JP5279236B2 - Target imaging detector - Google Patents

Target imaging detector Download PDF

Info

Publication number
JP5279236B2
JP5279236B2 JP2007292338A JP2007292338A JP5279236B2 JP 5279236 B2 JP5279236 B2 JP 5279236B2 JP 2007292338 A JP2007292338 A JP 2007292338A JP 2007292338 A JP2007292338 A JP 2007292338A JP 5279236 B2 JP5279236 B2 JP 5279236B2
Authority
JP
Japan
Prior art keywords
target
wavelength band
signal
imaging unit
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007292338A
Other languages
Japanese (ja)
Other versions
JP2009115765A (en
Inventor
佳宏 松本
貴敬 中野
恭久 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007292338A priority Critical patent/JP5279236B2/en
Publication of JP2009115765A publication Critical patent/JP2009115765A/en
Application granted granted Critical
Publication of JP5279236B2 publication Critical patent/JP5279236B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a target imaging detector that achieves reduction in misdetection of a target. <P>SOLUTION: The target imaging detector includes first and second waveband imaging parts 1 and 2 for imaging the same target in two different wavebands; an error function calculating part 3 for substituting an image output signal y, from the first waveband imaging part into a function containing an error function expressed by f(y)=(Aexp(-By))/(1+erf(C+Dy)), by using parameters A-D to output the calculation results;an exponential function calculation part 4 for substituting an image output signal x from the second waveband imaging part into an exponential function, expressed by g(x)=exp(Ex<SP>2</SP>), by using a parameter E to output calculation results; and a target determining part 5 for determining that a detected signal is a signal from the target, when the calculation results output from the error function calculating part and the exponential function calculating part satisfy the relation g(x)&le;f(y). <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

この発明は、センサにより目標を撮像して自動探知する目標撮像探知装置に関し、特に赤外線センサを用いた場合における信号処理に関する。   The present invention relates to a target imaging detection apparatus that automatically detects a target by imaging the sensor, and particularly relates to signal processing when an infrared sensor is used.

目標を自動探知するために用いられるセンサにおいて、昼夜問わずに用いることができる赤外線センサは広く用いられている。しかし、赤外線は温度を持つすべての物体から常に放射されているため、赤外線センサで検出される目標信号は目標周囲からの熱放射の影響を受ける。また、太陽光や大気中の散乱光、目標周囲からの放射スペクトルが目標放射スペクトルと重なると、単波長処理では両放射スペクトルを分離することが困難であるため、目標と誤検出を起こす。この時、目標と誤検出を起こす原因となる対象をクラッタと呼ぶ。   Among sensors used for automatically detecting a target, infrared sensors that can be used day and night are widely used. However, since infrared rays are always emitted from all objects having temperature, the target signal detected by the infrared sensor is affected by thermal radiation from the surroundings of the target. In addition, if sunlight, scattered light in the atmosphere, or a radiation spectrum from around the target overlaps with the target radiation spectrum, it is difficult to separate both radiation spectra by single-wavelength processing, and thus misdetect the target. At this time, the target that causes false detection with the target is called clutter.

そこで、赤外線の放射スペクトルは物体の種類や温度、放射率などによって異なることを利用した2波長処理が目標探知に用いられている。これは、異なる波長帯域で信号検出を行い、目標とクラッタの放射スペクトル特性の差異から目標信号のみを探知する処理である。ここで、目標信号とクラッタ信号を識別するための閾値が必要となる。   Therefore, two-wavelength processing using the fact that the infrared radiation spectrum differs depending on the type of object, temperature, emissivity, etc. is used for target detection. In this process, signal detection is performed in different wavelength bands, and only the target signal is detected from the difference in radiation spectrum characteristics between the target and the clutter. Here, a threshold for identifying the target signal and the clutter signal is required.

例えば、下記特許文献1では、2つの異なる波長帯域で撮像した画像出力信号を各波長帯域を軸とする直交座標系の座標に変換した後、この座標系上であらかじめ作成しておいた楕円形状の閾値フィルタを用いることで、出力信号が目標信号であるかどうかの判定を行っている。   For example, in Patent Document 1 below, an image output signal captured in two different wavelength bands is converted into coordinates in an orthogonal coordinate system with each wavelength band as an axis, and then an elliptical shape created in advance on this coordinate system The threshold filter is used to determine whether the output signal is the target signal.

特開平08−068844号公報Japanese Patent Laid-Open No. 08-068844

光が大気を伝搬する際、大気中に存在する分子によって吸収や散乱の影響を受け、光の強度は伝搬距離が長くなるに従って指数関数的に減衰する。このような光の大気伝搬損失により、センサで検出される目標信号強度は目標とセンサの間の距離によって非線形に変化し、目標とセンサの間の距離が一様確率で変化した時の目標信号分布は正規分布に従わない。その結果、異なる波長帯で撮像した画像出力信号を各波長帯を軸とする上記直交座標系の座標に変換した時の目標信号分布は楕円形状とはならず、目標信号分布の等確率密度曲線を示す図3のようなたまご型形状となる。従って、目標を判定する閾値を図3に示す等確率密度曲線と設定することで、高い探知性能を保ったまま閾値フィルタ領域を最小にすることができ、背景クラッタの誤検出を最小にすることが可能となる。   When light propagates through the atmosphere, it is affected by absorption and scattering by molecules present in the atmosphere, and the intensity of light attenuates exponentially as the propagation distance increases. Due to such atmospheric loss of light, the target signal intensity detected by the sensor changes nonlinearly with the distance between the target and the sensor, and the target signal when the distance between the target and the sensor changes with a uniform probability. The distribution does not follow a normal distribution. As a result, the target signal distribution when the image output signal captured in different wavelength bands is converted into the coordinates of the orthogonal coordinate system with each wavelength band as an axis is not an elliptical shape, and the equal probability density curve of the target signal distribution The egg shape as shown in FIG. Therefore, by setting the threshold for determining the target as the equiprobability density curve shown in FIG. 3, the threshold filter area can be minimized while maintaining high detection performance, and the false detection of background clutter can be minimized. Is possible.

この発明は、目標の自動探知を行う2波長赤外線センサを備えた目標撮像探知装置において、上述のように目標判定閾値を設定することにより、目標誤検出の低減を実現することを目的とする。   An object of the present invention is to realize a reduction in target false detection by setting a target determination threshold as described above in a target imaging detection apparatus including a two-wavelength infrared sensor that performs automatic target detection.

この発明は、2つの異なる波長帯域で同一目標を撮像する第一波長帯撮像部及び第二波長帯撮像部と、上記第一波長帯撮像部からの画像出力信号yをパラメータA〜Dを用いたf(y)=(Aexp(-By))/(1+erf(C+Dy))(但しB/(2CD)≧1)で表されるエラー関数を含む関数に代入して演算結果を出力するエラー関数演算部と、上記第二波長帯撮像部からの画像出力信号xをパラメータEを用いたg(x)=exp(Ex2)で表される指数関数に代入して演算結果を出力する指数関数演算部と、上記エラー関数演算部及び指数関数演算部から出力された演算結果がg(x)≦f(y)の関係にある時に検出信号が目標信号であることを判定する目標判定処理部と、を備えたことを特徴とする目標撮像探知装置にある。
This invention uses parameters A to D for the first wavelength band imaging unit and the second wavelength band imaging unit for imaging the same target in two different wavelength bands, and the image output signal y from the first wavelength band imaging unit. F (y) = (Aexp (-By)) / (1 + erf (C + Dy)) (B / (2CD) ≧ 1) Substitute the error function calculation unit to output and the image output signal x from the second wavelength band imaging unit into the exponential function represented by g (x) = exp (Ex 2 ) using the parameter E, and the calculation result Determines that the detection signal is the target signal when the exponential function calculation unit to be output and the calculation results output from the error function calculation unit and the exponential function calculation unit have a relationship of g (x) ≦ f (y) And a target determination processing unit.

この発明では、目標の自動探知を行う2波長赤外線センサを備えた目標撮像探知装置において、目標誤検出の低減を実現することができる。   According to the present invention, it is possible to reduce target false detection in a target imaging detection apparatus including a two-wavelength infrared sensor that performs automatic target detection.

実施の形態1.
図1はこの発明の実施の形態1による目標撮像探知装置の構成を示す図である。目標撮像探知装置は、第一波長帯撮像部(赤外線センサ)1、第二波長帯撮像部(赤外線センサ)2、エラー関数演算部3、指数関数演算部4、および目標判定処理部5より構成されている。同一の目標を第一波長帯撮像部1及び第二波長帯撮像部2の異なる波長帯で撮像する。この時、第一波長帯撮像部1の波長帯には目標放射から大きな信号出力が得られる波長帯を選択し、第二波長帯撮像部2の波長帯には背景クラッタの放射から大きな信号出力が得られる波長帯を選択する。そして、第一波長帯撮像部1からの画像出力信号をエラー関数演算部3でエラー関数を含む関数に代入して演算を行い、第二波長帯撮像部2からの画像出力信号を指数関数演算部4で指数関数に代入して演算を行い、各々演算結果を出力する。最後に、エラー関数演算部3及び指数関数演算部4の演算結果より、検出した信号が目標信号であるかどうかの判定を目標判定処理部5で行う。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a target imaging detection apparatus according to Embodiment 1 of the present invention. The target imaging detection device includes a first wavelength band imaging unit (infrared sensor) 1, a second wavelength band imaging unit (infrared sensor) 2, an error function calculation unit 3, an exponential function calculation unit 4, and a target determination processing unit 5. Has been. The same target is imaged in different wavelength bands of the first wavelength band imaging unit 1 and the second wavelength band imaging unit 2. At this time, the wavelength band of the first wavelength band imaging unit 1 selects a wavelength band from which a large signal output can be obtained from the target radiation, and the wavelength band of the second wavelength band imaging unit 2 outputs a large signal from the radiation of the background clutter. Is selected. Then, the image output signal from the first wavelength band imaging unit 1 is calculated by substituting the error output calculation unit 3 into a function including an error function, and the image output signal from the second wavelength band imaging unit 2 is exponentially calculated. In part 4, the calculation is performed by substituting it into the exponential function, and the calculation result is output. Finally, the target determination processing unit 5 determines whether the detected signal is the target signal based on the calculation results of the error function calculation unit 3 and the exponent function calculation unit 4.

図2は、第一波長帯撮像部1及び第二波長帯撮像部2で同一目標を撮像した画像出力信号を、各撮像波長帯を軸とする直交座標系の座標で表した時の信号分布の様子を計算機によってシミュレーションした結果を示している。図2では第一波長帯撮像部1の出力を縦軸(y軸)に、第二波長帯撮像部2の出力を横軸(x軸)に示している。また、図2は、目標−センサの間の距離、センサ温度、背景温度、背景反射率などのパラメータを一様確率で変化させた時のシミュレーション結果を示している。   FIG. 2 is a signal distribution when image output signals obtained by imaging the same target by the first wavelength band imaging unit 1 and the second wavelength band imaging unit 2 are expressed by coordinates in an orthogonal coordinate system with each imaging wavelength band as an axis. The result of having been simulated by the computer is shown. In FIG. 2, the output of the first wavelength band imaging unit 1 is shown on the vertical axis (y axis), and the output of the second wavelength band imaging unit 2 is shown on the horizontal axis (x axis). FIG. 2 shows a simulation result when parameters such as the target-sensor distance, sensor temperature, background temperature, and background reflectance are changed with a uniform probability.

この時、センサで検出される目標信号は大気中の分子による吸収や散乱の影響を受けるため、目標‐センサの間の距離が大きくなるに従って目標信号強度は指数関数的に減衰する。このように、目標信号強度は目標とセンサの間の距離によって非線形に変化するため、目標放射スペクトル強度の特徴が現れる波長帯を選択した第一波長帯撮像部1からの目標信号分布(図2中では縦軸方向に現れる信号の分布)は、正規分布に従わない。   At this time, since the target signal detected by the sensor is affected by absorption and scattering by molecules in the atmosphere, the target signal intensity attenuates exponentially as the distance between the target and the sensor increases. Thus, since the target signal intensity changes nonlinearly depending on the distance between the target and the sensor, the target signal distribution from the first wavelength band imaging unit 1 that selects the wavelength band in which the characteristics of the target radiation spectrum intensity appear (FIG. 2). In particular, the distribution of signals appearing in the vertical axis direction does not follow the normal distribution.

一方、背景クラッタの放射スペクトル強度の特徴が現れる波長帯を選択した第二波長帯撮像部2で目標を撮像した時の画像出力信号には目標放射スペクトル強度の特徴があまり表れないため、第二波長帯撮像部2からの画像出力信号はセンサ雑音が支配的となり、この時の目標信号分布(図2中では横軸方向に現れる信号の分布)は、正規分布に従う。   On the other hand, the characteristics of the target radiation spectrum intensity do not appear so much in the image output signal when the target is imaged by the second wavelength band imaging unit 2 that selects the wavelength band in which the characteristics of the radiation spectrum intensity of the background clutter appear. The sensor output is dominant in the image output signal from the wavelength band imaging unit 2, and the target signal distribution at this time (the distribution of signals appearing in the horizontal axis direction in FIG. 2) follows a normal distribution.

従って、第一波長帯撮像部1及び第二波長帯撮像部2の各波長帯を軸とする直交座標系上での目標信号領域は、各軸方向の信号強度に応じたセンサ雑音による信号分布広がりを考慮した時、以下の通りとなる。   Therefore, the target signal area on the orthogonal coordinate system with the respective wavelength bands of the first wavelength band imaging unit 1 and the second wavelength band imaging unit 2 as an axis is a signal distribution due to sensor noise corresponding to the signal intensity in each axis direction. When considering the spread, it becomes as follows.

Figure 0005279236
Figure 0005279236

式1において、N(I)は第一波長帯撮像部1の出力(y軸)方向の目標信号分布、I0は目標探知距離によって決定される第一波長帯撮像部1の波長帯軸(y軸)方向の目標信号閾値、σは各軸方向に応じたセンサ雑音による信号分布広がり係数、をそれぞれ表している。 In Equation 1, N (I) is the target signal distribution in the output (y-axis) direction of the first wavelength band imaging unit 1, and I 0 is the wavelength band axis of the first wavelength band imaging unit 1 determined by the target detection distance ( (y-axis) direction target signal threshold, σ represents a signal distribution spread coefficient due to sensor noise corresponding to each axis direction.

従って、目標信号領域はパラメータA〜Eを用いて以下の通りとなる。   Accordingly, the target signal area is as follows using the parameters A to E.

exp(Ex)≦(Aexp(−By))/(1+erf(C+Dy)) 式2 exp (Ex 2 ) ≦ (Aexp (−By)) / (1 + erf (C + Dy)) Equation 2

ここで、式2の各パラメータは次の関係式が成り立つ。   Here, the following relational expression holds for each parameter of Expression 2.

B/(2CD)≧1 式3     B / (2CD) ≧ 1 Formula 3

図3は式2で示される目標信号領域の等確率密度曲線の例を示したもので、白色の領域ほど(すなわち内側のたまご型程)分布密度が高いことを表している。図3に示す例のように、目標信号領域は楕円形状ではなくたまご型形状となる。これは図2に示す目標信号領域シミュレーション結果からも確認することが可能である。   FIG. 3 shows an example of the equiprobability density curve of the target signal area expressed by Equation 2, and indicates that the white area (that is, the inner egg type) has a higher distribution density. As in the example shown in FIG. 3, the target signal area has an egg shape instead of an elliptical shape. This can also be confirmed from the target signal region simulation results shown in FIG.

そこでこの発明では、図1に示すように第一波長帯撮像部1の後段にエラー関数演算部3、第二波長帯撮像部2の後段に指数関数演算部4を配置して、各演算部3,4で後述の演算処理を行った出力結果より、検出した信号が目標であるかどうかの判定を行う。   Therefore, in the present invention, as shown in FIG. 1, an error function calculation unit 3 is arranged downstream of the first wavelength band imaging unit 1, and an exponential function calculation unit 4 is arranged downstream of the second wavelength band imaging unit 2, so that each calculation unit It is determined whether the detected signal is a target from the output result of the arithmetic processing described later in 3 and 4.

図1のエラー関数演算部3では、第一波長帯撮像部1からの画像出力信号yを次式に示すエラー関数を含む関数に代入して、その演算結果を出力する。   In the error function calculation unit 3 in FIG. 1, the image output signal y from the first wavelength band imaging unit 1 is substituted into a function including an error function represented by the following equation, and the calculation result is output.

f(y)=(Aexp(−By))/(1+erf(C+Dy)) 式4     f (y) = (Aexp (−By)) / (1 + erf (C + Dy)) Equation 4

また図1の指数関数演算部4では、第二波長帯撮像部2からの画像出力信号xを次式に示す指数関数に代入して、その演算結果を出力する。   1 substitutes the image output signal x from the second wavelength band imaging unit 2 for the exponential function shown in the following equation and outputs the calculation result.

g(x)=exp(Ex) 式5 g (x) = exp (Ex 2 ) Formula 5

そして目標判定処理部5では、エラー関数演算部3及び指数関数演算部4からの各出力信号が次式を満たす時、いま検出した信号は目標信号であると判定を行う。   Then, the target determination processing unit 5 determines that the detected signal is the target signal when each output signal from the error function calculation unit 3 and the exponent function calculation unit 4 satisfies the following expression.

g(x)≦f(y) 式6     g (x) ≦ f (y) Equation 6

図2に示す目標信号領域のシミュレーション結果において、上記信号処理によって目標信号を検出する概念図を図4に示す。ここで、図4には図2の目標信号分布に加えて背景クラッタ信号分布も含む計算機シミュレーション結果の例を示しており、目標信号と判定する式6の目標信号判定閾値を破線で示している。図4に示されるように、この発明の目標撮像探知装置における目標信号判定閾値は目標信号領域に沿って設定されており、目標信号と背景クラッタ信号を識別することが可能である。   FIG. 4 shows a conceptual diagram for detecting the target signal by the signal processing in the simulation result of the target signal region shown in FIG. Here, FIG. 4 shows an example of a computer simulation result including the background clutter signal distribution in addition to the target signal distribution of FIG. 2, and the target signal determination threshold of Expression 6 for determining the target signal is indicated by a broken line. . As shown in FIG. 4, the target signal determination threshold in the target imaging detection apparatus of the present invention is set along the target signal region, and the target signal and the background clutter signal can be identified.

この実施の形態では、図4に示す目標信号判定閾値のような形状だけではなく、図5に破線で示すような形状の目標信号判定閾値(目標信号領域)を設定することで、目標探知性能を低下させることなく装置の演算処理を簡単化することができる。図5に示す例では、式2においてxが最大値xmaxとなる時のyの値をymaxとすると、y≦ymaxの出力信号に対しては式5のg(x)≦f(y)を用いて目標信号判定処理を行っている。一方、y>ymaxの出力信号に対しては|x|≦xmaxを用いて目標信号判定処理を行っている。これは、目標とセンサの間の距離が限りなく近づいた場合の出力信号は限りなく大きくなることを想定した時の目標信号領域に対応した目標信号判定閾値の設定である。この時、図5に示す例ではy>ymaxの出力信号における目標信号判定閾値を直線で示しているが、目標探知を行う際に想定される背景クラッタの信号領域に沿った曲線としても良い。 In this embodiment, not only the shape as the target signal determination threshold shown in FIG. 4 but also the target signal determination threshold (target signal region) having the shape as shown by the broken line in FIG. It is possible to simplify the arithmetic processing of the apparatus without lowering. In the example shown in FIG. 5, when the value of y when the equation 2 x is the maximum value x max and y max, y ≦ y for the max of the output signal of the formula 5 g (x) ≦ f ( The target signal determination process is performed using y). On the other hand, target signal determination processing is performed using | x | ≦ x max for an output signal of y> y max . This is a setting of a target signal determination threshold value corresponding to the target signal region when it is assumed that the output signal when the distance between the target and the sensor approaches as much as possible becomes extremely large. At this time, in the example shown in FIG. 5, the target signal determination threshold value in the output signal y> y max is shown by a straight line, but it may be a curve along the signal area of the background clutter assumed when performing the target detection. .

以上のことから、この発明では検出した信号が目標信号であるかどうかの判定閾値の形状が目標信号領域と一致しているため、目標信号と背景クラッタ信号の誤検出を低減することが可能であり、目標撮像探知装置の信頼性を向上させることができる。   As described above, according to the present invention, since the shape of the threshold value for determining whether or not the detected signal is the target signal matches the target signal region, it is possible to reduce erroneous detection of the target signal and the background clutter signal. Yes, the reliability of the target imaging detection device can be improved.

実施の形態2.
上記の実施の形態1では、第一波長帯撮像部1及び第二波長帯撮像部2から出力される同一目標の画像出力信号を用いてエラー関数演算部3及び指数関数演算部4で演算を行っている。ここで、第一波長帯撮像部1及び第二波長帯撮像部2からの画像出力信号は、目標からの信号だけでなく背景からの信号も含んでいるために背景変化による出力信号レベル変動の影響を受けやすく、エラー関数演算部3及び指数関数演算部4における演算精度や目標判定処理部5における目標判定処理の精度が低下することになる。
Embodiment 2. FIG.
In the first embodiment, the error function calculation unit 3 and the exponent function calculation unit 4 perform calculation using the same target image output signals output from the first wavelength band imaging unit 1 and the second wavelength band imaging unit 2. Is going. Here, the image output signals from the first wavelength band imaging unit 1 and the second wavelength band imaging unit 2 include not only the signal from the target but also the signal from the background. It is easy to be affected, and the calculation accuracy in the error function calculation unit 3 and the exponent function calculation unit 4 and the accuracy of the target determination processing in the target determination processing unit 5 are lowered.

そこで、背景変化による信号レベル変動が目標判定処理精度に与える影響を除去するための実施の形態を示す。   Therefore, an embodiment for removing the influence of signal level fluctuations due to background changes on target determination processing accuracy will be described.

図6は実施の形態1の目標撮像探知装置において、背景変化やセンサ受光感度変化などによる信号レベル変動が目標判定処理精度に与える影響を除去するための機能を加えた、この実施の形態2の目標撮像探知装置の構成を示す図であり、符号1〜5までは実施の形態1と同様である。ここで、6は第一波長帯ハイパスフィルタ、7は第二波長帯ハイパスフィルタである。   FIG. 6 shows a target imaging detection apparatus according to the first embodiment, in which a function for removing the influence of signal level fluctuations on the target determination processing accuracy due to changes in the background and sensor light reception sensitivity is added. It is a figure which shows the structure of a target imaging detection apparatus, and the code | symbol 1-5 is the same as that of Embodiment 1. FIG. Here, 6 is a first wavelength band high-pass filter, and 7 is a second wavelength band high-pass filter.

実施の形態2は、第一波長帯撮像部1の後段に第一波長帯ハイパスフィルタ6を、第二波長帯撮像部2の後段に第二波長帯ハイパスフィルタ7を各々配置している。各撮像部1,2に対応するハイパスフィルタでは、各撮像部から得られる画像出力信号と各画像の平均信号強度との差分演算を行い、各画像出力信号に含まれる背景信号によるオフセット成分を除去する。これによって、後段の信号処理には目標信号のみが用いられることになるため、背景変化による信号レベル変動が目標判定処理精度に与える影響を除去することができる。   In the second embodiment, the first wavelength band high-pass filter 6 is disposed downstream of the first wavelength band imaging unit 1, and the second wavelength band high-pass filter 7 is disposed downstream of the second wavelength band imaging unit 2. The high-pass filter corresponding to each imaging unit 1, 2 calculates the difference between the image output signal obtained from each imaging unit and the average signal intensity of each image, and removes the offset component due to the background signal included in each image output signal To do. As a result, only the target signal is used for the subsequent signal processing, so that it is possible to remove the influence of the signal level fluctuation caused by the background change on the target determination processing accuracy.

この実施の形態においては、各撮像部に対応するハイパスフィルタによって各撮像部から得られる画像出力信号の高周波成分のみを抽出することで、各画像出力信号のうち周囲画素と比較して輝度変化の大きい画素、すなわち目標信号を検出している画素のみを抽出することができる。これによって、装置の目標探知性能を向上させることが可能である。   In this embodiment, by extracting only the high-frequency component of the image output signal obtained from each imaging unit by the high-pass filter corresponding to each imaging unit, the luminance change of each image output signal is compared with the surrounding pixels. Only large pixels, that is, pixels for which a target signal is detected can be extracted. As a result, the target detection performance of the apparatus can be improved.

以上のことから、この実施の形態の目標撮像探知装置は、各撮像部の後段にハイパスフィルタを配置して背景変化による信号レベル変動が目標判定処理精度に与える影響を除去することによって、目標探知性能が使用状況で低下することのない目標撮像探知装置を実現することが可能である。また、各撮像部から得られる画像出力信号の高周波成分のみを抽出することで、目標信号を検出しやすくなり、装置の目標探知性能を向上させることが可能である。   From the above, the target imaging detection device according to this embodiment has a high-pass filter disposed after each imaging unit to remove the influence of signal level fluctuations due to background changes on target determination processing accuracy. It is possible to realize a target imaging detection device whose performance does not deteriorate in use conditions. Also, by extracting only the high-frequency component of the image output signal obtained from each imaging unit, it becomes easier to detect the target signal, and the target detection performance of the apparatus can be improved.

実施の形態3.
実施の形態1、2は、第一波長帯撮像部1の波長帯には目標放射の大きな信号出力が得られる波長帯を選択し、第二波長帯撮像部2の波長帯には背景クラッタの放射の大きな信号出力が得られる波長帯を選択している。この時、第一波長帯撮像部1及び第二波長帯撮像部2の波長帯が上記(図2の場合)のように選択されなかった場合、目標信号領域は式2に従わなくなる。これにより、エラー関数演算部3及び指数関数演算部4で行う演算処理が正しく行われないため、目標判定処理部5で行う目標判定処理の精度が低下することになる。
Embodiment 3 FIG.
In the first and second embodiments, the wavelength band of the first wavelength band imaging unit 1 selects a wavelength band that provides a signal output with a large target radiation, and the wavelength band of the second wavelength band imaging unit 2 includes background clutter. A wavelength band is selected in which a signal output with large radiation is obtained. At this time, if the wavelength bands of the first wavelength band imaging unit 1 and the second wavelength band imaging unit 2 are not selected as described above (in the case of FIG. 2), the target signal region does not follow Equation 2. As a result, the calculation process performed by the error function calculation unit 3 and the exponent function calculation unit 4 is not performed correctly, and the accuracy of the target determination process performed by the target determination process unit 5 is reduced.

そこで、第一波長帯撮像部1及び第二波長帯撮像部2に任意の撮像波長帯を持つセンサを適用することができる実施の形態を示す。   Therefore, an embodiment in which a sensor having an arbitrary imaging wavelength band can be applied to the first wavelength band imaging unit 1 and the second wavelength band imaging unit 2 will be described.

図7は実施の形態1の目標撮像探知装置において、第一波長帯撮像部1及び第二波長帯撮像部2の波長帯が上記(図2の場合)と異なる波長帯を選択したことによる目標判定処理精度の低下を防ぐための機能を加えた、この実施の形態3の目標撮像探知装置の構成を示す図であり、符号1〜5までは実施の形態1と同様である。ここで、8は第一波長帯補正部、9は第二波長帯補正部である。   FIG. 7 shows a target obtained by selecting a wavelength band in which the wavelength bands of the first wavelength band imaging unit 1 and the second wavelength band imaging unit 2 are different from the above (in the case of FIG. 2) in the target imaging detection apparatus of the first embodiment. It is a figure which shows the structure of the target imaging detection apparatus of this Embodiment 3 which added the function for preventing the fall of a determination processing precision, and the code | symbol 1-5 is the same as that of Embodiment 1. FIG. Here, 8 is a first wavelength band correction unit, and 9 is a second wavelength band correction unit.

実施の形態3は、第一波長帯撮像部1の後段に第一波長帯補正部8を、第二波長帯撮像部2の後段に第二波長帯補正部9を配置している。   In the third embodiment, the first wavelength band correction unit 8 is arranged downstream of the first wavelength band imaging unit 1, and the second wavelength band correction unit 9 is arranged downstream of the second wavelength band imaging unit 2.

第一波長帯撮像部1及び第二波長帯撮像部2の波長帯を上述した関係となるように選択した場合の目標信号領域の概念図を図8の(a)に、上記とは異なる任意の波長帯を選択した場合の目標信号領域の概念図を図8の(b)にそれぞれ示す。図8では、図2と同様に各撮像部1,2の波長帯を軸とした直交座標系を示しており、点線で囲んでいる領域は目標信号領域を示している。また、図8の(a)と(b)では目標放射を検出する波長帯が異なるため、各撮像部から得られる画像出力信号が図8の(a)と(b)によって異なり、目標信号領域も図8の(a)と(b)によって異なる。   FIG. 8A is a conceptual diagram of the target signal region when the wavelength bands of the first wavelength band imaging unit 1 and the second wavelength band imaging unit 2 are selected so as to have the above-described relationship. FIG. 8B shows a conceptual diagram of the target signal area when the wavelength band is selected. FIG. 8 shows an orthogonal coordinate system with the wavelength bands of the imaging units 1 and 2 as axes as in FIG. 2, and a region surrounded by a dotted line shows a target signal region. 8A and 8B have different wavelength bands for detecting the target radiation, the image output signals obtained from the respective imaging units differ between FIGS. 8A and 8B, and the target signal region. Are different depending on (a) and (b) of FIG.

この時、上記式2は図8の(a)の場合の目標信号領域を表す式であり、図8の(b)に示すような目標信号領域には適用することができない。そこで、図8の(b)に示す目標信号領域に式2を適用することができるように座標変換を行う。   At this time, the above expression 2 is an expression representing the target signal area in the case of FIG. 8A, and cannot be applied to the target signal area as shown in FIG. 8B. Therefore, coordinate transformation is performed so that Equation 2 can be applied to the target signal region shown in FIG.

目標信号領域の座標変換を行う方法の一つとして主成分分析を行う方法がある。この方法では、図8の(b)の目標信号領域の主成分分析を行い、主成分とそれに直交する成分を軸とする直交座標系を求め、式2を適用することができるように座標変換を行う方法である。この時、主成分方向は目標放射から大きな信号を検出することが可能な信号分布方向(図2中では縦軸方向に現れる信号の分布)を示しており、それに直交する成分は目標放射からは小さな信号しか検出することができない信号分布方向、すなわち背景クラッタの放射の大きな信号出力が得られる信号分布方向(図2中では横軸方向に現れる信号の分布)を示している。そして、主成分分析を行った結果得られた直交座標系が図8の(a)の直交座標系と一致するように図8の(b)の座標軸を回転させる。これによって、図8の(b)の目標信号領域を図8の(a)の目標信号領域と同様に扱うことができ、式2を適用することが可能となる。   One of the methods for performing coordinate conversion of the target signal region is a method for performing principal component analysis. In this method, a principal component analysis of the target signal region in FIG. 8B is performed, an orthogonal coordinate system having the principal component and a component orthogonal to the principal component as axes is obtained, and coordinate transformation is performed so that Equation 2 can be applied. It is a method to do. At this time, the principal component direction indicates a signal distribution direction (a signal distribution appearing in the vertical axis direction in FIG. 2) in which a large signal can be detected from the target radiation. A signal distribution direction in which only a small signal can be detected, that is, a signal distribution direction (a signal distribution appearing in the horizontal axis direction in FIG. 2) in which a signal output with large radiation of the background clutter is obtained is shown. Then, the coordinate axes in FIG. 8B are rotated so that the orthogonal coordinate system obtained as a result of the principal component analysis matches the orthogonal coordinate system in FIG. Accordingly, the target signal region in FIG. 8B can be handled in the same manner as the target signal region in FIG. 8A, and Expression 2 can be applied.

この実施の形態では、上記主成分分析で求めた座標軸回転データに基づいて、第一波長帯撮像部1からの画像出力信号の座標変換演算を行う第一波長帯補正部8、第二波長帯撮像部2からの画像出力信号の座標変換演算を行う第二波長帯補正部9を各撮像部の後段に配置する。そして、各補正部からの出力信号を実施の形態1または2と同様に信号処理を行うことによって、目標判定処理精度の低下を防ぐことが可能である。   In this embodiment, based on the coordinate axis rotation data obtained by the principal component analysis, the first wavelength band correction unit 8 that performs the coordinate conversion calculation of the image output signal from the first wavelength band imaging unit 1, the second wavelength band A second wavelength band correction unit 9 that performs a coordinate conversion calculation of an image output signal from the imaging unit 2 is disposed in the subsequent stage of each imaging unit. Then, by performing signal processing on the output signal from each correction unit in the same manner as in the first or second embodiment, it is possible to prevent a decrease in target determination processing accuracy.

以上のことから、この実施の形態の目標撮像探知装置は第一波長帯撮像部1及び第二波長帯撮像部2の撮像波長帯に影響されることなく用いることが可能である。   From the above, the target imaging detection device of this embodiment can be used without being affected by the imaging wavelength bands of the first wavelength band imaging unit 1 and the second wavelength band imaging unit 2.

なおこの発明は、上記実施の形態の可能な組合せを含むことは云うまでもない。   Needless to say, the present invention includes possible combinations of the above embodiments.

この発明の実施の形態1による目標撮像探知装置の構成を示す図である。It is a figure which shows the structure of the target imaging detection apparatus by Embodiment 1 of this invention. この発明による第一波長帯撮像部及び第二波長帯撮像部で同一目標を撮像した画像出力信号を各撮像波長帯を軸とする直交座標系の座標で表した時の信号分布の様子を計算機によってシミュレーションした結果を示した図である。A signal distribution state when an image output signal obtained by imaging the same target by the first wavelength band imaging unit and the second wavelength band imaging unit according to the present invention is expressed by coordinates of an orthogonal coordinate system having each imaging wavelength band as an axis. It is the figure which showed the result of having simulated by. この発明における目標信号領域の等確率密度曲線の例を示した図である。It is the figure which showed the example of the equal probability density curve of the target signal area | region in this invention. 図2の目標信号分布に加えて背景クラッタ信号分布も含む計算機シミュレーション結果の例を示した図である。FIG. 3 is a diagram illustrating an example of a computer simulation result including a background clutter signal distribution in addition to the target signal distribution of FIG. 2. 図5とは別の目標信号判定閾値(目標信号領域)を設定する場合を説明するための図である。FIG. 6 is a diagram for explaining a case where a target signal determination threshold (target signal region) different from that in FIG. 5 is set. この発明の実施の形態2による目標撮像探知装置の構成を示す図である。It is a figure which shows the structure of the target imaging detection apparatus by Embodiment 2 of this invention. この発明の実施の形態3による目標撮像探知装置の構成を示す図である。It is a figure which shows the structure of the target imaging detection apparatus by Embodiment 3 of this invention. この発明の実施の形態3における目標信号領域の座標変換を説明するための座標の概念図である。It is a conceptual diagram of the coordinate for demonstrating the coordinate transformation of the target signal area | region in Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 第一波長帯撮像部、2 第二波長帯撮像部、3 エラー関数演算部、4 指数関数演算部、5 目標判定処理部、6 第一波長帯ハイパスフィルタ、7 第二波長帯ハイパスフィルタ、8 第一波長帯補正部、9 第二波長帯補正部。   DESCRIPTION OF SYMBOLS 1 1st wavelength band imaging part, 2 2nd wavelength band imaging part, 3 Error function calculating part, 4 Exponential function calculating part, 5 Target determination processing part, 6 1st wavelength band high pass filter, 7 2nd wavelength band high pass filter, 8 First wavelength band correction unit, 9 Second wavelength band correction unit.

Claims (4)

2つの異なる波長帯域で同一目標を撮像する第一波長帯撮像部及び第二波長帯撮像部と、
上記第一波長帯撮像部からの画像出力信号yをパラメータA〜Dを用いたf(y)=(Aexp(-By))/(1+erf(C+Dy))(但しB/(2CD)≧1)で表されるエラー関数を含む関数に代入して演算結果を出力するエラー関数演算部と、
上記第二波長帯撮像部からの画像出力信号xをパラメータEを用いたg(x)=exp(Ex2)で表される指数関数に代入して演算結果を出力する指数関数演算部と、
上記エラー関数演算部及び指数関数演算部から出力された演算結果がg(x)≦f(y)の関係にある時に検出信号が目標信号であることを判定する目標判定処理部と、
を備えたことを特徴とする目標撮像探知装置。
A first wavelength band imaging unit and a second wavelength band imaging unit for imaging the same target in two different wavelength bands;
F (y) = (Aexp (-By)) / (1 + erf (C + Dy)) (however, B / (2CD ) ≧ 1) An error function operation unit that outputs an operation result by substituting it into a function including an error function represented by
An exponential function computing unit that outputs an operation result by substituting the image output signal x from the second wavelength band imaging unit into an exponential function represented by g (x) = exp (Ex 2 ) using the parameter E;
A target determination processing unit that determines that the detection signal is a target signal when the calculation results output from the error function calculation unit and the exponential function calculation unit have a relationship of g (x) ≦ f (y);
A target imaging detection apparatus comprising:
上記第一波長帯撮像部が目標放射から大きな信号出力が得られる波長帯で目標を撮像し、上記第二波長帯撮像部が背景クラッタの放射から大きな信号出力が得られる波長帯で目標を撮像することを特徴とする請求項1記載の目標撮像探知装置。 The first wavelength band imaging unit images the target in a wavelength band where a large signal output can be obtained from the target radiation, and the second wavelength band imaging unit images the target in a wavelength band where a large signal output can be obtained from the background clutter radiation. The target imaging detection apparatus according to claim 1, wherein: 上記第一波長帯撮像部及び第二波長帯撮像部の後段に背景変化による信号レベル変動の影響を除去するための第一波長帯ハイパスフィルタ及び第二波長帯ハイパスフィルタを備えたことを特徴とする請求項1又は2記載の目標撮像探知装置。   A first wavelength band high-pass filter and a second wavelength band high-pass filter for removing the influence of signal level fluctuation due to a background change are provided at the subsequent stage of the first wavelength band imaging unit and the second wavelength band imaging unit. The target imaging detection device according to claim 1 or 2. 上記第一波長帯撮像部及び第二波長帯撮像部の各画像出力信号の主成分と該主成分に直交する成分を軸とする直交座標系への座標軸変換を行う第一波長帯補正部及び第二波長帯補正部をさらに備えたことを特徴とする請求項1又は3記載の目標撮像探知装置。 A first wavelength band correction unit that performs coordinate axis conversion to an orthogonal coordinate system with the main component of each image output signal of the first wavelength band imaging unit and the second wavelength band imaging unit and a component orthogonal to the main component as axes; and The target imaging detection apparatus according to claim 1, further comprising a second wavelength band correction unit.
JP2007292338A 2007-11-09 2007-11-09 Target imaging detector Expired - Fee Related JP5279236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292338A JP5279236B2 (en) 2007-11-09 2007-11-09 Target imaging detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292338A JP5279236B2 (en) 2007-11-09 2007-11-09 Target imaging detector

Publications (2)

Publication Number Publication Date
JP2009115765A JP2009115765A (en) 2009-05-28
JP5279236B2 true JP5279236B2 (en) 2013-09-04

Family

ID=40783041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292338A Expired - Fee Related JP5279236B2 (en) 2007-11-09 2007-11-09 Target imaging detector

Country Status (1)

Country Link
JP (1) JP5279236B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5465001B2 (en) * 2009-12-25 2014-04-09 三菱電機株式会社 Target estimation device
JP7109986B2 (en) * 2017-06-30 2022-08-01 キヤノンメディカルシステムズ株式会社 Image processing device and ultrasonic diagnostic device
CN111413279B (en) * 2020-03-31 2023-04-07 长光禹辰信息技术与装备(青岛)有限公司 Video processing method and device for multispectral detection and multispectral detection terminal
JP7028299B2 (en) * 2020-10-07 2022-03-02 三菱電機株式会社 Target identification device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095372A (en) * 1983-10-31 1985-05-28 Mitsubishi Electric Corp Picture tracking device
JP3216434B2 (en) * 1994-08-30 2001-10-09 三菱電機株式会社 Image target detection device
JP2960366B2 (en) * 1997-03-18 1999-10-06 防衛庁技術研究本部長 Target extraction method
JP4230383B2 (en) * 2003-12-26 2009-02-25 三菱電機株式会社 Target detection device

Also Published As

Publication number Publication date
JP2009115765A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP7217180B2 (en) A method for multispectral quantification and identification of gases for optical gas imaging cameras
US9876968B2 (en) Drift correction method for infrared imaging device
EP3462413B1 (en) Background radiance estimation and gas concentration-length quantification method for optical gas imaging camera
KR102070288B1 (en) Apparatus and method for detecting gas
JP5327419B2 (en) Hyperspectral image analysis system, method and program thereof
JP5279236B2 (en) Target imaging detector
CN110517280A (en) System is monitored based on infrared identification ship tail gas
RU2363018C1 (en) Method of selecting objects on remote background
KR102294391B1 (en) Method for object detection and apparatus for executing the method
JP2010008273A (en) Millimeter wave imaging apparatus
JP4230383B2 (en) Target detection device
CN115713635A (en) High-precision radiation calibration method for ultra-high-sensitivity infrared sea imaging data
JP2017062178A (en) Defect detection method for product
JP2014035294A (en) Information acquisition device and object detector
JP6776643B2 (en) Target identification device
JP4257436B2 (en) Infrared dual wavelength processing method
JP7028299B2 (en) Target identification device
JP2015197788A (en) Laminar flow smoke detection device and laminar flow smoke detection method
JP6457727B2 (en) Laminar smoke detection device and laminar smoke detection method
KR102414410B1 (en) Detection apparatus and method of chemical warfare agent using orthogonal subspace projection and computer-readable medium having a program recorded therein for executing the method
JP2006339957A (en) Image correction device
JP2010025473A (en) Image emphasizing device and method
US9881356B2 (en) Data processing method
JP3915753B2 (en) Image detection device
CN113340352A (en) Valve hall monitoring method, device and system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees