JP5263557B2 - Method for producing positive electrode for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery - Google Patents

Method for producing positive electrode for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5263557B2
JP5263557B2 JP2011193032A JP2011193032A JP5263557B2 JP 5263557 B2 JP5263557 B2 JP 5263557B2 JP 2011193032 A JP2011193032 A JP 2011193032A JP 2011193032 A JP2011193032 A JP 2011193032A JP 5263557 B2 JP5263557 B2 JP 5263557B2
Authority
JP
Japan
Prior art keywords
sulfur
positive electrode
secondary battery
electrolyte secondary
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011193032A
Other languages
Japanese (ja)
Other versions
JP2013054957A (en
Inventor
正孝 仲西
淳一 丹羽
一仁 川澄
敏 中川
友哉 佐藤
晶 小島
琢寛 幸
哲男 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Toyota Industries Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Toyota Industries Corp
Priority to JP2011193032A priority Critical patent/JP5263557B2/en
Priority to PCT/JP2012/005432 priority patent/WO2013035274A1/en
Publication of JP2013054957A publication Critical patent/JP2013054957A/en
Application granted granted Critical
Publication of JP5263557B2 publication Critical patent/JP5263557B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Disclosed are: a method of manufacture whereby a non-aqueous electrolyte storage battery containing a sulphur-based positive electrode active substance can easily be manufactured; and a positive electrode and non-aqueous electrolyte storage battery manufactured by this method. In the method of manufacture of the non-aqueous electrolyte storage battery positive electrode, there is provided a step of heat processing in which a mixed raw material containing sulphur (S), a carrier and a blending agent is heated. As the blending agent, there may be employed material containing at least one type of metal selected from the group consisting of 4th period metals, 5th period of metals, 6th period metals and rare earth elements, and metallic compounds.

Description

本発明は、硫黄系正極活物質を含む非水電解質二次電池用正極の製造方法、およびこの方法で製造した非水電解質二次電池用正極、ならびにこの非水電解質二次電池用正極を備える非水電解質二次電池に関する。   The present invention includes a method for producing a positive electrode for a non-aqueous electrolyte secondary battery containing a sulfur-based positive electrode active material, a positive electrode for a non-aqueous electrolyte secondary battery produced by this method, and a positive electrode for this non-aqueous electrolyte secondary battery. The present invention relates to a non-aqueous electrolyte secondary battery.

非水電解質二次電池用の正極活物質として、硫黄を用いる技術が知られている。リチウムイオン二次電池の正極活物質としては、コバルトやニッケル等のレアメタルを含有するものが一般的であるが、これらの金属は流通量が少なく高価である。これらのレアメタルに比べて、現在の硫黄の流通量は多い。このため、正極活物質としての硫黄は注目されている。また、リチウムイオン二次電池の正極活物質として硫黄を用いる場合には、充放電容量の大きな非水電解質二次電池を得ることができる。例えば、硫黄を正極活物質として用いたリチウムイオン二次電池の充放電容量は、一般的な正極材料であるコバルト酸リチウム正極材料を用いたリチウムイオン二次電池の充放電容量の約6倍である。   As a positive electrode active material for a non-aqueous electrolyte secondary battery, a technique using sulfur is known. As a positive electrode active material of a lithium ion secondary battery, a material containing a rare metal such as cobalt or nickel is generally used. However, these metals have a small amount of circulation and are expensive. Compared to these rare metals, the current sulfur circulation is large. For this reason, sulfur as a positive electrode active material has attracted attention. Moreover, when using sulfur as a positive electrode active material of a lithium ion secondary battery, a nonaqueous electrolyte secondary battery having a large charge / discharge capacity can be obtained. For example, the charge / discharge capacity of a lithium ion secondary battery using sulfur as a positive electrode active material is approximately six times the charge / discharge capacity of a lithium ion secondary battery using a lithium cobaltate positive electrode material, which is a common positive electrode material. is there.

しかし、正極活物質として単体硫黄を用いたリチウムイオン二次電池においては、放電時に硫黄とリチウムとの化合物が生成する。この硫黄とリチウムとの化合物は、リチウムイオン二次電池の非水系電解液(例えば、エチレンカーボネートやジメチルカーボネート等)に可溶である。このため、正極活物質として硫黄を用いたリチウムイオン二次電池は、充放電を繰り返すと、硫黄の電解液への溶出により次第に劣化し、電池容量が低下する問題がある。以下、充放電の繰り返しに伴って充放電容量が低下するリチウムイオン二次電池の特性を「サイクル特性」と呼ぶ。この充放電容量低下の小さいリチウムイオン二次電池はサイクル特性に優れるリチウムイオン二次電池であり、この充放電容量低下の大きなリチウムイオン二次電池はサイクル特性に劣るリチウムイオン二次電池である。   However, in a lithium ion secondary battery using elemental sulfur as the positive electrode active material, a compound of sulfur and lithium is generated during discharge. This compound of sulfur and lithium is soluble in a non-aqueous electrolyte solution (for example, ethylene carbonate, dimethyl carbonate, etc.) of a lithium ion secondary battery. For this reason, a lithium ion secondary battery using sulfur as a positive electrode active material has a problem that, when charging and discharging are repeated, it gradually deteriorates due to elution of sulfur into the electrolytic solution, and the battery capacity decreases. Hereinafter, the characteristic of the lithium ion secondary battery in which the charge / discharge capacity decreases with repeated charge / discharge is referred to as “cycle characteristic”. The lithium ion secondary battery having a small decrease in charge / discharge capacity is a lithium ion secondary battery having excellent cycle characteristics, and the lithium ion secondary battery having a large decrease in charge / discharge capacity is a lithium ion secondary battery having inferior cycle characteristics.

硫黄の電解液への溶出を抑制するために、担体と硫黄との混合物を熱処理して得られる正極活物質(以下、硫黄系正極活物質と呼ぶ)が提案されている。なお、本明細書でいう担体とは、硫黄を化学的または物理的に固定可能な物質を指す。つまり担体は、硫黄と化学的に結合しても良いし、硫黄を物理的に保持しても良い。担体による硫黄の固定強度は特に限定しない。   In order to suppress elution of sulfur into the electrolyte, a positive electrode active material (hereinafter referred to as a sulfur-based positive electrode active material) obtained by heat-treating a mixture of a carrier and sulfur has been proposed. The carrier in the present specification refers to a substance that can fix sulfur chemically or physically. That is, the carrier may be chemically bonded to sulfur or physically hold sulfur. The fixing strength of sulfur by the support is not particularly limited.

特許文献1には、硫黄系正極活物質として、炭素と硫黄を主な構成要素とするポリ硫化カーボンを用いる技術が紹介されている。このポリ硫化カーボンは、担体、すなわち直鎖状不飽和ポリマーに硫黄が付加されたものである。特許文献1によると、この硫黄系正極活物質は、充放電の繰り返しに伴うリチウムイオン二次電池の充放電容量低下を抑制できるとされている。以下、充放電の繰り返しに伴って充放電容量が低下するリチウムイオン二次電池の特性を「サイクル特性」と呼ぶ。この充放電容量低下の小さいリチウムイオン二次電池はサイクル特性に優れるリチウムイオン二次電池であり、この充放電容量低下の大きなリチウムイオン二次電池はサイクル特性に劣るリチウムイオン二次電池である。   Patent Document 1 introduces a technique using polysulfide carbon containing carbon and sulfur as main constituent elements as a sulfur-based positive electrode active material. This polysulfide carbon is obtained by adding sulfur to a carrier, that is, a linear unsaturated polymer. According to Patent Document 1, this sulfur-based positive electrode active material can suppress a decrease in charge / discharge capacity of a lithium ion secondary battery due to repeated charge / discharge. Hereinafter, the characteristic of the lithium ion secondary battery in which the charge / discharge capacity decreases with repeated charge / discharge is referred to as “cycle characteristic”. The lithium ion secondary battery having a small decrease in charge / discharge capacity is a lithium ion secondary battery having excellent cycle characteristics, and the lithium ion secondary battery having a large decrease in charge / discharge capacity is a lithium ion secondary battery having inferior cycle characteristics.

また、本発明の発明者らは、ポリアクリロニトリル(以下、必要に応じてPANと略する)と硫黄との混合物を熱処理して得られる硫黄系正極活物質を発明した(例えば、特許文献2参照)。この正極活物質を正極に用いたリチウムイオン二次電池の充放電容量は大きく、かつ、この正極活物質を正極に用いたリチウムイオン二次電池はサイクル特性に優れる。また、この正極活物質はナトリウム二次電池等の正極活物質としても使用できる。   In addition, the inventors of the present invention invented a sulfur-based positive electrode active material obtained by heat-treating a mixture of polyacrylonitrile (hereinafter abbreviated as PAN if necessary) and sulfur (see, for example, Patent Document 2). ). The charge / discharge capacity of a lithium ion secondary battery using this positive electrode active material for the positive electrode is large, and the lithium ion secondary battery using this positive electrode active material for the positive electrode is excellent in cycle characteristics. Moreover, this positive electrode active material can be used also as positive electrode active materials, such as a sodium secondary battery.

しかしその一方で、PAN等の担体と硫黄とを熱処理して硫黄系正極活物質を得る工程(熱処理工程と呼ぶ)は比較的高温であり、かつ、比較的長い時間を要する。このため、硫黄系正極活物質をより容易に製造できる製造方法が望まれていた。   However, on the other hand, a process of obtaining a sulfur-based positive electrode active material by heat treating a carrier such as PAN and sulfur (referred to as a heat treatment process) is relatively high temperature and requires a relatively long time. For this reason, the manufacturing method which can manufacture a sulfur type positive electrode active material more easily was desired.

特開2002−154815号公報JP 2002-154815 A 国際公開第2010/044437号International Publication No. 2010/044437

本発明は上記事情に鑑みてなされたものであり、硫黄系正極活物質を含有する非水電解質二次電池用正極を容易に製造できる製造方法、およびこの製造方法で製造されてなる正極および非水電解質二次電池を提供することを目的とする。   This invention is made | formed in view of the said situation, the manufacturing method which can manufacture easily the positive electrode for nonaqueous electrolyte secondary batteries containing a sulfur type positive electrode active material, the positive electrode manufactured by this manufacturing method, and non- An object is to provide a water electrolyte secondary battery.

上記課題を解決する本発明の非水電解質二次電池の製造方法は、硫黄、担体および配合材を含有する混合原料を、硫黄が溶融する温度で加熱する熱処理工程を含み、
該担体は、炭素(C)を含有し、ポリアクリロニトリル、ピッチ系担体、アセン類、植物系担体から選ばれる少なくとも一種であり、
該配合材は酸化鉄、塩化鉄、チタンから選ばれる少なくとも一種であることを特徴とする。
The method for producing a non-aqueous electrolyte secondary battery of the present invention that solves the above problems includes a heat treatment step of heating a mixed raw material containing sulfur, a carrier and a compounding material at a temperature at which sulfur melts ,
The carrier contains carbon (C), and is at least one selected from polyacrylonitrile, pitch-based carriers, acenes, and plant-based carriers.
The compounding material is at least one selected from iron oxide, iron chloride, and titanium .

また、上記課題を解決する本発明の非水電解質二次電池用正極は、本発明の非水電解質二次電池用正極の製造方法で製造され、
硫黄(S)と炭素(C)とを含有する硫黄系正極活物質と、鉄(Fe)またはチタン(Ti)を含有する金属または金属化合物と、を含むことを特徴とする。
Moreover, the positive electrode for a nonaqueous electrolyte secondary battery of the present invention that solves the above problems is manufactured by the method for manufacturing a positive electrode for a nonaqueous electrolyte secondary battery of the present invention,
It includes a sulfur-based positive electrode active material containing sulfur (S) and carbon (C), and a metal or metal compound containing iron (Fe) or titanium (Ti) .

また、上記課題を解決する本発明の非水電解質二次電池は、本発明の非水電解質二次電池用正極を正極として含むことを特徴とする。   Moreover, the nonaqueous electrolyte secondary battery of the present invention that solves the above-described problems includes the positive electrode for a nonaqueous electrolyte secondary battery of the present invention as a positive electrode.

本発明の製造方法によると、硫黄系正極活物質を含む非水電解質二次電池用正極を比較的短時間かつ比較的低温で製造できる。また本発明の製造方法で得られた非水電解質二次電池用正極を備える非水電解質二次電池は、比較的反応の生じ難い条件で正極を製造したものであっても、大容量でありかつ電池特性に優れる。   According to the production method of the present invention, a positive electrode for a nonaqueous electrolyte secondary battery containing a sulfur-based positive electrode active material can be produced in a relatively short time and at a relatively low temperature. In addition, the nonaqueous electrolyte secondary battery provided with the positive electrode for a nonaqueous electrolyte secondary battery obtained by the production method of the present invention has a large capacity even if the positive electrode is produced under conditions where reaction does not easily occur. In addition, the battery characteristics are excellent.

硫黄変性ポリアクリロニトリルをX線回折した結果を表すグラフである。It is a graph showing the result of having carried out X-ray diffraction of sulfur modification polyacrylonitrile. 硫黄変性ポリアクリロニトリルをラマンスペクトル分析した結果を表すグラフである。It is a graph showing the result of having performed a Raman spectrum analysis of sulfur-modified polyacrylonitrile. 硫黄変性ピッチをX線回折した結果を表すグラフである。It is a graph showing the result of having carried out X-ray diffraction of the sulfur modification pitch. 硫黄変性ピッチをラマンスペクトル分析した結果を表すグラフである。It is a graph showing the result of Raman spectrum analysis of sulfur-modified pitch. 実施例の正極の製造方法で用いた反応装置を模式的に表す説明図である。It is explanatory drawing which represents typically the reaction apparatus used with the manufacturing method of the positive electrode of an Example. 実施例1、実施例2および比較例1のリチウムイオン二次電池の放電曲線を表すグラフである。3 is a graph showing discharge curves of lithium ion secondary batteries of Example 1, Example 2 and Comparative Example 1. FIG. 実施例3のリチウムイオン二次電池の放電レート特性(充放電曲線)を表すグラフである。6 is a graph showing discharge rate characteristics (charge / discharge curves) of the lithium ion secondary battery of Example 3. 実施例3のリチウムイオン二次電池の放電レート特性(サイクル特性)を表すグラフである。6 is a graph showing discharge rate characteristics (cycle characteristics) of the lithium ion secondary battery of Example 3. 実施例4のリチウムイオン二次電池の放電レート特性(サイクル特性)を表すグラフである。6 is a graph showing discharge rate characteristics (cycle characteristics) of the lithium ion secondary battery of Example 4. 実施例3の正極に用いた硫黄系正極活物質−配合材複合体をX線回折した結果を表すグラフである。4 is a graph showing a result of X-ray diffraction of a sulfur-based positive electrode active material-compound material composite used for the positive electrode of Example 3. 実施例4の正極に用いた硫黄系正極活物質−配合材複合体をX線回折した結果を表すグラフである。It is a graph showing the result of having carried out X-ray diffraction of the sulfur type positive electrode active material-compounding material composite used for the positive electrode of Example 4. FIG. 比較例1の正極に用いた硫黄系正極活物質をX線回折した結果を表すグラフである。6 is a graph showing the result of X-ray diffraction of the sulfur-based positive electrode active material used for the positive electrode of Comparative Example 1.

本発明の非水電解質二次電池用正極の製造方法(以下、本発明の製造方法と呼ぶ)は、硫黄、担体、および、配合材を含有する混合原料を加熱する熱処理工程を含む。本発明の製造方法は、少なくとも硫黄系正極活物質を含有する正極を製造する。なお、本発明の製造方法で製造された正極(本発明の非水電解質二次電池用正極、以下本発明の正極と略する)は配合材を含んでいても良いし含まなくても良い。つまり、本発明の製造方法においては、硫黄系正極活物質を得た後に配合材を除去しても良い。本発明の非水電解質二次電池は、本発明の正極を用いた電池である。   The method for producing a positive electrode for a nonaqueous electrolyte secondary battery of the present invention (hereinafter referred to as the production method of the present invention) includes a heat treatment step of heating a mixed raw material containing sulfur, a carrier, and a compounding material. The production method of the present invention produces a positive electrode containing at least a sulfur-based positive electrode active material. The positive electrode manufactured by the manufacturing method of the present invention (the positive electrode for a nonaqueous electrolyte secondary battery of the present invention, hereinafter abbreviated as the positive electrode of the present invention) may or may not contain a compounding material. That is, in the manufacturing method of this invention, you may remove a compounding material, after obtaining a sulfur type positive electrode active material. The nonaqueous electrolyte secondary battery of the present invention is a battery using the positive electrode of the present invention.

硫黄系正極活物質は、例えば、上記の特許文献1に開示されているもの(担体としてポリ硫化カーボンを用いたもの)を用いることも考えられるが、本発明においては、特許文献2に開示されているもの(担体としてPANを用いたもの)後述するピッチ系担体や、3環以上の六員環が縮合してなる多環芳香族炭化水素、(以下、必要に応じてPAHと略する)、植物系担体から選ばれる少なくとも一種を用いる。以下、担体としてPANを用いた硫黄系正極活物質を硫黄変性PANと呼ぶ。担体としてピッチ系担体を用いた硫黄系正極活物質を硫黄変性ピッチと呼ぶ。担体としてPAHを用いて硫黄系正極活物質を硫黄変性PAHと呼ぶ。 As the sulfur-based positive electrode active material, for example, the one disclosed in Patent Document 1 (using polysulfide carbon as a carrier) may be used, but in the present invention, it is disclosed in Patent Document 2. (Which uses PAN as a carrier) , a pitch-based carrier described later, a polycyclic aromatic hydrocarbon formed by condensation of three or more six-membered rings (hereinafter abbreviated as PAH as necessary) ), At least one selected from plant carriers . Hereinafter, a sulfur-based positive electrode active material using PAN as a carrier is referred to as sulfur-modified PAN. A sulfur-based positive electrode active material using a pitch-based carrier as a carrier is called sulfur-modified pitch. A sulfur-based positive electrode active material is called sulfur-modified PAH using PAH as a carrier.

本発明の非水電解質二次電池用正極の製造方法(以下、本発明の製造方法と略する)は、配合材を用いることで、硫黄を担体に固定する反応の速度を向上させ得る。また、例えば比較的低温である等、化学反応に適さない条件下においても担体に硫黄を固定させ得る。   The method for producing a positive electrode for a non-aqueous electrolyte secondary battery of the present invention (hereinafter abbreviated as the production method of the present invention) can improve the speed of reaction for fixing sulfur to a carrier by using a compounding material. In addition, sulfur can be fixed to the support even under conditions that are not suitable for chemical reaction, for example, at a relatively low temperature.

(非水電解質二次電池正極の製造方法)
<配合材>
配合材としては、第4周期金属、第5周期金属、第6周期金属および希土類元素からなる群から選ばれる少なくとも一種の金属または金属化合物を使用することが考えられるが、本発明においては、酸化鉄、塩化鉄、チタンから選ばれる少なくとも一種を用いる。なお、上述した各種金属または金属化合物は、担体に硫黄を固定する際の何らかの化学反応を促進する。つまり、本発明の製造方法において、配合材は担体に硫黄が固定される反応の触媒として機能すると考えられる。このような配合材は上記の各種金属またはその化合物(酸化物、塩化物等)であれば良く、硫化物であっても良いし、未硫化であっても良い。すなわち、硫化物の配合材であっても、硫黄が担体に固定される反応を促進できれば良い。また、未硫化物である配合材が硫黄と反応して硫化物となった後に、硫黄が担体に固定される反応を促進する場合もある。
(Method for producing positive electrode for non-aqueous electrolyte secondary battery)
<Combination material>
As the compounding material, it is conceivable to use at least one kind of metal or metal compound selected from the group consisting of the fourth period metal, the fifth period metal, the sixth period metal, and the rare earth element. At least one selected from iron, iron chloride, and titanium is used. The various metals or metal compounds described above promote some chemical reaction when sulfur is fixed to the support. That is, in the production method of the present invention, the compounding material is considered to function as a catalyst for the reaction in which sulfur is fixed to the support. Such a compounding material should just be said various metals or its compound (oxide, chloride, etc.), may be sulfide, and may be unsulfurized. That is, even if it is a compounding material of sulfide, it is only necessary to promote the reaction in which sulfur is fixed to the carrier. Moreover, after the compounding material which is non-sulfide reacts with sulfur to form a sulfide, the reaction in which sulfur is fixed to the carrier may be promoted.

本発明の製造方法においては、担体に硫黄が固定される反応を促進するために配合材を配合するため、本発明の製造方法で得られた硫黄系正極活物質は、配合材を含んでも良いし、含まなくても良い。例えば、本発明の製造方法において、板状や網状等の除去し易い集合体状の配合材を用い、単体と硫黄とが反応した後に配合材を除去することで、配合材を含まない硫黄系正極活物質を製造できる。   In the production method of the present invention, since the compounding material is blended in order to promote the reaction in which sulfur is fixed to the carrier, the sulfur-based positive electrode active material obtained by the production method of the present invention may contain the compounding material. However, it does not have to be included. For example, in the production method of the present invention, an aggregate-shaped compounding material that is easy to remove, such as a plate-like or net-like material, is removed after reacting with a simple substance and sulfur, so that the sulfur-based material does not contain a compounding material. A positive electrode active material can be manufactured.

なお、本明細書でいう第4周期金属、第5周期金属および第6周期金属とは、周期律表によるものである。例えば第4周期金属とは、周期律表における第4周期元素に含まれる金属を指す。より具体的には、Ti、Fe、La、Ce、Pr、Nd、Sm、V、Mn、Fe、Ni、Cu、Zn、Mo、Ag、Cd、In、Sn、Sb、Ta、W、Pb、およびこれらの金属の化合物(硫化物を除く)からなる群から選ばれる少なくとも一種であるのが好ましい。   In addition, the 4th periodic metal, the 5th periodic metal, and the 6th periodic metal as used in this specification are based on a periodic table. For example, the fourth periodic metal refers to a metal included in the fourth periodic element in the periodic table. More specifically, Ti, Fe, La, Ce, Pr, Nd, Sm, V, Mn, Fe, Ni, Cu, Zn, Mo, Ag, Cd, In, Sn, Sb, Ta, W, Pb, And at least one selected from the group consisting of these metal compounds (excluding sulfides).

担体と配合材との配合比は、質量比で、10:0.05〜10:5であるのが好ましく、10:1〜10:3であるのがより好ましい。配合材の配合量が過大であれば、正極全体に対する正極活物質の量が過小になるためである。上述したように硫黄と担体との反応後に配合材を取り除くためには、配合材は粉末状でなく板状や網状等の集合体状であるのが好ましい。一方、配合材を硫黄系正極活物質中に略均一に分散させるためには、配合材は粉末状であるのが好ましい。配合材は、電子顕微鏡などを用いて測定した粒径が0.01〜100μmであるのが好ましく、0.1〜50μmであるのがより好ましく、0.1〜20μmであるのがさらに好ましい。   The mixing ratio of the carrier and the compounding material is preferably 10: 0.05 to 10: 5, more preferably 10: 1 to 10: 3, in terms of mass ratio. This is because if the amount of the compounding material is excessive, the amount of the positive electrode active material relative to the entire positive electrode is excessively small. As described above, in order to remove the compounding material after the reaction between sulfur and the carrier, the compounding material is preferably not in the form of powder but in the form of an aggregate such as a plate or net. On the other hand, in order to disperse the compounding material substantially uniformly in the sulfur-based positive electrode active material, the compounding material is preferably in a powder form. The compounding material preferably has a particle size measured using an electron microscope of 0.01 to 100 μm, more preferably 0.1 to 50 μm, and even more preferably 0.1 to 20 μm.

<担体>
〔PAN〕
担体としてPANを用いる場合、硫黄が本来有する高容量を維持でき、かつ、硫黄の電解液への溶出が抑制されるため、サイクル特性が大きく向上する。これは、硫黄系正極活物質中で硫黄が単体として存在するのでなくPANと結合等して固定された安定な状態で存在するためだと考えられる。特許文献2に開示されている硫黄系正極活物質の製造方法において、硫黄はPANとともに加熱処理されている。PANを加熱すると、PANが3次元的に架橋して縮合環(主として6員環)を形成しつつ閉環すると考えられる。このため硫黄は、閉環の進行したPANと結合した状態で硫黄系正極活物質中に存在していると考えられる。PANと硫黄とが結合することで、硫黄の電解液への溶出を抑制でき、サイクル特性を向上させ得る。
<Carrier>
[PAN]
When PAN is used as a carrier, the high capacity inherent in sulfur can be maintained, and elution of sulfur into the electrolyte is suppressed, so that the cycle characteristics are greatly improved. This is presumably because sulfur does not exist as a simple substance in the sulfur-based positive electrode active material but exists in a stable state in which it is fixed by bonding with PAN or the like. In the manufacturing method of the sulfur type positive electrode active material currently disclosed by patent document 2, sulfur is heat-processed with PAN. When PAN is heated, it is considered that PAN is three-dimensionally crosslinked to form a condensed ring (mainly a 6-membered ring) and close. For this reason, it is considered that sulfur is present in the sulfur-based positive electrode active material in a state of being combined with the PAN that has progressed in the ring closure. By combining PAN and sulfur, elution of sulfur into the electrolyte can be suppressed, and cycle characteristics can be improved.

担体として用いるPANは、粉末状であるのが好ましく、質量平均分子量が10〜3×10程度であるのが好ましい。また、PANの粒径は、電子顕微鏡によって観察した際に、0.5〜50μm程度であるのが好ましく、1〜10μm程度であるのがより好ましい。PANの分子量および粒径がこれらの範囲内であれば、PANと硫黄との接触面積を大きくでき、PANと硫黄とを信頼性高く反応させ得る。このため、電解液への硫黄の溶出をより信頼性高く抑制できる。 The PAN used as the carrier is preferably in the form of a powder, and preferably has a mass average molecular weight of about 10 4 to 3 × 10 5 . Further, the particle size of PAN is preferably about 0.5 to 50 μm, more preferably about 1 to 10 μm, when observed with an electron microscope. If the molecular weight and particle size of PAN are within these ranges, the contact area between PAN and sulfur can be increased, and PAN and sulfur can be reacted with high reliability. For this reason, the elution of sulfur to the electrolytic solution can be more reliably suppressed.

硫黄系正極活物質に用いられる硫黄もまた、粉末状であるのが好ましい。硫黄の粒径については特に限定しないが、篩いを用いて分級した際に、篩目開き40μmの篩を通過せず、かつ、150μmの篩を通過する大きさの範囲内にあるものが好ましく、篩目開き40μmの篩を通過せず、かつ、100μmの篩を通過する大きさの範囲内にあるものがより好ましい。   The sulfur used for the sulfur-based positive electrode active material is also preferably in the form of powder. Although it does not specifically limit about the particle size of sulfur, when classified using a sieve, those that do not pass through a sieve with a sieve opening of 40 μm and are within a size range that passes through a 150 μm sieve are preferable, It is more preferable that the mesh size does not pass through a 40 μm sieve and is within a size range that passes through a 100 μm sieve.

硫黄系正極活物質に用いるPAN粉末と硫黄粉末との配合比については特に限定しないが、質量比で、1:0.5〜1:10であるのが好ましく、1:0.5〜1:7であるのがより好ましく、1:2〜1:5であるのがさらに好ましい。   The compounding ratio of the PAN powder and the sulfur powder used for the sulfur-based positive electrode active material is not particularly limited, but is preferably 1: 0.5 to 1:10 by mass ratio, and 1: 0.5 to 1: 7 is more preferable, and 1: 2 to 1: 5 is even more preferable.

硫黄変性PANは、元素分析の結果、炭素、窒素、及び硫黄を含み、更に、少量の酸素及び水素を含む場合もある。また、図1に示すように、硫黄変性PANをCuKα線によりX線回折した結果、回折角(2θ)20〜30°の範囲では、25°付近にピーク位置を有するブロードなピークのみが確認された。参考までに、X線回折は、粉末X線回折装置(MAC Science社製、型番:M06XCE)により、CuKα線を用いてX線回折測定を行なった。測定条件は、電圧:40kV、電流:100mA、スキャン速度:4°/分、サンプリング:0.02°、積算回数:1回、測定範囲:回折角(2θ)10°〜60°であった。   As a result of elemental analysis, sulfur-modified PAN contains carbon, nitrogen, and sulfur, and may contain small amounts of oxygen and hydrogen. Further, as shown in FIG. 1, as a result of X-ray diffraction of sulfur-modified PAN with CuKα rays, only a broad peak having a peak position in the vicinity of 25 ° was confirmed in the diffraction angle (2θ) range of 20-30 °. It was. For reference, X-ray diffraction was measured by X-ray diffraction using CuKα rays with a powder X-ray diffractometer (manufactured by MAC Science, model number: M06XCE). The measurement conditions were voltage: 40 kV, current: 100 mA, scan speed: 4 ° / min, sampling: 0.02 °, number of integrations: 1, measurement range: diffraction angle (2θ) 10 ° -60 °.

