JP5277401B2 - Mold heating method and apparatus - Google Patents

Mold heating method and apparatus Download PDF

Info

Publication number
JP5277401B2
JP5277401B2 JP2009142352A JP2009142352A JP5277401B2 JP 5277401 B2 JP5277401 B2 JP 5277401B2 JP 2009142352 A JP2009142352 A JP 2009142352A JP 2009142352 A JP2009142352 A JP 2009142352A JP 5277401 B2 JP5277401 B2 JP 5277401B2
Authority
JP
Japan
Prior art keywords
mold
coil
induction heating
cavity surface
heating coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009142352A
Other languages
Japanese (ja)
Other versions
JP2010284714A (en
Inventor
満 藤田
静男 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009142352A priority Critical patent/JP5277401B2/en
Publication of JP2010284714A publication Critical patent/JP2010284714A/en
Application granted granted Critical
Publication of JP5277401B2 publication Critical patent/JP5277401B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for heating a mold which is improved so as to uniformly heat the entire area of cavity surface without unevenness of temperature on the basis of an induction heating method which heats a mold by using a transverse type induction heating coil, and an apparatus therefor. <P>SOLUTION: In the method for heating a mold in which a transverse type induction heating coil 4 is interposed between mold register surfaces of a fixed mold 2 and a movable mold 3 of a mold 1 and a cavity surface of the mold 1 is heated by applying a high frequency current supplied from a high-frequency power source 6 to the coil, during energizing the induction heating coil, a reciprocating movement in a plane direction of the mold is added to the induction heating coil to induction-heat the mold. Specificallly, a coil drive device 7 is provided to the induction heating coil 4 and the induction heating coil 4 reciprocates in a plane direction of the mold 1 by using the coil drive device. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、アルミダイキャストの鋳造金型などを対象に、誘導加熱法を応用して金型を所要温度に予熱する金型の加熱方法,および加熱装置に関する。   The present invention relates to a die heating method and a heating apparatus for preheating a die to a required temperature by applying an induction heating method for an aluminum die-cast casting die.

周知のように、ダイキャスト鋳造法では金型に注入した溶湯の湯回り性を確保するために、溶湯の注入に先立って金型を予熱しておくことが行われている。この金型の加熱方法として、旧来は金型をバーナーで加熱する、あるいは金型に埋設した電熱ヒータに通電して所要温度まで加熱する方法などが用いられていたが、この加熱方法では金型全体を加熱する必要があり、そのため金型の予熱に要する時間が長くなることから、これに代わる方法として誘導加熱を応用した金型の加熱方法が提唱されている(例えば、特許文献1,特許文献2参照)。   As is well known, in the die casting method, the mold is preheated prior to the injection of the molten metal in order to ensure the meltability of the molten metal injected into the mold. Conventionally, as a heating method of this mold, a method of heating the mold with a burner or energizing an electric heater embedded in the mold and heating it to a required temperature has been used. Since it is necessary to heat the whole, and the time required for preheating the mold becomes longer, a mold heating method using induction heating has been proposed as an alternative method (for example, Patent Document 1, Patent) Reference 2).

この誘導加熱方式による金型の加熱方法は、二つ割り構造の固定型と可動型との間に型合わせ面に対向してトランスバース型の加熱コイル(コイル導体を螺旋状に巻回した平形のインダクター)を介挿配置し、この加熱コイルに高周波電源より高周波電流を給電することにより金型に渦電流を誘起させ、その渦電流により金型を加熱する方式であり、コイルに高周波電流を流すことにより誘導加熱の表皮効果で金型のキャビティ面域を短時間で予熱温度まで急速に加熱することが可能である。   The induction heating method for heating a mold is a transverse type heating coil (a flat inductor in which a coil conductor is wound in a spiral shape) between a fixed type and a movable type having a split structure and facing a mold-matching surface. ) Is inserted and a high frequency current is supplied to the heating coil from a high frequency power source to induce an eddy current in the mold, and the mold is heated by the eddy current. A high frequency current is passed through the coil. Thus, the cavity surface area of the mold can be rapidly heated to the preheating temperature in a short time by the skin effect of induction heating.

特開2000−218356号公報JP 2000-218356 A 特開2008−97948号公報JP 2008-97948 A

ところで、先記のようにダイキャスト鋳造法で溶湯の注入に先立って金型を所定の温度に予熱しておく際には、良質なダイキャストを鋳造するためにも、金型のキャビティ面全域を温度ムラなくできるだけ均一に加熱しておくことが重要である。   By the way, when the mold is preheated to a predetermined temperature prior to pouring the molten metal by die casting as described above, the entire cavity surface of the mold is also used to cast a good die cast. It is important to heat as uniformly as possible without uneven temperature.

かかる点、先記のようにコイル導体を螺旋状に巻回した構造になるトランスバース型の誘導加熱コイルでは、コイル中央部の発熱が少ないことが判明しており、さらに金型とコイルとの間の距離を小さくするほど高い加熱効率が得られるものの、コイル導体の形状,巻回ピッチなどの影響で金型に誘起される誘導電流の分布は均一でなくなる。そのため、先記の特許文献1,2のように金型の間に介装したトランスバース型コイルを定位置に保持したまま給電すると、コイルの中心部分に対向する金型の面域には局所的に誘導電流が小さい部分が生じてしまい、その結果として金型のキャビティ面全域が均一に加熱されない問題が派生する。   In this regard, it has been found that the transverse induction heating coil having a structure in which the coil conductor is wound spirally as described above has little heat generation in the central portion of the coil. Although the higher the heating efficiency, the smaller the distance between them, the distribution of the induced current induced in the mold is not uniform due to the shape of the coil conductor, the winding pitch, and the like. For this reason, when the transverse type coil interposed between the molds is supplied with power held in a fixed position as in Patent Documents 1 and 2, the surface area of the mold facing the central part of the coil is not localized. As a result, a part with a small induced current is generated, resulting in a problem that the entire cavity surface of the mold is not heated uniformly.

そのほか、トランスバース型の誘導加熱コイルを金型の間の定位置に固定して介装して使用する場合は、適用する金型ごとにその金型サイズに合わせて作製した専用の誘導加熱コイルを用意する必要がある。   In addition, when a transverse type induction heating coil is used in a fixed position between the molds, the dedicated induction heating coil is prepared for each mold to be used. It is necessary to prepare.

この発明の課題は、上記問題点を解決するために、トランスバース型の誘導加熱コイルを使用して金型を加熱する誘導加熱方式を基本として、金型のキャビティ面の全域を温度ムラなく均一に加熱することができるように改良した金型の加熱方法およびその加熱方法の実施に用いる加熱装置を提供することにある。   In order to solve the above problems, the object of the present invention is based on an induction heating method in which a mold is heated using a transverse type induction heating coil, and the entire cavity surface of the mold is uniformly distributed without temperature unevenness. An object of the present invention is to provide a mold heating method improved so that it can be heated and a heating apparatus used for carrying out the heating method.

前記の課題を解決するために、この発明によれば、二つ割り構造になる金型の型合わせ面にトランスバース型の誘導加熱コイルを介装配置し、該コイルに高周波電流を通電して金型のキャビティ面を加熱するようにした金型の加熱方法において、
第1の解決手段では、前記誘導加熱コイルを通電中に、該コイルを金型のキャビティ面の全域にわたって移動しながら金型を誘導加熱するようにする(請求項1)。
In order to solve the above-described problems, according to the present invention, a transverse induction heating coil is disposed on a die-matching surface of a mold having a split structure, and a high-frequency current is passed through the coil to mold the mold. In the heating method of the mold in which the cavity surface is heated,
In the first solution, while the induction heating coil is energized, the mold is induction-heated while moving the coil over the entire cavity surface of the mold (claim 1).

また、第2の解決手段では、誘導加熱コイルの通電による誘導加熱と並行して、金型のキャビティ面に水蒸気を吹き付けて金型を加熱するものとし(請求項2)、その具体的な態様として、誘導加熱コイルのコイル導体をパイプ導体としてその周面に多数のノズル穴を分散穿孔し、このパイプ導体に外部から供給した水蒸気を前記ノズル穴を通じて金型のキャビティ面に吹き付けるようにする(請求項3)。   Further, in the second solution means, in parallel with induction heating by energization of the induction heating coil, the mold is heated by spraying water vapor onto the cavity surface of the mold (claim 2), and its specific mode As a coil conductor of the induction heating coil as a pipe conductor, a large number of nozzle holes are dispersed and perforated on the peripheral surface, and water vapor supplied from the outside to the pipe conductor is blown to the cavity surface of the mold through the nozzle holes ( Claim 3).

一方、前記した第1の加熱方法を実施するための加熱装置として、この発明によれば、金型の合わせ面に介装したトランスバース型の誘導加熱コイルを、金型のキャビティ面の全面にわたって移動させる駆動手段を備える(請求項4)。   On the other hand, as a heating device for carrying out the first heating method described above, according to the present invention, a transverse type induction heating coil interposed on the mating surface of the mold is provided over the entire cavity surface of the mold. A drive means for moving is provided (claim 4).

また、前記した第2の加熱方法を実施するための加熱装置は、周面に多数のノズル穴を分散穿孔したパイプ導体で構成したトランスバース型の誘導加熱コイルに対し、かつ該コイルに水蒸気を供給する水蒸気発生装置を備える(請求項5)。   In addition, a heating apparatus for carrying out the second heating method described above is provided for a transverse type induction heating coil composed of a pipe conductor in which a large number of nozzle holes are dispersed and perforated on the peripheral surface, and water vapor is supplied to the coil. A water vapor generating device to be supplied is provided.

また、前記水蒸気は、100℃以上の過熱蒸気を用いる(請求項6)。   Moreover, the steam uses superheated steam of 100 ° C. or higher (claim 6).

上記した金型の加熱方法および加熱装置の採用により次記の効果を奏する。   By adopting the above-described mold heating method and heating device, the following effects can be obtained.

まず、金型の間に介装したトランスバース型の誘導加熱コイルについて、誘導加熱コイルの通電中に該コイルを金型のキャビティ面の全面にわたって移動しながら金型を誘導加熱することにより、誘導加熱コイルを定位置に固定的に配置したままの状態でコイルに通電する従来の加熱方法で問題となっていた温度ムラの発生を抑えて、金型のキャビティ面全域を均一に加熱することができる。   First, with respect to the transverse induction heating coil interposed between the molds, induction heating is performed by induction heating the mold while moving the coil over the entire cavity surface of the mold while the induction heating coil is energized. It is possible to uniformly heat the entire cavity surface of the mold by suppressing the occurrence of temperature unevenness, which has been a problem with the conventional heating method in which the coil is energized with the heating coil fixedly in place. it can.

また、誘導加熱コイルの通電による誘導加熱と並行して金型のキャビティ面に水蒸気を吹き付けると、金型の温度が100℃以下ではキャビティ面に凝縮水が付着し、その際の潜熱がキャビティ面に与えられて100℃まで昇温することができる。なお、キャビティ面に付着した凝縮水は、熱風もしくは金型が縦割り構造の場合には重力で落下して取り除くことができる。さらに、この誘導加熱コイルの通電による誘導加熱と並行して、誘導加熱コイルを構成するパイプ導体の周面に穿孔したノズル穴を通じて金型のキャビティ面に水蒸気を吹き付けることにより、パイプ状のコイル導体からノズル穴を通じて吹き出した水蒸気は瞬時に金型のキャビティ面の全域の隅々まで拡散して金型に伝熱する。これにより、誘導加熱コイルの誘導加熱による温度ムラの発生を抑えて、金型のキャビティ面全域を短時間で均一に加熱することができる。しかも、水蒸気発生装置で生成した水蒸気を誘導加熱コイルのパイプ導体を通して供給することにより、通電によりコイル自身に発生するジュール熱を利用して水蒸気を高温に加熱できる利点が得られる。なお、コイル導体は、誘導加熱コイルと水蒸気吹き出しとを兼ねた部材となるので、コンパクトな構造になる。
また、蒸気として温度が数百℃の過熱水蒸気を用いるのが有効である。この過熱水蒸気は熱風などと比べて保有熱量,熱伝達率が格段に高く、しかもノズル穴から吹き出した過熱水蒸気は瞬時に金型内面の隅々まで拡散し、ドレンの発生を伴わずにキャビティ面の全域に伝熱する。
In addition, when water vapor is sprayed onto the cavity surface of the mold in parallel with induction heating by energization of the induction heating coil, condensed water adheres to the cavity surface when the mold temperature is 100 ° C. or less, and the latent heat at that time is The temperature can be raised to 100 ° C. Note that the condensed water adhering to the cavity surface can be removed by dropping by gravity when the hot air or the mold has a vertically split structure. Further, in parallel with induction heating by energization of the induction heating coil, water vapor is blown to the cavity surface of the mold through a nozzle hole drilled in the peripheral surface of the pipe conductor constituting the induction heating coil. The water vapor blown out from the nozzle hole through the nozzle hole instantly diffuses to every corner of the entire cavity surface of the mold and transfers heat to the mold. Thereby, generation | occurrence | production of the temperature nonuniformity by induction heating of an induction heating coil can be suppressed, and the cavity surface whole region of a metal mold | die can be heated uniformly in a short time. In addition, by supplying the steam generated by the steam generator through the pipe conductor of the induction heating coil, there is an advantage that the steam can be heated to a high temperature by using Joule heat generated in the coil itself by energization. In addition, since a coil conductor becomes a member which served as the induction heating coil and water vapor | steam blowing, it becomes a compact structure.
Further, it is effective to use superheated steam having a temperature of several hundred degrees Celsius as the steam. This superheated steam has much higher heat capacity and heat transfer coefficient than hot air, etc., and the superheated steam blown out from the nozzle holes instantly diffuses to every corner of the inner surface of the mold and does not generate drainage. Heat is transferred to the entire area.

この発明の第1実施例に適用する金型の誘導加熱装置の構成図であり、(a)は金型に介装したトランスバース型誘導加熱コイルの形状を表す模式斜視図、(b)はトランスバース型誘導加熱コイルに加えた往復運動の移動範囲を表す模式平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the induction heating apparatus of the metal mold | die applied to 1st Example of this invention, (a) is a model perspective view showing the shape of the transverse induction heating coil interposed in the metal mold | die, (b) It is a schematic top view showing the movement range of the reciprocating motion added to the transverse type induction heating coil. この発明の第2実施例に適用する金型の誘導加熱装置の構成図であり、(a)はトランスバース型誘導加熱コイルの模式平面図、(b)は(a)におけるA部の拡大側面図である。It is a block diagram of the induction heating apparatus of the metal mold | die applied to 2nd Example of this invention, (a) is a schematic top view of a transverse type induction heating coil, (b) is an enlarged side view of the A section in (a) FIG.

以下、この発明による実施の形態を図1,図2に示す実施例に基づいて説明する。   Embodiments of the present invention will be described below based on the embodiments shown in FIGS.

まず、この発明の請求項1,4に係わる第1実施例の構成,動作を図1(a),(b)に基づいて説明する。   First, the configuration and operation of the first embodiment according to claims 1 and 4 of the present invention will be described with reference to FIGS. 1 (a) and 1 (b).

すなわち、この実施例は、二つ割り構造になる金型の型合わせ面に介装したトランスバース型の誘導加熱コイルを、誘導加熱コイルの通電中に金型のキャビティ面の全面にわたって往復移動させながら金型を誘導加熱するようにしたものであり、1は固定型2と可動型3からなる二つ割り構造の金型、4は低抵抗で軽量化のために中空の銅パイプからなり、この2つの分割金型2,3の間に介挿配置されたトランスバース型誘導加熱コイルである。このトランスバース型誘導加熱コイルは、抵抗を低くし、かつ重量を軽量にするために、中空の銅バイプ導体で構成されている。5はコイル4を保持したコイルユニット(コイル組立体)、6は高周波電源、7はコイルユニット5に連結してトランスバース型誘導加熱コイル4を金型1のキャバイティ面の全幅にわたって往復移動させるコイル駆動装置である。8は絶縁された細線を束ねて構成した可撓性の接続線であり、トランスバース型誘導加熱コイル4と高周波電源6とを接続する。   That is, in this embodiment, a transverse type induction heating coil interposed in a mold-matching surface of a mold having a split structure is moved back and forth over the entire cavity surface while the induction heating coil is energized. The mold is heated by induction. 1 is a mold with a split structure consisting of a fixed mold 2 and a movable mold 3, and 4 is a hollow copper pipe for low resistance and light weight. This is a transverse induction heating coil interposed between the dies 2 and 3. This transverse induction heating coil is composed of a hollow copper biconductor to reduce resistance and reduce weight. 5 is a coil unit (coil assembly) holding the coil 4, 6 is a high frequency power source, 7 is a coil connected to the coil unit 5 and reciprocally moves the transverse induction heating coil 4 over the entire width of the cavity surface of the mold 1. It is a drive device. Reference numeral 8 denotes a flexible connection line formed by bundling insulated thin wires, and connects the transverse induction heating coil 4 and the high-frequency power source 6.

ここで、トランスバース型誘導加熱コイル4は、金型1の形状(角形)に合わせてコイル導体を方形状に巻回した構成になり、そのコイルの始端,終端を接続線8を介して高周波電源6に接続して高周波電流を給電ようにしている。なお、図示例のコイルは、その上下方向の高さを金型1のキャビティ面の縦サイズに合わせ、左右方向の横幅を金型1の横サイズの略半分に設定してコイルユニット5に搭載している。   Here, the transverse induction heating coil 4 has a configuration in which a coil conductor is wound in a square shape in accordance with the shape (rectangular shape) of the mold 1, and the start end and the end of the coil are connected to the high frequency via the connection line 8. It is connected to a power source 6 so as to supply a high frequency current. The coil in the illustrated example is mounted on the coil unit 5 with the vertical height matched to the vertical size of the cavity surface of the mold 1 and the horizontal width set to approximately half the horizontal size of the mold 1. doing.

また、前記コイルユニット5にはコイル駆動装置7が連結されており、このコイル駆動装置7によりコイルユニット5に周期的な往復運動を加えて、トランスバース型誘導加熱コイル4を金型1のキャビティ面に沿って全幅にわった移動するようにしている。なお、この往復運動によるコイルの移動範囲は金型のキャビティ面の全域に合わせて設定しておく。   A coil driving device 7 is connected to the coil unit 5, and the coil driving device 7 applies a periodic reciprocating motion to the coil unit 5, so that the transverse induction heating coil 4 is moved into the cavity of the mold 1. It is designed to move across the entire width along the surface. The moving range of the coil by this reciprocating motion is set in accordance with the entire area of the cavity surface of the mold.

上記の構成で、溶湯の注入に先立って金型1を予熱する際には、図示のようにトランスバース型の誘導加熱コイル4を固定型2と可動型3との間の型合わせ面に対向して介挿配置した上で、前記コイル駆動装置7の操作によりコイルユニット5を矢印P方向に金型のキャビティ面の全幅にわたって周期的な往復移動させながら高周波電源6よりコイルに高周波電流を通電する。これにより、金型1のキャビティ面に誘導電流(渦電流)が誘起する領域がコイルの往復運動に伴って左右方向へ連続的に変位して金型1のキャビティ面の全域に広がる。その結果、従来のように誘導加熱コイルを定位置に固定的に配置したまま通電する加熱方法で問題になっていた温度ムラの発生を抑えて、金型1のキャビティ面の全域を均一に加熱することができる。   With the above configuration, when the mold 1 is preheated prior to the injection of the molten metal, the transverse induction heating coil 4 is opposed to the mold-matching surface between the fixed mold 2 and the movable mold 3 as shown in the figure. The high frequency current is applied to the coil from the high frequency power source 6 while the coil unit 5 is periodically reciprocated over the entire width of the cavity surface of the mold in the direction of arrow P by the operation of the coil driving device 7. To do. As a result, the region where induced current (eddy current) is induced on the cavity surface of the mold 1 is continuously displaced in the left-right direction as the coil reciprocates, and spreads over the entire cavity surface of the mold 1. As a result, it is possible to uniformly heat the entire cavity surface of the mold 1 while suppressing the occurrence of temperature unevenness, which has been a problem with the conventional heating method in which the induction heating coil is fixedly placed at a fixed position as in the past. can do.

なお、前記のコイル駆動装置7を縦,横の二次元方向に駆動できるような構成にしておけば、適用する金型1の外形サイズよりも小さなトランスバース型誘導加熱コイル4を使用しても、これを金型のキャビティ面の全域にわたって移動しながら加熱することにより、金型のキャビティ面の全域を均一に加熱することか可能となり、これにより高い汎用性を確保できる。   If the coil driving device 7 is configured to be driven in the vertical and horizontal two-dimensional directions, a transverse induction heating coil 4 smaller than the outer size of the mold 1 to be applied can be used. By heating this while moving over the entire cavity surface of the mold, it becomes possible to uniformly heat the entire cavity surface of the mold, thereby ensuring high versatility.

そして、金型1のキャビティ面が予め定めた所定の予熱温度まで昇温すれば、コイルユニット5を金型1の合わせ面から退避させ、その後、固定型2と可動型3とを嵌合し、溶湯を注入して鋳造を行う。   When the cavity surface of the mold 1 is heated to a predetermined preheating temperature, the coil unit 5 is retracted from the mating surface of the mold 1, and then the fixed mold 2 and the movable mold 3 are fitted. Then, casting is performed by injecting molten metal.

次に、この発明の請求項2,4,5に係わる第2実施例の構成,動作を図2(a),(b)に基づいて説明する。この実施例においては、トランスバース型誘導加熱コイル4のコイル導体を低抵抗の銅材等からなる中空なパイプ導体としてその全長に亙って導体周面に多数のノズル穴4aを分散穿孔するとともに、この誘導加熱コイル4に水蒸気発生装置8を連通接続して金型の加熱装置を構成している。   Next, the structure and operation of the second embodiment according to claims 2, 4 and 5 of the present invention will be described with reference to FIGS. 2 (a) and 2 (b). In this embodiment, the coil conductor of the transverse induction heating coil 4 is formed as a hollow pipe conductor made of a low resistance copper material or the like, and a large number of nozzle holes 4a are dispersed and perforated over the entire length of the conductor. The induction heating coil 4 is connected to the water vapor generator 8 so as to constitute a mold heating device.

そして、金型1の予熱工程では、固定型2と可動型3の間の合わせ面にトランスバース型誘導加熱コイル4を介挿した上で、高周波電源6から誘導加熱コイル4に給電して金型1の誘導加熱を行う。金型1のキャビティ面の温度が100℃以上になったら、前記水蒸気発生装置8から誘導加熱コイル4のパイプ導体に送り込んだ100℃以上の過熱水蒸気(例えば、400℃程度まで温度を高めた過熱水蒸気)を前記ノズル穴4aを通じて金型1のキャビティに吹き付けて加熱を行う。これにより誘導加熱と過熱水蒸気加熱を併用した金型1の加熱が所定の温度まで行われる。   In the preheating process of the mold 1, the transverse induction heating coil 4 is inserted into the mating surface between the fixed mold 2 and the movable mold 3, and then the induction heating coil 4 is fed from the high frequency power supply 6 to the mold. Perform induction heating of mold 1. When the temperature of the cavity surface of the mold 1 reaches 100 ° C. or higher, superheated steam of 100 ° C. or higher (for example, superheated to a temperature of about 400 ° C.) sent from the steam generator 8 to the pipe conductor of the induction heating coil 4. Steam is sprayed on the cavity of the mold 1 through the nozzle hole 4a to perform heating. Thereby, heating of the metal mold | die 1 which used induction heating and superheated steam heating together is performed to predetermined temperature.

この場合に、トランスバース型誘導加熱コイル4のノズル穴4aから吹き出した水蒸気は、瞬時に金型1のキャビティ面の隅々まで拡散して過熱水蒸気の保有熱を金型1に伝熱することができる。これにより、金型1のキャビティ面に凝縮水が付着することなく、先記実施例1と同様に従来の誘導加熱方法で問題となっていく温度ムラの発生を抑えて金型1のキャビティ面全域を均一に効率よく加熱することができる。   In this case, the water vapor blown out from the nozzle hole 4 a of the transverse induction heating coil 4 is instantly diffused to every corner of the cavity surface of the mold 1 to transfer the retained heat of the superheated steam to the mold 1. Can do. As a result, condensate does not adhere to the cavity surface of the mold 1, and the occurrence of temperature unevenness, which becomes a problem in the conventional induction heating method, is suppressed as in the first embodiment. The entire area can be heated uniformly and efficiently.

そして、金型1のキャビティ面が予め定めた所定の予熱温度まで昇温すれば、トランスバース型誘導加熱コイル4を金型1の合わせ面から退避させ、その後、固定型2と可動型3とを嵌合し、溶湯を注入して鋳造を行う。   When the cavity surface of the mold 1 is heated to a predetermined preheating temperature, the transverse induction heating coil 4 is retracted from the mating surface of the mold 1, and then the fixed mold 2, the movable mold 3, And casting by injecting molten metal.

なお、上記過熱水蒸気に代えて温度が100℃の水蒸気を用いることもできる。この場合、誘導加熱コイル4の通電による誘導加熱と並行して誘導加熱コイル4のパイプ導体に送り込んだ水蒸気を金型1のキャビティ面吹き付けると、金型1の温度が100℃以下ではキャビティ面に凝縮水が付着し、その際の潜熱がキャビティ面に与えられて100℃まで昇温することができる。なお、キャビティ面に付着した凝縮水は、不図示の送風手段により熱風を吹き付けるか、もしくは金型が縦割り構造の場合には重力で落下して取り除くことができる。   Note that steam having a temperature of 100 ° C. may be used instead of the superheated steam. In this case, when water vapor fed to the pipe conductor of the induction heating coil 4 is sprayed on the cavity surface of the mold 1 in parallel with the induction heating by energization of the induction heating coil 4, the cavity surface is exposed to the cavity surface when the temperature of the mold 1 is 100 ° C. or less. Condensed water adheres, and the latent heat at that time is given to the cavity surface, and the temperature can be raised to 100 ° C. Condensed water adhering to the cavity surface can be removed by blowing hot air with a blower (not shown) or falling by gravity when the mold has a vertically split structure.

そして、金型1のキャビティ面が100℃まで昇温すれば、水蒸気の吹き付けを停止し、誘導加熱のみによる加熱により金型1のキャビティ面が予め定めた所定の予熱温度まで昇温させた後、誘導加熱コイル4を金型1の合わせ面から退避させ、固定型2と可動型3とを嵌合し、溶湯を注入して鋳造を行う。   When the cavity surface of the mold 1 is heated to 100 ° C., the spraying of water vapor is stopped, and the cavity surface of the mold 1 is heated to a predetermined preheating temperature by heating only by induction heating. The induction heating coil 4 is retracted from the mating surface of the mold 1, the fixed mold 2 and the movable mold 3 are fitted, and the molten metal is injected to perform casting.

また、先記の第1実施例で述べたコイル駆動装置7をこの実施例に適用することも可能であり、誘導加熱コイルの往復移動と、過熱水蒸気の吹き付けを併用することでより、金型の均一加熱を一層効果的に行うことができる。   In addition, the coil driving device 7 described in the first embodiment can be applied to this embodiment. By using both the reciprocating movement of the induction heating coil and the blowing of superheated steam, the mold can be used. Can be more effectively performed.

1 金型
2 固定型
3 可動型
4 トランスバース型誘導加熱コイル
4a ノズル穴
5 コイルユニット
6 高周波電源
7 コイル駆動装置
8 過熱水蒸気発生装置
DESCRIPTION OF SYMBOLS 1 Mold 2 Fixed type 3 Movable type 4 Transverse type induction heating coil 4a Nozzle hole 5 Coil unit 6 High frequency power supply 7 Coil drive device 8 Superheated steam generator

Claims (6)

二つ割り構造になる金型の型合わせ面にトランスバース型の誘導加熱コイルを介装配置し、該コイルに高周波電流を通電して金型のキャビティ面を加熱するようにした金型の加熱方法において、
前記誘導加熱コイルを通電中に、該コイルを金型のキャビティ面の全域にわたって移動しながら金型を誘導加熱するようにすることを特徴とする金型の加熱方法。
In a mold heating method in which a transverse type induction heating coil is disposed on a mold-matching surface of a mold having a split structure, and a high-frequency current is supplied to the coil to heat the cavity surface of the mold. ,
A method for heating a mold, wherein the induction heating coil is inductively heated while being energized while moving the coil over the entire cavity surface of the mold.
二つ割り構造になる金型の合わせ面にトランスバース型の誘導加熱コイルを介装配置し、該コイルに高周波電流を通電して金型のキャビティ面を加熱するようにした金型の加熱方法において、
誘導加熱コイルの通電による誘導加熱と並行して、金型のキャビティ面に水蒸気を吹き付けて金型を加熱することを特徴とする金型の加熱方法。
In the mold heating method in which a transverse type induction heating coil is disposed on the mating surface of the mold having a split structure, and a high frequency current is passed through the coil to heat the cavity surface of the mold,
In parallel with induction heating by energization of an induction heating coil, a mold heating method is characterized in that water vapor is blown onto the cavity surface of the mold to heat the mold.
請求項2に記載の加熱方法において、誘導加熱コイルのコイル導体をパイプ導体としてその周面に多数のノズル穴を分散穿孔し、このパイプ導体に外部から供給した水蒸気を前記ノズル穴を通じて金型のキャビティ面に吹き付けるようにしたことを特徴とする金型の加熱方法。   3. The heating method according to claim 2, wherein a coil conductor of the induction heating coil is used as a pipe conductor, and a number of nozzle holes are dispersed and perforated on the peripheral surface, and water vapor supplied from the outside to the pipe conductor is passed through the nozzle hole to form a mold. A method for heating a mold, wherein the mold is sprayed on a cavity surface. 金型の合わせ面に介挿したトランスバース型の誘導加熱コイルを、金型のキャビティ面の全域にわたって移動する駆動手段を備えたことを特徴とする請求項1に記載の加熱方法に用いる金型の加熱装置。   2. A mold for use in the heating method according to claim 1, further comprising driving means for moving a transverse type induction heating coil inserted in the mold mating surface over the entire cavity surface of the mold. Heating device. 金型の合わせ面に介挿したトランスバース型の誘導加熱コイルを、周面に多数のノズル穴を分散穿孔したパイプ導体を巻回して構成し、該コイルに水蒸気を供給する水蒸気発生装置を備えたことを特徴とする請求項2に記載の加熱方法に用いる金型の加熱装置。   A transverse type induction heating coil inserted in the mating surface of the mold is formed by winding a pipe conductor with a large number of nozzle holes dispersed on the peripheral surface, and includes a water vapor generator for supplying water vapor to the coil A mold heating apparatus for use in the heating method according to claim 2. 前記水蒸気は、100℃以上の過熱蒸気を用いることを特徴とする請求項2または3に記載の金型の加熱方法。   The method for heating a mold according to claim 2 or 3, wherein superheated steam at 100 ° C or higher is used as the water vapor.
JP2009142352A 2009-06-15 2009-06-15 Mold heating method and apparatus Expired - Fee Related JP5277401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142352A JP5277401B2 (en) 2009-06-15 2009-06-15 Mold heating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142352A JP5277401B2 (en) 2009-06-15 2009-06-15 Mold heating method and apparatus

Publications (2)

Publication Number Publication Date
JP2010284714A JP2010284714A (en) 2010-12-24
JP5277401B2 true JP5277401B2 (en) 2013-08-28

Family

ID=43540830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142352A Expired - Fee Related JP5277401B2 (en) 2009-06-15 2009-06-15 Mold heating method and apparatus

Country Status (1)

Country Link
JP (1) JP5277401B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101412539B1 (en) 2012-05-31 2014-07-01 현대제철 주식회사 Device for preheating mold
FR2991902A1 (en) * 2012-06-18 2013-12-20 Roctool METHOD AND DEVICE FOR PREHEATING A MOLD IN PARTICULAR INJECTION MOLDING
CN102861874A (en) * 2012-10-16 2013-01-09 胡兵 Energy-saving casing of induction heating device universally used in iron section cladding sand cast production line
JP6243252B2 (en) * 2014-02-20 2017-12-06 中部電力株式会社 Induction heating method
CN114074394B (en) * 2020-08-18 2024-04-16 苏州亮福电器有限公司 Method for improving surface quality of injection foaming molding plastic part
CN113199717B (en) * 2021-05-17 2022-07-12 杭州科技职业技术学院 Electromagnetic induction rapid thermal cycle mould

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101365A (en) * 1985-10-25 1987-05-11 Fuso Light Alloys Co Ltd Method for controlling temperature of metallic mold
JPH03174966A (en) * 1989-12-01 1991-07-30 Ube Ind Ltd Injection forming apparatus
JP3393079B2 (en) * 1999-02-01 2003-04-07 株式会社日本製鋼所 Light metal injection molding method
JP2002192234A (en) * 2000-12-27 2002-07-10 Mitsubishi Heavy Ind Ltd Processing apparatus for deep bending steel plate
JP2008097948A (en) * 2006-10-11 2008-04-24 Nabio Kk Induction heating device for die
JP2008132716A (en) * 2006-11-29 2008-06-12 Nitta Ind Corp High-frequency dielectric heating apparatus and high-frequency dielectric heating method

Also Published As

Publication number Publication date
JP2010284714A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
JP5277401B2 (en) Mold heating method and apparatus
TWI389600B (en) Coaxial cooling and rapid conductive coil construction and molds with cobalt cooling and rapid conductive coil construction
EP1649726B8 (en) Heating systems and methods
US8344298B2 (en) Process of measuring the temperature of coil end part and the stator core
KR930001128B1 (en) Method and apparatus for induction heating of gear teeth
JP2007146459A (en) Induction heating equipment for bridge deck asphalt pavement
TWI421161B (en) High frequency electromagnetic induction heating device and method for using the same to heat surface of mold
CN105586475A (en) Quenching device and quenching method
JP2014233757A (en) Method and device for heating platy workpiece, and hot press molding method
JP2008118731A (en) Heating device and heating method for stator coil and core
JP6108612B2 (en) Moving quenching device for long workpiece and moving quenching method
JP6010593B2 (en) Mold heating device
JP5587845B2 (en) Aluminum casting equipment
TWI613058B (en) Method and device for injection moulding or embossing/pressing
KR102607986B1 (en) Device for increasing the heating efficiency of Induction heater
JP2016030270A (en) Electrification heating method and manufacturing method for press molding
KR100963042B1 (en) Quick heating and quick cooling device for mold
CN102427628B (en) Four cylinder engine aluminum cylinder Cast iron liner induction pre-heating technique
KR101382180B1 (en) Pre-heating device for hot stamping
CN102137522B (en) Roller heating mechanism
JP2006028589A (en) Hardening and tempering method with direct electric-conduction hardening apparatus
JP6405186B2 (en) Coating agent coating apparatus and coating method
JPH07116774A (en) Method and device for preheating die
CN210615068U (en) Preheating device of centrifugal casting machine mould
JPH10202600A (en) Cut processing device for resin product and processing therewith

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20120416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5277401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees