JP5268047B2 - Microwave chemical reactor - Google Patents

Microwave chemical reactor Download PDF

Info

Publication number
JP5268047B2
JP5268047B2 JP2007248246A JP2007248246A JP5268047B2 JP 5268047 B2 JP5268047 B2 JP 5268047B2 JP 2007248246 A JP2007248246 A JP 2007248246A JP 2007248246 A JP2007248246 A JP 2007248246A JP 5268047 B2 JP5268047 B2 JP 5268047B2
Authority
JP
Japan
Prior art keywords
microwave
cavity resonator
output
oscillator
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007248246A
Other languages
Japanese (ja)
Other versions
JP2009080997A (en
Inventor
正 岡本
昌弘 安田
博道 小田島
将輝 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007248246A priority Critical patent/JP5268047B2/en
Priority to PCT/JP2008/067184 priority patent/WO2009041431A2/en
Publication of JP2009080997A publication Critical patent/JP2009080997A/en
Application granted granted Critical
Publication of JP5268047B2 publication Critical patent/JP5268047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/74Mode transformers or mode stirrers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

[PROBLEMS] To provide novel means for introducing a microwave having an extremely wide frequency band and an extremely high output level efficiently with respect to the resonance load. [MEANS FOR SOLVING PROBLEMS] A microwave device comprises a voltage-controlled solid-state oscillator (1) for generating a microwave, a microwave amplifier (3) for amplifying the output of the oscillator (1), a TM010-mode cylindrical cavity resonator (2) which the output of the amplifier (3) is made to enter, a sensing element (7) coupled to the cavity resonator (2) and adapted for sensing the electromagnetic field inside the cavity resonator (2), a feedback control means (8) for controlling the oscillator (1) according to the output signal from the sensing element (7) so that the oscillation frequency of the oscillator (1) may match the present resonance frequency of the cavity resonator (2), and a subject-holding tubular member which is permeable to a microwave, is disposed inside the cavity resonator (2) generally coaxially with the central axis of the cavity resonator (2), and holds therein a subject (S) to be irradiated with a microwave.

Description

この発明は、電圧制御型発振器により生成され、増幅器によって増幅されたスペクトル幅の狭いマイクロ波出力を空胴共振器内に設置した被照射体に照射することにより、被照射体を加熱したり、被照射体の化学反応を促進させたりする装置に係り、マイクロ波の出力周波数が空胴共振器の共振周波数に一致するように電圧制御型発振器の発振周波数が制御されるマイクロ波化学反応装置に関する。
The present invention irradiates the irradiated object installed in the cavity resonator with the microwave output having a narrow spectral width generated by the voltage controlled oscillator and amplified by the amplifier, thereby heating the irradiated object, BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus that promotes a chemical reaction of an object to be irradiated, and relates to a microwave chemical reaction apparatus in which the oscillation frequency of a voltage-controlled oscillator is controlled so that the microwave output frequency matches the resonance frequency of a cavity resonator. .

マイクロ波は、電子レンジをはじめ、産業用加熱炉の加熱装置として広く利用されおり、近年では、さらに急速に化学反応を行わせる力を持つ媒体として注目を集めている。以下、化学反応作用を含め、マイクロ波の作用効果を単にマイクロ波加熱あるいは加熱という言葉を代表的に使用して説明する。
マイクロ波加熱にシングルモードの空胴共振器を使用すると、共振した状態で極めて強い電磁界を発生でき、しかも固有の電磁界分布が得られるので、例えば、マイクロ波吸収が極めて小さい試料のような、他のマイクロ波手段では加熱することができない試料を効率よくしかも均一に加熱できる可能性が生まれる。
特にこのシングルモード共振器が円筒状空胴共振器であって、この共振器をTM010モードで共振させた場合には、円周方向と軸方向に対して一定の強い電界が得られるので、共振器内部に配設した円筒あるいは円柱状の被照射体をほぼ均一に加熱することが可能になる。以下、TM010モードで共振する円筒状の空胴共振器を単に空胴共振器あるいは共振器と記載することにする。TM010を用いたマイクロ波装置の一例は特許文献1に示されている。
後述するように、空胴共振器には、マイクロ波に対し極めて厳しい要求があるため、いまだ一般的に使用される状況には至っていない。もしこの困難が解決できれば、その優れた特徴から、空胴共振器は
効果的なツールとして高い地位を築き、かつそれを維持できると考えられる。
マイクロ波を発生するためのデバイスとしては、マグネトロン発振器(以下単にマグネトロンという)が最も安価に利用できる装置である。しかし、マグネトロンは出力を変えたり、あるいは負荷からの反射波の大きさや位相が変化したりすると、発振周波数が変化するという欠点を持っている。また、マグネトロンの出力は単一の周波数ではなく、スペクトルがある幅を持って広がっているという問題がある。一方、空胴共振器には、共振周波数と一致するか、そのごく近傍の周波数成分を持つマイクロ波しか入射できず、その他の周波数成分を持つ大部分のマイクロ波が空胴の入り口で反射されてしまうという問題点がある。特に空胴共振器の中に配置されたマイクロ波吸収が小さい被照射体(以下、「空胴負荷」とも呼ぶ)に対しては、マイクロ波吸収が少ないほど入射できる周波数の幅が狭くなる傾向がある。この欠点のため、マグネトロンで空胴負荷を効率よくマイクロ波加熱することは不可能である。
マグネトロンの欠点を除去する方法として、マグネトロンにスペクトル特性の優れた発振器による信号を注入して、発振周波数を安定化し、スペクトル特性を改善する手段が特許文献2に記載されている。この改善されたマグネトロン装置を制御型マグネトロンと呼ぶことにする。制御型マグネトロンによって、空胴負荷の加熱効率を、3〜5倍程度、あるいはそれ以上に高めることが可能になる。
空胴負荷を加熱する場合、発振周波数と空胴の共振周波数を一致させる、すなわち同調をとることが必要である。同調に関していくつかの課題がある。
まず、空胴の共振周波数は、被照射体の誘電率、量、形状等によって大きく変化する。このため、まず、設計段階で、被照射体に合わせて最適な構造寸法を決める必要がある。被照射体が変わると空胴設計を新しくしなければならない場合も少なくない。
被照射体が決まり空胴の最適寸法が決まった後もさらに別の問題が発生する。すなわち、加熱の進行に伴って被照射体の誘電特性が変わり、それに伴って共振周波数が変化する。これに合わせて空胴共振器の共振周波数を補正することが必要になる。
空胴共振器の共振周波数を変えるには、通常、機械的な方法によらねばならないので、速い補正を望むことは無理である。また機械的な方法では、可変範囲もある程度、限定的である。
これに対して、発振周波数を変える方法は電子的な手段ですむので、速い補正ができる利点がある。制御型マグネトロンの場合、まず、電圧制御型発振器によりマグネトロンへの注入周波数を変え、マグネトロンをその周波数で発振させることができる。スペクトル特性は良好な発振である。空胴共振器には強い電磁界が発生する。そこで、この電磁界をピックアップし、この電磁界が最大となるように検出信号を帰還して、自動的にマグネトロンの発振周波数を変える方法を、特願2006−4639号において本出願人が提案した。
このような改善により、自動的に同調を維持することが可能になる。しかしながら、マグネトロン自体が共振器であるため、広い範囲で同調を維持することができない難点がある。その周波数可変幅はかなり狭く、例えば、マイクロ波の周波数が2,450MHzの場合、数MHz程度である。
同調に関する問題のほかに、マグネトロンはマイクロ波出力を規定の出力のほぼ1/10程度に下げると動作が不安定になり、さらに周波数を下げると発振が止まってしまう問題を持っている。制御型マグネトロンもこの問題を免れることはできない。
特開2005−322582号公報 特願2002−43848号公報
Microwaves are widely used as heating devices for industrial heating furnaces such as microwave ovens, and in recent years, they have been attracting attention as a medium that has the ability to cause chemical reactions more rapidly. In the following, the effects of microwaves, including chemical reaction effects, will be described using the word “microwave heating” or “heating” as a representative.
When a single-mode cavity resonator is used for microwave heating, an extremely strong electromagnetic field can be generated in a resonated state, and an inherent electromagnetic field distribution can be obtained. Therefore, there is a possibility that a sample that cannot be heated by other microwave means can be heated efficiently and uniformly.
In particular, when this single mode resonator is a cylindrical cavity resonator and this resonator is resonated in TM010 mode, a constant strong electric field is obtained in the circumferential direction and the axial direction. It becomes possible to heat a cylindrical or columnar object disposed inside the chamber substantially uniformly. Hereinafter, a cylindrical cavity resonator that resonates in the TM010 mode is simply referred to as a cavity resonator or a resonator. An example of a microwave device using TM010 is disclosed in Patent Document 1.
As will be described later, since the cavity resonator has extremely strict requirements for microwaves, it has not yet been generally used. If this difficulty can be solved, it is considered that the cavity resonator can establish and maintain a high position as an effective tool because of its excellent characteristics.
As a device for generating a microwave, a magnetron oscillator (hereinafter simply referred to as a magnetron) is the most inexpensive device. However, the magnetron has a drawback that the oscillation frequency changes when the output is changed or the magnitude or phase of the reflected wave from the load is changed. Further, there is a problem that the output of the magnetron is not a single frequency but spreads with a certain width. On the other hand, the cavity resonator can only enter microwaves with frequency components that are close to or close to the resonance frequency, and most microwaves with other frequency components are reflected at the entrance of the cavity. There is a problem that. Especially for irradiated objects with low microwave absorption (hereinafter also referred to as “cavity load”) placed in a cavity resonator, the smaller the microwave absorption, the narrower the frequency range that can be incident. There is. Because of this drawback, it is impossible to efficiently microwave heat the cavity load with a magnetron.
As a method for removing the disadvantages of the magnetron, Patent Document 2 describes a means for injecting a signal from an oscillator having excellent spectral characteristics into the magnetron to stabilize the oscillation frequency and improve the spectral characteristics. This improved magnetron device will be referred to as a controlled magnetron. The control type magnetron can increase the heating efficiency of the cavity load by about 3 to 5 times or more.
When heating a cavity load, it is necessary to match the oscillation frequency with the resonance frequency of the cavity, that is, to tune. There are several issues regarding tuning.
First, the resonant frequency of the cavity varies greatly depending on the dielectric constant, amount, shape, etc. of the irradiated object. For this reason, first, it is necessary to determine an optimum structural dimension in accordance with the irradiated object at the design stage. In many cases, the cavity design must be renewed as the irradiated object changes.
Another problem arises after the object to be irradiated is determined and the optimum dimensions of the cavity are determined. That is, the dielectric property of the irradiated object changes with the progress of heating, and the resonance frequency changes accordingly. Accordingly, it is necessary to correct the resonance frequency of the cavity resonator.
Changing the resonance frequency of the cavity resonator usually requires a mechanical method, so it is impossible to desire a fast correction. In the mechanical method, the variable range is limited to some extent.
On the other hand, since the method of changing the oscillation frequency is an electronic means, there is an advantage that a quick correction can be made. In the case of a control type magnetron, first, the injection frequency into the magnetron is changed by a voltage control type oscillator, and the magnetron can be oscillated at that frequency. The spectral characteristics are good oscillations. A strong electromagnetic field is generated in the cavity resonator. Therefore, to pick up the electromagnetic field, the electromagnetic field is fed back to the detection signal so as to maximize, automatically how to turn the oscillation frequency of the magnetron, the present applicant in Japanese Patent Application 2006-463 4 No. 9 Proposed.
Such an improvement makes it possible to automatically maintain synchronization. However, since the magnetron itself is a resonator, there is a difficulty that tuning cannot be maintained over a wide range. The frequency variable width is quite narrow. For example, when the microwave frequency is 2,450 MHz, it is about several MHz.
In addition to the problem related to tuning, the magnetron has a problem that the operation becomes unstable when the microwave output is lowered to about 1/10 of the prescribed output, and the oscillation stops when the frequency is further lowered. Controlled magnetrons cannot escape this problem.
JP 2005-322582 A Japanese Patent Application No. 2002-43848

この発明は比較的狭いスペクトル幅のマイクロ波を、空洞共振器の変化する共振周波数に同調して生成することができ、しかも出力のダイナダイナミックレンジが広いマイクロ波化学反応装置を提供しようとするものである。
An object of the present invention is to provide a microwave chemical reaction device capable of generating a microwave having a relatively narrow spectral width in synchronization with a changing resonance frequency of a cavity resonator and having a wide output dynamic range. It is.

この発明においては、上記課題を解決するため、マイクロ波を発生する電圧制御型固体発振器1(以下、「VCO」ともいう)と、この発振器1の出力を増幅するマイクロ波増幅器3(以下、「HPA」ともいう)と、この増幅器3の出力が入射されるTM010モード円筒形空胴共振器2と、この空胴共振器2に結合し内部の電磁界を検出する検出素子7と、この検出素子7の出力信号によって発振器1の発振周波数を空胴共振器2の現在の共振周波数に一致させるように制御する帰還制御手段8と、空胴共振器2内にそれの中心軸とほぼ同心的に配置され内部にマイクロ波被照射体Sを保持するマイクロ波透過性で円筒管状の被射照体保持部材とを具備させてマイクロ波化学反応装置を構成する。
必要に応じ、空胴共振器内における前記被照射体の温度を検出する温度検出器と、この温度検出器の出力信号によって増幅器からの出力を被照射体を適正温度に維持できる出力に制御する出力制御手段とを付加することにより、被照射体の温度を一定に保つようにする。
In the present invention, in order to solve the above problems, a voltage-controlled solid-state oscillator 1 (hereinafter also referred to as “VCO”) that generates a microwave and a microwave amplifier 3 (hereinafter referred to as “VCO”) that amplifies the output of the oscillator 1. Also referred to as “HPA”), the TM010 mode cylindrical cavity resonator 2 into which the output of the amplifier 3 is incident, the detection element 7 coupled to the cavity resonator 2 to detect the internal electromagnetic field, and the detection Feedback control means 8 for controlling the oscillation frequency of the oscillator 1 to coincide with the current resonance frequency of the cavity resonator 2 according to the output signal of the element 7, and the center axis of the cavity resonator 2 substantially concentrically with it. The microwave chemical reaction apparatus is configured to include a microwave transmissive cylindrical tubular irradiator holding member that is disposed in the inside and holds the microwave irradiator S.
If necessary, a temperature detector for detecting the temperature of the irradiated body in the cavity resonator, the output from the amplifier by an output signal of the temperature detector, control the output to maintain the irradiation object the appropriate temperature The temperature of the irradiated object is kept constant by adding the output control means.

この発明は、以下の効果を有する。
(1) 空胴共振器で検出した信号によってVCOを制御し発振させるので、VCOの発振周波数、HPAの増幅周波数は、空胴共振器の現在の共振周波数に常に一致する。
(2) VCO、HPAの出力スペクトルの幅は狭いので、空胴負荷のような狭帯域のマイクロ波のみを吸収する負荷に対して効率よくマイクロ波を導入できる。
(3) VCO自身は環境温度などの影響を受けて周波数がドリフトする欠点を持っているが、帰還制御手段の作用で自動的に空胴共振器の現在の負荷での共振周波数に修正される。このため、高価で周波数制御に手のかかるPLL型の発振器を使用する必要がない。
(4) 増幅器により出力を広範囲に変えることができる。帰還信号を受ける出力制御手段によって出力を制御するようにすれば、被照射体を規定の温度に維持できる。
The present invention has the following effects.
(1) Since the VCO is controlled and oscillated by the signal detected by the cavity resonator, the oscillation frequency of the VCO and the amplification frequency of the HPA always coincide with the current resonance frequency of the cavity resonator.
(2) Since the output spectrum of the VCO and HPA is narrow, microwaves can be introduced efficiently to loads that absorb only narrow-band microwaves, such as cavity loads.
(3) The VCO itself has the disadvantage that the frequency drifts under the influence of environmental temperature, etc., but it is automatically corrected to the resonance frequency at the current load of the cavity resonator by the action of the feedback control means. . For this reason, it is not necessary to use an expensive PLL-type oscillator that requires frequency control.
(4) The output can be changed over a wide range by the amplifier. If the output is controlled by the output control means that receives the feedback signal, the irradiated object can be maintained at a prescribed temperature.

図面を参照してこの発明の一実施形態を説明する。図1は本発明に係るマイクロ波化学反応装置(以下、単にマイクロ波装置と称する)の基本構成図、図2は本発明のマイクロ波照射部の構造と動作の概要を説明するための構造断面図、図3はTM010空胴共振器内に円柱状の誘電体被照射体を挿入した場合の共振周波数の変化を示す特性図である。
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a basic configuration diagram of a microwave chemical reaction apparatus (hereinafter simply referred to as a microwave apparatus) according to the present invention, and FIG. 2 is a structural cross section for explaining an outline of the structure and operation of the microwave irradiation section of the present invention. FIG. 3 and FIG. 3 are characteristic diagrams showing changes in resonance frequency when a cylindrical dielectric irradiated body is inserted into a TM010 cavity resonator.

図1において、帰還制御されたVCO1は、空胴共振器2の共振周波数に一致する周波数で、周波数スペクトラム幅の狭い周波数特性が良好なマイクロ波を発振する。この出力は、HPA3で増幅され、サーキュレータ4、パワーモニタ5、スタブチューナ6を介して、空胴共振器2に入射される。空胴共振器2内には極めて強いマイクロ波電磁界が発生する。この作用により空胴共振器2内に置かれたマイクロ波の被照射体Sが効率よく加熱され、あるいは化学反応が効率的に進展する。空胴共振器2には極めて強い電磁界が発生するので、通常の手段では加熱できないような試料でも十分加熱することができる。なお、特に混乱を生じないので、図1では、マイクロ波の出力レベルを変えるための機構を省略してある。   In FIG. 1, the feedback-controlled VCO 1 oscillates a microwave having a frequency characteristic that matches the resonance frequency of the cavity resonator 2 and that has a narrow frequency spectrum width and good frequency characteristics. This output is amplified by the HPA 3 and enters the cavity resonator 2 through the circulator 4, the power monitor 5, and the stub tuner 6. An extremely strong microwave electromagnetic field is generated in the cavity resonator 2. By this action, the microwave irradiation object S placed in the cavity resonator 2 is efficiently heated, or the chemical reaction progresses efficiently. Since a very strong electromagnetic field is generated in the cavity resonator 2, even a sample that cannot be heated by ordinary means can be sufficiently heated. Note that a mechanism for changing the output level of the microwave is omitted in FIG. 1 because there is no particular confusion.

空胴共振器2に発生した電磁界の一部は検出素子7により外部に取り出される。この検出信号が最大あるいは最大値にごく近くなるように、帰還制御器8が働いて、VCO1の発振周波数を制御する。VCO1の発振周波数は、通常、環境温度の影響を受けてドリフトする傾向があるが、帰還制御器8の働きにより、常に空胴共振器2の共振周波数に一致する周波数で発振する。空胴共振器2は常に同調が維持され、最大の電磁界を発生する。被照射体Sは最大のマイクロ波の作用を受ける。   A part of the electromagnetic field generated in the cavity resonator 2 is taken out by the detection element 7. The feedback controller 8 operates to control the oscillation frequency of the VCO 1 so that the detection signal becomes maximum or very close to the maximum value. The oscillation frequency of the VCO 1 usually tends to drift under the influence of the environmental temperature, but always oscillates at a frequency that matches the resonance frequency of the cavity resonator 2 by the action of the feedback controller 8. The cavity resonator 2 is always kept tuned and generates a maximum electromagnetic field. The irradiated object S receives the maximum microwave action.

空胴共振器2から反射される反射波は、スタブチューナ6によって、まず極力小さくなるように抑えられ、サーキュレータ4を介して、無反射終端器9に導かれる。このため、HPA3に戻るマイクロ波は十分低いレベルに押えられ、HPA3を破損することはない。空胴共振器2に入射されるマイクロ波(進行波)と反射波はパワーモニタ5によって計測される。   The reflected wave reflected from the cavity resonator 2 is first suppressed to be as small as possible by the stub tuner 6 and guided to the non-reflecting terminator 9 through the circulator 4. For this reason, the microwave returning to the HPA 3 is suppressed to a sufficiently low level, and the HPA 3 is not damaged. The microwave (traveling wave) and the reflected wave incident on the cavity resonator 2 are measured by the power monitor 5.

HPA3の出力は、図示しない減衰器を介在させて入力の減衰量を変えるか、利得制御回路により利得を変える出力制御手段11により、殆ど、ゼロから規定の全電力の範囲に自由に変化させることができる。マグネトロンでは全電力の1/10程度のレベルで動作が不安定となり、さらに出力を下げると、発振が止まる問題を持っている。しかしHPA3を使用するとより、広い範囲の被照射体に適用できるようになる。被照射体Sはきわめて弱い出力のマイクロ波でなければならない可能性があり、逆に、ある種の化学反応では、かなり大きい出力を要求するので、ダイナミックレンジの広さは重要である。   The output of the HPA 3 can be freely changed from almost zero to a specified total power range by changing the attenuation of the input through an attenuator (not shown) or by the output control means 11 for changing the gain by a gain control circuit. Can do. The magnetron has an unstable operation at a level of about 1/10 of the total power, and has a problem that oscillation stops when the output is further reduced. However, when HPA3 is used, it can be applied to a wider range of irradiated objects. The irradiated object S may have to be a very weak output microwave, and conversely, a certain chemical reaction requires a considerably large output, so that the wide dynamic range is important.

以上、単一の系について説明したが、例えば、VCOの出力を分岐し、複数個のHPAに導いて増幅し、これらの出力が同相で加算されるように合成して空胴共振器に導くことができる。   The single system has been described above. For example, the output of the VCO is branched, guided to a plurality of HPAs, amplified, and combined so that these outputs are added in phase, and then led to the cavity resonator. be able to.

図1において、放射温度計のような温度検出器10が空胴共振器2内の被照射体Sの温度を検出する。この検出信号は帰還され、出力制御手段11によりHPA3の出力を制御し、被照射体Sの温度はあらかじめ指定した温度に維持される。   In FIG. 1, a temperature detector 10 such as a radiation thermometer detects the temperature of the irradiated object S in the cavity resonator 2. This detection signal is fed back, the output control means 11 controls the output of the HPA 3, and the temperature of the irradiated object S is maintained at a temperature specified in advance.

上記の説明で明らかなごとく、本発明によれば、周波数を制御できるマイクロ波発振器のうちで最も安価なVCO1を用いて、この発振周波数を空胴共振器2の共振周波数に常に同調するように制御して動作させるものであり、負荷の条件が変わっても、効率良く最適周波数のマイクロ波を被照射体に導入できる利点がある。空胴共振器2の周波数は内部に挿入される被照射体の種類、量、大きさ、形状の影響を受け、かなりの幅で共振周波数が変化する。また、マイクロ波の照射により、被照射体が昇温したり、あるいは量や状態の変化が起きたりしても共振周波数が変化する。またVCO1の発振周波数は制御しなければ周りの温度の影響を受けてドリフトする。このような変化に対し、帰還制御器8はVCO1の発振周波数を常に空胴共振器2の共振周波数に同調させる働きを持つ。VCO1のスペクトル特性は良好で、HPA3はこれを単に増幅するものであるから、空胴負荷が要求するスペクトル特性に十分応えることができる。通常のマグネトロンに比較し、効率が上がり、比較的小出力のHPAで要求に応えることができる。公知の帰還制御型マグネトロン装置は安価ではあるが、周波数可変幅が狭い欠点がある。本発明のマイクロ波装置ではこの問題は全くないので、大幅に広い適用範囲を常に確保できる。固体HPAの価格も低下方向であるので、今後、ますます有望なツールとしての地位を維持できると期待される。省エネルギー効果の見地から、また、使いやすさの点から、極めて有利なマイクロ波装置を提供できる。   As apparent from the above description, according to the present invention, the most inexpensive VCO 1 among the microwave oscillators capable of controlling the frequency is used so that the oscillation frequency is always tuned to the resonance frequency of the cavity resonator 2. It is controlled and operated, and has an advantage that a microwave having an optimum frequency can be efficiently introduced into the irradiated object even if the load condition changes. The frequency of the cavity resonator 2 is affected by the type, amount, size, and shape of the irradiated object inserted therein, and the resonance frequency changes with a considerable width. In addition, the resonance frequency changes even when the irradiated object is heated or the amount or state changes due to the microwave irradiation. If the oscillation frequency of VCO 1 is not controlled, it drifts under the influence of the surrounding temperature. In response to such changes, the feedback controller 8 has a function of always tuning the oscillation frequency of the VCO 1 to the resonance frequency of the cavity resonator 2. The spectral characteristics of the VCO 1 are good, and the HPA 3 simply amplifies it, so that it can sufficiently meet the spectral characteristics required by the cavity load. Compared to a normal magnetron, the efficiency is improved and the HPA with a relatively small output can meet the requirements. A known feedback control type magnetron device is inexpensive, but has a drawback that the frequency variable width is narrow. Since the microwave device of the present invention does not have this problem at all, it can always ensure a wide application range. Since the price of solid HPA is also on the decline, it is expected that the position as an increasingly promising tool will be maintained in the future. From the standpoint of energy saving effect and ease of use, it is possible to provide a microwave device that is extremely advantageous.

次に本装置のマイクロ波照射部について図2を使用して、操作概要を説明する。図2において、2は空胴共振器、12は内側誘電体円管、13は外側誘電体円管である。誘電体円管12,13はいずれも円筒形の空胴共振器2とほぼ同心的に配置される。誘電体円管12,13には、2種の流体AとBが流れている。内側の誘電体円管12は中央部で流体が外側へ透過し、2つの流体A,Bが混合されるようになっている。触媒14は両流体A,Bの化学反応を促進するもので、内側の誘電体円管13に担持されている。図では省略されているが、外部からマイクロ波が空胴共振器2に導入されるようになっている。空胴共振器2内には、共振状態でTM010にほぼ近い電磁界が励起される。この電磁界は軸方向と円周方向に対しほぼ均一である。マイクロ波の照射を受けて、主として触媒14が加熱される。共振の状態は空胴共振器2に結合した検出素子7(図1)で外部に信号として取り出される。この信号が最大となるよう、VCO1の発振周波数が制御される。なお、本発明を実験用の装置に適用した場合などで、検出信号を目視して、手動で周波数を変えるようにする簡易型の試験装置とすることができる。   Next, the operation outline of the microwave irradiation unit of the present apparatus will be described with reference to FIG. In FIG. 2, 2 is a cavity resonator, 12 is an inner dielectric tube, and 13 is an outer dielectric tube. The dielectric circular tubes 12 and 13 are both arranged substantially concentrically with the cylindrical cavity resonator 2. Two types of fluids A and B flow through the dielectric tubes 12 and 13. The inner dielectric tube 12 allows the fluid to permeate to the outside at the center, and the two fluids A and B are mixed. The catalyst 14 promotes the chemical reaction of both fluids A and B, and is supported on the inner dielectric tube 13. Although not shown in the figure, a microwave is introduced into the cavity resonator 2 from the outside. In the cavity resonator 2, an electromagnetic field substantially close to TM010 is excited in a resonance state. This electromagnetic field is substantially uniform in the axial direction and the circumferential direction. The catalyst 14 is mainly heated by receiving the microwave irradiation. The resonance state is extracted as a signal to the outside by the detection element 7 (FIG. 1) coupled to the cavity resonator 2. The oscillation frequency of VCO 1 is controlled so that this signal is maximized. In addition, when the present invention is applied to an experimental apparatus, it is possible to provide a simple test apparatus in which the frequency is manually changed by visually observing the detection signal.

図3は、特定のTM010モード共振空胴に、比誘電率の異なる被照射体を挿入したとき、共振周波数がどのように変化するかを示している。空胴共振器内に金属片を挿入すると共振周波数を高くすることが出来るが、チューニングレンジをそれほど大きくすることはできない。すなわち、図3に示されたような大きい周波数の低下を補正することは不可能である。このため、複数の空胴共振器を準備せざるを得ないが、これは、かなりの幅にわたる異なった比誘電率の試料にマイクロ波照射を行いたいユーザにとっては、かなりの負担になると考えられる。もし、マイクロ波の周波数を広く変化できれば、その負担を免れることができる。本発明におけるVCO、HPAは十分この要求に応えることができる。   FIG. 3 shows how the resonance frequency changes when an irradiated object having a different relative dielectric constant is inserted into a specific TM010 mode resonance cavity. When a metal piece is inserted into the cavity resonator, the resonance frequency can be increased, but the tuning range cannot be increased so much. That is, it is impossible to correct the large frequency drop as shown in FIG. For this reason, it is necessary to prepare a plurality of cavity resonators, which is considered to be a considerable burden for users who want to perform microwave irradiation on samples having different relative permittivity over a considerable width. . If the microwave frequency can be changed widely, the burden can be avoided. The VCO and HPA in the present invention can sufficiently meet this requirement.

特願2006−4639号において本出願人が提案した帰還制御型マグネトロン装置と本発明の装置を比較すると、基準信号を注入されて出力周波数を制御されたマグネトロンが、VCOとHPAに置き換わっただけに過ぎない。しかし、その結果、(1)出力のダイナミックレンジが殆どゼロから最大出力に至るきわめて広い範囲に広がり、(2)出力周波数がたとえば動作中心周波数の±50%を超えるような極めて広いものとなった。本発明を研究用の実験装置に適用した場合、単一の装置で、多岐の被照射体サンプルに対応できるようになり、その効果は極めて大きなものである。
Comparing the device of the present applicant proposed feedback-controlled magnetron apparatus and the present invention in Japanese Patent Application No. 2006-463 4 No. 9, the reference signal NOTE ON has been controlled output frequency magnetron, the VCO and HPA It was just replaced. However, as a result, (1) the dynamic range of the output spreads over a very wide range from almost zero to the maximum output, and (2) the output frequency becomes extremely wide, for example exceeding ± 50% of the operating center frequency. . When the present invention is applied to a research experimental apparatus, a single apparatus can deal with a variety of irradiated samples, and the effect is extremely large.

本発明は、効率の向上、適用範囲と使いやすさの拡大、低価格維持、省エネルギー性向上等の利点を産むので、マイクロ波加熱装置、プラズマ処理装置、あるいは研究用の実験装置として有効に利用できる。
本発明は、化学反応促進装置、排ガス浄化装置、空気清浄機、滅菌・殺菌装置、バイオ機器等への利用の可能性が大きい。
Since the present invention produces advantages such as improved efficiency, expanded application range and ease of use, low price maintenance, and improved energy saving, it can be used effectively as a microwave heating device, plasma processing device, or research experimental device. it can.
The present invention has a great potential for use in chemical reaction promoting devices, exhaust gas purifying devices, air purifiers, sterilizing / sterilizing devices, bio equipment and the like.

本発明に係るマイクロ波装置の基本構成を示す構成図である。It is a block diagram which shows the basic composition of the microwave apparatus which concerns on this invention. 本発明のマイクロ波照射部の構造と動作の概要を説明するための構造断面図である。It is structure sectional drawing for demonstrating the outline | summary of the structure and operation | movement of a microwave irradiation part of this invention. TM010空胴共振器内に円柱状の誘電体被照射体を挿入した場合の共振周波数の変化を示す特性図である。FIG. 6 is a characteristic diagram showing a change in resonance frequency when a cylindrical dielectric object is inserted into a TM010 cavity resonator.

符号の説明Explanation of symbols

1 VCO
2 空胴共振器
3 HPA
4 サーキュレータ
5 パワーモニタ
6 スタブチューナ
7 検出素子
8 帰還制御器
9 無反射終端
10 温度検出器
11 出力制御手段
12 内側誘電体円管(被射照体保持部材)
13 外側誘電体円管(被射照体保持部材)
14 触媒(被照射体)
A 流体(被照射体)
B 流体(被照射体)
S 被照射体
1 VCO
2 Cavity resonator 3 HPA
Reference Signs List 4 Circulator 5 Power monitor 6 Stub tuner 7 Detection element 8 Feedback controller 9 Non-reflective terminal 10 Temperature detector 11 Output control means 12 Inner dielectric tube (illuminated object holding member)
13 Outer dielectric tube (emitter holding member)
14 Catalyst (Subject to be irradiated)
A Fluid (Subject to be irradiated)
B Fluid (Subject to be irradiated)
S Subject to be irradiated

Claims (8)

化学反応対象流体を保持する被射照体保持部材を具備する、TM010モード円筒形空胴共振器を用いたマイクロ波化学反応装置であって、マイクロ波を発生する電圧制御型固体発振器と、この発振器の出力を増幅するマイクロ波増幅器と、この増幅器の出力が入射されるTM010モード円筒形空胴共振器と、この空胴共振器に結合し内部のTM010モードの電磁界を検出する検出素子と、この検出素子の出力信号を受け、前記発振器の発振周波数を、TM010モード円筒形空胴共振器のTM010モード共振周波数に一致させ、当該出力信号が常時最大値付近にあるように制御する、検出素子の出力信号の前記発振器への帰還制御手段と、前記空胴共振器内にそれの中心軸とほぼ同心的に配置され内部に化学反応対象流体を保持するマイクロ波透過性で円筒管状の被射照体保持部材とを具備することを特徴とするマイクロ波化学反応装置。 A microwave chemical reaction apparatus using a TM010 mode cylindrical cavity resonator having an irradiated body holding member for holding a chemical reaction target fluid, a voltage-controlled solid-state oscillator for generating a microwave, and A microwave amplifier that amplifies the output of the oscillator, a TM010 mode cylindrical cavity resonator to which the output of the amplifier is incident, and a detection element that is coupled to the cavity resonator and detects an internal TM010 mode electromagnetic field receives the output signal of the detection element, an oscillation frequency before Symbol oscillator, to match the TM010 mode resonant frequency of the TM010 mode cylindrical cavity resonator, the output signal is controlled to be near the maximum value at all times, holding the feedback control means to said oscillator output signal of the detection element, a substantially concentrically arranged inside the chemical reaction subject fluid and that of the central shaft to the cavity resonator Microwave reaction device characterized by comprising a target ITerukarada holding member of the cylindrical tubular in microwave permeable. 前記空胴共振器内における前記被照射体の温度を検出する温度検出器と、この温度検出器の出力信号によって前記増幅器からの出力を前記被照射体を適正温度に維持できる出力に制御する出力制御手段とをさらに具備することを特徴とする請求項1に記載のマイクロ波化学反応装置。 A temperature detector for detecting the temperature of the irradiated body in said cavity resonator, the output from the amplifier by an output signal of the temperature detector, and controls the output to maintain the irradiation object to a proper temperature The microwave chemical reaction device according to claim 1, further comprising an output control means. 前記被照射体保持部材が、流体である前記被照射体を内部に流通させる円筒管流路であり、この円筒管流路が、マイクロ波の照射を受けて昇温するマイクロ波吸収体を内部に担持することを特徴とする請求項1又は2に記載のマイクロ波化学反応装置。   The irradiated body holding member is a cylindrical tube channel that circulates the irradiated body that is a fluid inside, and the cylindrical tube channel contains a microwave absorber that is heated by receiving microwave irradiation. The microwave chemical reaction apparatus according to claim 1, wherein the microwave chemical reaction apparatus is supported on the microwave reaction apparatus. 前記出力制御手段が、前記発振器と前記増幅器との間に介設され、前記温度検出器の出力信号によって前記発振器から前記増幅器へ入力されるマイクロ波電力の減衰量を制御する減衰器を含むことを特徴とする請求項13のいずれか1項に記載のマイクロ波化学反応装置。 The output control means includes an attenuator that is interposed between the oscillator and the amplifier and controls an attenuation amount of microwave power input from the oscillator to the amplifier by an output signal of the temperature detector. Microwave chemical reactor according to any one of claims 1 to 3, wherein. 前記出力制御手段が、前記温度検出器の出力信号によって前記増幅器の利得を制御する利得制御器を含むことを特徴とする請求項13のいずれか1項に記載のマイクロ波化学反応装置。 It said output control means, a microwave chemical reaction apparatus according to any one of claims 1 to 3, characterized in that it comprises a gain controller for controlling a gain of the amplifier by an output signal of said temperature detector. 前記増幅器と前記空胴共振器との間に、当該空胴共振器から増幅器に向かって反射されるマイクロ波を無反射終端器へ導くためのサーキュレータが設けられることを特徴とする請求項15のいずれか1項に記載のマイクロ波化学反応装置。 Between the amplifier and the cavity resonator, according to claim 1, characterized in that the circulator for guiding the microwaves reflected towards the amplifier from the cavity resonator to non-reflective terminator is provided - Microwave chemical reactor according to any one of 5. 前記サーキュレータと前記空胴共振器との間に、パワーモニタとスタブチューナが設けられることを特徴とする請求項6に記載のマイクロ波化学反応装置。   The microwave chemical reaction device according to claim 6, wherein a power monitor and a stub tuner are provided between the circulator and the cavity resonator. 前記空胴共振器で検出した信号によって自動的に電圧制御型固体発振器を制御し発振させ、電圧制御型固体発振器の発振周波数、およびこの発振器の出力を増幅するマイクロ波増幅器の増幅周波数が、化学反応対象流体を保持する被照射体保持部材を具備する空胴共振器の現在の共振周波数に常に一致することを特徴とする請求項1〜7のいずれか1項に記載のマイクロ波化学反応装置。The voltage-controlled solid-state oscillator is automatically controlled and oscillated by the signal detected by the cavity resonator, and the oscillation frequency of the voltage-controlled solid-state oscillator and the amplification frequency of the microwave amplifier that amplifies the output of this oscillator are The microwave chemical reaction device according to any one of claims 1 to 7, wherein the microwave chemical reaction device always matches a current resonance frequency of a cavity resonator including an irradiated body holding member that holds a reaction target fluid. .
JP2007248246A 2007-09-25 2007-09-25 Microwave chemical reactor Active JP5268047B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007248246A JP5268047B2 (en) 2007-09-25 2007-09-25 Microwave chemical reactor
PCT/JP2008/067184 WO2009041431A2 (en) 2007-09-25 2008-09-24 Microwave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007248246A JP5268047B2 (en) 2007-09-25 2007-09-25 Microwave chemical reactor

Publications (2)

Publication Number Publication Date
JP2009080997A JP2009080997A (en) 2009-04-16
JP5268047B2 true JP5268047B2 (en) 2013-08-21

Family

ID=40512005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248246A Active JP5268047B2 (en) 2007-09-25 2007-09-25 Microwave chemical reactor

Country Status (2)

Country Link
JP (1) JP5268047B2 (en)
WO (1) WO2009041431A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5769287B2 (en) * 2009-12-05 2015-08-26 国立研究開発法人産業技術総合研究所 Method for producing metal fine particles
JP5681847B2 (en) * 2010-09-30 2015-03-11 株式会社サイダ・Fds Microwave equipment
CN102573161B (en) 2010-09-30 2016-09-21 株式会社斋田Fds Microwave device and runner pipe thereof
JP5914804B2 (en) * 2011-08-08 2016-05-11 株式会社サイダ・Fds Microwave device and its distribution pipe
KR102009541B1 (en) 2012-02-23 2019-08-09 도쿄엘렉트론가부시키가이샤 Plasma processing device and high-frequency generator
JP6004390B2 (en) * 2012-05-11 2016-10-05 国立研究開発法人産業技術総合研究所 Liquid vaporizing apparatus and liquid vaporizing method
CN107637166A (en) 2016-05-13 2018-01-26 微波化学有限公司 Microwave heating appts and program
JP6109994B1 (en) * 2016-05-13 2017-04-05 マイクロ波化学株式会社 Heating apparatus, heating method, and program
JP7233041B2 (en) * 2016-08-10 2023-03-06 矢崎総業株式会社 Hydrogen production equipment
US10790118B2 (en) * 2017-03-16 2020-09-29 Mks Instruments, Inc. Microwave applicator with solid-state generator power source
CN111149428A (en) 2017-11-28 2020-05-12 国立研究开发法人产业技术综合研究所 Microwave processing apparatus, microwave processing method, and chemical reaction method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139481A (en) * 1984-07-31 1986-02-25 丸山 悠司 Microwave heater
US6093921A (en) * 1999-03-04 2000-07-25 Mt Systems, Llc Microwave heating apparatus for gas chromatographic columns
WO2004054705A1 (en) * 2002-12-18 2004-07-01 Biotage Ab Microwave heating system
WO2004105443A1 (en) * 2003-05-20 2004-12-02 Biotage Ab Microwave heating device
JP4759668B2 (en) * 2004-05-11 2011-08-31 株式会社Idx Microwave heating device
JP2007228219A (en) * 2006-02-23 2007-09-06 Idx Corp Microwave device

Also Published As

Publication number Publication date
WO2009041431A3 (en) 2009-06-18
JP2009080997A (en) 2009-04-16
WO2009041431A2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP5268047B2 (en) Microwave chemical reactor
Kelly et al. Nitrogen fixation in an electrode-free microwave plasma
Scott et al. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization
JP6568050B2 (en) Microwave plasma spectrometer using a dielectric resonator.
EP1952537B1 (en) Inductively-coupled rf power source
Idehara et al. Development of 394.6 GHz CW gyrotron (gyrotron FU CW II) for DNP/proton-NMR at 600 MHz
KR102009541B1 (en) Plasma processing device and high-frequency generator
JP2005322582A (en) Microwave heating device
US10074524B2 (en) Plasma processing apparatus and high frequency generator
JP4757664B2 (en) Microwave supply source device
JP5819448B2 (en) Plasma processing apparatus, abnormality determination method, and microwave generator
JP2013238426A (en) Water quality analyzer and water quality analyzing method
KR102024973B1 (en) Plasma processing apparatus and high frequency generator
JP4035568B2 (en) Atmospheric pressure large area plasma generator
JP2007228219A (en) Microwave device
JP3856153B1 (en) Magnetron oscillator
JP5906500B2 (en) Analysis equipment
JP2010283678A (en) Magnetron oscillator and plasma treatment device
Chernousov et al. An apparatus for performing chemical reactions under microwave heating of reagents
JP6813175B2 (en) Microwave device and heat treatment system equipped with it
JP2016053341A (en) Exhaust emission control device
Qixiang Zhao et al. Startup and mode competition in a 420 GHz gyrotron
Lu et al. Ultimate transverse power of pulsed low-voltage gyrotron beam
JP2643808B2 (en) Rubidium atomic oscillator
JP2006130385A (en) Microwave chemical reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120809

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120810

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121003

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121018

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5268047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250