さらに硫黄変性PANを、室温から900℃まで20℃/分の昇温速度で加熱した際の熱重量分析による質量減は400℃時点で10%以下である。これに対して、硫黄粉末とPAN粉末の混合物を同様の条件で加熱すると120℃付近から質量減少が認められ、200℃以上になると急激に硫黄の消失に基づく大きな質量減が認められる。   Furthermore, the mass loss by thermogravimetric analysis when sulfur-modified PAN is heated from room temperature to 900 ° C. at a rate of temperature increase of 20 ° C./min is 10% or less at 400 ° C. On the other hand, when a mixture of sulfur powder and PAN powder is heated under the same conditions, a mass decrease is observed from around 120 ° C., and when the temperature is 200 ° C. or higher, a large mass loss due to the disappearance of sulfur is recognized.

すなわち、硫黄変性PANにおいて、硫黄は単体としては存在せず、閉環の進行したPANと結合した状態で存在していると考えられる。   That is, in sulfur-modified PAN, it is considered that sulfur does not exist as a simple substance, but exists in a state of being combined with PAN that has advanced ring closure.

硫黄変性PANのラマンスペクトルの一例を図2に示す。図2に示すラマンスペクトルにおいて、ラマンシフトの1331cm−1付近に主ピークが存在し、かつ、200cm−1〜1800cm−1の範囲で1548cm−1、939cm−1、479cm−1、381cm−1、317cm−1付近にピークが存在する。上記したラマンシフトのピークは、PANに対する単体硫黄の比率を変更した場合にも同様の位置に観測される。このためこれらのピークは硫黄変性PANを特徴づけるものである。上記した各ピークは、上記したピーク位置を中心としては、ほぼ±8cm−1の範囲内に存在する。なお、本明細書において、「主ピーク」とは、ラマンスペクトルで現れた全てのピークのなかでピーク高さが最大となるピークを指す。 An example of the Raman spectrum of sulfur-modified PAN is shown in FIG. In the Raman spectrum shown in FIG. 2, there are major peak near 1331cm -1 of Raman shift, and, 1548cm -1 in the range of 200cm -1 ~1800cm -1, 939cm -1, 479cm -1, 381cm -1, There is a peak near 317 cm −1 . The above-described Raman shift peak is observed at the same position even when the ratio of elemental sulfur to PAN is changed. Thus, these peaks characterize sulfur-modified PAN. Each of the above-described peaks exists in a range of approximately ± 8 cm −1 with the above-described peak position as the center. In the present specification, the “main peak” refers to a peak having the maximum peak height among all peaks appearing in the Raman spectrum.

参考までに、上記したラマンシフトは、日本分光社製 RMP−320(励起波長λ=532nm、グレーチング:1800gr/mm、分解能:3cm−1)で測定したものである。なお、ラマンスペクトルのピークは、入射光の波長や分解能の違いなどにより、数が変化したり、ピークトップの位置がずれたりすることがある。したがって正極活物質として硫黄変性PANを用いた本発明の正極のラマンスペクトルを測定すると、上記のピークと同じピーク、または、上記のピークとは数やピークトップの位置が僅かに異なるピークが確認される。 For reference, the Raman shift described above was measured with RMP-320 (excitation wavelength λ = 532 nm, grating: 1800 gr / mm, resolution: 3 cm −1 ) manufactured by JASCO Corporation. Note that the number of Raman spectrum peaks may change or the position of the peak top may be shifted depending on the wavelength of incident light or the difference in resolution. Therefore, when the Raman spectrum of the positive electrode of the present invention using sulfur-modified PAN as the positive electrode active material is measured, the same peak as the above peak, or a peak slightly different from the above peak in number and peak top position is confirmed. The

〔ピッチ〕
本明細書において、ピッチ系担体とは、種々のタール、石油および石炭類を蒸留することにより得られる固形物または半固形物、更にはこれらの材料と同様の構造および/または組成をもつ合成材料全般を指す。ピッチ系担体としては、具体的には、石炭ピッチ、石油ピッチ、メソフェーズピッチ(異方性ピッチ)、アスファルト、コールタール、コールタールピッチ、縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ、またはヘテロ原子含有縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ等が挙げられる。これらは縮合多環芳香族を含む炭素材料として知られている。
〔pitch〕
In the present specification, the pitch-based carrier is a solid or semi-solid obtained by distilling various tars, petroleum and coals, and a synthetic material having a structure and / or composition similar to those materials. Refers to general. Specific examples of pitch-based carriers include coal pitch, petroleum pitch, mesophase pitch (anisotropic pitch), asphalt, coal tar, coal tar pitch, and organic obtained by polycondensation of condensed polycyclic aromatic hydrocarbon compounds. Synthetic pitch or organic synthetic pitch obtained by polycondensation of a heteroatom-containing condensed polycyclic aromatic hydrocarbon compound can be used. These are known as carbon materials containing condensed polycyclic aromatics.

ピッチ系担体の一種であるコールタールは、石炭を高温乾留(石炭乾留)して得られる黒い粘稠な油状液体である。コールタールを精製・熱処理(重合)することで、石炭ピッチを得ることができる。アスファルトは、黒褐色ないし黒色の固体あるいは半固体の可塑性物質である。アスファルトは、石油(原油)を減圧蒸留したときに釜残として得られるものと、天然に存在するものとに大別される。アスファルトはトルエン、二硫化炭素等に可溶である。アスファルトを精製・熱処理(重合)することで、石油ピッチを得ることができる。ピッチは、通常、無定形であり光学的に等方性である(等方性ピッチ)。等方性ピッチを不活性雰囲気中で熱処理することで、光学的に異方性のピッチ(異方性ピッチ、メソフェーズピッチ)を得ることができる。ピッチは、ベンゼン、トルエン、二硫化炭素等の有機溶剤に部分的に可溶である。   Coal tar, a kind of pitch-based carrier, is a black viscous oily liquid obtained by high-temperature carbonization (coal carbonization) of coal. Coal pitch can be obtained by refining and heat treating (polymerizing) coal tar. Asphalt is a black-brown to black solid or semi-solid plastic material. Asphalt is broadly classified into what is obtained as a kettle residue when petroleum (crude oil) is distilled under reduced pressure and that which exists in nature. Asphalt is soluble in toluene, carbon disulfide and the like. Petroleum pitch can be obtained by refining and heat treating (polymerizing) asphalt. The pitch is usually amorphous and optically isotropic (isotropic pitch). An optically anisotropic pitch (anisotropic pitch, mesophase pitch) can be obtained by heat-treating the isotropic pitch in an inert atmosphere. Pitch is partially soluble in organic solvents such as benzene, toluene, carbon disulfide.

ピッチ系担体は様々な化合物の混合物であり、上述したように縮合多環芳香族を含む。ピッチ系担体に含まれる縮合多環芳香族は、単一種であっても良いし、複数種であっても良い。例えば、ピッチ系担体の一種である石炭ピッチの主成分は、縮合多環芳香族である。この縮合多環芳香族は、環の中に、炭素と水素以外にも、窒素や硫黄を含み得る。このため、石炭ピッチの主成分は、炭素と水素のみから成る縮合多環芳香族炭化水素と縮合環に窒素や硫黄等を含む複素芳香族化合物との混合物と考えられる。   The pitch-based carrier is a mixture of various compounds and contains a condensed polycyclic aromatic as described above. The condensed polycyclic aromatic contained in the pitch-based carrier may be a single species or a plurality of species. For example, the main component of coal pitch, which is a kind of pitch carrier, is a condensed polycyclic aromatic. The condensed polycyclic aromatic can contain nitrogen and sulfur in addition to carbon and hydrogen in the ring. For this reason, the main component of coal pitch is considered to be a mixture of a condensed polycyclic aromatic hydrocarbon composed only of carbon and hydrogen and a heteroaromatic compound containing nitrogen, sulfur, etc. in the condensed ring.

担体としてピッチ系担体を用いる場合にも、担体としてPANを用いる場合と同様に、硫黄が本来有する高容量を維持できかつ硫黄の電解液への溶出が抑制されるため、サイクル特性が大きく向上する。これは、硫黄系正極活物質中で硫黄が単体として存在するのでなく、硫黄がピッチ系担体のグラフェン層間に取り込まれているか、或いは、縮合多環芳香族の環に含まれる水素が硫黄に置換されてC−S結合となっているためだと推測される。   Even when a pitch-based carrier is used as the carrier, the cycle characteristics are greatly improved because the high capacity inherent in sulfur can be maintained and the elution of sulfur into the electrolyte is suppressed, as in the case of using PAN as the carrier. . This is because sulfur is not present as a simple substance in the sulfur-based positive electrode active material, but sulfur is taken in between the graphene layers of the pitch-based carrier, or hydrogen contained in the condensed polycyclic aromatic ring is replaced with sulfur. This is presumed to be due to the CS bond.

ピッチ系担体の粒径は特に限定しない。また、担体としてピッチ系担体を用いる場合、硫黄の粒径もまた特に限定しない。ピッチ系担体と硫黄との混合割合についてもまた特に限定しないが、混合原料中のピッチ系担体と硫黄との配合比は、質量比で1:0.5〜1:10であるのが好ましく、1:1〜1:7であるのがより好ましく、1:2〜1:5であるのが特に好ましい。   The particle size of the pitch-based carrier is not particularly limited. Moreover, when using a pitch-type support | carrier as a support | carrier, the particle size of sulfur is also not specifically limited. The mixing ratio of the pitch-based carrier and sulfur is not particularly limited, but the mixing ratio of the pitch-based carrier and sulfur in the mixed raw material is preferably 1: 0.5 to 1:10 by mass ratio, The ratio is more preferably 1: 1 to 1: 7, and particularly preferably 1: 2 to 1: 5.

硫黄変性ピッチは、複数種の多環芳香族炭化水素を含む。本明細書でいう多環芳香族炭化水素(PAH)とは、上述した各種ピッチ系担体自体、および、上述した各種ピッチ系担体に含まれる各種多環芳香族炭化水素、からなる群から選ばれる少なくとも一種の炭素材料を指す。   The sulfur-modified pitch contains a plurality of types of polycyclic aromatic hydrocarbons. The polycyclic aromatic hydrocarbon (PAH) referred to in the present specification is selected from the group consisting of the above-mentioned various pitch-based carriers themselves and the various polycyclic aromatic hydrocarbons contained in the above-mentioned various pitch-based carriers. It refers to at least one carbon material.

また、硫黄変性ピッチ(石炭ピッチ:硫黄=1:1、1:5、1:10)、単体石炭ピッチおよび単体硫黄をCuKα線によりX線回折した。回折条件は上記の硫黄変性PANと同じである。   Further, sulfur-modified pitch (coal pitch: sulfur = 1: 1, 1: 5, 1:10), simple coal pitch and simple sulfur were X-ray diffracted by CuKα rays. The diffraction conditions are the same as those of the above sulfur-modified PAN.

図3に示すように、回折角(2θ)10〜60°の範囲では、単体硫黄の主ピークは22°付近に存在し、単体石炭ピッチの主ピークは26°付近に存在した。石炭ピッチと硫黄との配合比が1:1である硫黄変性ピッチのピークは単一ピークであり、26°付近に存在した。石炭ピッチと硫黄との配合比が1:5である硫黄変性ピッチ、および石炭ピッチと硫黄との配合比が1:10である硫黄変性ピッチの主ピークは、22°付近に存在した。   As shown in FIG. 3, in the range of diffraction angle (2θ) of 10 to 60 °, the main peak of elemental sulfur was present at around 22 °, and the main peak of elemental coal pitch was present at around 26 °. The peak of the sulfur-modified pitch with a coal pitch / sulfur mixing ratio of 1: 1 was a single peak and was present at around 26 °. The main peak of sulfur-modified pitch having a blending ratio of coal pitch and sulfur of 1: 5 and sulfur-modified pitch having a blending ratio of coal pitch and sulfur of 1:10 was present at around 22 °.

硫黄変性ピッチは熱安定性に優れる。硫黄変性ピッチを、室温から550℃まで10℃/分の昇温速度で加熱した際の熱重量分析による質量減少は550℃時点で25%程度である。参考までに、石炭ピッチの質量減少は550℃時点で約30%程度である。単体硫黄の場合、170℃付近から徐々に質量減少し、200℃を超すと急激に減少する。石炭ピッチもまた質量減少し難く、250℃〜450℃付近では石炭ピッチの方が硫黄変性ピッチより質量減少し難い傾向がある。450℃以上では石炭ピッチよりも硫黄変性ピッチの方が質量減少し難い傾向がある。   Sulfur-modified pitch is excellent in thermal stability. When the sulfur-modified pitch is heated from room temperature to 550 ° C. at a heating rate of 10 ° C./min, the mass reduction by thermogravimetric analysis is about 25% at 550 ° C. For reference, the mass loss of the coal pitch is about 30% at 550 ° C. In the case of elemental sulfur, the mass gradually decreases from around 170 ° C., and rapidly decreases when the temperature exceeds 200 ° C. Coal pitch is also difficult to decrease in mass, and in the vicinity of 250 ° C to 450 ° C, coal pitch tends to be less likely to decrease in mass than sulfur-modified pitch. Above 450 ° C., the mass of sulfur-modified pitch is less likely to be reduced than that of coal pitch.

硫黄変性ピッチのラマンスペクトルの一例を図4に示す。参考までに、このラマンスペクトルは、上述した硫黄変性PANのラマンスペクトルと同じ条件で測定したものである。   An example of the Raman spectrum of sulfur-modified pitch is shown in FIG. For reference, this Raman spectrum was measured under the same conditions as the Raman spectrum of the above-described sulfur-modified PAN.

図4に示すラマンスペクトルにおいて、ラマンシフトの1557cm−1付近に主ピークが存在し、かつ、200cm−1〜1800cm−1の範囲内で1371cm−1、1049cm−1、994cm−1、842cm−1、612cm−1、412cm−1、354cm−1、314cm−1付近にそれぞれピークが存在する。これらのピークは、ピッチ系担体に対する単体硫黄の比率を変更した場合にも同様の位置に観測され、硫黄変性ピッチを特徴付けるピークである。正極活物質として硫黄変性ピッチを用いた本発明の正極のラマンスペクトルを測定すると、これらのピークと同じ、または、数やピークトップの位置が僅かに異なるピークが確認される。なお、硫黄変性ピッチのラマンスペクトルは、硫黄変性PANのラマンスペクトルとは異なる。 In the Raman spectrum shown in FIG. 4, there are major peak near 1557cm -1 of Raman shift, and, 1371cm -1 in the range of 200cm -1 ~1800cm -1, 1049cm -1, 994cm -1, 842cm -1 , 612cm -1, 412cm -1, 354cm -1, the peak respectively is present in the vicinity of 314 cm -1. These peaks are observed at similar positions even when the ratio of elemental sulfur to the pitch-based support is changed, and are peaks that characterize the sulfur-modified pitch. When the Raman spectrum of the positive electrode of the present invention using sulfur-modified pitch as the positive electrode active material is measured, peaks that are the same as these peaks or slightly different in number and peak top position are confirmed. The Raman spectrum of sulfur-modified pitch is different from the Raman spectrum of sulfur-modified PAN.

硫黄変性ピッチを元素分析した結果、炭素、窒素、および硫黄が検出された。また、場合によっては、少量の酸素および水素が検出された。したがって、硫黄変性ピッチは、C、S以外に、窒素、酸素、硫黄化合物等の少なくとも一種を不純物として含有する。   As a result of elemental analysis of the sulfur-modified pitch, carbon, nitrogen, and sulfur were detected. In some cases, small amounts of oxygen and hydrogen were detected. Accordingly, the sulfur-modified pitch contains at least one of nitrogen, oxygen, sulfur compounds and the like as impurities in addition to C and S.

〔PAH〕
本発明の製造方法においては、上述したピッチ系担体以外の多環芳香族炭化水素(Polycyclic aromatic hydrocarbon、PAH)を配合材として用いても良い。
[PAH]
In the production method of the present invention, polycyclic aromatic hydrocarbon (PAH) other than the above-described pitch-based carrier may be used as a compounding material.

上述した硫黄変性PAHは、3環以上の六員環が縮合してなる多環芳香族炭化水素(PAH)の少なくとも一種に由来する炭素骨格を持つ。PAHは、ヘテロ原子や置換基を含まない芳香環が縮合した炭化水素の総称であり、四員環、五員環、六員環、そして七員環からなるものがあるが、このうち、ピッチ系担体以外のPAHからなる配合材としては、ベンゼン環の構造である六員環が直鎖に3環以上連なった構造をもつアセン類、及び、3環以上の六員環が直鎖でなく折れ曲がった構造をもつ化合物などのうち少なくとも一種と硫黄とを用いることが好ましい。   The sulfur-modified PAH described above has a carbon skeleton derived from at least one polycyclic aromatic hydrocarbon (PAH) formed by condensation of three or more six-membered rings. PAH is a general term for hydrocarbons condensed with aromatic rings that do not contain heteroatoms or substituents, and includes 4-membered rings, 5-membered rings, 6-membered rings, and 7-membered rings. As a compounding material composed of PAH other than the system carrier, acenes having a structure in which three or more six-membered rings having a benzene ring structure are connected in a straight chain, and a six-membered ring having three or more rings are not linear It is preferable to use at least one of compounds having a bent structure and sulfur.

複数の芳香環が辺を共有しながら直鎖状に連なった多環芳香族炭化水素であるアセン類としては、2環のナフタレン、3環のアントラセン、4環のテトラセン、5環のペンタセン、6環のヘキサセン、7環のヘプタセン、8環のオクタセン、9環のノナセン、及び10環以上の芳香環が連なったものがあり、これらの群から選ばれる少なくとも一種を用いることができる。中でも安定性が高い3環〜6環のものが望ましい。   Examples of acenes that are polycyclic aromatic hydrocarbons in which a plurality of aromatic rings share a side and are connected in a straight chain include bicyclic naphthalene, tricyclic anthracene, tetracyclic tetracene, pentacyclic pentacene, 6 There are ring hexacene, 7 ring heptacene, 8 ring octacene, 9 ring nonacene, and 10 or more aromatic rings, and at least one selected from these groups can be used. Among them, those having 3 to 6 rings having high stability are desirable.

また、3環以上の六員環が直鎖でなく折れ曲がった構造をもつ多環芳香族炭化水素としては、フェナントレン、ベンゾピレン、クリセン、ピレン、ピセン、ペリレン、トリフェニレン、コロネン、及びこれらより多くの環以上の芳香環が連なったものがあり、これらの群から選ばれる少なくとも一種を用いることができる。硫黄変性PAHは、硫黄変性ピッチと同様の方法で製造できる。   Polycyclic aromatic hydrocarbons having a structure in which three or more six-membered rings are not straight but bent include phenanthrene, benzopyrene, chrysene, pyrene, picene, perylene, triphenylene, coronene, and more rings. There are those in which the above aromatic rings are linked, and at least one selected from these groups can be used. Sulfur-modified PAH can be produced by the same method as sulfur-modified pitch.

熱処理工程では、PAHと硫黄とを反応させる。この反応は、PAHの量に対して硫黄の量を過大として反応させ、硫黄を高濃度で含む正極活物質とすることが望ましい。この熱処理工程の温度は、PAHの少なくとも一部と硫黄の少なくとも一部とが液体となる条件で行うことが望ましい。このようにすることで、PAHと硫黄との接触面積を充分に大きくでき、硫黄を充分に含みかつ硫黄の脱離が抑制された硫黄変性PAHを得ることができる。   In the heat treatment step, PAH and sulfur are reacted. In this reaction, it is desirable to react with the amount of sulfur being excessive with respect to the amount of PAH to obtain a positive electrode active material containing sulfur at a high concentration. It is desirable that the temperature of the heat treatment step be such that at least a part of PAH and at least a part of sulfur are liquid. By doing in this way, the contact area between PAH and sulfur can be made sufficiently large, and sulfur-modified PAH containing sulphur and suppressing sulfur desorption can be obtained.

混合原料中のPAHと硫黄との配合比にも好ましい範囲が存在する。PAHに対する硫黄の配合量が過小であるとPAHに充分量の硫黄を取り込めず、PAHに対する硫黄の配合量が過大であると、硫黄変性PAH中に遊離の硫黄(単体硫黄)が多く残存して、非水電解質二次電池内の特に電解液を汚染するためである。混合原料中のPAHと硫黄との配合比は、質量比で、PAH:硫黄が1:0.5〜1:10であるのが好ましく、1:1〜1:7であるのがより好ましく、1:2〜1:5であるのが特に好ましい。   There is also a preferred range for the blending ratio of PAH and sulfur in the mixed raw material. If the amount of sulfur added to PAH is too small, sufficient amount of sulfur cannot be taken into PAH. If the amount of sulfur added to PAH is too large, a large amount of free sulfur (single sulfur) remains in sulfur-modified PAH. This is because the electrolyte solution in the non-aqueous electrolyte secondary battery is contaminated. The blend ratio of PAH and sulfur in the mixed raw material is, by mass ratio, PAH: sulfur is preferably 1: 0.5 to 1:10, more preferably 1: 1 to 1: 7, A ratio of 1: 2 to 1: 5 is particularly preferred.

なお、PAHに対する硫黄の配合量を過大とすれば、熱処理工程においてPAHに充分な量の硫黄を容易に取り込むことができる。そしてPAHに対して硫黄を必要以上の量で配合したとしても、熱処理工程後の被処理体から過剰の単体硫黄を除去する単体硫黄除去工程を行うことで、上述した単体硫黄による悪影響を抑制できる。詳しくは、混合原料中のPAHと硫黄との配合比を、質量比で1:2〜1:10とする場合、熱処理工程後の被処理体を、減圧しつつ200℃〜250℃で加熱する(単体硫黄除去工程)ことで、PAHに充分な量の硫黄を取り込みつつ、残存する単体硫黄による悪影響を抑制できる。熱処理工程後の被処理体に単体硫黄除去工程を施さない場合には、この被処理体をそのまま硫黄変性PAHとして用いれば良い。また、熱処理工程後の被処理体に単体硫黄除去工程を施す場合には、単体硫黄除去工程後の被処理体を硫黄変性PAHとして用いれば良い。   If the amount of sulfur added to PAH is excessive, a sufficient amount of sulfur can be easily taken into PAH in the heat treatment step. And even if it mix | blends sulfur more than necessary with respect to PAH, the bad influence by the above-mentioned simple substance sulfur can be controlled by performing the simple substance sulfur removal process which removes excess simple sulfur from the processed object after a heat treatment process. . Specifically, when the blending ratio of PAH and sulfur in the mixed raw material is 1: 2 to 1:10 by mass ratio, the target object after the heat treatment step is heated at 200 ° C. to 250 ° C. while reducing the pressure. (Single element sulfur removal step) By taking a sufficient amount of sulfur into the PAH, it is possible to suppress the adverse effects due to the remaining single sulfur. When the single sulfur removal step is not performed on the target object after the heat treatment step, this target object may be used as it is as the sulfur-modified PAH. Moreover, what is necessary is just to use the to-be-processed body after a simple sulfur removal process as sulfur modified PAH, when performing the simple substance sulfur removal process to the to-be-processed body after a heat treatment process.

硫黄変性PAHは、例えば、出発物質であるPAHとしてペンタセンを選択した場合には、ヘキサチアペンタセン類似の構造となっていると考えられるが、その構造は明らかではない。また、PAHとしてアントラセンを用いた硫黄正極活物質は、FT−IRスペクトルにおいて、1056cm−1付近と、840cm−1付近と、にそれぞれピークが存在し、アントラセンのFT−IRスペクトルとは全く異なっているので、FT−IRスペクトルで同定することが可能である。 For example, when pentacene is selected as the starting material PAH, the sulfur-modified PAH is considered to have a structure similar to hexathiapentacene, but the structure is not clear. Moreover, the sulfur positive electrode active material using anthracene as PAH has peaks in the vicinity of 1056 cm −1 and 840 cm −1 in the FT-IR spectrum, which is completely different from the FT-IR spectrum of anthracene. Therefore, it can be identified by FT-IR spectrum.

硫黄変性PAHを元素分析すると、硫黄(S)と炭素(C)とが大部分を占め、少量の酸素及び水素が検出される。硫黄(S)と炭素(C)の組成比は、原子比(S/C)で1/5以上の範囲で含まれていることが望ましい。この範囲より硫黄が少ないと、非水電解質二次電池用正極に用いた時に充放電特性が低下する場合がある。   When elemental analysis of sulfur-modified PAH is performed, sulfur (S) and carbon (C) occupy most, and small amounts of oxygen and hydrogen are detected. It is desirable that the composition ratio of sulfur (S) and carbon (C) is included in the range of 1/5 or more in terms of atomic ratio (S / C). If the amount of sulfur is less than this range, the charge / discharge characteristics may be degraded when used in a positive electrode for a non-aqueous electrolyte secondary battery.

硫黄変性PAHは、第2の硫黄系正極活物質(硫黄変性PAN)をさらに含むことが望ましい。これは、上述した硫黄変性ピッチに関しても同様である。混合原料中にさらにPAN粉末を含む場合の熱処理工程は、前述した硫黄変性PANの製造方法と同様に行うことができる。第2の硫黄系正極活物質の混合量は特に限定的ではないが、コストの観点からは、正極活物質全体に0〜80質量%程度とすることが好ましく、5〜60質量%程度とすることがより好ましく、10〜40質量%程度とすることが更に好ましい。   The sulfur-modified PAH desirably further contains a second sulfur-based positive electrode active material (sulfur-modified PAN). The same applies to the above-described sulfur-modified pitch. The heat treatment step in the case of further containing PAN powder in the mixed raw material can be performed in the same manner as the above-described method for producing sulfur-modified PAN. The mixing amount of the second sulfur-based positive electrode active material is not particularly limited, but from the viewpoint of cost, it is preferably about 0 to 80% by mass, preferably about 5 to 60% by mass with respect to the entire positive electrode active material. It is more preferable, and it is still more preferable to set it as about 10-40 mass%.

〔その他の担体〕
本発明の製造方法に好ましく用いられるその他の担体としては、上述した特許文献1に開示されているような直鎖状不飽和ポリマー、コーヒー豆や海草等の植物系担体と硫黄を熱処理したもの、またはこれらの複合体等を挙げることができる。なお、本発明の製造方法において、担体は硫黄を固定できれば良く、必ずしも炭素(C)を含んでいる必要はない。
[Other carriers]
Other carriers preferably used in the production method of the present invention include a linear unsaturated polymer as disclosed in Patent Document 1 described above, a plant carrier such as coffee beans and seaweed, and sulfur heat-treated, Or these composites etc. can be mentioned. In the production method of the present invention, the support only needs to fix sulfur, and does not necessarily contain carbon (C).

非水電解質二次電池のサイクル特性や容量を考慮すると、担体としてPANを用いるのがより好ましい。また、コストを考慮するとピッチ系担体を用いるのがより好ましい。さらに、担体として上記の複数種を併用しても良い。   In consideration of the cycle characteristics and capacity of the nonaqueous electrolyte secondary battery, it is more preferable to use PAN as the carrier. In view of cost, it is more preferable to use a pitch-based carrier. Furthermore, you may use said multiple types together as a support | carrier.

(熱処理工程)
本発明の製造方法は、上述した担体と硫黄と配合材とを混合した混合原料を加熱する熱処理工程を備える。混合原料は、乳鉢やボールミル等の一般的な混合装置で混合すれば良い。混合原料としては、硫黄と担体と配合材とを単に混合したものを用いても良いが、例えば、混合原料をペレット状に成形して用いても良い。
(Heat treatment process)
The production method of the present invention includes a heat treatment step of heating a mixed raw material obtained by mixing the above-described carrier, sulfur, and a compounding material. What is necessary is just to mix a mixing raw material with common mixing apparatuses, such as a mortar and a ball mill. As the mixed raw material, one obtained by simply mixing sulfur, a carrier, and a compounding material may be used. For example, the mixed raw material may be formed into a pellet shape and used.

熱処理工程において混合原料を加熱することで、混合原料に含まれる担体と硫黄とが反応する。この反応は配合材により促進される。熱処理工程は、密閉系でおこなっても良いし開放系でおこなっても良いが、硫黄蒸気の散逸を抑制するためには、密閉系で行うのが好ましい。また、熱処理工程を如何なる雰囲気で行うかについては特に問わないが、担体への硫黄の固定を妨げない雰囲気(例えば、水素を含有しない雰囲気、非酸化性雰囲気)下で行うのが好ましい。例えば、雰囲気中に水素が存在すると、反応系中の硫黄が水素と反応して硫化水素となるため、反応系中の硫黄が失われる場合がある。また、特に担体としてPANを用いる場合には、非酸化性雰囲気下で熱処理することで、PANの閉環反応と同時に、蒸気状態の硫黄がPANに固定されてPANを担体とする硫黄系正極活物質が得られると考えられる。ここでいう非酸化性雰囲気とは、酸化反応が進行しない程度の低酸素濃度とした減圧状態、窒素やアルゴン等の不活性ガス雰囲気、硫黄ガス雰囲気等を含む。   By heating the mixed raw material in the heat treatment step, the carrier contained in the mixed raw material reacts with sulfur. This reaction is accelerated by the compounding material. The heat treatment step may be performed in a closed system or an open system, but in order to suppress the dissipation of sulfur vapor, it is preferably performed in a closed system. The atmosphere in which the heat treatment step is performed is not particularly limited, but it is preferably performed in an atmosphere that does not hinder the fixation of sulfur to the support (for example, an atmosphere containing no hydrogen or a non-oxidizing atmosphere). For example, when hydrogen is present in the atmosphere, sulfur in the reaction system reacts with hydrogen to form hydrogen sulfide, so that sulfur in the reaction system may be lost. In particular, when PAN is used as a carrier, by performing heat treatment in a non-oxidizing atmosphere, a sulfur-based positive electrode active material using PAN as a carrier by fixing vapor-state sulfur to PAN simultaneously with the PAN ring-closing reaction Can be obtained. The non-oxidizing atmosphere referred to here includes a reduced pressure state in which the oxygen concentration is low enough not to cause an oxidation reaction, an inert gas atmosphere such as nitrogen or argon, a sulfur gas atmosphere, and the like.

密閉状態の非酸化性雰囲気とするための具体的な方法については特に限定はなく、例えば、硫黄蒸気が散逸しない程度の密閉性が保たれる容器中に混合原料を入れて、容器内を減圧または不活性ガス雰囲気にして加熱すれば良い。その他、混合原料を硫黄蒸気と反応し難い材料(例えばアルミニウムラミネートフィルム等)で真空包装した状態で加熱しても良い。この場合、発生した硫黄蒸気によって包装材料が破損しないように、例えば、水を入れたオートクレーブ等の耐圧容器中に、包装された原料を入れて加熱し、発生した水蒸気で包装材の外部から加圧することが好ましい。この方法によれば、包装材料の外部から水蒸気によって加圧されるので、硫黄蒸気によって包装材料が膨れて破損することが防止される。   There is no particular limitation on the specific method for creating a non-oxidizing atmosphere in a sealed state. For example, the mixed raw material is placed in a container that is kept tight enough not to dissipate sulfur vapor, and the inside of the container is decompressed. Alternatively, heating may be performed in an inert gas atmosphere. In addition, the mixed raw material may be heated in a vacuum packaged state with a material that does not easily react with sulfur vapor (for example, an aluminum laminate film). In this case, in order to prevent the packaging material from being damaged by the generated sulfur vapor, for example, the packaged raw material is put in a pressure vessel such as an autoclave containing water and heated, and the generated steam is added from the outside of the packaging material. It is preferable to press. According to this method, since pressure is applied by water vapor from the outside of the packaging material, the packaging material is prevented from being swollen and damaged by sulfur vapor.

熱処理工程における混合原料の加熱時間は、加熱温度に応じて適宜設定すれば良く、特に限定しない。上述した好ましい加熱温度は、硫黄と担体との反応が進行し、かつ、配合材が変質しないような温度であれば良い。   What is necessary is just to set suitably the heating time of the mixed raw material in a heat processing process according to heating temperature, and it does not specifically limit it. The preferable heating temperature mentioned above should just be a temperature which reaction of sulfur and a support | carrier progresses, and a compounding material does not change in quality.

例えば、担体としてPANを用いる場合、加熱温度は、250以上500℃以下とすることが好ましく、250以上400℃以下とすることがより好ましく、300以上400℃以下とすることがさらに好ましい。また、担体としてピッチ系担体を用いる場合、加熱温度は、200℃以上600℃以下であるのが好ましく、300℃以上500℃以下であるのがより好ましく、350℃以上500℃以下であるのがさらに好ましい。担体としてピッチ系担体を用いる場合には、熱処理工程においてピッチ系担体の少なくとも一部と硫黄の少なくとも一部とが液体となる。換言すると、熱処理工程において、ピッチ系担体の少なくとも一部と硫黄の少なくとも一部とは、液状で接触する。このため、熱処理工程におけるピッチ系担体と硫黄との接触面積は大きく、ピッチ系担体と硫黄とが充分に結合し、かつ硫黄系正極活物質からの硫黄の脱離が抑制される。   For example, when PAN is used as the carrier, the heating temperature is preferably 250 to 500 ° C., more preferably 250 to 400 ° C., and even more preferably 300 to 400 ° C. When a pitch-based carrier is used as the carrier, the heating temperature is preferably 200 ° C. or higher and 600 ° C. or lower, more preferably 300 ° C. or higher and 500 ° C. or lower, and 350 ° C. or higher and 500 ° C. or lower. Further preferred. When a pitch-based carrier is used as the carrier, at least a part of the pitch-based carrier and at least a part of sulfur become liquid in the heat treatment step. In other words, in the heat treatment step, at least a part of the pitch-based support and at least a part of sulfur are in liquid contact. For this reason, the contact area between the pitch-based carrier and sulfur in the heat treatment step is large, the pitch-based carrier and sulfur are sufficiently bonded, and the desorption of sulfur from the sulfur-based positive electrode active material is suppressed.

熱処理工程においては、硫黄を還流するのが好ましい。この場合、混合原料の一部が気体となり、一部が液体となるように混合原料を加熱すれば良い。換言すると、混合原料の温度は、硫黄が気化する温度以上の温度であれば良い。ここで言う気化とは、硫黄が液体または固体から気体に相変化することを指し、沸騰、蒸発、昇華の何れによっても良い。参考までに、α硫黄(斜方硫黄、常温付近で最も安定な構造である)の融点は112.8℃、β硫黄(単斜硫黄)の融点は119.6℃、γ硫黄(単斜硫黄)の融点は106.8℃である。硫黄の沸点は444.7℃である。ところで、硫黄の蒸気圧は高いため、混合原料の温度が150℃以上になると、硫黄の蒸気の発生が目視でも確認できる。したがって、混合原料の温度が150℃以上であれば硫黄の還流は可能である。なお、熱処理工程において硫黄を還流する場合には、既知構造の還流装置を用いて硫黄を還流すれば良い。   In the heat treatment step, sulfur is preferably refluxed. In this case, the mixed raw material may be heated so that a part of the mixed raw material becomes a gas and a part becomes a liquid. In other words, the temperature of the mixed raw material may be a temperature equal to or higher than the temperature at which sulfur is vaporized. Vaporization here refers to the phase change of sulfur from a liquid or solid to a gas, and may be any of boiling, evaporation, and sublimation. For reference, the melting point of α sulfur (orthogonal sulfur, which is the most stable structure near room temperature) is 112.8 ° C., the melting point of β sulfur (monoclinic sulfur) is 119.6 ° C., and γ sulfur (monoclinic sulfur). ) Has a melting point of 106.8 ° C. The boiling point of sulfur is 444.7 ° C. By the way, since the vapor pressure of sulfur is high, generation | occurrence | production of sulfur vapor | steam can also be confirmed visually when the temperature of a mixed raw material will be 150 degreeC or more. Therefore, if the temperature of the mixed raw material is 150 ° C. or higher, sulfur can be refluxed. In addition, what is necessary is just to recirculate | reflux sulfur using the reflux apparatus of a known structure, when recirculating | refluxing sulfur in a heat treatment process.

なお、混合原料中の硫黄の配合量が過大である場合にも、熱処理工程において担体に充分な量の硫黄を取り込むことができる。このため、担体に対して硫黄を過大に配合する場合には、熱処理工程後の被処理体(硫黄系正極活物質−担体複合体)から単体硫黄を除去することで、上述した単体硫黄による悪影響を抑制できる。詳しくは、混合原料中の担体と硫黄との配合比を、質量比で1:2〜1:10とする場合、熱処理工程後の被処理体を、減圧しつつ200℃〜250℃で加熱する(単体硫黄除去工程)ことで、担体に充分な量の硫黄を取り込みつつ、残存する単体硫黄による悪影響を抑制できる。熱処理工程後の被処理体に単体硫黄除去工程を施さない場合には、この被処理体をそのまま硫黄系正極活物質として用いれば良い。また、熱処理工程後の被処理体に単体硫黄除去工程を施す場合には、単体硫黄除去工程後の被処理体を硫黄系正極活物質として用いれば良い。   Even when the amount of sulfur in the mixed raw material is excessive, a sufficient amount of sulfur can be taken into the carrier in the heat treatment step. For this reason, when sulfur is excessively added to the carrier, the above-described adverse effect of the elemental sulfur can be obtained by removing the elemental sulfur from the object to be treated (sulfur-based positive electrode active material-carrier complex) after the heat treatment step. Can be suppressed. Specifically, when the mixing ratio of the carrier and sulfur in the mixed raw material is 1: 2 to 1:10 by mass ratio, the target object after the heat treatment step is heated at 200 ° C. to 250 ° C. while reducing the pressure. (Single element sulfur removal step) By taking a sufficient amount of sulfur into the carrier, it is possible to suppress adverse effects due to the remaining single sulfur. When the single sulfur removal step is not performed on the target object after the heat treatment step, this target object may be used as it is as the sulfur-based positive electrode active material. Moreover, what is necessary is just to use the to-be-processed body after a single sulfur removal process as a sulfur type positive electrode active material, when performing a single-piece | unit sulfur removal process to the to-be-processed body after a heat treatment process.

(正極)
本発明の正極は、上述した熱処理工程を備える本発明の製造方法で製造され、硫黄系正極活物質および配合材を含有する。なお、本発明の正極が、硫黄変性PANおよび/または硫黄変性ピッチを硫黄系正極活物質として含む場合、正極のラマンスペクトルには、上述した硫黄変性PANに由来するピークや硫黄変性ピッチに由来するピークが他のピークとともに認められる。
(Positive electrode)
The positive electrode of the present invention is manufactured by the manufacturing method of the present invention including the heat treatment step described above, and contains a sulfur-based positive electrode active material and a compounding material. In addition, when the positive electrode of the present invention contains sulfur-modified PAN and / or sulfur-modified pitch as a sulfur-based positive electrode active material, the Raman spectrum of the positive electrode is derived from the peak derived from the above-described sulfur-modified PAN or sulfur-modified pitch. Peaks are observed along with other peaks.

正極は、正極活物質(および、場合によっては配合材)以外は、一般的な非水電解質二次電池用正極と同様の構造にできる。例えば、本発明の正極は、硫黄系正極活物質と配合材との混合物(すなわち熱処理工程により得られた被処理体)、導電助剤、バインダ、および溶媒を混合した正極材料を、集電体に塗布することによって作製できる。或いは、硫黄粉末、担体粉末および配合材粉末を混合した混合原料を、正極用集電体に充填した後に加熱する(熱処理工程を施す)こともできる。この方法によれば、硫黄系正極活物質と配合材との混合物を製造すると同時に、バインダを用いることなく、この混合物と集電体とを一体化させることができる。バインダを用いなければ、正極質量あたり正極活物質の量を増大させることができ、正極質量当たりの容量を向上させることができる。   The positive electrode can have the same structure as that of a general positive electrode for a nonaqueous electrolyte secondary battery except for the positive electrode active material (and, in some cases, a compounding material). For example, the positive electrode of the present invention comprises a positive electrode material in which a mixture of a sulfur-based positive electrode active material and a compounding material (that is, an object to be processed obtained by a heat treatment process), a conductive additive, a binder, and a solvent are mixed. It can produce by apply | coating to. Alternatively, the mixed raw material in which the sulfur powder, the carrier powder, and the compounding material powder are mixed can be heated (a heat treatment step is performed) after filling the positive electrode current collector. According to this method, a mixture of the sulfur-based positive electrode active material and the compounding material can be produced, and at the same time, the mixture and the current collector can be integrated without using a binder. If no binder is used, the amount of the positive electrode active material per positive electrode mass can be increased, and the capacity per positive electrode mass can be improved.

上述したように、正極は配合材を含む場合がある。正極における硫黄系正極活物質と配合材との含有比は、質量比で、10:0.01〜10:5であるのが好ましく、10:0.1〜10:2であるのがより好ましい。   As described above, the positive electrode may contain a compounding material. The content ratio between the sulfur-based positive electrode active material and the compounding material in the positive electrode is preferably 10: 0.01 to 10: 5, more preferably 10: 0.1 to 10: 2 in terms of mass ratio. .

導電助剤としては、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、炭素粉末、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック(KB)、黒鉛、アルミニウムやチタンなどの正極電位において安定な金属の微粉末等が例示される。なお、配合材の種類によっては導電助剤として機能するものもある。このため、導電助剤を配合しなくても良い場合もある。   Examples of the conductive assistant include vapor grown carbon fiber (VGCF), carbon powder, carbon black (CB), acetylene black (AB), ketjen black (KB), graphite, positive electrodes such as aluminum and titanium. Examples thereof include fine metal powders stable in potential. Some types of compounding materials function as conductive aids. For this reason, it may not be necessary to add a conductive additive.

バインダとしては、ポリフッ化ビニリデン(PolyVinylidene DiFluoride:PVDF)、ポリ四フッ化エチレン(PTFE)、スチレン−ブタジエンゴム(SBR)、ポリイミド(PI)、ポリアミドイミド(PAI)、カルボキシメチルセルロース(CMC)、ポリ塩化ビニル(PVC)、メタクリル樹脂(PMA)、ポリアクリロニトリル(PAN)、変性ポリフェニレンオキシド(PPO)、ポリエチレンオキシド(PEO)、ポリエチレン(PE)、ポリプロピレン(PP)等が例示される。   As the binder, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyimide (PI), polyamideimide (PAI), carboxymethylcellulose (CMC), polychlorinated Examples include vinyl (PVC), methacrylic resin (PMA), polyacrylonitrile (PAN), modified polyphenylene oxide (PPO), polyethylene oxide (PEO), polyethylene (PE), and polypropylene (PP).

溶媒としては、N−メチル−2−ピロリドン、N,N−ジメチルホルムアルデヒド、アルコール、水等が例示される。これら導電助剤、バインダおよび溶媒は、それぞれ複数種を混合して用いても良い。これらの材料の配合量は特に問わないが、例えば、硫黄系正極活物質100質量部に対して、導電助剤20〜100質量部程度、バインダ10〜20質量部程度を配合するのが好ましい。また、その他の方法として、本発明の硫黄系正極活物質と上述した導電助剤およびバインダとの混合物を乳鉢やプレス機などで混練しかつフィルム状にし、フィルム状の混合物をプレス機等で集電体に圧着することで、本発明の非水電解質二次電池用正極を製造することもできる。   Examples of the solvent include N-methyl-2-pyrrolidone, N, N-dimethylformaldehyde, alcohol, water and the like. These conductive assistants, binders and solvents may be used as a mixture of plural kinds. The blending amount of these materials is not particularly limited. For example, it is preferable to blend about 20 to 100 parts by mass of the conductive additive and about 10 to 20 parts by mass of the binder with respect to 100 parts by mass of the sulfur-based positive electrode active material. As another method, a mixture of the sulfur-based positive electrode active material of the present invention, the above-described conductive additive and binder is kneaded with a mortar or a press machine to form a film, and the film-like mixture is collected with a press machine or the like. The positive electrode for a non-aqueous electrolyte secondary battery of the present invention can also be produced by pressure bonding to an electric body.

集電体としては、非水電解質二次電池用正極に一般に用いられるものを使用すれば良い。例えば集電体としては、アルミニウム箔、アルミニウムメッシュ、パンチングアルミニウムシート、アルミニウムエキスパンドシート、ステンレススチール箔、ステンレススチールメッシュ、パンチングステンレススチールシート、ステンレススチールエキスパンドシート、発泡ニッケル、ニッケル不織布、銅箔、銅メッシュ、パンチング銅シート、銅エキスパンドシート、チタン箔、チタンメッシュ、カーボン不織布、カーボン織布等が例示される。このうち黒鉛化度の高いカーボンから成るカーボン不織布/織布集電体は、水素を含まず、硫黄との反応性が低いために、硫黄系正極活物質用の集電体として好適である。黒鉛化度の高い炭素繊維の原料としては、カーボン繊維の材料となる各種のピッチ(すなわち、石油、石炭、コールタールなどの副生成物)やPAN繊維等を用いることができる。   What is necessary is just to use what is generally used for the positive electrode for nonaqueous electrolyte secondary batteries as a collector. For example, current collectors include aluminum foil, aluminum mesh, punched aluminum sheet, aluminum expanded sheet, stainless steel foil, stainless steel mesh, punched stainless steel sheet, stainless steel expanded sheet, foamed nickel, nickel nonwoven fabric, copper foil, copper mesh Examples thereof include a punching copper sheet, a copper expanded sheet, a titanium foil, a titanium mesh, a carbon nonwoven fabric, and a carbon woven fabric. Among these, the carbon non-woven fabric / woven fabric current collector made of carbon having a high degree of graphitization is suitable as a current collector for a sulfur-based positive electrode active material because it does not contain hydrogen and has low reactivity with sulfur. As a raw material for carbon fiber having a high degree of graphitization, various pitches (that is, by-products such as petroleum, coal, coal tar, etc.), PAN fibers, etc., which are carbon fiber materials can be used.

(非水電解質二次電池)
以下、本発明の非水電解質二次電池の構成について説明する。なお、正極に関しては、上述したとおりである。
(Non-aqueous electrolyte secondary battery)
Hereinafter, the configuration of the nonaqueous electrolyte secondary battery of the present invention will be described. The positive electrode is as described above.

<負極>
負極材料としては、公知の金属リチウム、黒鉛などの炭素系材料、シリコン薄膜などのシリコン系材料、銅−錫やコバルト−錫などの合金系材料を使用できる。非水電解質二次電池がリチウムイオン二次電池である場合、負極材料として、リチウムを含まない材料、例えば、上記した負極材料の内で、炭素系材料、シリコン系材料、合金系材料等を用いる場合には、デンドライドの発生による正負極間の短絡を生じ難い点で有利である。ただし、これらのリチウムを含まない負極材料を本発明の正極と組み合わせて用いる場合には、正極および負極が何れもリチウムを含まない。このため、負極および正極の何れか一方、または両方にあらかじめリチウムを挿入するリチウムプリドープ処理が必要となる。リチウムのプリドープ法としては公知の方法に従えば良い。例えば負極にリチウムをドープする場合には、対極に金属リチウムを用いて半電池を組み、電気化学的にリチウムをドープする電解ドープ法によってリチウムを挿入する方法や、金属リチウム箔を電極に貼り付けたあと電解液の中に放置し電極へのリチウムの拡散を利用してドープする貼り付けプリドープ法によりリチウムを挿入する方法が挙げられる。また、正極にリチウムをプリドープする場合にも、上記した電解ドープ法を利用することが出来る。ナトリウムの場合も同様である。
<Negative electrode>
As the negative electrode material, a known carbon-based material such as lithium metal or graphite, a silicon-based material such as a silicon thin film, or an alloy-based material such as copper-tin or cobalt-tin can be used. When the non-aqueous electrolyte secondary battery is a lithium ion secondary battery, as the negative electrode material, a material that does not contain lithium, such as a carbon-based material, a silicon-based material, an alloy-based material, etc., among the negative electrode materials described above is used. In this case, it is advantageous in that it is difficult to cause a short circuit between the positive and negative electrodes due to the generation of dendrites. However, when these negative electrode materials not containing lithium are used in combination with the positive electrode of the present invention, neither the positive electrode nor the negative electrode contains lithium. For this reason, a lithium pre-doping process in which lithium is inserted in advance into either one or both of the negative electrode and the positive electrode is necessary. The lithium pre-doping method may be a known method. For example, when lithium is doped into the negative electrode, a half-cell is assembled using metallic lithium as the counter electrode, and lithium is inserted by an electrolytic doping method in which lithium is electrochemically doped, or a metallic lithium foil is attached to the electrode After that, there is a method in which lithium is inserted by a pasting pre-doping method in which it is left in an electrolytic solution and doped using diffusion of lithium to the electrode. Also, when the positive electrode is predoped with lithium, the above-described electrolytic doping method can be used. The same applies to sodium.

リチウムを含まない負極材料としては、特に、高容量の負極材料であるシリコン系材料が好ましく、その中でも電極厚さが薄くて体積当りの容量で有利となる薄膜シリコンがより好ましい。   As the negative electrode material that does not contain lithium, a silicon-based material that is a high-capacity negative electrode material is particularly preferable, and among these, thin-film silicon that is advantageous in terms of capacity per volume due to thin electrode thickness is more preferable.

<電解質>
非水電解質二次電池に用いる電解質としては、有機溶媒に電解質であるアルカリ金属塩を溶解させたものを用いることができる。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメチルエーテル、ガンマ−ブチロラクトン、アセトニトリル等の非水系溶媒から選ばれる少なくとも一種を用いるのが好ましい。電解質としては、LiPF、LiBF、LiAsF、LiCFSO、LiI、LiClO等を用いることができる。電解質の濃度は、0.5mol/l〜1.7mol/l程度であれば良い。なお、電解質は液状に限定されない。例えば、非水電解質二次電池がリチウムポリマー二次電池である場合、電解質は固体状(例えば高分子ゲル状)をなす。
<Electrolyte>
As the electrolyte used for the nonaqueous electrolyte secondary battery, an electrolyte obtained by dissolving an alkali metal salt as an electrolyte in an organic solvent can be used. As the organic solvent, it is preferable to use at least one selected from non-aqueous solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl ether, gamma-butyrolactone, and acetonitrile. As the electrolyte, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiI, LiClO 4, or the like can be used. The concentration of the electrolyte may be about 0.5 mol / l to 1.7 mol / l. The electrolyte is not limited to liquid. For example, when the non-aqueous electrolyte secondary battery is a lithium polymer secondary battery, the electrolyte is in a solid state (for example, a polymer gel).

<その他>
非水電解質二次電池は、上述した負極、正極、電解質以外にも、セパレータ等の部材を備えても良い。セパレータは、正極と負極との間に介在し、正極と負極との間のイオンの移動を許容するとともに、正極と負極との内部短絡を防止する。非水電解質二次電池が密閉型であれば、セパレータには電解液を保持する機能も求められる。セパレータとしては、ポリエチレン、ポリプロピレン、PAN、アラミド、ポリイミド、セルロース、ガラス等を材料とする薄肉かつ微多孔性または不織布状の膜を用いるのが好ましい。非水電解質二次電池の形状は特に限定されず、円筒型、積層型、コイン型等、種々の形状にできる。
<Others>
The nonaqueous electrolyte secondary battery may include a member such as a separator in addition to the above-described negative electrode, positive electrode, and electrolyte. The separator is interposed between the positive electrode and the negative electrode, allows ions to move between the positive electrode and the negative electrode, and prevents an internal short circuit between the positive electrode and the negative electrode. If the non-aqueous electrolyte secondary battery is a sealed type, the separator is also required to have a function of holding an electrolytic solution. As the separator, it is preferable to use a thin, microporous or non-woven membrane made of polyethylene, polypropylene, PAN, aramid, polyimide, cellulose, glass or the like. The shape of the nonaqueous electrolyte secondary battery is not particularly limited, and can be various shapes such as a cylindrical shape, a stacked shape, and a coin shape.

以下、本発明の製造方法、本発明の正極、および本発明の非水電解質二次電池について具体的に説明する。   Hereinafter, the production method of the present invention, the positive electrode of the present invention, and the nonaqueous electrolyte secondary battery of the present invention will be specifically described.

(実施例1)
〔1〕混合原料
硫黄粉末として、篩いを用いて分級した際に粒径50μm以下となるものを準備した。PAN粉末として、電子顕微鏡で確認した場合に粒径が0.2μm〜2μmの範囲にあるものを準備した。配合材として、篩を用いて分級した際に粒径50μm以下であったFeを準備した。
Example 1
[1] Mixed raw material A sulfur powder having a particle size of 50 μm or less when classified using a sieve was prepared. A PAN powder having a particle size in the range of 0.2 μm to 2 μm when prepared with an electron microscope was prepared. As a blending material, Fe 2 O 3 having a particle size of 50 μm or less when classified using a sieve was prepared.

硫黄粉末0.4gとPAN粉末0.1gと配合材粉末0.01gと、を乳鉢で混合・粉砕して、混合原料を得た。   0.4 g of sulfur powder, 0.1 g of PAN powder and 0.01 g of compounding material powder were mixed and pulverized in a mortar to obtain a mixed raw material.

〔2〕装置
図5に示すように、反応装置1は、反応容器2、蓋3、熱電対4、アルミナ保護管40、2つのアルミナ管(ガス導入管5、ガス排出管6)、不活性ガス配管50、不活性ガスを収容したガスタンク51、トラップ配管60、水酸化ナトリウム水溶液61を収容したトラップ槽62、電気炉7、電気炉に接続されている温度コントローラ70を持つ。
[2] Apparatus As shown in FIG. 5, the reaction apparatus 1 includes a reaction vessel 2, a lid 3, a thermocouple 4, an alumina protective tube 40, two alumina tubes (gas introduction tube 5, gas discharge tube 6), inert It has a gas pipe 50, a gas tank 51 containing an inert gas, a trap pipe 60, a trap tank 62 containing a sodium hydroxide aqueous solution 61, an electric furnace 7, and a temperature controller 70 connected to the electric furnace.

反応容器2としては、有底筒状をなすガラス管(石英ガラス製)を用いた。後述する熱処理工程において、反応容器2には混合原料9を収容した。反応容器2の開口部は、3つの貫通孔を持つガラス製の蓋3で閉じた。貫通孔の1つには、熱電対4を収容したアルミナ保護管40(アルミナSSA−S、株式会社ニッカトー製)を取り付けた。貫通孔の他の1つには、ガス導入管5(アルミナSSA−S、株式会社ニッカトー製)を取り付けた。貫通孔の残りの1つには、ガス排出管6(アルミナSSA−S、株式会社ニッカトー製)を取り付けた。なお、反応容器2は、外径60mm、内径50mm、長さ300mmであった。アルミナ保護管40は、外径4mm、内径2mm、長さ250mmであった。ガス導入管5およびガス排出管6は、外径6mm、内径4mm、長さ150mmであった。ガス導入管5およびガス排出管6の先端は、蓋3の外部(反応容器2内)に露出した。この露出した部分の長さは3mmであった。ガス導入管5およびガス排出管6の先端は、後述する熱処理工程においてほぼ100℃以下となる。このため、熱処理工程において生じる硫黄蒸気は、ガス導入管5およびガス排出管6から流出せず、反応容器2に戻される(還流する)。   As the reaction vessel 2, a bottomed cylindrical glass tube (made of quartz glass) was used. In the heat treatment step described later, the mixed raw material 9 was accommodated in the reaction vessel 2. The opening of the reaction vessel 2 was closed with a glass lid 3 having three through holes. An alumina protective tube 40 (alumina SSA-S, manufactured by Nikkato Co., Ltd.) accommodating the thermocouple 4 was attached to one of the through holes. A gas introduction pipe 5 (alumina SSA-S, manufactured by Nikkato Corporation) was attached to the other one of the through holes. A gas exhaust pipe 6 (alumina SSA-S, manufactured by Nikkato Corporation) was attached to the remaining one of the through holes. The reaction vessel 2 had an outer diameter of 60 mm, an inner diameter of 50 mm, and a length of 300 mm. The alumina protective tube 40 had an outer diameter of 4 mm, an inner diameter of 2 mm, and a length of 250 mm. The gas introduction pipe 5 and the gas discharge pipe 6 had an outer diameter of 6 mm, an inner diameter of 4 mm, and a length of 150 mm. The tips of the gas introduction pipe 5 and the gas discharge pipe 6 were exposed to the outside of the lid 3 (inside the reaction vessel 2). The length of this exposed portion was 3 mm. The tips of the gas introduction pipe 5 and the gas discharge pipe 6 become approximately 100 ° C. or less in a heat treatment process described later. For this reason, the sulfur vapor generated in the heat treatment step does not flow out of the gas introduction pipe 5 and the gas discharge pipe 6 but is returned (refluxed) to the reaction vessel 2.

アルミナ保護管40に入れた熱電対4の先端は、間接的に反応容器2中の混合原料9の温度を測定した。熱電対4で測定した温度は、電気炉7の温度コントローラ70にフィードバックした。   The tip of the thermocouple 4 placed in the alumina protective tube 40 indirectly measured the temperature of the mixed raw material 9 in the reaction vessel 2. The temperature measured by the thermocouple 4 was fed back to the temperature controller 70 of the electric furnace 7.

ガス導入管5には不活性ガス配管50を接続した。不活性ガス配管50は不活性ガスを収容したガスタンク51に接続した。ガス排出管6にはトラップ配管60の一端を接続した。トラップ配管60の他端は、トラップ槽62中の水酸化ナトリウム水溶液61に挿入した。なお、トラップ配管60およびトラップ槽62は、後述する熱処理工程で生じる硫化水素ガスのトラップである。   An inert gas pipe 50 was connected to the gas introduction pipe 5. The inert gas pipe 50 was connected to a gas tank 51 containing an inert gas. One end of a trap pipe 60 was connected to the gas discharge pipe 6. The other end of the trap pipe 60 was inserted into the sodium hydroxide aqueous solution 61 in the trap tank 62. The trap pipe 60 and the trap tank 62 are traps for hydrogen sulfide gas generated in a heat treatment process to be described later.

〔3〕熱処理工程
混合原料9を収容した反応容器2を、電気炉7(ルツボ炉、開口幅φ80mm、加熱高さ100mm)に収容した。このとき、ガス導入管5を介して反応容器2の内部にアルゴンを導入した。このときの不活性ガスの流速は100ml/分であった。不活性ガスの導入開始10分後に、不活性ガスの導入を継続しつつ反応容器2中の混合原料9の加熱を開始した。このときの昇温速度は5℃/分であった。混合原料9が約200℃になるとガスが発生した。混合原料9が300℃になった時点で加熱を停止した。その後3時間、混合原料9の温度を300℃で維持した。したがって、この熱処理工程において、混合原料9は300℃にまで加熱された。その後、混合原料9を自然冷却し、混合原料9が室温(約25℃)にまで冷却された時点で反応容器2から生成物(すなわち、熱処理工程後の被処理体)を取り出した。
[3] Heat treatment step The reaction vessel 2 containing the mixed raw material 9 was placed in an electric furnace 7 (crucible furnace, opening width φ80 mm, heating height 100 mm). At this time, argon was introduced into the reaction vessel 2 through the gas introduction tube 5. The flow rate of the inert gas at this time was 100 ml / min. Ten minutes after the start of introduction of the inert gas, heating of the mixed raw material 9 in the reaction vessel 2 was started while continuing the introduction of the inert gas. The temperature rising rate at this time was 5 ° C./min. Gas was generated when the mixed raw material 9 reached about 200 ° C. The heating was stopped when the mixed raw material 9 reached 300 ° C. Thereafter, the temperature of the mixed raw material 9 was maintained at 300 ° C. for 3 hours. Therefore, in this heat treatment step, the mixed raw material 9 was heated to 300 ° C. Thereafter, the mixed raw material 9 was naturally cooled, and when the mixed raw material 9 was cooled to room temperature (about 25 ° C.), the product (that is, the object to be treated after the heat treatment step) was taken out from the reaction vessel 2.

〔4〕単体硫黄除去工程
熱処理工程後の被処理体に残存する単体硫黄(遊離の硫黄)を除去するために、以下の工程をおこなった。
[4] Elemental sulfur removal step In order to remove elemental sulfur (free sulfur) remaining in the object to be treated after the heat treatment step, the following steps were performed.

熱処理工程後の被処理体を乳鉢で粉砕した。粉砕物0.15gをガラスチューブオーブンに入れ、真空吸引しつつ250℃で3時間加熱した。このときの昇温温度は10℃/分であった。この工程により、熱処理工程後の被処理体に残存する単体硫黄が蒸発・除去され、単体硫黄を含まない(または、ほぼ含まない)硫黄系正極活物質−配合材複合体を得た。   The object to be treated after the heat treatment step was pulverized in a mortar. 0.15 g of the pulverized product was placed in a glass tube oven and heated at 250 ° C. for 3 hours while being vacuumed. The temperature elevation temperature at this time was 10 ° C./min. By this step, the elemental sulfur remaining in the object to be treated after the heat treatment step was evaporated and removed, and a sulfur-based positive electrode active material-compounding material composite not containing (or substantially not including) elemental sulfur was obtained.

<リチウムイオン二次電池の作製>
〔1〕正極
硫黄系正極活物質−配合材複合体3mgとアセチレンブラック2.7mgとポリテトラフルオロエチレン(PTFE)0.3mgとの混合物を、エタノールを適量加えつつ、メノウ製乳鉢でフィルム状になるまで混練し、フィルム状の正極材料を得た。この正極材料全量を、直径14mmの円形に打ち抜いたアルミニウムメッシュ(メッシュ粗さ#100)に圧着し、120℃で5時間真空乾燥した。この工程で、実施例1のリチウムイオン二次電池用正極を得た。なお、この正極における配合材はFeであり、硫黄系正極活物質と配合材との含有比(質量比)は100:6であった。
<Production of lithium ion secondary battery>
[1] Positive electrode A mixture of 3 mg of a sulfur-based positive electrode active material-compounding material complex, 2.7 mg of acetylene black, and 0.3 mg of polytetrafluoroethylene (PTFE) is added into a film in an agate mortar while adding an appropriate amount of ethanol. The film was kneaded until a film-like positive electrode material was obtained. The total amount of the positive electrode material was press-bonded to an aluminum mesh (mesh roughness # 100) punched into a circle having a diameter of 14 mm and vacuum-dried at 120 ° C. for 5 hours. In this step, the positive electrode for the lithium ion secondary battery of Example 1 was obtained. The blend material in this positive electrode is Fe 2 O 3, the content ratio of sulfur-based positive electrode active material and compounding material (mass ratio) was 100: 6.

〔2〕負極
負極としては、金属リチウム箔(直径14mm、厚さ500μmの円盤状、本城金属製)を用いた。
[2] Negative Electrode As the negative electrode, a metal lithium foil (a disk shape having a diameter of 14 mm and a thickness of 500 μm, manufactured by Honjo Metal) was used.

〔3〕電解液
電解液としては、エチレンカーボネートとジエチルカーボネートとの混合溶媒に、LiPFを溶解した非水電解質を用いた。エチレンカーボネートとジエチルカーボネートとは体積比1:1で混合した。電解液中のLiPFの濃度は、1.0mol/lであった。
[3] Electrolytic Solution As the electrolytic solution, a nonaqueous electrolyte in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate was used. Ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1. The concentration of LiPF 6 in the electrolytic solution was 1.0 mol / l.

〔4〕電池
〔1〕、〔2〕で得られた正極および負極を用いて、コイン電池を作製した。詳しくは、ドライルーム内で、セパレータ(Celgard社製Celgard2400、厚さ25μmのポリプロピレン微孔質膜)と、ガラス不織布フィルタ(厚さ440μm、ADVANTEC社製、GA100)と、を正極と負極との間に挟装して、電極体電池とした。この電極体電池を、ステンレス容器からなる電池ケース(CR2032型コイン電池用部材、宝泉株式会社製)に収容した。電池ケースには〔3〕で得られた電解液を注入した。電池ケースをカシメ機で密閉して、実施例1のリチウムイオン二次電池を得た。
[4] Battery A coin battery was fabricated using the positive electrode and the negative electrode obtained in [1] and [2]. Specifically, in a dry room, a separator (Celgard 2400 made by Celgard, a polypropylene microporous membrane having a thickness of 25 μm) and a glass nonwoven fabric filter (thickness 440 μm, made by ADVANTEC, GA100) are placed between the positive electrode and the negative electrode. To be an electrode body battery. This electrode body battery was accommodated in a battery case (CR2032-type coin battery member, manufactured by Hosen Co., Ltd.) made of a stainless steel container. The electrolyte solution obtained in [3] was injected into the battery case. The battery case was sealed with a caulking machine to obtain a lithium ion secondary battery of Example 1.

(実施例2)
実施例2の正極の製造方法は、混合原料として、硫黄粉末0.4gとPAN粉末0.1gと配合材粉末0.01gとの混合物を用いたこと以外は、実施例1の正極の製造方法と同じである。実施例2の製造方法では、混合原料におけるPANと配合材との質量比は1:0.1であった。また、実施例2の正極における配合材はFeClであり、硫黄系正極活物質と配合材との含有比(質量比)は100:6であった。実施例2のリチウムイオン二次電池は、実施例2の正極を用いたこと以外は実施例1のリチウムイオン二次電池と同じである。
(Example 2)
The manufacturing method of the positive electrode of Example 1 is the same as that of Example 1, except that a mixture of 0.4 g of sulfur powder, 0.1 g of PAN powder, and 0.01 g of the compounding material powder was used as the mixed raw material. Is the same. In the manufacturing method of Example 2, the mass ratio of PAN and compounding material in the mixed raw material was 1: 0.1. Moreover, the compounding material in the positive electrode of Example 2 was FeCl, and the content ratio (mass ratio) of the sulfur-based positive electrode active material and the compounding material was 100: 6. The lithium ion secondary battery of Example 2 is the same as the lithium ion secondary battery of Example 1 except that the positive electrode of Example 2 was used.

(実施例3)
実施例3の正極の製造方法は、混合原料として、硫黄粉末5gとPAN粉末1gと配合材粉末0.1gとの混合物を用いたこと、熱処理工程における加熱温度および加熱時間以外は、実施例1の正極の製造方法と同じである。実施例3の製造方法では、混合原料におけるPANと配合材との質量比は1:0.1であった。また、実施例3の正極における配合材はTiであり、硫黄系正極活物質と配合材との含有比(質量比)は10:0.6であった。実施例3の熱処理工程においては、混合原料が330℃になった時点で加熱を停止した。加熱停止後、混合原料の温度は350℃にまで上昇し、その後低下した。つまり実施例3の熱処理工程においては、混合原料は350℃にまで加熱された。なお、実施例3の製造方法における加熱時間は350℃で約5分であった。実施例3のリチウムイオン二次電池は、実施例3の正極を用いたこと以外は実施例1のリチウムイオン二次電池と同じである。
(Example 3)
The manufacturing method of the positive electrode of Example 3 was the same as that of Example 1 except that a mixture of 5 g of sulfur powder, 1 g of PAN powder, and 0.1 g of the compounding material powder was used as the mixing raw material, and the heating temperature and heating time in the heat treatment step. This is the same as the positive electrode manufacturing method. In the manufacturing method of Example 3, the mass ratio of PAN and compounding material in the mixed raw material was 1: 0.1. Moreover, the compounding material in the positive electrode of Example 3 was Ti, and the content ratio (mass ratio) of the sulfur-based positive electrode active material and the compounding material was 10: 0.6. In the heat treatment step of Example 3, heating was stopped when the mixed raw material reached 330 ° C. After stopping the heating, the temperature of the mixed raw material increased to 350 ° C. and then decreased. That is, in the heat treatment step of Example 3, the mixed raw material was heated to 350 ° C. The heating time in the production method of Example 3 was about 5 minutes at 350 ° C. The lithium ion secondary battery of Example 3 is the same as the lithium ion secondary battery of Example 1 except that the positive electrode of Example 3 was used.

(比較例1)
比較例の正極の製造方法は、配合材を用いなかったこと以外は実施例1の正極の製造方法と同じである。比較例の正極は配合材を含まないこと以外は実施例1の正極と同じである。また、比較例のリチウムイオン二次電池は、比較例の正極を用いたこと以外は実施例1のリチウムイオン二次電池と同じである。
(Comparative Example 1)
The manufacturing method of the positive electrode of the comparative example is the same as the manufacturing method of the positive electrode of Example 1 except that no compounding material was used. The positive electrode of the comparative example is the same as the positive electrode of Example 1 except that it does not contain a compounding material. The lithium ion secondary battery of the comparative example is the same as the lithium ion secondary battery of Example 1 except that the positive electrode of the comparative example was used.

(実施例4)
実施例4の正極の製造方法は、配合材としてTiSを用い、混合原料として硫黄粉末5gとPAN粉末1gと配合材粉末0.1gとの混合物を用いたこと以外は、実施例3の正極の製造方法と同じである。実施例4の製造方法では、混合原料におけるPANと配合材との質量比は1:0.1であった。また、実施例4の正極における硫黄系正極活物質と配合材(TiS)との含有比(質量比)は10:0.6であった。実施例4のリチウムイオン二次電池は、実施例4の正極を用いたこと以外は実施例1のリチウムイオン二次電池と同じである。
Example 4
The positive electrode of Example 3 was manufactured by using TiS 2 as a compounding material and using a mixture of 5 g of sulfur powder, 1 g of PAN powder, and 0.1 g of compounding material powder as a mixing material. The manufacturing method is the same. In the manufacturing method of Example 4, the mass ratio of PAN and compounding material in the mixed raw material was 1: 0.1. Further, the content ratio (mass ratio) between the sulfur-based positive electrode active material and the compounding material (TiS 2 ) in the positive electrode of Example 4 was 10: 0.6. The lithium ion secondary battery of Example 4 is the same as the lithium ion secondary battery of Example 1 except that the positive electrode of Example 4 was used.

〔電池特性〕
実施例1、2および比較例1のリチウムイオン二次電池に関し、充放電をおこなった。詳しくは、各リチウムイオン二次電池にカットオフ電圧3.0V〜1.0V、25℃で10回繰り返し充放電を行った。2回目の放電曲線を図6に示す。
[Battery characteristics]
The lithium ion secondary batteries of Examples 1 and 2 and Comparative Example 1 were charged and discharged. Specifically, each lithium ion secondary battery was repeatedly charged and discharged 10 times at a cutoff voltage of 3.0 V to 1.0 V and 25 ° C. A second discharge curve is shown in FIG.

また、実施例3および実施例4のリチウムイオン二次電池の放電レート特性を測定した。詳しくは、各リチウムイオン二次電池に、正極活物質の1gあたりの電流値を、Cレートで0.1C、0.2C、0.5C、1C、2C・・・と変化させ、繰り返し充放電を行った。このときのカットオフ電圧は3.0V〜1.0Vであった。温度は25〜30℃であった。放電レート特性試験の結果を図7〜9に示す。   Further, the discharge rate characteristics of the lithium ion secondary batteries of Example 3 and Example 4 were measured. Specifically, for each lithium ion secondary battery, the current value per gram of the positive electrode active material is changed to 0.1 C, 0.2 C, 0.5 C, 1 C, 2 C,. Went. The cut-off voltage at this time was 3.0V to 1.0V. The temperature was 25-30 ° C. The results of the discharge rate characteristic test are shown in FIGS.

図6に示すように、配合材を配合した実施例1のリチウムイオン二次電池および実施例2のリチウムイオン二次電池の放電容量は、配合材を配合しなかった比較例のリチウムイオン二次電池に比べて大きかった。この事実は、配合材の存在下で熱処理工程を行うことで、300℃という比較的低温の加熱温度(つまり反応の進行し難い温度)であっても、硫黄とPANとの反応が進行することを裏づけている。   As shown in FIG. 6, the discharge capacities of the lithium ion secondary battery of Example 1 in which the compounding material was blended and the lithium ion secondary battery in Example 2 were the lithium ion secondary battery of the comparative example in which the compounding material was not blended. It was bigger than the battery. This fact is that the heat treatment step is performed in the presence of the compounding material, so that the reaction between sulfur and PAN proceeds even at a relatively low heating temperature of 300 ° C. (that is, the temperature at which the reaction does not proceed easily). Is backed up.

〔X線回折による硫黄系正極活物質の分析〕
実施例3の硫黄系正極活物質−配合材複合体、比較例1の硫黄系正極活物質、および、実施例4の硫黄系正極活物質−添加剤複合体について、X線回折分析を行った。装置として粉末X線回折装置(MAC Science社製、M06XCE)を用いた。測定条件は、CuKα線、電圧:40kV、電流:100mA、スキャン速度:4°/分、サンプリング:0.02°、積算回数:1回、回折角(2θ):10°〜60°であった。X線回折で得られた回折パターンを図10〜12に示す。
[Analysis of sulfur-based positive electrode active materials by X-ray diffraction]
X-ray diffraction analysis was performed on the sulfur-based positive electrode active material-compounding material complex of Example 3, the sulfur-based positive electrode active material of Comparative Example 1, and the sulfur-based positive electrode active material-additive complex of Example 4. . A powder X-ray diffractometer (manufactured by MAC Science, M06XCE) was used as the apparatus. The measurement conditions were CuKα line, voltage: 40 kV, current: 100 mA, scan speed: 4 ° / min, sampling: 0.02 °, number of integrations: 1, diffraction angle (2θ): 10 ° to 60 °. . Diffraction patterns obtained by X-ray diffraction are shown in FIGS.

ASTMカードによるTiの主な回折ピーク位置は、35.1、38.4、40.2、53.0°等である。TiSの主な回折ピーク位置は、15.5、34.2、44.1、53.9°等である。図12に示すように、配合材を配合せず担体としてPANを用いた硫黄系正極活物質(比較例1)では、回折角(2θ)20〜30°の範囲で、25°付近にブロードな単一ピークが認められる。これに対して、配合材を配合した硫黄系正極活物質−配合材複合体では、配合材に由来するピークが現れる。例えば、図10に示すように配合材としてTiを用いた場合、35.1、38.4、40.2、53.0°付近にTiのピークが現れる。このピークにより、配合材としてTiを用いたことを確認できる。なお、図11に示すように配合材としてTiSを用いた場合、硫黄系正極活物質−配合材複合体をX線回折してもTiのピークは確認できなかった。さらに、図示しないが配合材としてTiOを用いた場合にも、X線回折ではその存在を確認できない。しかし他の分析方法、例えばICP元素分析や蛍光X線分析などの方法を用いればTiを検出できるため、X線回折でピークが確認されない場合にもTiO等を配合材として配合したことを推測できる。 The main diffraction peak positions of Ti by the ASTM card are 35.1, 38.4, 40.2, 53.0 °, and the like. The main diffraction peak positions of TiS 2 are 15.5, 34.2, 44.1, 53.9 °, and the like. As shown in FIG. 12, in the sulfur-based positive electrode active material (Comparative Example 1) using PAN as a carrier without blending the compounding material, the diffraction angle (2θ) is in the range of 20 to 30 ° and is broad at around 25 °. A single peak is observed. On the other hand, in the sulfur-based positive electrode active material-compounding material composite containing the compounding material, a peak derived from the compounding material appears. For example, as shown in FIG. 10, when Ti is used as the compounding material, Ti peaks appear in the vicinity of 35.1, 38.4, 40.2, and 53.0 °. From this peak, it can be confirmed that Ti was used as a compounding material. As shown in FIG. 11, when TiS 2 was used as the compounding material, the peak of Ti could not be confirmed even when X-ray diffraction was performed on the sulfur-based positive electrode active material-compounding material complex. Furthermore, although not shown, even when TiO 2 is used as a compounding material, its presence cannot be confirmed by X-ray diffraction. However, since Ti can be detected by using other analysis methods such as ICP elemental analysis and fluorescent X-ray analysis, it is assumed that TiO 2 or the like was blended as a blending material even when no peak was confirmed by X-ray diffraction it can.

以上の結果から、本発明の製造方法によると、非水電解質二次電池の容量を増大させ得る硫黄系正極活物質を製造できることがわかる。本発明の製造方法で得られた硫黄系正極活物質は、場合によっては配合材を含む。配合材として用いた酸化鉄等の金属は、PANに硫黄が固定される反応の少なくとも一部において触媒として機能すると考えられる。なお、図10に示すように、実施例3の硫黄系正極活物質−配合材複合体の回折パターンではTiのピークが確認されるのに対し、図11に示すように実施例4の硫黄系正極活物質−配合材複合体の回折パターンではTiのピークは確認されない。このため、実施例3の製造方法と実施例4の製造方法とでは、実質的に触媒として機能している配合材が異なると考えられる。しかし、図8および図9に示すように、実施例3のリチウムイオン二次電池と実施例4のリチウムイオン二次電池とは同程度の容量およびサイクル特性を示す。   From the above results, it can be seen that according to the production method of the present invention, a sulfur-based positive electrode active material capable of increasing the capacity of the nonaqueous electrolyte secondary battery can be produced. The sulfur type positive electrode active material obtained by the manufacturing method of this invention contains a compounding material depending on the case. A metal such as iron oxide used as a compounding material is considered to function as a catalyst in at least a part of the reaction in which sulfur is fixed to PAN. As shown in FIG. 10, the peak of Ti is confirmed in the diffraction pattern of the sulfur-based positive electrode active material-compounding material composite of Example 3, whereas the sulfur-based of Example 4 is used as shown in FIG. The peak of Ti is not confirmed in the diffraction pattern of the positive electrode active material-compounding material composite. For this reason, it is thought that the compounding material substantially functioning as a catalyst differs between the manufacturing method of Example 3 and the manufacturing method of Example 4. However, as shown in FIGS. 8 and 9, the lithium ion secondary battery of Example 3 and the lithium ion secondary battery of Example 4 show comparable capacity and cycle characteristics.

1:反応装置 2:反応容器 3:蓋 4:熱電対
5:ガス導入管 6:ガス排出管 7:電気炉
1: Reactor 2: Reaction vessel 3: Lid 4: Thermocouple 5: Gas introduction pipe 6: Gas discharge pipe 7: Electric furnace

Claims (4)

硫黄、担体および配合材を含有する混合原料を、硫黄が溶融する温度で加熱する熱処理工程を含み、
該担体は、炭素(C)を含有し、ポリアクリロニトリル、ピッチ系担体、アセン類、植物系担体から選ばれる少なくとも一種であり、
該配合材は酸化鉄、塩化鉄、チタンから選ばれる少なくとも一種であることを特徴とする非水電解質二次電池用正極の製造方法。
Including a heat treatment step of heating a mixed raw material containing sulfur, a carrier and a compounding material at a temperature at which sulfur is melted ,
The carrier contains carbon (C), and is at least one selected from polyacrylonitrile, pitch-based carriers, acenes, and plant-based carriers.
The method for producing a positive electrode for a non-aqueous electrolyte secondary battery, wherein the compounding material is at least one selected from iron oxide, iron chloride, and titanium .
前記配合材は酸化鉄、塩化鉄から選ばれる少なくとも一種である請求項1に記載の非水電解質二次電池用正極の製造方法。 The method for producing a positive electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the compounding material is at least one selected from iron oxide and iron chloride . 請求項1に記載の非水電解質二次電池用正極の製造方法で製造され、
硫黄(S)と炭素(C)とを含有する硫黄系正極活物質と、鉄(Fe)またはチタン(Ti)を含有する金属または金属化合物と、を含むことを特徴とする非水電解質二次電池用正極。
It is manufactured by the method for manufacturing a positive electrode for a nonaqueous electrolyte secondary battery according to claim 1,
A non-aqueous electrolyte secondary comprising a sulfur-based positive electrode active material containing sulfur (S) and carbon (C), and a metal or metal compound containing iron (Fe) or titanium (Ti) Battery positive electrode.
請求項3に記載の非水電解質二次電池用正極を正極として含むことを特徴とする非水電解質二次電池。   A nonaqueous electrolyte secondary battery comprising the positive electrode for a nonaqueous electrolyte secondary battery according to claim 3 as a positive electrode.
JP2011193032A 2011-09-05 2011-09-05 Method for producing positive electrode for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Expired - Fee Related JP5263557B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011193032A JP5263557B2 (en) 2011-09-05 2011-09-05 Method for producing positive electrode for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
PCT/JP2012/005432 WO2013035274A1 (en) 2011-09-05 2012-08-29 Method for manufacturing positive electrode for non-aqueous electrolyte storage battery, positive electrode for non-aqueous electrolyte storage battery, and non-aqueous electrolyte storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011193032A JP5263557B2 (en) 2011-09-05 2011-09-05 Method for producing positive electrode for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2013054957A JP2013054957A (en) 2013-03-21
JP5263557B2 true JP5263557B2 (en) 2013-08-14

Family

ID=47831750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011193032A Expired - Fee Related JP5263557B2 (en) 2011-09-05 2011-09-05 Method for producing positive electrode for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP5263557B2 (en)
WO (1) WO2013035274A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2546609T3 (en) * 2013-03-25 2015-09-25 Oxis Energy Limited A method to charge a lithium-sulfur cell
EP3140302B1 (en) * 2014-05-05 2019-08-21 Merck Patent GmbH Materials for organic light emitting devices
KR20200081362A (en) 2017-10-31 2020-07-07 가부시키가이샤 아데카 Manufacturing method of organic sulfur-based electrode active material
KR102328254B1 (en) 2017-11-08 2021-11-18 주식회사 엘지에너지솔루션 Cathode for lithium-sulfur battery comprising maghemite, and lithium-sulfur battery comprising thereof
EP3761416A4 (en) 2018-03-01 2021-11-03 Adeka Corporation Organic sulfur-based electrode active material
JPWO2019181703A1 (en) 2018-03-23 2021-03-18 株式会社Adeka How to suppress thermal runaway due to internal short circuit
KR102308465B1 (en) * 2018-07-16 2021-10-01 주식회사 엘지화학 Cathode for lithium secondary battery comprising iron oxide, and lithium secondary battery comprising thereof
KR102150615B1 (en) * 2019-01-07 2020-09-01 경상대학교산학협력단 Composite sulfide/sulfur electrodes and manufacturing method thereof
KR20220070486A (en) 2019-09-27 2022-05-31 가부시키가이샤 아데카 Sulfur-modified polyacrylonitrile
CN114450819A (en) 2019-09-27 2022-05-06 株式会社Adeka Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
WO2021060044A1 (en) 2019-09-27 2021-04-01 株式会社Adeka Production method of sulfur-modified polyacrylonitrile
KR20230029695A (en) 2020-06-29 2023-03-03 가부시키가이샤 아데카 Sulfur-modified polyacrylonitrile, electrode active material containing the same, secondary battery electrode containing the electrode active material, manufacturing method of the electrode, and non-aqueous electrolyte secondary battery using the electrode
KR20230029696A (en) 2020-06-29 2023-03-03 가부시키가이샤 아데카 Sulfur-modified polyacrylonitrile, electrode active material containing the same, secondary battery electrode containing the electrode active material, manufacturing method of the electrode, and non-aqueous electrolyte secondary battery using the electrode
JP2023151614A (en) * 2022-03-31 2023-10-16 住友ゴム工業株式会社 Method for producing sulfur-based active material
WO2023189850A1 (en) * 2022-03-31 2023-10-05 住友ゴム工業株式会社 Sulfur-based active material, electrode, lithium ion secondary battery and production method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0958627B1 (en) * 1996-05-22 2002-02-27 Moltech Corporation Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same
JP2004095243A (en) * 2002-08-30 2004-03-25 Shinya Machida Lithium secondary battery using sulfur as positive electrode active material
JP2005005122A (en) * 2003-06-11 2005-01-06 Sony Corp Compound and its manufacturing method, as well as positive electrode and battery using same
JP4948878B2 (en) * 2006-04-06 2012-06-06 富士重工業株式会社 Electrode material and secondary battery and capacitor using the same
CN102160217B (en) * 2008-10-17 2014-02-05 独立行政法人产业技术综合研究所 Sulfur-modified polyacrylonitrile, manufacturing method therefor, and application thereof
JP5142415B2 (en) * 2011-01-18 2013-02-13 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2013054957A (en) 2013-03-21
WO2013035274A1 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
JP5263557B2 (en) Method for producing positive electrode for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5737679B2 (en) Sodium secondary battery
JP5142415B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5164286B2 (en) Method for producing sulfur-based positive electrode active material, sulfur-based positive electrode active material, and positive electrode for lithium ion secondary battery
JP5142162B2 (en) Method for producing positive electrode active material for lithium ion secondary battery and positive electrode for lithium ion secondary battery
JP2012150933A (en) Sulfur-based positive electrode active material, method for manufacturing the same, and positive electrode for lithium ion secondary battery
CN107709233B (en) Organosulfur material and method for producing same
JPWO2012132173A1 (en) Nonaqueous electrolyte secondary battery and vehicle
WO2013001693A1 (en) Sulfur-containing positive electrode active material and method for producing same, and positive electrode for lithium ion secondary battery
JP2014096326A (en) Negative electrode active material for secondary cell, and negative electrode and secondary cell using the same
KR20170133405A (en) Organic sulfur material and method for its production
JP2013110081A (en) Laminated battery, manufacturing method of he same, and vehicle
JP5164295B2 (en) Positive electrode for lithium ion secondary battery and method for producing the same
JP5754598B2 (en) Sulfur-based positive electrode active material and non-aqueous secondary battery
JP2013191330A (en) Nonaqueous electrolyte secondary battery and vehicle
JP2013089337A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
WO2013084445A1 (en) Nonaqueous electrolyte secondary battery
JP2013191327A (en) Nonaqueous electrolyte secondary battery and vehicle
JP2013037960A (en) Manufacturing method and apparatus for sulfur-based positive electrode active material
JP2013191331A (en) Nonaqueous electrolyte secondary battery and vehicle
JP5660730B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2013191329A (en) Nonaqueous electrolyte secondary battery and vehicle
JP2013191328A (en) Nonaqueous electrolyte secondary battery and vehicle
JP2013089339A (en) Nonaqueous electrolyte secondary battery
JP6410146B2 (en) Sulfur-containing compound, positive electrode and lithium ion secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130416

R150 Certificate of patent or registration of utility model

Ref document number: 5263557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees