straight tube portion 2 and the second straight tube portion 3) having different inner diameters d of the flow paths, Measurement differences occur depending on the flow conditions. And the ratio of the flow rate measured by each straight pipe part 2 and 3 will change depending on the kinematic viscosity v of the fluid W1 for measurement.

本実施の形態の超音波流量計1では、配管4内を流れる流体の流量や動粘度によって、各直管部2,3で計測される流量の測定差がどのような関係になるか予め調べ、その関係に応じて作成された補正式や補正テーブルのデータをメモリ23に記憶している。そして、各直管部2,3で計測される流量やメモリ23のデータを使用して測定用流体W1の動粘度を求め、動粘度に応じて流量の補正を行っている。   In the ultrasonic flowmeter 1 of the present embodiment, the relationship between the measurement differences of the flow rates measured by the straight pipe portions 2 and 3 is examined in advance depending on the flow rate and kinematic viscosity of the fluid flowing in the pipe 4. The correction formulas and correction table data created in accordance with the relationship are stored in the memory 23. Then, the kinematic viscosity of the measurement fluid W1 is obtained using the flow rate measured by the straight pipe portions 2 and 3 and the data in the memory 23, and the flow rate is corrected according to the kinematic viscosity.

次に、本実施の形態の超音波流量計1にて実施される処理例を図2のブロック図を用いて説明する。なお、図2における各手段20a〜20fは、CPU20が有する演算処理機能を用いて実現される。   Next, an example of processing performed by the ultrasonic flowmeter 1 of the present embodiment will be described with reference to the block diagram of FIG. 2 is realized by using an arithmetic processing function of the CPU 20.

詳述すると、先ず、第1の直管部2に配置されている第1の超音波送受信器5a,5bにより超音波Soの送受信が行われるとともに、第2の直管部3に配置されている第2の超音波送受信器6a,6bにより超音波Soの送受信が行われる。このとき、第1の信号処理回路21により、第1の直管部2の上流側から下流側に伝搬する超音波Soの伝搬時間と第1の直管部2の下流側から上流側に伝搬する超音波Soの伝搬時間とが検出され、それら超音波Soの伝搬時間差が求められる。また、第2の信号処理回路22により、第2の直管部3の上流側から下流側に伝搬する超音波Soの伝搬時間と第2の直管部3の下流側から上流側に伝搬する超音波Soの伝搬時間とが検出され、それら超音波Soの伝搬時間差が求められる。   More specifically, first, ultrasonic So is transmitted / received by the first ultrasonic transmitters / receivers 5a, 5b arranged in the first straight pipe part 2, and arranged in the second straight pipe part 3. The ultrasonic wave So is transmitted and received by the second ultrasonic wave transmitters 6a and 6b. At this time, the first signal processing circuit 21 propagates the ultrasonic wave So that propagates from the upstream side to the downstream side of the first straight pipe portion 2 and propagates from the downstream side to the upstream side of the first straight pipe portion 2. The propagation time of the ultrasonic wave So is detected, and the propagation time difference between the ultrasonic waves So is obtained. Further, the propagation time of the ultrasonic wave So that propagates from the upstream side to the downstream side of the second straight pipe portion 3 and the propagation time from the downstream side to the upstream side of the second straight pipe portion 3 by the second signal processing circuit 22. The propagation time of the ultrasonic wave So is detected, and the propagation time difference between the ultrasonic waves So is obtained.

第1の流量算出手段20aは、第1の直管部2における超音波Soの伝搬時間差を第1の信号処理回路21から取得し、その伝搬時間差に基づいて測定用流体W1の流速を求める。そして、測定用流体W1の流速と第1の直管部2における流路断面積とに基づいて測定用流体W1の流量を求める(計測ステップ)。この第1の流量算出手段20aで求められる流量は、測定用流体W1の動粘度に応じた測定誤差を含んだ補正前流量である。   The first flow rate calculation means 20a acquires the propagation time difference of the ultrasonic wave So in the first straight pipe section 2 from the first signal processing circuit 21, and obtains the flow velocity of the measurement fluid W1 based on the propagation time difference. And the flow volume of the measurement fluid W1 is calculated | required based on the flow velocity of the measurement fluid W1, and the flow-path cross-sectional area in the 1st straight pipe part 2 (measurement step). The flow rate obtained by the first flow rate calculation means 20a is a pre-correction flow rate including a measurement error according to the kinematic viscosity of the measurement fluid W1.

第2の流量算出手段20bは、第2の直管部3における超音波Soの伝搬時間差を第2の信号処理回路22から取得し、その伝搬時間差に基づいて測定用流体W1の流速を求める。そして、測定用流体W1の流速と第2の直管部3における流路断面積とに基づいて測定用流体W1の流量を求める(計測ステップ)。この第2の流量算出手段20bで求められる流量は、測定用流体W1の動粘度に応じた測定誤差を含んだ補正前流量である。   The second flow rate calculation means 20b obtains the propagation time difference of the ultrasonic wave So in the second straight pipe section 3 from the second signal processing circuit 22, and obtains the flow velocity of the measurement fluid W1 based on the propagation time difference. And the flow volume of the measurement fluid W1 is calculated | required based on the flow velocity of the measurement fluid W1, and the flow-path cross-sectional area in the 2nd straight pipe part 3 (measurement step). The flow rate obtained by the second flow rate calculation means 20b is a pre-correction flow rate including a measurement error corresponding to the kinematic viscosity of the measurement fluid W1.

流量比算出手段20cは、第1の流量算出手段20aで求めた第1の直管部2における補正前流量と第2の流量算出手段20bで求めた第2の直管部3における補正前流量とに基づいて、それら補正前流量の流量比を求める。   The flow rate ratio calculating means 20c is a pre-correction flow rate in the first straight pipe section 2 obtained by the first flow rate calculation means 20a and a pre-correction flow quantity in the second straight pipe portion 3 obtained by the second flow rate calculation means 20b. Based on the above, the flow rate ratio of these uncorrected flow rates is obtained.

動粘度算出手段20dは、流量比算出手段20cで求めた流量比とメモリ23に記憶されている動粘度算出用のテーブルデータ23aとに基づいて、補間演算や直線近似等の演算を行うことにより、その流量比に応じた動粘度を求める(動粘度算出ステップ)。   The kinematic viscosity calculating unit 20d performs an operation such as an interpolation operation or a linear approximation based on the flow rate ratio obtained by the flow rate ratio calculating unit 20c and the kinematic viscosity calculation table data 23a stored in the memory 23. Then, kinematic viscosity corresponding to the flow ratio is obtained (kinematic viscosity calculating step).

流量補正手段20eは、動粘度算出手段20dで求めた動粘度に基づいて、第2の流量算出手段20bで求めた補正前流量の補正を行う(補正ステップ)。ここで、流量補正手段20eは、動粘度毎の補正式のデータ23bをメモリ23から読み出し、その補正式のデータと第2の流量算出手段20bで求めた補正前流量とを用いて演算する。この演算において、動粘度と補正前流量とに応じた補正率を求め、その補正率によって補正前流量を補正することで補正後の流量を求める。その後、流量出力手段20fは、補正後の流量のデータを表示装置24に転送し、補正後の流量を表示装置24に表示させる。   The flow rate correction unit 20e corrects the pre-correction flow rate obtained by the second flow rate calculation unit 20b based on the kinematic viscosity obtained by the kinematic viscosity calculation unit 20d (correction step). Here, the flow rate correction means 20e reads the correction formula data 23b for each kinematic viscosity from the memory 23, and calculates the correction formula data and the pre-correction flow rate obtained by the second flow rate calculation means 20b. In this calculation, a correction rate corresponding to the kinematic viscosity and the flow rate before correction is obtained, and the flow rate after correction is obtained by correcting the flow rate before correction based on the correction rate. Thereafter, the flow rate output means 20f transfers the corrected flow rate data to the display device 24 and causes the display device 24 to display the corrected flow rate.

従って、本実施の形態によれば以下の効果を得ることができる。   Therefore, according to the present embodiment, the following effects can be obtained.

(1)本実施の形態の超音波流量計1では、測定用流体W1の温度変化や濃度変化に伴って動粘度が変化した場合、第1の直管部2及び第2の直管部3で計測される補正前流量の流量比に基づいて、測定用流体W1の動粘度をリアルタイムで求めることができる。そして、その動粘度に基づいて流量補正を行うことにより、温度計や粘度計などの他のセンサを用いることなく、測定用流体W1の流量を正確に計測することができる。   (1) In the ultrasonic flow meter 1 of the present embodiment, when the kinematic viscosity changes with the temperature change or concentration change of the measurement fluid W1, the first straight pipe part 2 and the second straight pipe part 3 are used. The kinematic viscosity of the measurement fluid W1 can be obtained in real time based on the flow rate ratio of the flow rate before correction measured in step (1). Then, by correcting the flow rate based on the kinematic viscosity, the flow rate of the measurement fluid W1 can be accurately measured without using another sensor such as a thermometer or a viscometer.

(2)本実施の形態の超音波流量計1では、配管4内に突起物などの複雑な構造がなく、配管4内における圧力損失を抑えることができるため、測定用流体W1の流量をより正確に測定することができる。   (2) In the ultrasonic flowmeter 1 of the present embodiment, since there is no complicated structure such as a protrusion in the pipe 4 and pressure loss in the pipe 4 can be suppressed, the flow rate of the measurement fluid W1 can be further increased. It can be measured accurately.

(3)本実施の形態の超音波流量計1では、各直管部2,3での流量の算出処理や流量の補正処理を1つのCPU20で行うようにしているので、それぞれの処理を別々のCPUで行う場合と比較して、構成を簡素化することができる。また、CPU間のデータの授受にかかる時間を削減することができるため、流量補正をより迅速に行うことができる。
[第2の実施の形態]
(3) In the ultrasonic flowmeter 1 of the present embodiment, the flow rate calculation process and the flow rate correction process in each straight pipe section 2 and 3 are performed by one CPU 20, so that each process is performed separately. Compared with the case of using this CPU, the configuration can be simplified. Moreover, since the time required for data exchange between CPUs can be reduced, flow rate correction can be performed more quickly.
[Second Embodiment]

次に、本発明を具体化した第2の実施の形態を図3に基づき説明する。本実施の形態の超音波流量計1Aは、配管30の構成及び各超音波送受信器5a,5b,6a,6bの配置が上記第1の実施の形態と異なり、他の構成(制御装置7の構成)は第1の実施の形態と同じである。   Next, a second embodiment of the present invention will be described with reference to FIG. The ultrasonic flowmeter 1A of the present embodiment differs from the first embodiment in the configuration of the pipe 30 and the arrangement of the ultrasonic transmitters / receivers 5a, 5b, 6a, and 6b. The configuration is the same as that of the first embodiment.

図3に示されるように、配管30は、管径が大きな大径部31とその大径部31よりも管径が小さな小径部32とを有し、それら大径部31と小径部32とが同軸線上に設けられている。この配管30において、測定用流体W1は、流路33の断面積が大きな大径部31から流路34の断面積の小さな小径部32の順に流れるようになっている。   As shown in FIG. 3, the pipe 30 has a large diameter part 31 having a large pipe diameter and a small diameter part 32 having a smaller pipe diameter than the large diameter part 31, and the large diameter part 31, the small diameter part 32, and the like. Is provided on the coaxial line. In the pipe 30, the measurement fluid W <b> 1 flows in the order from the large diameter portion 31 having a large cross-sectional area of the flow path 33 to the small diameter section 32 having a small cross-sectional area of the flow path 34.

また、第1の超音波送受信器5a,5bが配管30の大径部31側に設けられ、第2の超音波送受信器6a,6bが配管30の小径部32側に設けられている。これら超音波送受信器5a,5b,6a,6bは、一方の超音波送受信器5a,6aが他方の超音波送受信器5b,6bよりも上流側に装着されており、測定用流体W1の流れ方向に対して所定の角度(例えば、45°の角度)で超音波Soが伝搬するようになっている。   Further, the first ultrasonic transceivers 5 a and 5 b are provided on the large diameter portion 31 side of the pipe 30, and the second ultrasonic transceivers 6 a and 6 b are provided on the small diameter portion 32 side of the pipe 30. In these ultrasonic transmitters / receivers 5a, 5b, 6a, 6b, one ultrasonic transmitter / receiver 5a, 6a is mounted on the upstream side of the other ultrasonic transmitter / receiver 5b, 6b, and the flow direction of the measuring fluid W1 The ultrasonic wave So propagates at a predetermined angle (for example, an angle of 45 °).

この超音波流量計1Aでは、流路断面積が異なる2つの測定部位(大径部31及び小径部32内の流路33,34)において、各超音波送受信器5a,5b,6a,6bを用いて超音波Soの送受信を行い、超音波Soの伝搬時間差に基づいてそれぞれ流量を計測する。そして、上記第1の実施の形態と同様に、計測した補正前流量の流量比に基づいて、測定用流体W1の動粘度を求め、さらに、その動粘度に基づいて測定用流体W1の流量を補正する。   In this ultrasonic flowmeter 1A, each of the ultrasonic transmitters / receivers 5a, 5b, 6a, and 6b is connected to two measurement parts (the large diameter part 31 and the small diameter part 32 in the small diameter part 32) having different flow path cross sections. The ultrasonic wave So is transmitted and received, and the flow rate is measured based on the propagation time difference of the ultrasonic wave So. As in the first embodiment, the kinematic viscosity of the measurement fluid W1 is obtained based on the measured flow rate ratio of the pre-correction flow rate, and the flow rate of the measurement fluid W1 is calculated based on the kinematic viscosity. to correct.

本実施の形態の超音波流量計1Aにおいても、第1の実施の形態と同様に、流路断面積が異なる2つの測定部位で計測される補正前流量の流量比に基づいて、測定用流体W1の動粘度をリアルタイムに求めることができる。そして、その動粘度に基づいて流量補正を行うことにより、温度計や粘度計などの他のセンサを用いることなく、測定用流体W1の流量を正確に計測することができる。
[第3の実施の形態]
Also in the ultrasonic flowmeter 1A of the present embodiment, as in the first embodiment, the measurement fluid is based on the flow rate ratio of the flow rate before correction measured at two measurement sites having different channel cross-sectional areas. The kinematic viscosity of W1 can be obtained in real time. Then, by correcting the flow rate based on the kinematic viscosity, the flow rate of the measurement fluid W1 can be accurately measured without using another sensor such as a thermometer or a viscometer.
[Third Embodiment]

次に、本発明を具体化した第3の実施の形態を図4に基づき説明する。本実施の形態の超音波流量計1Bは、配管40の構成が上記第1の実施の形態と異なり、他の構成は第1の実施の形態と同じである。   Next, a third embodiment of the present invention will be described with reference to FIG. The ultrasonic flowmeter 1B of the present embodiment is different from the first embodiment in the configuration of the pipe 40, and the other configurations are the same as those in the first embodiment.

図4に示されるように、配管40は、管径が大きな第1の直管部41と管径が小さな第2の直管部42とを有し、各直管部41,42が連結部43を介して連結されることでクランク状に形成されている。この配管40においても、測定用流体W1は、流路44の断面積が大きな第1の直管部41から流路45の断面積の小さな第2の直管部42の順に流れるようになっている。   As shown in FIG. 4, the pipe 40 includes a first straight pipe portion 41 having a large pipe diameter and a second straight pipe portion 42 having a small pipe diameter, and the straight pipe portions 41 and 42 are connected portions. It is formed in a crank shape by being connected through 43. Also in the pipe 40, the measurement fluid W1 flows in the order from the first straight pipe portion 41 having a large cross-sectional area of the flow path 44 to the second straight pipe section 42 having a small cross-sectional area of the flow path 45. Yes.

第1の直管部41の上流側及び下流側の端部において、その第1の直管部41内の流路44を介して対向するよう第1の超音波送受信器5a,5bが配置されている。また、第2の直管部42の上流側及び下流側の端部において、その第2の直管部42内の流路45を介して対向するよう第2の超音波送受信器6a,6bが配置されている。   The first ultrasonic transceivers 5a and 5b are arranged at the upstream and downstream ends of the first straight pipe portion 41 so as to face each other through the flow path 44 in the first straight pipe portion 41. ing. Further, the second ultrasonic transmitters / receivers 6a and 6b are opposed to each other through the flow path 45 in the second straight pipe portion 42 at the upstream and downstream ends of the second straight pipe portion 42. Has been placed.

この超音波流量計1Bでも、上記第1の実施の形態と同様に、流路断面積が異なる2つの測定部位(第1の直管部41及び第2の直管部42内の流路44,45)において、各超音波送受信器5a,5b,6a,6bを用いて超音波の送受信を行い、超音波の伝搬時間差に基づいてそれぞれ流量を計測する。そして、計測した補正前流量の流量比に基づいて、測定用流体W1の動粘度を求め、さらに、その動粘度に基づいて測定用流体W1の流量を補正する。   In the ultrasonic flowmeter 1B, similarly to the first embodiment, the two measurement sites (the first straight pipe portion 41 and the second straight pipe portion 42 in the second straight pipe portion 42) having different flow path cross-sectional areas are used. , 45), ultrasonic waves are transmitted and received using the respective ultrasonic transmitters / receivers 5a, 5b, 6a and 6b, and the flow rates are measured based on the propagation time difference of the ultrasonic waves. Then, the kinematic viscosity of the measurement fluid W1 is obtained based on the measured flow rate ratio of the pre-correction flow rate, and the flow rate of the measurement fluid W1 is corrected based on the kinematic viscosity.

本実施の形態の超音波流量計1Bにおいても、流路断面積が異なる2つの測定部位で計測される補正前流量の流量比に基づいて、測定用流体W1の動粘度をリアルタイムに求めることができる。そして、その動粘度に基づいて流量補正を行うことにより、温度計や粘度計などの他のセンサを用いることなく、測定用流体W1の流量を正確に計測することができる。
[第4の実施の形態]
Also in the ultrasonic flowmeter 1B of the present embodiment, the kinematic viscosity of the measurement fluid W1 can be obtained in real time based on the flow rate ratio of the flow rate before correction measured at two measurement sites having different channel cross-sectional areas. it can. Then, by correcting the flow rate based on the kinematic viscosity, the flow rate of the measurement fluid W1 can be accurately measured without using another sensor such as a thermometer or a viscometer.
[Fourth Embodiment]

次に、本発明を具体化した第4の実施の形態を図5に基づき説明する。本実施の形態の超音波流量計1Cは、配管50の構成が上記第1の実施の形態と異なり、他の構成は第1の実施の形態と同じである。   Next, a fourth embodiment embodying the present invention will be described with reference to FIG. The ultrasonic flowmeter 1C of the present embodiment is different from the first embodiment in the configuration of the pipe 50, and the other configurations are the same as those in the first embodiment.

図5に示されるように、本実施の形態の配管50内には、流路断面積が異なる第1の流路51と第2の流路52とが並列的に設けられている。そして、第1の超音波送受信器5a,5bが第1の流路51を介して対向するように設けられるとともに、第2の超音波送受信器6a,6bが第2の流路52を介して対向するように設けられている。   As shown in FIG. 5, a first channel 51 and a second channel 52 having different channel cross-sectional areas are provided in parallel in the pipe 50 of the present embodiment. The first ultrasonic transceivers 5 a and 5 b are provided so as to face each other via the first flow path 51, and the second ultrasonic transceivers 6 a and 6 b are disposed via the second flow path 52. It is provided so as to face each other.

この超音波流量計1Cでは、流路断面積が異なる2つの測定部位(第1の流路51及び第2の流路52)において、各超音波送受信器5a,5b,6a,6bを用いて超音波の送受信を行い、超音波の伝搬時間差に基づいてそれぞれ流速を計測する。ここで、各流路51,52を並列に接続した場合、各超音波送受信器5a,5b,6a,6bを用いて計測される測定用流体W1の流速はほぼ等しくなる。このように、並列に接続した流路51,52で同じ流速を計測する場合、上式(1)の関係により、レイノルズ数Reは流路の内径dに比例するので、動粘度が変わると計測される各流速に計測差が生じることとなる。   In this ultrasonic flowmeter 1C, ultrasonic transducers 5a, 5b, 6a, and 6b are used at two measurement sites (first flow channel 51 and second flow channel 52) having different flow channel cross-sectional areas. Ultrasonic waves are transmitted and received, and the flow velocity is measured based on the propagation time difference of the ultrasonic waves. Here, when the flow paths 51 and 52 are connected in parallel, the flow velocities of the measurement fluid W1 measured using the ultrasonic transceivers 5a, 5b, 6a, and 6b are substantially equal. Thus, when the same flow velocity is measured in the flow paths 51 and 52 connected in parallel, the Reynolds number Re is proportional to the inner diameter d of the flow path due to the relationship of the above equation (1). A measurement difference will occur between each flow velocity.

従って、本実施の形態の超音波流量計1Cでは、各超音波送受信器5a,5b,6a,6bで計測される流速と動粘度によって、流速の測定差がどのような関係になるか予め調べ、その関係に応じて作成された補正式や補正テーブルのデータをメモリ23に記憶している。そして、計測される流速やメモリ23のデータを使用して測定用流体W1の動粘度を求め、動粘度に応じて流量の補正を行う。   Therefore, in the ultrasonic flowmeter 1C according to the present embodiment, the relationship between the measurement differences of the flow velocity is examined in advance depending on the flow velocity and kinematic viscosity measured by each of the ultrasonic transceivers 5a, 5b, 6a, 6b. The correction formulas and correction table data created in accordance with the relationship are stored in the memory 23. Then, the kinematic viscosity of the measurement fluid W1 is obtained using the measured flow velocity and data in the memory 23, and the flow rate is corrected according to the kinematic viscosity.

本実施の形態の超音波流量計1Cにおいて、各流路51,52で計測される流速の差に基づいて、測定用流体W1の動粘度をリアルタイムに求めることができる。そして、その動粘度に基づいて流量補正を行うことにより、温度計や粘度計などの他のセンサを用いることなく、測定用流体W1の流量を正確に計測することができる。
[第5の実施の形態]
In the ultrasonic flowmeter 1C of the present embodiment, the kinematic viscosity of the measurement fluid W1 can be obtained in real time based on the difference in flow velocity measured in each of the flow paths 51 and 52. Then, by correcting the flow rate based on the kinematic viscosity, the flow rate of the measurement fluid W1 can be accurately measured without using another sensor such as a thermometer or a viscometer.
[Fifth Embodiment]

次に、本発明を具体化した第5の実施の形態を図6に基づき説明する。本実施の形態の超音波流量計1Dは、配管60の構成が上記第1の実施の形態と異なり、他の構成は第1の実施の形態と同じである。   Next, a fifth embodiment of the present invention will be described with reference to FIG. The ultrasonic flowmeter 1D of the present embodiment differs from the first embodiment in the configuration of the pipe 60, and the other configurations are the same as those in the first embodiment.

図6に示されるように、本実施の形態の配管60は、第1の直管部61と第2の直管部62とを有している。第1の直管部61と第2の直管部62とは、管径及び流路断面積が等しくなるよう形成されている。また、第1の直管部61と第2の直管部62とが異なる樹脂材料を用いて形成されており、それら直管部61,62内に設けられる各流路63,64は、内面の表面粗さが異なるようになっている。そして、第1の直管部61の上流側及び下流側の端部において、その第1の直管部61内の流路63を介して対向するよう第1の超音波送受信器5a,5bが配置されている。また、第2の直管部62の上流側及び下流側の端部において、その第2の直管部62内の流路64を介して対向するよう第2の超音波送受信器6a,6bが配置されている。   As shown in FIG. 6, the pipe 60 of the present embodiment has a first straight pipe portion 61 and a second straight pipe portion 62. The 1st straight pipe part 61 and the 2nd straight pipe part 62 are formed so that a pipe diameter and a flow-path cross-sectional area may become equal. Further, the first straight pipe portion 61 and the second straight pipe portion 62 are formed using different resin materials, and the flow paths 63 and 64 provided in the straight pipe portions 61 and 62 have inner surfaces. The surface roughness is different. Then, the first ultrasonic transceivers 5a and 5b are opposed to each other through the flow path 63 in the first straight pipe portion 61 at the upstream and downstream ends of the first straight pipe portion 61. Has been placed. In addition, at the upstream and downstream ends of the second straight pipe portion 62, the second ultrasonic transmitters / receivers 6a and 6b are opposed to each other through the flow path 64 in the second straight pipe portion 62. Has been placed.

この超音波流量計1Dでは、配管60において内面の表面粗さが異なる測定部位(第1の直管部61及び第2の直管部62の流路63,64)において、各超音波送受信器5a,5b,6a,6bを用いて超音波の送受信を行い、超音波の伝搬時間差に基づいてそれぞれ流量を計測する。本実施の形態のように、各流路63,64の内壁面の表面粗さが異なる場合、各流路63,64における測定用流体W1の流れの特性が異なるので、測定用流体W1の動粘度に応じて流量の測定差を生じることとなる。従って、上記第1の実施の形態と同様に、計測した補正前流量の流量比に基づいて、測定用流体W1の動粘度を求め、さらに、その動粘度に基づいて測定用流体W1の流量を補正する。   In this ultrasonic flowmeter 1D, each ultrasonic transmitter / receiver is installed in a measurement portion (the flow paths 63 and 64 of the first straight pipe portion 61 and the second straight pipe portion 62) having different inner surface roughness in the pipe 60. Ultrasonic waves are transmitted and received using 5a, 5b, 6a, and 6b, and the flow rate is measured based on the propagation time difference of the ultrasonic waves. When the surface roughness of the inner wall surface of each flow path 63, 64 is different as in the present embodiment, the flow characteristics of the measurement fluid W1 in each flow path 63, 64 are different. A measurement difference in flow rate will occur depending on the viscosity. Accordingly, as in the first embodiment, the kinematic viscosity of the measurement fluid W1 is obtained based on the measured flow rate ratio of the pre-correction flow rate, and the flow rate of the measurement fluid W1 is further calculated based on the kinematic viscosity. to correct.

本実施の形態の超音波流量計1Dにおいても、第1の直管部61及び第2の直管部62で計測される補正前流量の流量比に基づいて、測定用流体W1の動粘度をリアルタイムに求めることができる。そして、その動粘度に基づいて流量補正を行うことにより、温度計や粘度計などの他のセンサを用いることなく、測定用流体W1の流量を正確に計測することができる。   Also in the ultrasonic flowmeter 1D of the present embodiment, the kinematic viscosity of the measurement fluid W1 is determined based on the flow rate ratio of the pre-correction flow rate measured by the first straight pipe portion 61 and the second straight pipe portion 62. It can be obtained in real time. Then, by correcting the flow rate based on the kinematic viscosity, the flow rate of the measurement fluid W1 can be accurately measured without using another sensor such as a thermometer or a viscometer.

なお、本発明の実施の形態は以下のように変更してもよい。   In addition, you may change embodiment of this invention as follows.

・上記各実施の形態の超音波流量計1,1A〜1Cにおいて、流路断面積が異なる測定部位(流路10,11,33,34,44,45,51,52)で流量計測を行うものであったが、断面形状が異なる複数の測定部位で流量計測を行うようにしてもよい。この場合、流路断面積が同じであっても断面形状を変更することにより、測定用流体W1の流れの特性を異ならせることができるため、上記実施の形態と同様の手法で流量補正を行うことができる。   In the ultrasonic flowmeters 1 and 1A to 1C of the above-described embodiments, flow measurement is performed at measurement sites (channels 10, 11, 33, 34, 44, 45, 51, 52) having different channel cross-sectional areas. However, the flow rate may be measured at a plurality of measurement sites having different cross-sectional shapes. In this case, even if the flow path cross-sectional area is the same, the flow characteristics of the measurement fluid W1 can be varied by changing the cross-sectional shape, so that the flow rate correction is performed in the same manner as in the above embodiment. be able to.

・上記第5の実施の形態の超音波流量計1Dでは、異なる樹脂材料を用いて第1の直管部61と第2の直管部62とを形成することにより、各直管部61,62内に形成される流路63,64の内壁の表面粗さを異ならせるものであったが、これに限定されるものではない。例えば、第1の直管部61と第2の直管部62とを同じ材料で形成し、各直管部61,62の一方の流路の内壁面を所定のコーティング材で被覆することにより、各流路63,64の内壁の表面粗さを異ならせてもよい。また、例えば、第1の直管部61と第2の直管部62とを同じ材料で形成し、各直管部61,62の一方の流路の内壁面に凹凸をつけることにより、各流路63,64の内壁の表面粗さを異ならせてもよい。   In the ultrasonic flowmeter 1D of the fifth embodiment, the first straight pipe portion 61 and the second straight pipe portion 62 are formed using different resin materials, so that each straight pipe portion 61, Although the surface roughness of the inner walls of the flow paths 63 and 64 formed in 62 is different, the present invention is not limited to this. For example, the first straight pipe portion 61 and the second straight pipe portion 62 are formed of the same material, and the inner wall surface of one flow path of each of the straight pipe portions 61 and 62 is covered with a predetermined coating material. The surface roughness of the inner walls of the flow paths 63 and 64 may be varied. Further, for example, the first straight pipe portion 61 and the second straight pipe portion 62 are formed of the same material, and the inner wall surface of one flow path of each of the straight pipe portions 61 and 62 is made uneven so that each You may vary the surface roughness of the inner wall of the flow paths 63 and 64.

・上記各実施の形態では、測定用流体W1の流れの特性が異なる2箇所の測定部位でそれぞれ流量を検出する構成としたが、3箇所以上の測定部位で流量を測定して、その測定結果に基づいて流量補正を行ってもよい。このように測定部位を3箇所以上に増やす場合、補正前流量の流量差に応じた動粘度を近似曲線によって正確に求めることができる。   In each of the above embodiments, the flow rate is detected at two measurement sites with different flow characteristics of the measurement fluid W1, but the measurement results are obtained by measuring the flow rate at three or more measurement sites. The flow rate correction may be performed based on the above. In this way, when the number of measurement sites is increased to three or more, the kinematic viscosity corresponding to the flow rate difference of the flow rate before correction can be accurately obtained by the approximate curve.

・上記各本実施の形態の超音波流量計1,1A〜1Dにおいて、流量算出手段20a,20bで求めた流量が所定範囲内であるときに、流量比算出手段20c、動粘度算出手段20d、及び流量補正手段20eによる各演算処理を実行するように構成してもよい。ここで、複数の測定部位で計測された流量の差が小さい場合、動粘度との関係性が弱いため、流量の補正精度が悪くなることがある。これに対して、流量算出手段20a,20bで求めた流量が所定範囲内であるときにのみ、流量比算出手段20c、動粘度算出手段20d、及び流量補正手段20eの各演算処理を行うことにより、流量補正の信頼性を高めることが可能となる。   In the ultrasonic flowmeters 1 and 1A to 1D according to each of the above embodiments, when the flow rate obtained by the flow rate calculation units 20a and 20b is within a predetermined range, the flow rate ratio calculation unit 20c, the kinematic viscosity calculation unit 20d, In addition, each calculation process by the flow rate correction unit 20e may be executed. Here, when the difference between the flow rates measured at a plurality of measurement sites is small, the relationship with the kinematic viscosity is weak, so the flow rate correction accuracy may deteriorate. On the other hand, only when the flow rate calculated by the flow rate calculation units 20a and 20b is within a predetermined range, the calculation processing of the flow rate ratio calculation unit 20c, the kinematic viscosity calculation unit 20d, and the flow rate correction unit 20e is performed. It is possible to improve the reliability of the flow rate correction.

さらに、超音波流量計1,1A〜1Dの外部から入力される補正許可信号に基づいて、流量比算出手段20c、動粘度算出手段20d、及び流量補正手段20eによる各演算処理を実行するよう構成してもよい。このようにすると、超音波流量計1,1A〜1Dを有する制御システムにおいて、流量補正を実行するタイミングを把握、管理することができるため、実用上好ましいものとなる。   Further, each calculation process by the flow rate ratio calculating means 20c, the kinematic viscosity calculating means 20d, and the flow rate correcting means 20e is executed based on a correction permission signal input from the outside of the ultrasonic flowmeters 1, 1A to 1D. May be. If it does in this way, in the control system which has ultrasonic flowmeters 1 and 1A-1D, since the timing which performs flow volume correction can be grasped and managed, it becomes a thing practically desirable.

・上記各実施の形態では、1つの超音波流量計1,1A〜1Dを用いて流量補正を行うものであったが、これに限定されるものではない。複数の超音波流量計と補正装置とを備える超音波流量補正システムに本発明を具体化してもよい。具体的には、例えば、図1における配管4の第1の直管部2と第1の超音波送受信器5a,5bと図示しない第1の演算装置とで第1の超音波流量計を構成し、第2の直管部3と第2の超音波送受信器6a,6bと図示しない第2の演算装置とで第2の超音波流量計を構成する。そして、各超音波流量計で計測した各流量の計測データを補正装置に取り込み、その補正装置により、各計測データの差に基づいて測定用流体の流量を補正する。このように、超音波流量補正システムを構成した場合でも、第1の超音波流量計及び第2の超音波流量計で計測される補正前流量の流量比に基づいて、測定用流体W1の動粘度をリアルタイムに求めることができる。そして、その動粘度に基づいて補正装置が流量補正を行うことにより、温度計や粘度計などの他のセンサを用いることなく、測定用流体W1の流量を正確に計測することができる。   In each of the above embodiments, the flow rate is corrected using one ultrasonic flow meter 1, 1A to 1D. However, the present invention is not limited to this. The present invention may be embodied in an ultrasonic flow rate correction system including a plurality of ultrasonic flow meters and a correction device. Specifically, for example, the first ultrasonic flowmeter is configured by the first straight pipe portion 2 of the pipe 4 in FIG. 1, the first ultrasonic transmitters / receivers 5a and 5b, and a first arithmetic device (not shown). The second straight pipe portion 3, the second ultrasonic transmitters / receivers 6a and 6b, and the second arithmetic unit (not shown) constitute a second ultrasonic flow meter. Then, the measurement data of each flow rate measured by each ultrasonic flowmeter is taken into the correction device, and the correction device corrects the flow rate of the measurement fluid based on the difference between the measurement data. As described above, even when the ultrasonic flow rate correction system is configured, the movement of the measurement fluid W1 is based on the flow rate ratio of the pre-correction flow rate measured by the first ultrasonic flow meter and the second ultrasonic flow meter. The viscosity can be determined in real time. The correction device corrects the flow rate based on the kinematic viscosity, so that the flow rate of the measuring fluid W1 can be accurately measured without using other sensors such as a thermometer and a viscometer.

次に、特許請求の範囲に記載された技術的思想のほかに、前述した各実施の形態によって把握される技術的思想を以下に列挙する。   Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the respective embodiments described above are listed below.

(1)上記手段2において、前記複数の超音波送受信器が、前記配管において流路断面積のみが異なる一方、内面の表面粗さが等しい測定部位に設けられていることを特徴とする超音波流量計の補正方法。   (1) In the above means 2, the plurality of ultrasonic transmitters / receivers are provided at measurement sites having different surface cross-sectional areas in the pipe but having the same surface roughness on the inner surface. Flow meter correction method.

(2)上記手段3において、前記複数の超音波送受信器が、内面の表面粗さのみが異なる一方、流路断面積が等しい測定部位に設けられていることを特徴とする超音波流量計の補正方法。   (2) The ultrasonic flowmeter according to the above means 3, wherein the plurality of ultrasonic transmitters / receivers are provided in measurement sites having different flow path cross-sectional areas while only the surface roughness of the inner surface is different. Correction method.

(3)上記手段1乃至6のいずれかにおいて、前記計測ステップで計測した計測値が予め設定された所定範囲内であるときに、前記補正ステップを実行することを特徴とする超音波流量計の補正方法。   (3) In any one of the above means 1 to 6, the correction step is executed when the measurement value measured in the measurement step is within a predetermined range set in advance. Correction method.

(4)上記手段1乃至6のいずれかにおいて、前記超音波流量計の外部から入力される補正許可信号に基づいて、前記補正ステップを実行することを特徴とする超音波流量計の補正方法。   (4) The ultrasonic flowmeter correction method according to any one of the above means 1 to 6, wherein the correction step is executed based on a correction permission signal input from the outside of the ultrasonic flowmeter.

(5)上記手段7において、前記測定用流体の動粘度を算出するためのテーブルデータと、前記流量の補正率を求めるための補正データとを記憶する記憶手段をさらに備え、前記演算手段は、前記記憶手段に記憶されたデータを使用して、前記各計測値の差に応じた前記動粘度を求めるとともに、前記動粘度と前記測定用流体の流量とに応じた前記流量の補正率を求め、その補正率により前記測定用流体の流量を補正することを特徴とする超音波流量計。   (5) The above means 7 further comprises storage means for storing table data for calculating the kinematic viscosity of the measurement fluid and correction data for obtaining the correction rate of the flow rate, and the calculation means comprises: The data stored in the storage means is used to determine the kinematic viscosity according to the difference between the measured values, and the correction rate of the flow rate according to the kinematic viscosity and the flow rate of the measurement fluid. The ultrasonic flowmeter, wherein the flow rate of the measurement fluid is corrected by the correction rate.

(6)上記手段7において、前記演算手段が補正した前記流量を表示する表示手段をさらに備えたことを特徴とする超音波流量計。   (6) The ultrasonic flowmeter according to claim 7, further comprising display means for displaying the flow rate corrected by the computing means.

(7)上記手段7において、前記演算手段が補正した前記流量のデータを外部装置に出力する出力手段をさらに備えたことを特徴とする超音波流量計。   (7) The ultrasonic flowmeter according to (7), further comprising output means for outputting the flow rate data corrected by the calculation means to an external device.

(8)測定用流体が流れる配管の上流側及び下流側に設けられた超音波送受信器を用いて超音波を送受信し、上流側から下流側に伝搬する超音波の伝搬時間と下流側から上流側に伝搬する超音波の伝搬時間との時間差に基づいて前記測定用流体の流量を求める超音波流量計を2つ以上備えたシステムであって、前記配管において前記測定用流体の流れの特性が異なる測定部位に設けられた2つ以上の超音波流量計から前記流量の計測データを取得し、各計測データの差に基づいて前記測定用流体の流量を補正する補正装置を備えたことを特徴とする超音波流量補正システム。   (8) Ultrasonic wave transmission / reception using ultrasonic transmitters / receivers provided on the upstream side and downstream side of the pipe through which the measurement fluid flows, and the propagation time of the ultrasonic wave propagating from the upstream side to the downstream side and the upstream side from the downstream side A system including two or more ultrasonic flowmeters for obtaining a flow rate of the measurement fluid based on a time difference with a propagation time of the ultrasonic wave propagating to the side, wherein the flow characteristic of the measurement fluid in the pipe is A correction device is provided that acquires measurement data of the flow rate from two or more ultrasonic flow meters provided at different measurement sites, and corrects the flow rate of the measurement fluid based on a difference between the measurement data. Ultrasonic flow rate correction system.

第1の実施の形態の超音波流量計を示す概略構成図。The schematic block diagram which shows the ultrasonic flowmeter of 1st Embodiment. 第1の実施の形態の超音波流量計の概略構成を示すブロック図。The block diagram which shows schematic structure of the ultrasonic flowmeter of 1st Embodiment. 第2の実施の超音波流量計を示す概略構成図。The schematic block diagram which shows the ultrasonic flowmeter of 2nd implementation. 第3の実施の超音波流量計を示す概略構成図。The schematic block diagram which shows the ultrasonic flowmeter of 3rd implementation. 第4の実施の超音波流量計を示す概略構成図。The schematic block diagram which shows the ultrasonic flowmeter of 4th implementation. 第5の実施の超音波流量計を示す概略構成図。The schematic block diagram which shows the ultrasonic flowmeter of 5th implementation. 音速と温度との関係を示すグラフ。The graph which shows the relationship between sound speed and temperature.

符号の説明Explanation of symbols

1,1A〜1D…超音波流量計
4,30,40,50,60…配管
5a,5b,6a,6b…超音波送受信器
7…演算手段としての制御装置
10,11,33,34,44,45,51,52,63,64…流路
So…超音波
W1…測定用流体
DESCRIPTION OF SYMBOLS 1,1A-1D ... Ultrasonic flowmeter 4,30,40,50,60 ... Piping 5a, 5b, 6a, 6b ... Ultrasonic transmitter / receiver 7 ... Control apparatus 10,11,33,34,44 as a calculation means , 45, 51, 52, 63, 64 ... flow path So ... ultrasonic wave W1 ... fluid for measurement

Claims (5)

測定用流体が流れる配管の上流側及び下流側に設けられた超音波送受信器を用いて超音波を送受信し、上流側から下流側に伝搬する超音波の伝搬時間と下流側から上流側に伝搬する超音波の伝搬時間との時間差に基づいて、前記測定用流体の流量を求める超音波流量計の補正方法であって、
前記配管において流路断面積が異なる測定部位、または前記配管において内面の表面粗さが異なる測定部位に設けられた複数の超音波送受信器を用いて超音波の送受信を行うことにより、前記測定用流体の流速または流量を前記複数の超音波送受信器でそれぞれ計測する計測ステップと、
前記複数の超音波送受信器による計測値の比または差に基づいて前記測定用流体の流量を補正する補正ステップとを含む
ことを特徴とする超音波流量計の補正方法。
Ultrasonic waves are transmitted and received by using ultrasonic transmitters and receivers installed on the upstream and downstream sides of the pipe through which the measurement fluid flows, and the propagation time of the ultrasonic waves propagating from the upstream side to the downstream side and from the downstream side to the upstream side An ultrasonic flowmeter correction method for obtaining a flow rate of the measurement fluid based on a time difference with an ultrasonic propagation time,
By performing transmission and reception of ultrasonic waves using a plurality of ultrasonic transmitters / receivers provided at measurement sites having different flow path cross-sectional areas in the pipe, or measurement sites having different inner surface roughness in the pipe, A measurement step of measuring the flow velocity or flow rate of the fluid with each of the plurality of ultrasonic transceivers;
And a correction step of correcting a flow rate of the measurement fluid based on a ratio or difference between measurement values obtained by the plurality of ultrasonic transceivers.
前記複数の超音波送受信器による計測値の差に基づいて、前記測定用流体の動粘度を算出する動粘度算出ステップをさらに含み、前記補正ステップにおいて、前記動粘度により前記流量を補正することを特徴とする請求項に記載の超音波流量計の補正方法。 The method further includes a kinematic viscosity calculating step of calculating a kinematic viscosity of the measurement fluid based on a difference between measured values by the plurality of ultrasonic transceivers, and the correction step corrects the flow rate by the kinematic viscosity. The method of correcting an ultrasonic flowmeter according to claim 1 , wherein the ultrasonic flowmeter is corrected. 前記複数の超音波送受信器が設けられる複数の測定部位は、直列的に繋がる流路上に位置していることを特徴とする請求項1または2に記載の超音波流量計の補正方法。 A plurality of measurement sites of the plurality of ultrasonic transducers are provided, the correction method of the ultrasonic flowmeter according to claim 1 or 2, characterized in that located in the flow path leading to series. 前記複数の超音波送受信器が設けられる複数の測定部位は、並列的に繋がる流路上に位置していることを特徴とする請求項1または2に記載の超音波流量計の補正方法。 A plurality of measurement sites of the plurality of ultrasonic transducers are provided, the correction method of the ultrasonic flowmeter according to claim 1 or 2, characterized in that located in the flow path leading to parallel. 測定用流体が流れる配管の上流側及び下流側に設けられた超音波送受信器を備え、前記超音波送受信器を用いて超音波を送受信し、上流側から下流側に伝搬する超音波の伝搬時間と下流側から上流側に伝搬する超音波の伝搬時間との時間差に基づいて、前記測定用流体の流量を求める超音波流量計であって、
前記配管において流路断面積が異なる測定部位、または前記配管において内面の表面粗さが異なる測定部位に設けられた複数の超音波送受信器を用いて超音波の送受信を行うことにより、前記測定用流体の流速または流量を前記複数の超音波送受信器でそれぞれ計測し、各計測値の比または差に基づいて前記測定用流体の流量を補正する演算手段を備えた
ことを特徴とする超音波流量計。
Propagation time of ultrasonic waves that are equipped with ultrasonic transmitters / receivers provided on the upstream side and downstream side of the pipe through which the measurement fluid flows, transmit and receive ultrasonic waves using the ultrasonic transmitter / receiver, and propagate from the upstream side to the downstream side And an ultrasonic flowmeter for determining the flow rate of the measurement fluid based on the time difference between the propagation time of the ultrasonic wave propagating from the downstream side to the upstream side,
By performing transmission and reception of ultrasonic waves using a plurality of ultrasonic transmitters / receivers provided at measurement sites having different flow path cross-sectional areas in the pipe, or measurement sites having different inner surface roughness in the pipe, Ultrasonic flow rate characterized by comprising a calculation means for measuring the flow velocity or flow rate of a fluid with each of the plurality of ultrasonic transceivers and correcting the flow rate of the measurement fluid based on the ratio or difference of the measured values. Total.
JP2008313952A 2008-12-10 2008-12-10 Ultrasonic flow meter correction method and ultrasonic flow meter Expired - Fee Related JP5282955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008313952A JP5282955B2 (en) 2008-12-10 2008-12-10 Ultrasonic flow meter correction method and ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008313952A JP5282955B2 (en) 2008-12-10 2008-12-10 Ultrasonic flow meter correction method and ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2010139291A JP2010139291A (en) 2010-06-24
JP5282955B2 true JP5282955B2 (en) 2013-09-04

Family

ID=42349556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313952A Expired - Fee Related JP5282955B2 (en) 2008-12-10 2008-12-10 Ultrasonic flow meter correction method and ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP5282955B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5661899B1 (en) * 2013-11-14 2015-01-28 株式会社又進 A flow meter that can cope with a failure in a survey line using a correction value prepared in advance
JP2016217737A (en) * 2015-05-14 2016-12-22 株式会社キーエンス Ultrasonic wave flow rate switch
WO2020183720A1 (en) 2019-03-14 2020-09-17 オムロン株式会社 Flow rate measurement device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5521137B2 (en) * 2010-10-05 2014-06-11 本多電子株式会社 Ultrasonic flow meter, flow control system, flow measurement method, flow control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2956805B2 (en) * 1991-12-28 1999-10-04 東京瓦斯株式会社 Ultrasonic flow meter
NL1001719C2 (en) * 1995-11-22 1997-05-23 Krohne Altometer Method and device for the ultrasonic measurement of the velocity and flow rate of a medium in a pipeline.
JP2001208585A (en) * 2000-01-31 2001-08-03 Yazaki Corp Flowmeter
JP2007051913A (en) * 2005-08-17 2007-03-01 Tokyo Keiso Co Ltd Correction method for ultrasonic flowmeter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5661899B1 (en) * 2013-11-14 2015-01-28 株式会社又進 A flow meter that can cope with a failure in a survey line using a correction value prepared in advance
JP2016217737A (en) * 2015-05-14 2016-12-22 株式会社キーエンス Ultrasonic wave flow rate switch
WO2020183720A1 (en) 2019-03-14 2020-09-17 オムロン株式会社 Flow rate measurement device
US11885656B2 (en) 2019-03-14 2024-01-30 Omron Corporation Flow-rate measuring apparatus capable of accurately measuring flow rate of fluid with reflecting viscosity of fluid

Also Published As

Publication number Publication date
JP2010139291A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5222858B2 (en) Ultrasonic flow meter system
CA2702666C (en) A method and system for detecting deposit buildup within an ultrasonic flow meter
AU2009302284B2 (en) Viscous fluid flow measurement using a differential pressure measurement and a sonar measured velocity
JP2008134267A (en) Ultrasonic flow measurement method
CN103575378A (en) Ultrasonic wedge and method for determining the speed of sound in same
JP5282955B2 (en) Ultrasonic flow meter correction method and ultrasonic flow meter
JP4535065B2 (en) Doppler ultrasonic flow meter
JP2007051913A (en) Correction method for ultrasonic flowmeter
JP2002340644A (en) Ultrasonic flow and flow velocity-measuring instrument and ultrasonic flow and flow velocity-measuring method
JP2007017157A (en) Ultrasonic flowmeter
CN115628786B (en) Ultrasonic flow measurement method and flowmeter using same
JP2010256075A (en) Flowmeter and method of measuring flow rate
JP5113343B2 (en) Ultrasonic flow meter
JP2010261872A (en) Ultrasonic flowmeter
JP2010223855A (en) Ultrasonic flowmeter
JP2008014834A (en) Ultrasonic flowmeter
KR20160128220A (en) Ultrasonic integrated thermometer
JP7140266B2 (en) Flow measurement device
JP3103264B2 (en) Ultrasonic flow meter
JP4949892B2 (en) Flow measurement method and flow measurement jig
JP5663288B2 (en) Ultrasonic measuring device
WO2018079269A1 (en) Fluid measuring device
JPH0882540A (en) Ultrasonic flow-rate measuring method and ultrasonic flowmeter
JP4561071B2 (en) Flow measuring device
JP2005106594A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130515

R150 Certificate of patent or registration of utility model

Ref document number: 5282955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees