JP5243883B2 - Light emitting device and lighting apparatus - Google Patents

Light emitting device and lighting apparatus Download PDF

Info

Publication number
JP5243883B2
JP5243883B2 JP2008203326A JP2008203326A JP5243883B2 JP 5243883 B2 JP5243883 B2 JP 5243883B2 JP 2008203326 A JP2008203326 A JP 2008203326A JP 2008203326 A JP2008203326 A JP 2008203326A JP 5243883 B2 JP5243883 B2 JP 5243883B2
Authority
JP
Japan
Prior art keywords
light
color conversion
conversion member
led chip
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008203326A
Other languages
Japanese (ja)
Other versions
JP2010040861A (en
Inventor
良二 横谷
拓磨 橋本
浩二 西岡
崇史 藤野
秀吉 木村
勝 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008203326A priority Critical patent/JP5243883B2/en
Publication of JP2010040861A publication Critical patent/JP2010040861A/en
Application granted granted Critical
Publication of JP5243883B2 publication Critical patent/JP5243883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、LEDチップ(発光ダイオードチップ)を利用した発光装置およびそれを備えた照明器具に関するものである。 The present invention relates to a light-emitting equipment and lighting equipment provided therewith utilizing an LED chip (light-emitting diode chip).

従来から、LEDチップとLEDチップから放射された光によって励起されてLEDチップとは異なる発光色の光を放射する蛍光体とを組み合わせ所望の混色光(例えば、白色光)を得るようにした発光装置の研究開発が各所で行われている(例えば、特許文献1参照)。なお、この種の発光装置では、例えば、LEDチップとして青色光を放射する青色LEDチップを採用し、蛍光体として黄色蛍光体を採用することにより、白色光を得ることができる。   Conventionally, light emission in which a desired mixed color light (for example, white light) is obtained by combining an LED chip and a phosphor that emits light of a light emission color different from that of the LED chip when excited by light emitted from the LED chip. Research and development of the apparatus is performed in various places (for example, refer to Patent Document 1). In this type of light emitting device, for example, a blue LED chip that emits blue light is used as the LED chip, and a yellow phosphor is used as the phosphor, whereby white light can be obtained.

ところで、上記特許文献1には、図11に示すように、LEDチップ1’と、当該LEDチップ1’が一表面側に実装されたセラミックス基板からなる実装基板2’と、透光性封止材(例えば、シリコーン樹脂など)により形成され実装基板2’の上記一表面側でLEDチップ1’を封止した半球状の封止部3’と、LEDチップ1’から放射される光によって励起されてLEDチップ1’とは異なる発光色の光を放射する蛍光体を含有した透光性材料(例えば、シリコーン樹脂など)により形成され封止部3’を囲む形で実装基板2’の上記一表面側に配設されたドーム状の色変換部材4’とを備えた発光装置A’が記載されている。ここにおいて、色変換部材4’の内面は半球面状に形成されている。   Incidentally, as shown in FIG. 11, the above-mentioned Patent Document 1 includes an LED chip 1 ′, a mounting substrate 2 ′ made of a ceramic substrate on which the LED chip 1 ′ is mounted on one surface side, and a translucent sealing. Excited by light emitted from LED chip 1 ′ and hemispherical sealing portion 3 ′ formed of a material (for example, silicone resin) and sealing LED chip 1 ′ on the one surface side of mounting substrate 2 ′ The above-mentioned mounting substrate 2 ′ is formed of a translucent material (for example, silicone resin) containing a phosphor that emits light of a different emission color from the LED chip 1 ′ and surrounds the sealing portion 3 ′. A light emitting device A ′ including a dome-shaped color conversion member 4 ′ disposed on one surface side is described. Here, the inner surface of the color conversion member 4 ′ is formed in a hemispherical shape.

また、図11に示した発光装置A’を光源として組み込んだ照明器具の一例として、図12(a)に示す構成のものが考えられている(公知文献にかかるものではない)。   Further, as an example of a lighting fixture in which the light emitting device A ′ shown in FIG. 11 is incorporated as a light source, a configuration shown in FIG. 12A is considered (not related to known literature).

ここにおいて、図12(a)に示した照明器具は、上述の発光装置A’と、発光装置A’が収納される有底円筒状の器具本体9と、器具本体9内に収納され発光装置A’から放射される光の配光を制御するハイブリッドレンズ6と、ハイブリッドレンズ6の外側面から外方へ延設された外鍔部6dを器具本体9の開口縁に形成された溝部9bの底面との間に保持する円環状の保持枠10とを備えている。   Here, the lighting fixture shown in FIG. 12A includes the above-described light emitting device A ′, a bottomed cylindrical fixture main body 9 in which the light emitting device A ′ is accommodated, and the light emitting device accommodated in the fixture main body 9. A hybrid lens 6 for controlling the light distribution of the light emitted from A ′, and a groove portion 9 b formed on the opening edge of the instrument body 9 with an outer flange portion 6 d extending outward from the outer surface of the hybrid lens 6. An annular holding frame 10 is provided between the bottom surface and the bottom surface.

上述のハイブリッドレンズ6は、図12(b)に示すように、発光装置A’側に形成された凹所61の内底面61aと内側面61bとが光入射面6aを構成しており、光入射面6a側の焦点Fから凹所61の内底面61aへ入射した光を屈折させて更に光出射面6bで屈折させる機能と、光入射面6a側の焦点Fから凹所61の内側面61bへ入射した光を屈折させた後に外側面6cで全反射させ更に光出射面6bで屈折させる機能とを有しており、図12(b)中に矢印で示すように焦点Fから放射され光入射面6aへ入射した光が光出射面6bから出射される。なお、ハイブリッドレンズ6は、外側面6cが回転放物面状に形成され、光出射面6aが凸曲面状に形成されているが、外側面6cはLEDチップ1’の光軸方向においてLEDチップ1’から離れるにつれて外形が徐々に大きくなる曲面状であって凹所61の内側面61bから入射した光を光出射面6a側へ全反射できる形状であればよく、光出射面6aは平面状でもよいし、フレネルレンズ状でもよい。   In the hybrid lens 6 described above, as shown in FIG. 12B, the inner bottom surface 61a and the inner side surface 61b of the recess 61 formed on the light emitting device A ′ side constitute a light incident surface 6a. The function of refracting light incident on the inner bottom surface 61a of the recess 61 from the focal point F on the incident surface 6a side and further refracting it on the light exit surface 6b, and the inner surface 61b of the recess 61 from the focal point F on the light incident surface 6a side. Refracted light after being refracted and then totally reflected by the outer surface 6c and further refracted by the light exit surface 6b, and is emitted from the focal point F as indicated by an arrow in FIG. 12B. Light incident on the incident surface 6a is emitted from the light emitting surface 6b. In the hybrid lens 6, the outer surface 6c is formed in a paraboloid shape and the light emitting surface 6a is formed in a convex curved surface, but the outer surface 6c is an LED chip in the optical axis direction of the LED chip 1 ′. As long as it is away from 1 ′, the outer shape gradually increases in shape, and any shape that can totally reflect the light incident from the inner side surface 61b of the recess 61 toward the light emitting surface 6a side is acceptable, and the light emitting surface 6a is planar. However, it may be a Fresnel lens shape.

なお、上述の発光装置A’を光源として組み込んだ照明器具としては、図12(a)の例に限らず、発光装置A’から放射される光の配光を制御する配光制御部材として、ハイブリッドレンズ6の代わりに、色変換部材4’の外面から放射されて入射した光を反射させ狭角配光が得られるように内側面の形状が設計された反射鏡(例えば、内側面がドーム状の色変換部材4の頂点を焦点とする放物面状に形成された反射鏡)を用いることも考えられる。また、図11に示した発光装置A’は、実装基板2’の上記一表面側に1個のLEDチップ1’が実装されているが、上記特許文献1には、実装基板2’の上記一表面側に複数個のLEDチップ1’を実装したものも開示されている。
特開2007−35951号公報
In addition, as a lighting fixture incorporating the above-described light emitting device A ′ as a light source, not only the example of FIG. 12A, but also as a light distribution control member for controlling the light distribution of light emitted from the light emitting device A ′, Instead of the hybrid lens 6, a reflecting mirror whose inner surface shape is designed so as to reflect light emitted from the outer surface of the color conversion member 4 ′ and obtain a narrow-angle light distribution (for example, the inner surface is a dome) It is also conceivable to use a reflecting mirror formed in a parabolic shape with the apex of the color conversion member 4 in the form of a focus as the focal point. In the light emitting device A ′ shown in FIG. 11, one LED chip 1 ′ is mounted on the one surface side of the mounting substrate 2 ′. A device in which a plurality of LED chips 1 'are mounted on one surface side is also disclosed.
JP 2007-35951 A

ところで、LEDチップ1’として、放射光強度の放射角依存性がランバート型分布で近似可能なLEDチップ(つまり、均等拡散の配光特性を有するLEDチップ)を用いた場合、LEDチップ1’は図13に示すような球状の配光特性B’を有し、LEDチップ1’の光取り出し面の中心点の法線方向の放射光強度をI、上記法線方向に対する角度をθ、角度θの方向の放射光強度をIθとすれば、Iθ=Icosθとなる。一方、ドーム状の色変換部材4’の内面における単位面積当たりの入射光強度(以下、入射密度と称する)は、概ねIθに比例し、且つ、LEDチップ1’と色変換部材4’の内面との距離の2乗に反比例する。 By the way, when the LED chip 1 ′ is an LED chip whose radiation angle dependency of the emitted light intensity can be approximated by a Lambertian distribution (that is, an LED chip having a uniform diffusion light distribution characteristic), the LED chip 1 ′ It has a spherical light distribution characteristic B ′ as shown in FIG. 13, the emitted light intensity in the normal direction of the center point of the light extraction surface of the LED chip 1 ′ is I 0 , the angle with respect to the normal direction is θ, and the angle If the emitted light intensity in the direction of θ is I θ , I θ = I 0 cos θ. On the other hand, the incident light intensity per unit area (hereinafter referred to as the incident density) on the inner surface of the dome-shaped color conversion member 4 ′ is substantially proportional to I θ and between the LED chip 1 ′ and the color conversion member 4 ′. It is inversely proportional to the square of the distance to the inner surface.

しかしながら、図11に示した構成の発光装置A’では、色変換部材4’の内面が半球面状に形成されており、当該内面における入射密度が色変換部材4’の頂点に対応する部位で大きく、色変換部材4’の下端に近づくにつれて入射密度が小さくなる傾向を示すので、次のような問題が生じる。   However, in the light emitting device A ′ having the configuration shown in FIG. 11, the inner surface of the color conversion member 4 ′ is formed in a hemispherical shape, and the incident density on the inner surface corresponds to the apex of the color conversion member 4 ′. Since the incident density tends to decrease as it approaches the lower end of the color conversion member 4 ′, the following problem arises.

色変換部材4’の外面の輝度分布が、角度θが0°で輝度が最大となり角度θが大きくなるにつれて輝度が小さくなる輝度分布となるので、上述のハイブリッドレンズ6や反射鏡などの狭角配光に制御する配光制御部材を有する照明器具に組み込んで使用した場合、照射面での照射パターンの照度むらが大きくなってしまう(例えば、円形状の照射パターンの中央部に比べて周部の照度が小さくなる)。   Since the luminance distribution on the outer surface of the color conversion member 4 ′ is a luminance distribution in which the luminance is maximum when the angle θ is 0 ° and decreases as the angle θ increases, the narrow angle of the hybrid lens 6 or the reflecting mirror described above is reduced. When incorporated in a lighting fixture having a light distribution control member that controls light distribution, the illuminance unevenness of the irradiation pattern on the irradiation surface becomes large (for example, the peripheral portion compared to the central portion of the circular irradiation pattern) Illuminance is reduced).

また、上述の発光装置A’では、点灯時に、LEDチップ1’だけでなく、色変換部材4’内に分散されている蛍光体もストークスシフトによるエネルギ損失に起因して発熱するが、色変換部材4’は、シリコーン樹脂などの熱伝導率の小さな透光性材料を母材として蛍光体が分散されているので、色変換部材4’の内面における入射密度の分布に起因して色変換部材4’での温度分布が大きくなる。ここで、蛍光体の量子効率(波長変換効率)は温度が低いほど高くなるが、上述の発光装置A’では、色変換部材4’の温度分布が大きいので、色変換部材4’全体として量子効率が低くなり、発光装置A’全体としての光取り出し効率が低下する。   In the above-described light emitting device A ′, not only the LED chip 1 ′ but also the phosphor dispersed in the color conversion member 4 ′ generates heat due to energy loss due to the Stokes shift at the time of lighting. The member 4 ′ is a color conversion member due to the distribution of the incident density on the inner surface of the color conversion member 4 ′ because the phosphor is dispersed using a translucent material having a low thermal conductivity such as silicone resin as a base material. The temperature distribution at 4 'increases. Here, the quantum efficiency (wavelength conversion efficiency) of the phosphor becomes higher as the temperature is lower. However, in the above-described light emitting device A ′, the temperature distribution of the color conversion member 4 ′ is large, so that the color conversion member 4 ′ as a whole is quantum. The efficiency is lowered, and the light extraction efficiency of the light emitting device A ′ as a whole is lowered.

色変換部材4’の温度を低減する手段として、色変換部材4’のサイズを大きくする手段があるが、LEDチップ1’と色変換部材4’とで構成される発光部が大きくなり、照明器具に組み込んだ際に、ハイブリッドレンズ6のような配光レンズや反射鏡などの配光制御部材での配光制御性が低下してしまう。   As a means for reducing the temperature of the color conversion member 4 ′, there is a means for increasing the size of the color conversion member 4 ′. However, the light emitting section constituted by the LED chip 1 ′ and the color conversion member 4 ′ becomes large, and illumination is performed. When incorporated in a fixture, the light distribution controllability of a light distribution control member such as a light distribution lens such as the hybrid lens 6 or a reflecting mirror is degraded.

本発明は上記事由に鑑みて為されたものであり、その目的は、色変換部材の外面の輝度の均一化を図れ且つ光取り出し効率の向上を図れる発光装置およびそれを備えた照明器具を提供することにある。 The present invention has been made in view of the above circumstances, and its object is a light-emitting equipment and lighting equipment provided therewith thereby improving the outer surface equalized Hakare and light extraction efficiency of the luminance of the color conversion member It is to provide.

請求項1の発明は、放射光強度の放射角依存性がランバート型分布で近似可能なLEDチップと、当該LEDチップが一表面側に実装された実装基板と、前記LEDチップから放射された光によって励起されて前記LEDチップの発光色とは異なる色の光を放射する蛍光体を含有した透光性材料により形成され前記実装基板の前記一表面側に配設されたドーム状の色変換部材とを備え、前記実装基板の前記一表面において前記一表面側に実装された複数個の前記LEDチップ全てを内包する仮想円の中心を当該複数個の前記LEDチップからなる点光源と仮定し、前記色変換部材の上部の内面は、前記色変換部材の光軸と前記実装基板の前記一表面との交点を中心とし前記色変換部材の光軸方向を長径方向とする楕円面の一部により構成され、当該楕円面の長半径/短半径が1.2〜1.3であることを特徴とする。 According to a first aspect of the present invention, there is provided an LED chip whose radiation angle dependency of the emitted light intensity can be approximated by a Lambertian distribution, a mounting substrate on which the LED chip is mounted on one surface side, and light emitted from the LED chip. A dome-shaped color conversion member formed of a translucent material containing a phosphor that emits light of a color different from the light emission color of the LED chip when excited by the surface of the mounting substrate. with the door, wherein the plurality of the LED chips around the light source and the assumptions Mr point consisting of the plurality of the LED chips of a virtual circle that includes all mounted on one surface in a surface of said mounting substrate The inner surface of the upper part of the color conversion member is a part of an ellipsoid whose center is the intersection of the optical axis of the color conversion member and the one surface of the mounting substrate, and whose major axis is the optical axis direction of the color conversion member. Consists of Long radius / short radius of the ellipse surface is characterized by a 1.2 to 1.3.

この発明によれば、前記色変換部材の内面での単位面積当たりの入射光強度(入射密度)の均一化を図れ、前記色変換部材の温度分布の均一化による前記蛍光体の量子効率の向上を図れるから、前記色変換部材の外面の輝度の均一化を図れ且つ光取り出し効率の向上を図れる。 According to the present invention, before Symbol Hakare uniformity of the incident light intensity (incident density) per unit area of the inner surface of the color conversion member, the quantum efficiency of the phosphor of the uniform temperature distribution of the color converting member Since the improvement can be achieved, the luminance of the outer surface of the color conversion member can be made uniform and the light extraction efficiency can be improved.

また、この発明によれば、前記点光源において前記LEDチップの厚み方向に沿った方向に対する角度をθとするとき、角度θが大きくなるにつれて入射密度が低くなったり、角度θが大きくなるにつれて入射密度が高くなるのを防止することできる。 Further, according to this invention, when the angle with respect to a direction along the thickness direction of the LED chip and θ at the point light source, or incident density becomes lower as angles θ increases, the angle θ becomes larger As the incident density increases, it can be prevented.

請求項2の発明は、請求項1の発明において、前記LEDチップが青色LEDチップであるとともに、前記色変換部材の前記蛍光体が黄色蛍光体、前記透光性材料がシリコーン樹脂であり、前記色変換部材の前記内面の表面積をS〔mm〕、前記点光源へ規定の入力電力を与えたときの前記点光源の光出力をP〔mW〕とするとき、S/Pの値が0.2を下回らないように前記色変換部材の前記内面の表面積Sを設定してあることを特徴とする。 The invention of claim 2 is the invention of claim 1 , wherein the LED chip is a blue LED chip, the phosphor of the color conversion member is a yellow phosphor, and the translucent material is a silicone resin, When the surface area of the inner surface of the color conversion member is S [mm 2 ] and the light output of the point light source when a prescribed input power is applied to the point light source is P [mW], the value of S / P is 0. The surface area S of the inner surface of the color conversion member is set so as not to be less than .2.

この発明によれば、前記色変換部材の温度を100℃以下とすることができ、前記蛍光体の温度上昇による前記蛍光体の量子効率の低下を抑制でき、光取り出し効率の向上を図れる。
請求項3の発明は、請求項1又は2記載の発光装置を備えることを特徴とする。
According to this invention, the temperature of the color conversion member can be set to 100 ° C. or less, the decrease in the quantum efficiency of the phosphor due to the temperature rise of the phosphor can be suppressed, and the light extraction efficiency can be improved.
The invention of claim 3 is characterized in that it comprises a light-emitting device of the mounting according to claim 1 or 2 SL.

請求項1の発明では、色変換部材の外面の輝度の均一化を図れ且つ光取り出し効率の向上を図れるという効果がある。   According to the first aspect of the invention, there is an effect that the luminance of the outer surface of the color conversion member can be made uniform and the light extraction efficiency can be improved.

(実施形態1)
本実施形態の発光装置Aは、図1(a)に示すように、LEDチップ1と、当該LEDチップ1が一表面側に実装された実装基板2と、LEDチップ1から放射される光によって励起されてLEDチップ1とは異なる発光色の光を放射する蛍光体を含有した透光性材料(例えば、シリコーン樹脂など)により形成されLEDチップ1を囲む形で実装基板2の上記一表面側に配設されたドーム状の色変換部材4とを備えている。
(Embodiment 1)
As shown in FIG. 1A, the light emitting device A of the present embodiment includes an LED chip 1, a mounting substrate 2 on which the LED chip 1 is mounted on one surface side, and light emitted from the LED chip 1. The one surface side of the mounting substrate 2 that is formed of a light-transmitting material (for example, silicone resin) containing a phosphor that emits light of an emission color different from that of the LED chip 1 and that surrounds the LED chip 1. And a dome-shaped color conversion member 4 disposed on the surface.

また、本実施形態の発光装置Aでは、LEDチップ1として、青色光を放射するGaN系青色LEDチップを用い、色変換部材4の蛍光体として、LEDチップ1から放射された青色光によって励起されてブロードな黄色系の光を放射する粒子状の黄色蛍光体を用いており、LEDチップ1から放射され色変換部材4を透過した青色光と、色変換部材4の黄色蛍光体から放射された黄色光とが色変換部材4の外面から拡散した配光となって出射されることとなり、白色光を得ることができる。   In the light emitting device A of the present embodiment, a GaN-based blue LED chip that emits blue light is used as the LED chip 1, and the phosphor of the color conversion member 4 is excited by the blue light emitted from the LED chip 1. And a yellow fluorescent material that emits a broad yellow light. The blue light emitted from the LED chip 1 and transmitted through the color conversion member 4 and the yellow phosphor emitted from the color conversion member 4 are emitted. Yellow light is emitted as a light distribution diffused from the outer surface of the color conversion member 4, and white light can be obtained.

実装基板2は、セラミック基板(例えば、アルミナセラミック基板、窒化アルミニウム基板など)からなる絶縁性基板の一表面側に金属材料(例えば、Cuなど)からなる配線パターンが形成されている。なお、実装基板2の絶縁性基板は、セラミック基板に限らず、ガラスエポキシ樹脂基板やホーロー基板などを用いてもよいが、セラミック基板のような熱伝導性材料により形成されたものが好ましい。なお、本実施形態では、実装基板2の外周形状が円形状となっているが、円形状に限らず、多角形状でもよい。また、本実施形態では、LEDチップ1は、実装基板2の配線パターンの一部からなるダイパッド部に半田や銀ペーストなどの熱伝導性を有する接合材料を用いて接合されている。   The mounting substrate 2 has a wiring pattern made of a metal material (for example, Cu) formed on one surface side of an insulating substrate made of a ceramic substrate (for example, an alumina ceramic substrate or an aluminum nitride substrate). The insulating substrate of the mounting substrate 2 is not limited to a ceramic substrate, and a glass epoxy resin substrate, a hollow substrate, or the like may be used, but a substrate formed of a heat conductive material such as a ceramic substrate is preferable. In the present embodiment, the outer peripheral shape of the mounting substrate 2 is circular, but is not limited to a circular shape, and may be a polygonal shape. In the present embodiment, the LED chip 1 is bonded to a die pad portion formed of a part of the wiring pattern of the mounting substrate 2 by using a bonding material having thermal conductivity such as solder or silver paste.

また、色変換部材4は、シリコーン樹脂からなる透光性材料にLEDチップ1から放射された青色光によって励起されて黄色光を放射する粒子状の黄色蛍光体を分散させた混合材料を用いてドーム状に形成されている。なお、色変換部材4の材料として用いる透光性材料は、シリコーン樹脂に限らず、例えば、アクリル樹脂、ポリカーボネート樹脂などの他の透明樹脂(透明有機材料)でもよいし、ガラスなどの透明無機材料でもよいし、有機成分と無機成分とがnmレベルもしくは分子レベルで混合、結合した有機・無機ハイブリッド材料などを採用してもよい。また、色変換部材4の材料として用いる透光性材料に含有させる蛍光体も黄色蛍光体に限らず、色調整や演色性を高めるなどの目的で複数種類の蛍光体を用いてもよく、例えば、赤色蛍光体と緑色蛍光体とを用いることで演色性の高い白色光を得ることができる。ここで、複数種類の蛍光体を用いる場合には必ずしも発光色の異なる蛍光体の組み合わせに限らず、例えば、発光色はいずれも黄色で発光スペクトルの異なる複数種類の蛍光体を組み合わせてもよい。   Moreover, the color conversion member 4 uses the mixed material which disperse | distributed the particulate yellow fluorescent substance which is excited by the blue light radiated | emitted from the LED chip 1 in the translucent material which consists of silicone resin, and radiates | emits yellow light. It is formed in a dome shape. The translucent material used as the material of the color conversion member 4 is not limited to the silicone resin, and may be other transparent resin (transparent organic material) such as acrylic resin or polycarbonate resin, or transparent inorganic material such as glass. Alternatively, an organic / inorganic hybrid material in which an organic component and an inorganic component are mixed and combined at the nm level or molecular level may be employed. Further, the phosphor to be contained in the translucent material used as the material of the color conversion member 4 is not limited to the yellow phosphor, and a plurality of types of phosphors may be used for the purpose of improving color adjustment and color rendering. White light with high color rendering properties can be obtained by using a red phosphor and a green phosphor. Here, when a plurality of types of phosphors are used, the phosphor is not necessarily a combination of phosphors having different emission colors, and for example, a plurality of types of phosphors having an emission color of yellow and different emission spectra may be combined.

ところで、本実施形態の発光装置Aでは、LEDチップ1として、放射光強度の放射角依存性がランバート型分布で近似可能なLEDチップを用いており、LEDチップ1が、図2に示すような球状の配光特性Bを有している。   By the way, in the light-emitting device A of this embodiment, the LED chip 1 uses an LED chip whose radiation angle dependency of the emitted light intensity can be approximated by a Lambertian distribution, and the LED chip 1 is as shown in FIG. It has a spherical light distribution characteristic B.

したがって、図13の説明と同様に、LEDチップ1の光取り出し面の中心点の法線方向の放射光強度をI、上記法線方向に対する角度をθ、角度θの方向の放射光強度をIθとすれば、Iθ=Icosθとなり、ドーム状の色変換部材4の内面における単位面積当たりの入射光強度(以下、入射密度と称する)は、概ねIθに比例し、且つ、LEDチップ1と色変換部材4の内面との距離の2乗に反比例する。 Therefore, similarly to the description of FIG. 13, the emitted light intensity in the normal direction of the center point of the light extraction surface of the LED chip 1 is I 0 , the angle with respect to the normal direction is θ, and the emitted light intensity in the direction of the angle θ is If I θ , I θ = I 0 cos θ, and the incident light intensity per unit area (hereinafter referred to as incident density) on the inner surface of the dome-shaped color conversion member 4 is approximately proportional to I θ , and It is inversely proportional to the square of the distance between the LED chip 1 and the inner surface of the color conversion member 4.

これに対して、本実施形態の発光装置Aでは、実装基板2の上記一表面においてLEDチップ1を包含する仮想円の中心をLEDチップ1からなる点光源10と仮定して、図1(b)に示すように、LEDチップ1の厚み方向に沿った方向に対する角度θの方向における点光源10と色変換部材4の内面との距離をrとし、色変換部材4の上部の内面をIθ・r=一定となる形状に形成してあり、色変換部材4の光軸と点光源10の光軸(本実施形態では、LEDチップ1の光軸)とが一致するようにLEDチップ1および色変換部材4を実装基板2の上記一表面に実装してある。 On the other hand, in the light emitting device A of the present embodiment, assuming that the center of the virtual circle including the LED chip 1 on the one surface of the mounting substrate 2 is the point light source 10 made of the LED chip 1, FIG. ), The distance between the point light source 10 and the inner surface of the color conversion member 4 in the direction of the angle θ with respect to the direction along the thickness direction of the LED chip 1 is r, and the upper inner surface of the color conversion member 4 is I θ. LED chip 1 is formed in a shape where r 2 = constant, and the optical axis of the color conversion member 4 and the optical axis of the point light source 10 (in this embodiment, the optical axis of the LED chip 1) coincide. The color conversion member 4 is mounted on the one surface of the mounting substrate 2.

ここで、角度θの方向における点光源10と色変換部材4の内面との距離を1として規格化した場合のIθ・r=一定となる仮想の色変換部材の内面の軌跡を図1(b)中に一点鎖線「ロ」で示し、図11に示した従来例のように色変換部材4’が半球状の場合の色変換部材4’の内面の形状を同図中に破線「ハ」で示し、本実施形態の色変換部材4の内面の形状を同図中に実線「イ」で示す。ここにおいて、本実施形態における色変換部材4の内面は、当該色変換部材4の光軸と実装基板2の上記一表面との交点O1(図1(a)参照)を中心(つまり、上記点光源10を中心)とし当該色変換部材4の光軸方向を長径方向とする楕円面の一部により構成されており、色変換部材4の中心から離れるにつれて曲率が小さくなる形状となり、色変換部材4において内面の高さが1〜0.8となる部分のみがIθ・r=一定となっている。 Here, when the distance between the point light source 10 and the inner surface of the color conversion member 4 in the direction of the angle θ is normalized as 1, the locus of the inner surface of the virtual color conversion member where I θ · r 2 = constant is shown in FIG. (B) is indicated by an alternate long and short dash line “B”, and the shape of the inner surface of the color conversion member 4 ′ when the color conversion member 4 ′ is hemispherical as in the conventional example shown in FIG. The shape of the inner surface of the color conversion member 4 of the present embodiment is indicated by a solid line “A” in FIG. Here, the inner surface of the color conversion member 4 in the present embodiment is centered on the intersection O1 (see FIG. 1A) between the optical axis of the color conversion member 4 and the one surface of the mounting substrate 2 (that is, the above point). The color conversion member 4 is a part of an elliptical surface with the optical axis direction of the color conversion member 4 as the major axis direction, and the curvature decreases with increasing distance from the center of the color conversion member 4. only the portion the height of the inner surface is 1 to 0.8 is in the I θ · r 2 = constant at 4.

以上説明した本実施形態の発光装置Aによれば、実装基板2の上記一表面において実装基板2に実装された1個のLEDチップ1を内包する仮想円の中心を当該1個のLEDチップ1からなる点光源10と仮定して当該点光源10においてLEDチップ1の厚み方向に沿った方向に対する角度をθ、角度θの方向の放射光強度をIθ、角度θの方向における点光源10と色変換部材4の内面との距離をrとするとき、色変換部材4の上部をIθ・r=一定となる形状に形成してあるので、色変換部材4の内面での入射密度の均一化を図れ、色変換部材4の温度分布の均一化による蛍光体の量子効率の向上を図れるから、色変換部材4の外面の輝度の均一化を図れ且つ光取り出し効率の向上を図れる。なお、角度θが90°に近づくにつれて放射光強度Iθは小さくなるので、色変換部材4全体をIθ・r=一定となる形状としてもよいが、この場合は色変換部材4の製造が難しくなりコストアップの原因となるので、色変換部材4の上部のみIθ・r=一定となる形状として、色変換部材4の内面を上述の楕円面の一部により構成することが好ましい。 According to the light emitting device A of the present embodiment described above, the center of the virtual circle that encloses one LED chip 1 mounted on the mounting substrate 2 on the one surface of the mounting substrate 2 is the one LED chip 1. And the point light source 10 in the direction of the angle θ with respect to the direction along the thickness direction of the LED chip 1 is assumed to be θ, and the emitted light intensity in the direction of the angle θ is I θ . When the distance from the inner surface of the color conversion member 4 is r, the upper portion of the color conversion member 4 is formed in a shape where I θ · r 2 = constant, so that the incident density on the inner surface of the color conversion member 4 is Uniformity can be achieved and the quantum efficiency of the phosphor can be improved by making the temperature distribution of the color conversion member 4 uniform, so that the luminance of the outer surface of the color conversion member 4 can be made uniform and the light extraction efficiency can be improved. Since the emitted light intensity I θ decreases as the angle θ approaches 90 °, the entire color conversion member 4 may have a shape where I θ · r 2 = constant. In this case, the color conversion member 4 is manufactured. Therefore, it is preferable that only the upper part of the color conversion member 4 has a constant I θ · r 2 = constant shape, and the inner surface of the color conversion member 4 is constituted by a part of the above-described elliptical surface. .

また、本実施形態の発光装置Aでは、上述のように、色変換部材4の外面の輝度の均一化を図れるので、ハイブリッドレンズ6(図12参照)のような配光レンズや反射鏡などの狭角配光に制御する配光制御部材を有する照明器具に組み込んで使用する場合、照射面での照射パターンの照度むらを小さくすることができる。なお、配光レンズは、アクリル樹脂、ポリカーボネート樹脂、ガラスなどにより形成されるので、照明器具に組み込んで使用するという観点でみれば、発光装置Aの点灯時の色変換部材4の温度は100℃以下であることが望ましい。   Further, in the light emitting device A of the present embodiment, the luminance of the outer surface of the color conversion member 4 can be made uniform as described above, so that a light distribution lens such as the hybrid lens 6 (see FIG. 12), a reflecting mirror, and the like can be obtained. When incorporated in a lighting fixture having a light distribution control member that controls narrow-angle light distribution, the illuminance unevenness of the irradiation pattern on the irradiation surface can be reduced. Since the light distribution lens is formed of acrylic resin, polycarbonate resin, glass, or the like, the temperature of the color conversion member 4 when the light emitting device A is turned on is 100 ° C. from the viewpoint of being incorporated in a lighting fixture. The following is desirable.

ところで、上述のように、色変換部材4の内面は、当該色変換部材4の光軸と実装基板2の上記一表面との交点O1を中心とし当該色変換部材4の光軸方向を長径方向とする楕円面の一部により構成されているが、上記楕円面の長半径/短半径の値を種々変化させた場合の角度θと入射密度との関係をシミュレーションした結果を図3および図4に示す。なお、図3および図4の横軸は上述の角度θを示し、縦軸は角度θの方向における色変換部材4の内面への入射密度を示している。また、図3および図4中に記載したφ1,φ2,H1,H2,a,bの各パラメータに関しては、図1(a)のように、φ1が平面視における色変換部材4の外径、H1が色変換部材4の外面の高さ、φ2が平面視における色変換部材4の内径、H2が色変換部材4の内面の高さ、aが上記楕円面の長半径(a=H2)、bが上記楕円面の短半径(b=φ2/2)である。   By the way, as described above, the inner surface of the color conversion member 4 is centered on the intersection O1 between the optical axis of the color conversion member 4 and the one surface of the mounting substrate 2, and the optical axis direction of the color conversion member 4 is the major axis direction. 3 and 4 show the results of simulating the relationship between the angle θ and the incident density when the major radius / minor radius value of the ellipsoid is changed variously. Shown in 3 and 4, the horizontal axis indicates the angle θ described above, and the vertical axis indicates the incident density on the inner surface of the color conversion member 4 in the direction of the angle θ. Further, regarding the parameters φ1, φ2, H1, H2, a, and b described in FIGS. 3 and 4, φ1 is the outer diameter of the color conversion member 4 in plan view, as shown in FIG. H1 is the height of the outer surface of the color conversion member 4, φ2 is the inner diameter of the color conversion member 4 in plan view, H2 is the height of the inner surface of the color conversion member 4, a is the major radius of the elliptical surface (a = H2), b is the short radius (b = φ2 / 2) of the elliptical surface.

図3および図4から、上記楕円面の長半径/短半径=a/bが1.2〜1.3であれば、入射密度の均一化を図れ、a/bが1.02の場合のように角度θが大きくなるにつれて入射密度が低くなったり、a/bが1.52や1.77の場合のように角度θが大きくなるにつれて入射密度が高くなるのを防止することできることが分かる。なお、図1(b)の「イ」は、a/b=1.27の場合の色変換部材4の内面の形状を示している。   3 and 4, when the major radius / minor radius = a / b of the ellipsoid is 1.2 to 1.3, the incident density can be made uniform, and when a / b is 1.02. Thus, it can be seen that the incident density decreases as the angle θ increases, or that the incident density increases as the angle θ increases as in the case of a / b of 1.52 or 1.77. . Note that “a” in FIG. 1B indicates the shape of the inner surface of the color conversion member 4 when a / b = 1.27.

(実施形態2)
本実施形態の発光装置Aの基本構成は実施形態1と略同じであり、図5に示すように、色変換部材4の内側にLEDチップ1を封止する透光性材料からなる封止部3が充実されている点が相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 2)
The basic configuration of the light emitting device A of the present embodiment is substantially the same as that of the first embodiment. As shown in FIG. 5, a sealing portion made of a translucent material that seals the LED chip 1 inside the color conversion member 4. 3 is different. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

封止部3は、透光性材料としてシリコーン樹脂を採用しているが、シリコーン樹脂に限らず、エポキシ樹脂、ガラスなどを採用してもよい。   Although the sealing part 3 employs a silicone resin as the translucent material, it is not limited to the silicone resin, and may employ an epoxy resin, glass, or the like.

しかして、本実施形態の発光装置Aでは、LEDチップ1と色変換部材4との間の空間の媒質が空気である場合に比べて、LEDチップ1と当該LEDチップ1の光取り出し面に接する媒質との屈折率差が小さくなるので、LEDチップ1からの光取り出し効率が向上し、また、色変換部材4と当該色変換部材4の内面に接する媒質との屈折率差が小さくなるので、色変換部材4への入射効率が向上し、発光装置A全体の光取り出し効率が向上する。   Therefore, in the light emitting device A of the present embodiment, the LED chip 1 and the light extraction surface of the LED chip 1 are in contact with each other as compared with the case where the medium in the space between the LED chip 1 and the color conversion member 4 is air. Since the refractive index difference with the medium is reduced, the light extraction efficiency from the LED chip 1 is improved, and the refractive index difference between the color conversion member 4 and the medium in contact with the inner surface of the color conversion member 4 is reduced. Incidence efficiency to the color conversion member 4 is improved, and light extraction efficiency of the entire light emitting device A is improved.

(実施形態3)
本実施形態の発光装置Aの基本構成は実施形態2と略同じであり、図6に示すように、封止部3が、色変換部材4とは長径方向および短径方向が逆の半楕球状の形状に形成されており、凸レンズとしての機能を有し、封止部3と色変換部材4との間に空気層5が形成されている点が相違する。ここで、封止部3は、LEDチップ1と光軸が一致する形で形成されている。要するに、封止部3は、色変換部材4の長径方向に当該封止部3の短径方向が一致し、色変換部材4の短径方向に当該封止部3の長径方向が一致する形で形成されている。ここで、LEDチップ1から放射された光は、封止部3と空気層5との界面で屈折するが、当該封止部3の形状では界面への入射角が小さいので、屈折する角度が小さく、封止部3から出射される光の配光はLEDチップ1から出射される光の配光と大差なく、略同じとなる。なお、実施形態2と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 3)
The basic configuration of the light emitting device A of the present embodiment is substantially the same as that of the second embodiment. As shown in FIG. 6, the sealing portion 3 is a semi-elliptical whose major axis direction and minor axis direction are opposite to those of the color conversion member 4. It is formed in a spherical shape, has a function as a convex lens, and is different in that an air layer 5 is formed between the sealing portion 3 and the color conversion member 4. Here, the sealing part 3 is formed so that the optical axis coincides with the LED chip 1. In short, the sealing part 3 has a shape in which the minor axis direction of the sealing part 3 matches the major axis direction of the color conversion member 4 and the major axis direction of the sealing part 3 matches the minor axis direction of the color conversion member 4. It is formed with. Here, the light emitted from the LED chip 1 is refracted at the interface between the sealing portion 3 and the air layer 5, but the angle of refraction is small because the angle of incidence on the interface is small in the shape of the sealing portion 3. The light distribution of the light emitted from the sealing portion 3 is small and substantially the same as the light distribution of the light emitted from the LED chip 1. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 2, and description is abbreviate | omitted.

また、封止部3の長半径は、LEDチップ1を内包する仮想円(ここでは、外接円)の半径の1.41倍に設定してあるが、この数値は一例であって、特に限定するものではない。また、封止部3の形状も半楕球状に限らず、例えば、半球状でもよい。   The major radius of the sealing portion 3 is set to 1.41 times the radius of a virtual circle (here, circumscribed circle) that encloses the LED chip 1, but this numerical value is an example and is particularly limited. Not what you want. Further, the shape of the sealing portion 3 is not limited to a hemispherical shape, and may be a hemispherical shape, for example.

以上説明した本実施形態の発光装置Aでは、封止部3と色変換部材4との間に空気層5が形成されているので、LEDチップ1から放射され色変換部材4中の蛍光体により散乱された光のうち封止部3側へ散乱されて封止部3を通過する光の光量を低減できて発光装置A全体としての外部への光取り出し効率の向上を図れる。   In the light emitting device A of the present embodiment described above, since the air layer 5 is formed between the sealing portion 3 and the color conversion member 4, it is emitted from the LED chip 1 by the phosphor in the color conversion member 4. Of the scattered light, the amount of light scattered toward the sealing portion 3 and passing through the sealing portion 3 can be reduced, and the light extraction efficiency as a whole of the light emitting device A can be improved.

(実施形態4)
本実施形態の発光装置Aの基本構成は実施形態3と略同じであり、図7に示すように、複数個(図示例では、15個)のLEDチップ1が実装基板2の上記一表面側に実装してあり、実装基板2の上記一表面において上記一表面側に実装された複数個のLEDチップ1全てを内包する仮想円CVの中心を当該複数個のLEDチップ1からなる点光源10と仮定して、LEDチップ1の厚み方向に沿った方向に対する角度θの方向における点光源10と色変換部材4の内面との距離をrとし、色変換部材4の上部の内面をIθ・r=一定となる形状に形成してある点が相違する。なお、実施形態3と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 4)
The basic configuration of the light emitting device A of the present embodiment is substantially the same as that of the third embodiment. As shown in FIG. 7, a plurality (15 in the illustrated example) of LED chips 1 are mounted on the one surface side of the mounting substrate 2. A point light source 10 comprising the plurality of LED chips 1 at the center of a virtual circle CV that includes all of the plurality of LED chips 1 mounted on the one surface side on the one surface of the mounting substrate 2. Assuming that the distance between the point light source 10 and the inner surface of the color conversion member 4 in the direction of the angle θ with respect to the direction along the thickness direction of the LED chip 1 is r, the upper inner surface of the color conversion member 4 is I θ · The difference is that it is formed in a shape where r 2 = constant. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 3, and description is abbreviate | omitted.

本実施形態では、上述の複数個のLEDチップ1を図7(b)に示すように2つの同心状の仮想円VC1,VC2上に分けて配置してある。具体的には、内側の仮想円VC1上(仮想円VC1の円周上)に5個のLEDチップ1を等間隔で配置し(要するに、正5角形の各頂点にLEDチップ1の中心が位置している)、外側の仮想円VC2上(仮想円VC2の円周上)に10個のLEDチップ1を等間隔で配置してある(要するに、正10角形の各頂点にLEDチップ1の中心が位置している)。ここで、本実施形態では、内側の仮想円VC1の直径を6mm、外側の仮想円VC2の直径を13.5mmに設定してあり、実施形態1にて説明したφ1,H1,φ2,H2それぞれを、φ1=40mm、H1=25.5mm、φ2(=2b)=36mm、H2(=a)=23.5mmに設定してあり、a/b=1.3となっている。また、本実施形態では、色変換部材4の厚みを2mmとしてある。   In the present embodiment, the plurality of LED chips 1 described above are arranged separately on two concentric virtual circles VC1 and VC2 as shown in FIG. 7B. Specifically, five LED chips 1 are arranged at equal intervals on the inner virtual circle VC1 (on the circumference of the virtual circle VC1) (in short, the center of the LED chip 1 is positioned at each vertex of the regular pentagon). 10 LED chips 1 are arranged at equal intervals on the outer virtual circle VC2 (on the circumference of the virtual circle VC2) (in short, the center of the LED chip 1 at each apex of the regular decagon). Is located). Here, in this embodiment, the diameter of the inner virtual circle VC1 is set to 6 mm, and the diameter of the outer virtual circle VC2 is set to 13.5 mm, and each of φ1, H1, φ2, and H2 described in the first embodiment is set. Are set to φ1 = 40 mm, H1 = 25.5 mm, φ2 (= 2b) = 36 mm, H2 (= a) = 23.5 mm, and a / b = 1.3. In the present embodiment, the thickness of the color conversion member 4 is 2 mm.

また、本実施形態の発光装置Aは、LEDチップ1が青色LEDチップであるとともに、色変換部材4の蛍光体が黄色蛍光体、透光性材料がシリコーン樹脂であり、色変換部材4の内面の表面積が2461〔mm〕、点光源10へ規定の入力電力を与えたときの点光源10の光出力(本実施形態では、15個のLEDチップ1の合計の光出力)が9769〔mW〕となっている。ここで、色変換部材4の内面の表面積をS〔mm〕、点光源10へ規定の入力電力を与えたときの点光源10の光出力をP〔mW〕とするとき、S/P〔mm/mW〕の値を下記表1のように種々変化させた場合の角度θと角度θの方向における色変換部材4の温度との関係を調べた結果を図8に示す。 In the light emitting device A of the present embodiment, the LED chip 1 is a blue LED chip, the phosphor of the color conversion member 4 is a yellow phosphor, the translucent material is a silicone resin, and the inner surface of the color conversion member 4 surface area of 2461 [mm 2], (in the present embodiment, the sum of the light output of 15 LED chips 1) the light output of the point light source 10 when given input power defined to the point light source 10 is 9769 [mW ]. Here, when the surface area of the inner surface of the color conversion member 4 is S [mm 2 ] and the light output of the point light source 10 when a prescribed input power is applied to the point light source 10 is P [mW], S / P [ FIG. 8 shows the results of examining the relationship between the angle θ and the temperature of the color conversion member 4 in the direction of the angle θ when the value of [mm 2 / mW] is variously changed as shown in Table 1 below.

Figure 0005243883
Figure 0005243883

図8から、S/Pの値によらず、角度θが0°となる色変換部材4の頂点で温度が最も高くなっていることが分かる。一方で、S/Pの値と色変換部材4の頂点の温度との関係は図9に示すようになり、S/Pの値が0.2を下回らないように色変換部材4の内面の表面積Sを設定すれば、色変換部材4の温度を100℃以下とすることができ、蛍光体の温度上昇による蛍光体の量子効率の低下を抑制でき、光取り出し効率の向上を図れることが分かる。なお、本実施形態の発光装置Aでは、色変換部材4の内面の表面積Sが2461〔mm〕、点光源10の光出力Pが9769〔mW〕、S/Pの値が0.25〔mm/mW〕であり、上述の角度θと入射密度との関係は図10(a)に示すような分布となり、角度θと色変換部材4の温度との関係は図10(b)に示すような分布となる。また、本実施形態では、点光源10が複数個のLEDチップ1により構成されているが、他の実施形態1〜3のように点光源10が1個のLEDチップ1により構成される場合にも、S/Pの値が0.2を下回らないように色変換部材4の内面の表面積Sを設定すれば、色変換部材4の温度を100℃以下とすることができ、蛍光体の温度上昇による蛍光体の量子効率の低下を抑制でき、光取り出し効率の向上を図れる。 FIG. 8 shows that the temperature is highest at the apex of the color conversion member 4 where the angle θ is 0 ° regardless of the value of S / P. On the other hand, the relationship between the S / P value and the temperature of the apex of the color conversion member 4 is as shown in FIG. 9, and the inner surface of the color conversion member 4 is kept so that the S / P value does not fall below 0.2. If the surface area S is set, it can be seen that the temperature of the color conversion member 4 can be set to 100 ° C. or less, the decrease in the quantum efficiency of the phosphor due to the temperature rise of the phosphor can be suppressed, and the light extraction efficiency can be improved. . In the light emitting device A of the present embodiment, the surface area S of the inner surface of the color conversion member 4 is 2461 [mm 2 ], the light output P of the point light source 10 is 9769 [mW], and the value of S / P is 0.25 [ mm 2 / mW], and the relationship between the angle θ and the incident density is as shown in FIG. 10A, and the relationship between the angle θ and the temperature of the color conversion member 4 is shown in FIG. The distribution is as shown. Further, in the present embodiment, the point light source 10 is configured by a plurality of LED chips 1, but when the point light source 10 is configured by one LED chip 1 as in the other embodiments 1-3. However, if the surface area S of the inner surface of the color conversion member 4 is set so that the value of S / P does not fall below 0.2, the temperature of the color conversion member 4 can be made 100 ° C. or less, and the temperature of the phosphor A decrease in the quantum efficiency of the phosphor due to the rise can be suppressed, and the light extraction efficiency can be improved.

実施形態1の発光装置を示し、(a)は概略断面図、(b)は要部説明図である。The light-emitting device of Embodiment 1 is shown, (a) is a schematic sectional drawing, (b) is principal part explanatory drawing. 同上の発光装置におけるLEDチップの配光特性図である。It is a light distribution characteristic view of the LED chip in the light emitting device same as the above. 同上の発光装置の特性説明図である。It is characteristic explanatory drawing of a light-emitting device same as the above. 同上の発光装置の特性説明図である。It is characteristic explanatory drawing of a light-emitting device same as the above. 実施形態2の発光装置の概略断面図である。6 is a schematic cross-sectional view of a light emitting device according to Embodiment 2. FIG. 実施形態3の発光装置の概略断面図である。6 is a schematic cross-sectional view of a light emitting device according to Embodiment 3. FIG. 実施形態4の発光装置を示し、(a)は概略断面図、(b)は要部概略平面図である。The light-emitting device of Embodiment 4 is shown, (a) is a schematic sectional drawing, (b) is a principal part schematic plan view. 同上の発光装置の特性説明図である。It is characteristic explanatory drawing of a light-emitting device same as the above. 同上の発光装置の特性説明図である。It is characteristic explanatory drawing of a light-emitting device same as the above. 同上の発光装置の特性説明図である。It is characteristic explanatory drawing of a light-emitting device same as the above. 従来例の発光装置の概略断面図である。It is a schematic sectional drawing of the light-emitting device of a prior art example. (a)は同上の発光装置を用いた照明器具の概略断面図を示し、(b)は(a)におけるハイブリッドレンズの説明図である。(A) shows the schematic sectional drawing of the lighting fixture using the light-emitting device same as the above, (b) is explanatory drawing of the hybrid lens in (a). 同上の発光装置の要部説明図である。It is principal part explanatory drawing of a light-emitting device same as the above.

符号の説明Explanation of symbols

A 発光装置
VC 仮想円
1 LEDチップ
2 実装基板
4 色変換部材
10 点光源
a 長半径
b 短半径
A Light emitting device VC Virtual circle 1 LED chip 2 Mounting substrate 4 Color conversion member 10 Point light source a Long radius b Short radius

Claims (3)

放射光強度の放射角依存性がランバート型分布で近似可能なLEDチップと、当該LEDチップが一表面側に実装された実装基板と、前記LEDチップから放射された光によって励起されて前記LEDチップの発光色とは異なる色の光を放射する蛍光体を含有した透光性材料により形成され前記実装基板の前記一表面側に配設されたドーム状の色変換部材とを備え、前記実装基板の前記一表面において前記一表面側に実装された複数個の前記LEDチップ全てを内包する仮想円の中心を当該複数個の前記LEDチップからなる点光源と仮定し、前記色変換部材の上部の内面は、前記色変換部材の光軸と前記実装基板の前記一表面との交点を中心とし前記色変換部材の光軸方向を長径方向とする楕円面の一部により構成され、当該楕円面の長半径/短半径が1.2〜1.3であることを特徴とする発光装置。 An LED chip whose radiation angle dependency of the emitted light intensity can be approximated by a Lambertian distribution, a mounting substrate on which the LED chip is mounted on one surface side, and the LED chip excited by light emitted from the LED chip A dome-shaped color conversion member formed of a light-transmitting material containing a phosphor that emits light of a color different from the emission color of the mounting substrate and disposed on the one surface side of the mounting substrate. wherein the center of the virtual circle that includes all the plurality of the LED chip mounted on the one surface side in one surface light source and the assumption point consisting of the plurality of the LED chips, the top of the color converting member The inner surface of the color conversion member is constituted by a part of an ellipsoid whose center is the intersection of the optical axis of the color conversion member and the one surface of the mounting substrate and whose major axis is the optical axis direction of the color conversion member. The long half of / Light emitting device short radius, characterized in that a 1.2 to 1.3. 前記LEDチップが青色LEDチップであるとともに、前記色変換部材の前記蛍光体が黄色蛍光体、前記透光性材料がシリコーン樹脂であり、前記色変換部材の前記内面の表面積をS〔mm 〕、前記点光源へ規定の入力電力を与えたときの前記点光源の光出力をP〔mW〕とするとき、S/Pの値が0.2を下回らないように前記色変換部材の前記内面の表面積Sを設定してあることを特徴とする請求項1記載の発光装置。 The LED chip is a blue LED chip, the phosphor of the color conversion member is a yellow phosphor, the translucent material is a silicone resin, and the surface area of the inner surface of the color conversion member is S [mm 2 ]. When the light output of the point light source when a prescribed input power is applied to the point light source is P [mW], the inner surface of the color conversion member is such that the value of S / P does not fall below 0.2. the light-emitting device according to claim 1, wherein the tare Rukoto set the surface area S of the. 請求項1又は2記載の発光装置を備えることを特徴とする照明器具。 Luminaire you further comprising a light-emitting device according to claim 1 or 2, wherein.
JP2008203326A 2008-08-06 2008-08-06 Light emitting device and lighting apparatus Active JP5243883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008203326A JP5243883B2 (en) 2008-08-06 2008-08-06 Light emitting device and lighting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008203326A JP5243883B2 (en) 2008-08-06 2008-08-06 Light emitting device and lighting apparatus

Publications (2)

Publication Number Publication Date
JP2010040861A JP2010040861A (en) 2010-02-18
JP5243883B2 true JP5243883B2 (en) 2013-07-24

Family

ID=42013074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008203326A Active JP5243883B2 (en) 2008-08-06 2008-08-06 Light emitting device and lighting apparatus

Country Status (1)

Country Link
JP (1) JP5243883B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111334A1 (en) 2010-03-11 2011-09-15 株式会社 東芝 Light-emitting device
JP2012049333A (en) * 2010-08-26 2012-03-08 Panasonic Electric Works Co Ltd Light emitting device
US8436527B2 (en) * 2010-09-07 2013-05-07 Kabushiki Kaisha Toshiba Light emitting device
US9112123B2 (en) * 2010-10-29 2015-08-18 National Institute For Materials Science Light-emitting device
JP5899507B2 (en) 2011-04-27 2016-04-06 パナソニックIpマネジメント株式会社 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000343751A (en) * 1999-06-03 2000-12-12 Ricoh Co Ltd Led print head
JP2005340240A (en) * 2004-05-24 2005-12-08 Cimeo Precision Co Ltd Transmitting light color converting member and manufacturing method thereof
JP4583826B2 (en) * 2004-07-13 2010-11-17 株式会社フジクラ Light emitting diode lamp and light emitting diode lamp manufacturing method
JP5076282B2 (en) * 2005-04-28 2012-11-21 三菱化学株式会社 Display device
JP2006324134A (en) * 2005-05-19 2006-11-30 Koha Co Ltd Surface light-emitting device
JP2007049019A (en) * 2005-08-11 2007-02-22 Koha Co Ltd Light emitting device

Also Published As

Publication number Publication date
JP2010040861A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
JP5363864B2 (en) Light emitting device and light bulb type LED lamp
US9182098B2 (en) Device for scattering light
JP6173562B2 (en) Illumination device having a ring-shaped translucent element
US9890911B2 (en) LED module with uniform phosphor illumination
JP5178796B2 (en) Light emitting device and lighting device
JP6217972B2 (en) lighting equipment
JP4179176B2 (en) LED lamp device
JP2006278309A (en) Lighting system
JP6206805B2 (en) Light emitting module, illumination light source, and illumination device
US9605814B2 (en) Lighting module
JP5243883B2 (en) Light emitting device and lighting apparatus
JP5270991B2 (en) Light emitting device and lighting apparatus
US8157411B2 (en) Illuminating device
JP6917584B2 (en) Lenses and luminaires
JP2017016924A (en) LED lamp
JP6238199B2 (en) lighting equipment
JP5057818B2 (en) Light emitting device
JP2008547168A (en) Light emitting device and design method thereof
US20140240955A1 (en) Luminaire
TWI362767B (en) Light-emitting diode
JP6590304B2 (en) lighting equipment
KR101797480B1 (en) Lighting apparatus
KR101827708B1 (en) Lighting apparatus
KR101326520B1 (en) Lighting device
JP2016091745A (en) Luminaire

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110323

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5243883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150