JP5282636B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP5282636B2
JP5282636B2 JP2009097164A JP2009097164A JP5282636B2 JP 5282636 B2 JP5282636 B2 JP 5282636B2 JP 2009097164 A JP2009097164 A JP 2009097164A JP 2009097164 A JP2009097164 A JP 2009097164A JP 5282636 B2 JP5282636 B2 JP 5282636B2
Authority
JP
Japan
Prior art keywords
injection
intake
fuel
cylinder
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009097164A
Other languages
Japanese (ja)
Other versions
JP2010248948A (en
Inventor
伸治 定金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009097164A priority Critical patent/JP5282636B2/en
Publication of JP2010248948A publication Critical patent/JP2010248948A/en
Application granted granted Critical
Publication of JP5282636B2 publication Critical patent/JP5282636B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の制御装置に係り、特に、筒内用の燃料噴射弁と吸気通路用の燃料噴射弁とを備えた内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine, and more particularly to a control device for an internal combustion engine provided with an in-cylinder fuel injection valve and a fuel injection valve for an intake passage.

従来技術として、例えば特許文献1(特開2006−194098号公報)に開示されているように、内燃機関の筒内に燃料を直接噴射する筒内噴射弁と、吸気通路に燃料を噴射する吸気通路噴射弁とを備えた内燃機関の制御装置が知られている。この従来技術では、燃焼状態の悪化を検知した場合に、筒内噴射弁による燃料噴射(筒内噴射)を複数回に分けて実行し、筒内噴射の一部は、吸気行程の後半または圧縮行程中に実施する構成としている。これにより、従来技術では、燃焼状態が悪化したときに、吸気行程の後半以降に筒内での燃料噴射量を増大させ、点火プラグの周囲に比較的リッチな混合気を形成することにより、燃焼状態を安定させるようにしている。   As conventional techniques, for example, as disclosed in Japanese Patent Application Laid-Open No. 2006-194098, an in-cylinder injection valve that directly injects fuel into a cylinder of an internal combustion engine, and an intake air that injects fuel into an intake passage A control device for an internal combustion engine including a passage injection valve is known. In this prior art, when the deterioration of the combustion state is detected, fuel injection by the in-cylinder injection valve (in-cylinder injection) is performed in a plurality of times, and part of the in-cylinder injection is performed in the second half of the intake stroke or compression It is configured to be implemented during the process. As a result, in the prior art, when the combustion state deteriorates, the fuel injection amount in the cylinder is increased after the latter half of the intake stroke, and a relatively rich air-fuel mixture is formed around the spark plug. I try to stabilize the state.

特開2006−194098号公報JP 2006-194098 A

ところで、上述した従来技術では、燃焼状態が悪化したときに、筒内噴射の一部を吸気行程の後半以降に実施する構成としている。しかしながら、例えば内燃機関の長期使用等により吸気デポジットの堆積が進行した状態において、従来技術の噴射制御を実行した場合には、吸気ポートのタンブル比が大きくなり、圧縮行程での吸気乱れが増大する傾向がある。この結果、従来技術では、燃焼変動が増大することになり、燃焼状態の悪化を招くという問題がある。   By the way, in the prior art mentioned above, when a combustion state deteriorates, it is set as the structure which implements a part of in-cylinder injection after the latter half of an intake stroke. However, when the injection control according to the prior art is executed in a state where the accumulation of the intake deposit has progressed due to, for example, long-term use of the internal combustion engine, the tumble ratio of the intake port becomes large, and the intake turbulence in the compression stroke increases. Tend. As a result, in the prior art, there is a problem that combustion fluctuations increase and the combustion state deteriorates.

本発明は、上述のような課題を解決するためになされたもので、本発明の目的は、混合気の成層度を低下させることなく、吸気乱れを抑制することができ、燃焼状態を向上させることが可能な内燃機関の制御装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to suppress intake air turbulence without reducing the stratification degree of the air-fuel mixture and improve the combustion state. An object of the present invention is to provide a control device for an internal combustion engine that can perform the above-described operation.

第1の発明は、内燃機関の吸気通路に燃料を噴射する吸気通路噴射弁と、
内燃機関の筒内に燃料を噴射する筒内噴射弁と、
アイドル運転中の触媒暖機を実行しているときに、前記吸気通路噴射弁により吸気行程中に燃料噴射を実施し、かつ前記筒内噴射弁により吸気行程中及び圧縮行程中に燃料噴射を実施する弱成層燃焼制御を実行する手段と、
前記アイドル運転中の触媒暖機時に前記弱成層燃焼制御が実行された状態で、燃焼状態が許容レベルよりも悪化するという条件が成立したときに、圧縮行程中に前記筒内噴射弁から噴射される燃料の筒内噴射量を燃焼状態の悪化前と同様の噴射量に維持する手段と、
前記条件が成立したときに、前記吸気通路噴射弁の燃料噴射量を減量し、かつ前記筒内噴射弁による吸気行程の燃料噴射量を増量する噴射量制御手段と、
を備えることを特徴とする。
A first invention is an intake passage injection valve that injects fuel into an intake passage of an internal combustion engine;
An in-cylinder injection valve for injecting fuel into the cylinder of the internal combustion engine;
When performing catalyst warm-up during idle operation , fuel injection is performed during the intake stroke by the intake passage injection valve , and fuel injection is performed during the intake stroke and compression stroke by the in- cylinder injection valve. Means for performing weak stratified combustion control,
In the state where the weak stratified combustion control is executed at the time of catalyst warm-up during the idling operation, and when the condition that the combustion state is worse than the allowable level is satisfied , the fuel is injected from the in-cylinder injection valve during the compression stroke. Means for maintaining the in-cylinder injection amount of the fuel at the same injection amount as before the deterioration of the combustion state;
An injection amount control means for reducing the fuel injection amount of the intake passage injection valve and increasing the fuel injection amount during the intake stroke by the in-cylinder injection valve when the condition is satisfied ;
It is characterized by providing.

第1の発明によれば、噴射量制御手段は、燃焼状態が許容レベルよりも悪化したときに、吸気通路への燃料噴射量を減量し、かつ吸気行程での筒内噴射量を増量することができる。これにより、吸気行程での筒内噴射量を増量しない場合と比較して、吸気乱れを抑制することができる。また、筒内噴射量を増量した分だけ吸気通路への燃料噴射量を減量することにより、例えば圧縮行程での筒内噴射量を減量しなくても、全体の燃料噴射量を一定とすることができる。この結果、圧縮行程での噴射量が減ることによる燃焼状態の悪化を回避することができる。従って、混合気の成層度を低下させることなく、吸気乱れを原因とする燃焼変動を減少させ、良好な燃焼状態を実現することができる。   According to the first invention, the injection amount control means reduces the fuel injection amount to the intake passage and increases the in-cylinder injection amount in the intake stroke when the combustion state deteriorates from the allowable level. Can do. As a result, the intake air turbulence can be suppressed as compared with the case where the in-cylinder injection amount in the intake stroke is not increased. Also, by reducing the amount of fuel injected into the intake passage by an amount corresponding to the increased amount of in-cylinder injection, for example, the overall fuel injection amount can be made constant without reducing the amount of in-cylinder injection in the compression stroke. Can do. As a result, it is possible to avoid deterioration of the combustion state due to a decrease in the injection amount in the compression stroke. Therefore, it is possible to reduce the combustion fluctuation caused by the intake air turbulence without lowering the stratification degree of the air-fuel mixture and realize a good combustion state.

本発明の実施の形態1のシステム構成を説明するための全体構成図である。It is a whole block diagram for demonstrating the system configuration | structure of Embodiment 1 of this invention. 吸気ポートのタンブル比と車両の走行距離との関係を示す説明図である。It is explanatory drawing which shows the relationship between the tumble ratio of an intake port, and the travel distance of a vehicle. 圧縮行程での吸気乱れと弱成層燃焼での燃焼変動との関係を示す説明図である。It is explanatory drawing which shows the relationship between the intake turbulence in a compression stroke, and the combustion fluctuation | variation in weak stratified combustion. 本実施の形態による燃焼変動抑制制御の一例を示す説明図である。It is explanatory drawing which shows an example of the combustion fluctuation suppression control by this Embodiment. 吸気行程における筒内噴射の有無と吸気乱れの大きさとの関係を示す特性線図である。It is a characteristic diagram which shows the relationship between the presence or absence of in-cylinder injection in the intake stroke and the magnitude of intake turbulence. ポート噴射量に対する吸気行程での筒内噴射量の割合と、燃焼変動および排出HC量との関係を示す特性線図である。FIG. 6 is a characteristic diagram showing a relationship between a ratio of in-cylinder injection amount in an intake stroke with respect to a port injection amount, combustion fluctuation, and exhaust HC amount. 本発明の実施の形態1において、ECUにより実行される制御を示すフローチャートである。In Embodiment 1 of this invention, it is a flowchart which shows the control performed by ECU.

実施の形態1.
[実施の形態1の構成]
以下、図1乃至図7を参照しつつ、本発明の実施の形態1について説明する。図1は、本発明の実施の形態1のシステム構成を説明するための全体構成図である。本実施の形態のシステムは、例えば2つの燃料噴射弁が搭載されたデュアル噴射型の内燃機関10を備えている。そして、内燃機関10のシリンダ12には、ピストン14の往復動作により拡大,縮小する燃焼室16が設けられている。ピストン14は、内燃機関10の出力軸であるクランク軸18に連結されている。
Embodiment 1 FIG.
[Configuration of Embodiment 1]
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is an overall configuration diagram for explaining a system configuration according to the first embodiment of the present invention. The system of the present embodiment includes a dual injection type internal combustion engine 10 on which, for example, two fuel injection valves are mounted. The cylinder 12 of the internal combustion engine 10 is provided with a combustion chamber 16 that expands and contracts by the reciprocating motion of the piston 14. The piston 14 is connected to a crankshaft 18 that is an output shaft of the internal combustion engine 10.

また、内燃機関10は、シリンダ12に吸入空気を吸込む吸気通路20と、シリンダ12から排気ガスを排出する排気通路22とを備えている。吸気通路20には、吸入空気量を検出するエアフローメータ24と、電子制御式のスロットルバルブ26とが設けられている。スロットルバルブ26は、アクセル開度等に基いてスロットルモータ28により駆動され、吸入空気量を増減させる。   The internal combustion engine 10 also includes an intake passage 20 that sucks intake air into the cylinder 12 and an exhaust passage 22 that discharges exhaust gas from the cylinder 12. The intake passage 20 is provided with an air flow meter 24 for detecting the amount of intake air and an electronically controlled throttle valve 26. The throttle valve 26 is driven by a throttle motor 28 based on the accelerator opening and the like to increase or decrease the intake air amount.

また、内燃機関のシリンダ12には、吸気通路20(吸気ポート)に燃料を噴射する吸気通路噴射弁30と、燃焼室16内に燃料を直接噴射する筒内噴射弁32とが設けられている。さらに、シリンダ12は、燃焼室16内の混合気に点火する点火プラグ34と、吸気通路20を燃焼室16に対して開,閉する吸気バルブ36と、排気通路22を燃焼室16に対して開,閉する排気バルブ38とを備えている。   Further, the cylinder 12 of the internal combustion engine is provided with an intake passage injection valve 30 that injects fuel into the intake passage 20 (intake port) and an in-cylinder injection valve 32 that directly injects fuel into the combustion chamber 16. . Further, the cylinder 12 includes an ignition plug 34 that ignites the air-fuel mixture in the combustion chamber 16, an intake valve 36 that opens and closes the intake passage 20 relative to the combustion chamber 16, and an exhaust passage 22 that extends from the combustion chamber 16. An exhaust valve 38 that opens and closes is provided.

一方、本実施の形態のシステムは、クランク角センサ40、筒内圧センサ42等を含むセンサ系統と、内燃機関10の運転状態を制御するためのECU(Electronic Control Unit)50とを備えている。クランク角センサ40は、クランク軸18の回転に同期した信号を出力するもので、ECU50は、この出力に基いて機関回転数を検出する。また、筒内圧センサ42は、燃焼室16内の圧力(筒内圧)を検出するものである。センサ系統には、前述したエアフローメータ24とセンサ40,42の他に、車両や内燃機関の制御に必要な各種のセンサ(例えば内燃機関の冷却水温を検出する水温センサ、排気ガスの空燃比を検出する空燃比センサ等)が含まれており、これらはECU50の入力側に接続されている。また、ECU50の出力側には、スロットルモータ28、噴射弁30,32、点火プラグ34等を含む各種のアクチュエータが接続されている。   On the other hand, the system of the present embodiment includes a sensor system including a crank angle sensor 40, an in-cylinder pressure sensor 42, and the like, and an ECU (Electronic Control Unit) 50 for controlling the operating state of the internal combustion engine 10. The crank angle sensor 40 outputs a signal synchronized with the rotation of the crankshaft 18, and the ECU 50 detects the engine speed based on this output. The in-cylinder pressure sensor 42 detects the pressure in the combustion chamber 16 (in-cylinder pressure). In addition to the air flow meter 24 and the sensors 40 and 42 described above, the sensor system includes various sensors necessary for controlling the vehicle and the internal combustion engine (for example, a water temperature sensor for detecting the cooling water temperature of the internal combustion engine, the air-fuel ratio of the exhaust gas). Air-fuel ratio sensors to be detected and the like are included, and these are connected to the input side of the ECU 50. Various actuators including a throttle motor 28, injection valves 30, 32, a spark plug 34, and the like are connected to the output side of the ECU 50.

そして、ECU50は、内燃機関の運転状態をセンサ系統により検出しつつ、各アクチュエータを駆動する。具体的には、センサ系統の出力に基いて、燃料の噴射量及び噴射時期、点火時期等が設定され、これらの設定内容に応じてアクチュエータが駆動される。また、ECU50は、燃料噴射制御を行うときに、内燃機関の運転状態に応じて2つの噴射弁30,32による燃料噴射量の比率(噴射比率)を変化させ、以下に述べる均質燃焼制御、成層燃焼制御および弱成層燃焼制御を実施するように構成されている。なお、これらの燃焼制御は、例えば特開2006−194098号公報に記載されているように、一般的に公知なものである。   Then, the ECU 50 drives each actuator while detecting the operation state of the internal combustion engine by the sensor system. Specifically, the fuel injection amount, injection timing, ignition timing, and the like are set based on the output of the sensor system, and the actuator is driven according to these settings. Further, when performing fuel injection control, the ECU 50 changes the ratio (injection ratio) of the fuel injection amount by the two injection valves 30 and 32 according to the operating state of the internal combustion engine, and performs homogeneous combustion control and stratification described below. Combustion control and weak stratified combustion control are implemented. These combustion controls are generally known as described in, for example, Japanese Patent Application Laid-Open No. 2006-194098.

(均質燃焼制御)
均質燃焼制御は、主として内燃機関の通常運転時に実施されるもので、均質な混合気を形成することを目的としている。均質燃焼制御では、センサ系統により求めた機関回転数、負荷率、冷却水温等に基いて噴射弁30,32の噴射比率を制御する。基本的には、吸気通路噴射弁30による燃料噴射(以下、ポート噴射と称す)が混合気の均質化に寄与し、筒内噴射弁32による燃料噴射(筒内噴射と称す)が出力性能の向上に寄与するので、これらの特性を考慮して噴射比率が決定される。
(Homogeneous combustion control)
Homogeneous combustion control is mainly performed during normal operation of the internal combustion engine, and aims to form a homogeneous air-fuel mixture. In the homogeneous combustion control, the injection ratios of the injection valves 30 and 32 are controlled based on the engine speed, load factor, cooling water temperature, and the like obtained by the sensor system. Basically, fuel injection by the intake passage injection valve 30 (hereinafter referred to as port injection) contributes to homogenization of the air-fuel mixture, and fuel injection by the cylinder injection valve 32 (referred to as cylinder injection) has an output performance. Since it contributes to improvement, the injection ratio is determined in consideration of these characteristics.

具体例を挙げると、例えば噴射燃料が無化しにくい冷間運転時には、ポート噴射の噴射比率を大きくし、低温状態でも出来るだけ良好な混合気が形成されるようにする。また、高出力運転領域では、筒内噴射だけでも均質な混合気を形成し易いので、耐ノッキング性能や出力性能において有利な筒内噴射の噴射比率を大きくする。また、均質燃焼制御では、ポート噴射と筒内噴射の両方が吸気行程で実行される。   As a specific example, for example, during cold operation in which the injected fuel is difficult to be eliminated, the injection ratio of the port injection is increased so that the air-fuel mixture is as good as possible even in a low temperature state. Further, in the high-power operation region, it is easy to form a homogeneous air-fuel mixture only by in-cylinder injection, so the injection ratio of in-cylinder injection that is advantageous in terms of anti-knock performance and output performance is increased. In homogeneous combustion control, both port injection and in-cylinder injection are executed in the intake stroke.

(成層燃焼制御)
成層燃焼制御では、主として圧縮行程での筒内噴射を実行することにより、燃焼室16内の混合気を全体的にリーン化しつつ、点火プラグ34の周囲にリッチな混合気を偏在させる。この場合、ポート噴射は、必要に応じて実行されるが、実行しなくてもよい。成層燃焼制御によれば、点火プラグの近傍に集中させたリッチな混合気に点火を行うことができ、リーン燃焼を実現しながらも、混合気の着火性を確保することができる。なお、筒内噴射を吸気行程で実行しても着火性が確保される場合には、筒内噴射のタイミングを吸気行程に設定してもよい。
(Stratified combustion control)
In the stratified combustion control, by performing in-cylinder injection mainly in the compression stroke, the rich air-fuel mixture is unevenly distributed around the spark plug 34 while the air-fuel mixture in the combustion chamber 16 is made lean overall. In this case, the port injection is performed as necessary, but may not be performed. According to the stratified combustion control, the rich air-fuel mixture concentrated in the vicinity of the spark plug can be ignited, and the ignitability of the air-fuel mixture can be ensured while realizing lean combustion. Note that if ignitability is ensured even if in-cylinder injection is performed in the intake stroke, the timing of in-cylinder injection may be set in the intake stroke.

(弱成層燃焼制御)
弱成層燃焼制御は、均質燃焼制御と成層燃焼制御との中間に位置するもので、例えばアイドル運転中に排気触媒の暖機を促進する場合などに実施される。弱成層燃焼制御では、ポート噴射を実行しつつ、少なくとも圧縮行程での筒内噴射を実行する。この場合、筒内噴射は、圧縮行程だけでなく、必要に応じて吸気行程と圧縮行程の両方で実行される。弱成層燃焼制御によれば、成層燃焼制御と比較して2つの噴射弁30,32から多量の燃料を噴射することができ、また均質燃焼制御と比較して点火時期を大きく遅角させることができるので、排気触媒の暖機等を効率よく行うことができる。
(Weak stratified combustion control)
The weak stratified combustion control is positioned between the homogeneous combustion control and the stratified combustion control, and is performed, for example, when warming up the exhaust catalyst is promoted during idle operation. In the weak stratified combustion control, in-cylinder injection is executed at least in the compression stroke while performing port injection. In this case, in-cylinder injection is performed not only in the compression stroke, but also in both the intake stroke and the compression stroke as necessary. According to the weak stratified combustion control, a large amount of fuel can be injected from the two injection valves 30 and 32 as compared with the stratified combustion control, and the ignition timing can be greatly retarded compared with the homogeneous combustion control. Therefore, the exhaust catalyst can be warmed up efficiently.

[本実施の形態の特徴]
ところで、上述した弱成層燃焼制御では、点火プラグ34の周囲にリッチな混合気を形成することにより、燃焼の安定性を確保している。このような制御では、車両の走行距離が長くなることにより吸気デポジットの堆積が進行すると、圧縮行程での吸気乱れが大きくなり、燃焼変動が増大するという問題がある。ここで、図2は、吸気ポートのタンブル比と車両の走行距離との関係を示す説明図であり、図3は、圧縮行程での吸気乱れと弱成層燃焼での燃焼変動との関係を示す説明図である。
[Features of this embodiment]
By the way, in the weak stratified combustion control described above, the combustion stability is ensured by forming a rich air-fuel mixture around the spark plug 34. In such a control, when the deposit of the intake gas advances as the vehicle travels longer, there is a problem that the intake air turbulence in the compression stroke increases and the combustion fluctuation increases. Here, FIG. 2 is an explanatory view showing the relationship between the tumble ratio of the intake port and the travel distance of the vehicle, and FIG. 3 shows the relationship between intake turbulence in the compression stroke and combustion fluctuation in weak stratified combustion. It is explanatory drawing.

図2に示すように、内燃機関においては、車両の走行距離が長くなると、吸気デポジットの堆積が進行することにより、吸気ポートのタンブル比が増大する傾向がある。一般的に知られているように、吸気ポートのタンブル比が大きくなると、その分だけ圧縮行程での吸気乱れが増大する。そして、図3に示すように、圧縮行程での吸気乱れが増大するほど、弱成層燃焼での燃焼変動が大きくなる。このため、一般的な車両では、経年変化に伴って弱成層燃焼での燃焼変動が許容レベルを超えてしまい、燃焼状態の悪化を招くことになる。そこで、本実施の形態では、弱成層燃焼制御中に燃焼状態が悪化した場合に、燃焼変動抑制制御を行う構成としている。   As shown in FIG. 2, in the internal combustion engine, when the travel distance of the vehicle becomes long, the accumulation of the intake deposit proceeds, and the tumble ratio of the intake port tends to increase. As is generally known, when the tumble ratio of the intake port increases, intake turbulence in the compression stroke increases accordingly. As shown in FIG. 3, the combustion fluctuation in the weak stratified combustion increases as the intake turbulence in the compression stroke increases. For this reason, in a general vehicle, the combustion fluctuation in the weak stratified combustion exceeds the allowable level with the passage of time, and the combustion state is deteriorated. Therefore, in this embodiment, the combustion fluctuation suppression control is performed when the combustion state deteriorates during the weak stratified combustion control.

(燃焼変動抑制制御)
図4は、本実施の形態による燃焼変動抑制制御の一例を示す説明図である。この図において、「PFI」とはポート噴射を示し、「DI」とは筒内噴射を示している。また、PFIとDIの噴射パルスの幅は、一般的に知られているように、燃料噴射量に対応するパラメータであり、噴射パルスの幅が大きくなるほど、燃料噴射量が増大する。
(Combustion fluctuation suppression control)
FIG. 4 is an explanatory diagram showing an example of combustion fluctuation suppression control according to the present embodiment. In this figure, “PFI” indicates port injection, and “DI” indicates in-cylinder injection. Further, as is generally known, the widths of the injection pulses of PFI and DI are parameters corresponding to the fuel injection amount, and the fuel injection amount increases as the injection pulse width increases.

図4に示すように、燃焼変動抑制制御では、燃焼変動が所定の許容レベル(判定値)を超えたときに、吸気通路噴射弁30の燃料噴射量(ポート噴射量)を減量し、かつ筒内噴射弁32による吸気行程での燃料噴射量(筒内噴射量)を増量する構成としている。ここで、燃焼変動は、燃焼状態のばらつきの指標となるもので、例えば機関回転数や筒内圧の変化、排気ガス中のイオン電流等に基いて、一般的に公知な手法により検出される。燃焼変動抑制制御によれば、以下の作用効果を得ることができる。   As shown in FIG. 4, in the combustion fluctuation suppression control, when the combustion fluctuation exceeds a predetermined allowable level (determination value), the fuel injection amount (port injection amount) of the intake passage injection valve 30 is reduced, and the cylinder The fuel injection amount (in-cylinder injection amount) in the intake stroke by the internal injection valve 32 is increased. Here, the combustion fluctuation is an index of the variation in the combustion state, and is detected by a generally known method based on, for example, a change in the engine speed or the in-cylinder pressure, an ion current in the exhaust gas, or the like. According to the combustion fluctuation suppression control, the following effects can be obtained.

まず、図5は、吸気行程における筒内噴射の有無と吸気乱れの大きさとの関係を示す特性線図である。図中の筒内平均乱れとは、吸気乱れの大きさに相当している。図5に示すように、弱成層燃焼中には、吸気行程での筒内噴射を行うことにより、当該噴射を行わない場合と比較して吸気乱れを抑制することができる。しかし、筒内噴射だけを実行する制御領域では、吸気行程での筒内噴射量を増量すると、全体の燃料噴射量を一定とするために圧縮行程での筒内噴射量を減量する必要がある。この場合には、点火プラグの周囲にリッチな混合気を十分に形成できず、燃焼状態が悪化する虞れがある。   First, FIG. 5 is a characteristic diagram showing the relationship between the presence or absence of in-cylinder injection and the magnitude of intake turbulence in the intake stroke. The in-cylinder average turbulence in the figure corresponds to the magnitude of the intake turbulence. As shown in FIG. 5, during weak stratified combustion, in-cylinder injection in the intake stroke is performed, so that intake air turbulence can be suppressed as compared with the case where the injection is not performed. However, in the control region in which only the in-cylinder injection is performed, if the in-cylinder injection amount in the intake stroke is increased, the in-cylinder injection amount in the compression stroke needs to be reduced in order to keep the entire fuel injection amount constant. . In this case, a rich air-fuel mixture cannot be sufficiently formed around the spark plug, and the combustion state may be deteriorated.

このため、燃焼変動抑制制御では、筒内噴射とポート噴射の両方を実行する制御領域、即ち、弱成層燃焼制御中に燃焼変動が所定の許容レベル(判定値)を超えたときに、ポート噴射の割合を減少させ、その分だけ吸気行程での筒内噴射の割合を増大させる。これにより、混合気の成層度を低下させることなく、吸気乱れを抑制することができるので、図6に示すように、燃焼変動を減少させ、良好な燃焼状態を実現することができる。ここで、図6は、ポート噴射量に対する吸気行程での筒内噴射量の割合と、燃焼変動および排出HC量との関係を示す特性線図である。なお、本発明において、上述した燃焼変動抑制制御の実行タイミングは、必ずしも弱成層燃焼制御中だけに限るものではない。即ち、ポート噴射と筒内噴射の両方を実行している制御領域であれば、例えば均質燃焼制御中に燃焼変動抑制制御を実行する構成としてもよい。

Therefore, in the combustion fluctuation suppression control, the port injection is performed when the combustion fluctuation exceeds a predetermined allowable level (determination value) during the control region in which both in-cylinder injection and port injection are performed, that is, during weak stratified combustion control. And the ratio of in- cylinder injection in the intake stroke is increased by that amount. Thereby, since the intake air turbulence can be suppressed without reducing the stratification degree of the air-fuel mixture, the combustion fluctuation can be reduced and a good combustion state can be realized as shown in FIG. Here, FIG. 6 is a characteristic diagram showing the relationship between the ratio of the in-cylinder injection amount in the intake stroke to the port injection amount, the combustion fluctuation, and the exhaust HC amount. In the present invention, the execution timing of the above-described combustion fluctuation suppression control is not necessarily limited to only during weak stratified combustion control. That is, as long as it is a control region in which both port injection and in-cylinder injection are executed, for example, a configuration in which combustion fluctuation suppression control is executed during homogeneous combustion control may be adopted.

[実施の形態1を実現するための具体的な処理]
図7は、本発明の実施の形態1において、ECUにより実行される制御を示すフロチャートである。この図に示すルーチンは、内燃機関の運転中に繰返し実行される。図7に示すルーチンでは、まず、ポート噴射(PFI)と圧縮行程での筒内噴射(DI圧縮)とを実行しているか否かを判定する(ステップ100)。なお、この判定処理は、ポート噴射と圧縮行程での筒内噴射に加えて、吸気行程での筒内噴射(DI吸気)を実行している場合にも成立する。
[Specific Processing for Realizing Embodiment 1]
FIG. 7 is a flowchart showing the control executed by the ECU in the first embodiment of the present invention. The routine shown in this figure is repeatedly executed during operation of the internal combustion engine. In the routine shown in FIG. 7, it is first determined whether port injection (PFI) and in-cylinder injection (DI compression) in the compression stroke are being executed (step 100). This determination process is also established when in-cylinder injection (DI intake) in the intake stroke is executed in addition to in-cylinder injection in the port injection and compression stroke.

ステップ100の判定成立時には、前述したように、例えば機関回転数や筒内圧の変化、排気ガス中を流れるイオン電流の大きさ等に基いて燃焼変動を計測する(ステップ102)。そして、燃焼変動の計測値が所定の許容レベルを超えているか否かを判定し(ステップ104)、この判定成立時には、前述した燃焼変動抑制制御を実行する(ステップ106)。従って、内燃機関の運転中に燃焼状態が悪化したときには、これを検知して燃焼変動抑制制御を実行することができる。なお、前記実施の形態1では、図7中のステップ106が噴射量制御手段の具体例を示している。   When the determination in step 100 is satisfied, as described above, the combustion fluctuation is measured based on, for example, changes in the engine speed and in-cylinder pressure, the magnitude of ion current flowing in the exhaust gas, and the like (step 102). Then, it is determined whether or not the measured value of combustion fluctuation exceeds a predetermined allowable level (step 104). When this determination is established, the above-described combustion fluctuation suppression control is executed (step 106). Therefore, when the combustion state deteriorates during operation of the internal combustion engine, this can be detected and the combustion fluctuation suppression control can be executed. In the first embodiment, step 106 in FIG. 7 shows a specific example of the injection amount control means.

10 内燃機関
12 シリンダ
14 ピストン
16 燃焼室
18 クランク軸
20 吸気通路
22 排気通路
24 エアフローメータ
26 スロットルバルブ
28 スロットルモータ
30 吸気通路噴射弁
32 筒内噴射弁
34 点火プラグ
36 吸気バルブ
38 排気バルブ
40 クランク角センサ
42 筒内圧センサ
50 ECU
DESCRIPTION OF SYMBOLS 10 Internal combustion engine 12 Cylinder 14 Piston 16 Combustion chamber 18 Crankshaft 20 Intake passage 22 Exhaust passage 24 Air flow meter 26 Throttle valve 28 Throttle motor 30 Intake passage injection valve 32 In-cylinder injection valve 34 Spark plug 36 Intake valve 38 Exhaust valve 40 Crank angle Sensor 42 In-cylinder pressure sensor 50 ECU

Claims (1)

内燃機関の吸気通路に燃料を噴射する吸気通路噴射弁と、
内燃機関の筒内に燃料を噴射する筒内噴射弁と、
アイドル運転中の触媒暖機を実行しているときに、前記吸気通路噴射弁により吸気行程中に燃料噴射を実施し、かつ前記筒内噴射弁により吸気行程中及び圧縮行程中に燃料噴射を実施する弱成層燃焼制御を実行する手段と、
前記アイドル運転中の触媒暖機時に前記弱成層燃焼制御が実行された状態で、燃焼状態が許容レベルよりも悪化するという条件が成立したときに、圧縮行程中に前記筒内噴射弁から噴射される燃料の筒内噴射量を燃焼状態の悪化前と同様の噴射量に維持する手段と、
前記条件が成立したときに、前記吸気通路噴射弁の燃料噴射量を減量し、かつ前記筒内噴射弁による吸気行程の燃料噴射量を増量する噴射量制御手段と、
を備えることを特徴とする内燃機関の制御装置。
An intake passage injection valve for injecting fuel into the intake passage of the internal combustion engine;
An in-cylinder injection valve for injecting fuel into the cylinder of the internal combustion engine;
When performing catalyst warm-up during idle operation , fuel injection is performed during the intake stroke by the intake passage injection valve , and fuel injection is performed during the intake stroke and compression stroke by the in- cylinder injection valve. Means for performing weak stratified combustion control,
In the state where the weak stratified combustion control is executed at the time of catalyst warm-up during the idling operation, and when the condition that the combustion state is worse than the allowable level is satisfied , the fuel is injected from the in-cylinder injection valve during the compression stroke. Means for maintaining the in-cylinder injection amount of the fuel at the same injection amount as before the deterioration of the combustion state;
An injection amount control means for reducing the fuel injection amount of the intake passage injection valve and increasing the fuel injection amount during the intake stroke by the in-cylinder injection valve when the condition is satisfied ;
A control device for an internal combustion engine, comprising:
JP2009097164A 2009-04-13 2009-04-13 Control device for internal combustion engine Expired - Fee Related JP5282636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009097164A JP5282636B2 (en) 2009-04-13 2009-04-13 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009097164A JP5282636B2 (en) 2009-04-13 2009-04-13 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010248948A JP2010248948A (en) 2010-11-04
JP5282636B2 true JP5282636B2 (en) 2013-09-04

Family

ID=43311556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009097164A Expired - Fee Related JP5282636B2 (en) 2009-04-13 2009-04-13 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5282636B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572107B2 (en) * 2011-01-31 2014-08-13 本田技研工業株式会社 Fuel injection control device for internal combustion engine
JP2013032710A (en) * 2011-08-01 2013-02-14 Toyota Motor Corp Internal combustion engine control device
JP6414130B2 (en) * 2016-04-27 2018-10-31 トヨタ自動車株式会社 Control device for internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148199A (en) * 2001-11-07 2003-05-21 Toyota Motor Corp Method for controlling fuel injection of internal combustion engine, and method and device for determining difference in internal exhaust gas recirculation rate between cylinder
JP4383958B2 (en) * 2004-05-17 2009-12-16 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
JP2006132400A (en) * 2004-11-04 2006-05-25 Toyota Motor Corp Fuel injection control method of internal combustion engine
JP2006194098A (en) * 2005-01-11 2006-07-27 Toyota Motor Corp Fuel injection control device for internal combustion engine

Also Published As

Publication number Publication date
JP2010248948A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
US20100037859A1 (en) Control device for internal combustion engine, control method, program for performing control method
JP6167700B2 (en) In-cylinder injection engine control device
JP4449706B2 (en) Control device for internal combustion engine
JP2018091267A (en) Controller of internal combustion engine
JP2006194098A (en) Fuel injection control device for internal combustion engine
JP2012087708A (en) Control device for cylinder injection gasoline engine
JP2008031932A (en) Direct-injection spark-ignition internal combustion engine
JP3893909B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP5332962B2 (en) Control device for internal combustion engine
US20160348606A1 (en) Control apparatus for internal combustion engine
JP5282636B2 (en) Control device for internal combustion engine
JP5029517B2 (en) Control device for internal combustion engine
JP2007032326A (en) Controller of internal combustion engine
JP5273310B2 (en) Control device for internal combustion engine
JP4742633B2 (en) Control device for internal combustion engine
JP6002521B2 (en) In-cylinder injection engine control device
JP6007568B2 (en) Fuel injection control device for internal combustion engine
JP5831160B2 (en) Control device for internal combustion engine
JP2012219741A (en) Control device of internal combustion engine
JP2006132399A (en) Control device and control method for an engine with supercharger
US9903303B2 (en) Control apparatus for internal combustion engine
JP5787029B2 (en) Ignition timing control device for internal combustion engine
JP5435157B2 (en) Fuel injection control device for internal combustion engine
JP3613658B2 (en) Fuel injection control device for multi-cylinder internal combustion engine
JP4200356B2 (en) Fuel control apparatus for in-cylinder internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130513

R151 Written notification of patent or utility model registration

Ref document number: 5282636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees