JP5235082B2 - Chlorination method and detection method of reaction end point - Google Patents

Chlorination method and detection method of reaction end point Download PDF

Info

Publication number
JP5235082B2
JP5235082B2 JP2008042723A JP2008042723A JP5235082B2 JP 5235082 B2 JP5235082 B2 JP 5235082B2 JP 2008042723 A JP2008042723 A JP 2008042723A JP 2008042723 A JP2008042723 A JP 2008042723A JP 5235082 B2 JP5235082 B2 JP 5235082B2
Authority
JP
Japan
Prior art keywords
reaction
phosgene
pressure
gas
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008042723A
Other languages
Japanese (ja)
Other versions
JP2009196957A (en
Inventor
勇 東海
信幸 西浦
利康 穴倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2008042723A priority Critical patent/JP5235082B2/en
Publication of JP2009196957A publication Critical patent/JP2009196957A/en
Application granted granted Critical
Publication of JP5235082B2 publication Critical patent/JP5235082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、例えば有機カルボン酸をホスゲン化して酸クロライドにするクロル化方法であり、その反応終点の検知方法に関する。   The present invention relates to a chlorination method for converting an organic carboxylic acid into an acid chloride, for example, and relates to a method for detecting the reaction end point.

有機カルボン酸をホスゲンガスでホスゲン化して酸クロライドを製造する方法として知られている従来のものとしては、例えば、仕込みカルボン酸に対して計算量のホスゲンガスを導入し、排ガスをガスクロマトグラフィーなどにより分析して未反応のホスゲンガスを検知して反応の終点を検知する方法が知られている(特許文献1および特許文献2参照)。   As a conventional method known as a method for producing an acid chloride by phosgenating an organic carboxylic acid with phosgene gas, for example, a calculated amount of phosgene gas is introduced into the charged carboxylic acid, and the exhaust gas is analyzed by gas chromatography or the like. And the method of detecting unreacted phosgene gas and detecting the end point of reaction is known (refer to patent documents 1 and patent documents 2).

また、有機ジヒドロキシ化合物をホスゲンガスでホスゲン化してビスクロロホルメートを製造するに当たり、反応液のpHを測定して反応の終点を検知するものが知られている(特許文献3および特許文献4参照)。あるいは、生成物の沈殿を検知して反応終点とするものや(特許文献3参照)、同様のホスゲン化反応において、反応熱を測定して反応の終点を検知する方法(特許文献5参照)などが報告されている。
特開昭56−103131号 米国特許第4,298,301号公報 特開昭62−26251号公報 特開平2−69444号公報 米国特許第4,814,420号公報
In addition, in the production of bischloroformate by phosgenating an organic dihydroxy compound with phosgene gas, one that detects the end point of the reaction by measuring the pH of the reaction solution is known (see Patent Document 3 and Patent Document 4). . Alternatively, the product precipitation is detected to detect the reaction end point (see Patent Document 3), the method of measuring the reaction heat in the same phosgenation reaction and detecting the reaction end point (see Patent Document 5), etc. Has been reported.
JP 56-103131 A U.S. Pat. No. 4,298,301 JP-A-62-26251 JP-A-2-69444 U.S. Pat. No. 4,814,420

上述した諸方法は、誤差が多い、現象の検出が煩わしい、反応混合物を分取するなどに手間がかかる、などそれぞれ欠点があり、簡便な方法とは言いがたくプロセスの自動計装化には不向きである。   Each of the above-mentioned methods has drawbacks such as many errors, troublesome detection of the phenomenon, and troublesome separation of the reaction mixture, and it is difficult to say that it is a simple method. It is unsuitable.

そこでホスゲン化における反応の終点を確実な方法で検知し、過剰なホスゲンガスの導入を行わず、プロセスを計装化しやすい製造法および反応終点を検知する方法を提供することを課題とする。   Accordingly, an object of the present invention is to provide a production method and a method for detecting a reaction end point that can easily detect the end point of a reaction in phosgenation by a reliable method, do not introduce an excessive phosgene gas, and can easily process the process.

上記課題を解決するために、本発明によるクロル化方法は、排ホスゲンコンデンサ、排ガスセパレータ、塩化水素ガス吸収塔が排ガス管を介して上部に連結された反応槽にホスゲンガスを導入するクロル化方法において、ホスゲンガスを反応槽内に導入し、副生するガスを吸引して反応槽内の圧力を大気圧より減圧した状態に保持して反応槽内の圧力を検知し、反応槽内の気圧が急激に低下した時点で、上記反応槽内へのホスゲンの導入を停止することを特徴とする。 In order to solve the above-mentioned problems, a chlorination method according to the present invention is a chlorination method in which phosgene gas is introduced into a reaction vessel in which an exhaust phosgene condenser, an exhaust gas separator, and a hydrogen chloride gas absorption tower are connected to each other through an exhaust gas pipe. The phosgene gas is introduced into the reaction vessel, the by-product gas is sucked in and the pressure in the reaction vessel is maintained at a pressure lower than the atmospheric pressure, and the pressure in the reaction vessel is detected. The introduction of phosgene into the reaction vessel is stopped at the time when the pressure drops to 0.25.

また、本発明によるホスゲン化の反応終点を検知する方法は、反応槽にホスゲンガスを導入するクロル化方法の反応終点を検知する方法において、ホスゲンガスを反応槽内に導入し、副生するガスを吸引して反応槽内の圧力を大気圧より0.2kPaから1.0kPa減圧した状態に保持して反応槽内の圧力を検知し、反応槽内の気圧が急激に低下した時点で、クロル化方法の反応終点とすることを特徴とする。   Further, the method for detecting the reaction end point of phosgenation according to the present invention is a method for detecting the reaction end point of the chlorination method in which phosgene gas is introduced into the reaction tank, wherein phosgene gas is introduced into the reaction tank and the by-product gas is sucked. The pressure in the reaction vessel is maintained at a pressure reduced from 0.2 kPa to 1.0 kPa from atmospheric pressure, the pressure in the reaction vessel is detected, and the chlorination method is performed when the atmospheric pressure in the reaction vessel rapidly decreases. The reaction end point of

本発明においては、例えば有機カルボン酸を用いる場合、有機カルボン酸に対する理論量に近いホスゲンの添加量でホスゲンの導入を停止することができ、圧力の急激な低下で反応を管理することができるので、工程の制御が確実で工程の自動化が容易である。   In the present invention, for example, when an organic carboxylic acid is used, the introduction of phosgene can be stopped at an addition amount of phosgene close to the theoretical amount with respect to the organic carboxylic acid, and the reaction can be managed by a rapid decrease in pressure. Process control is reliable and process automation is easy.

本発明における有機カルボン酸とは、不飽和脂肪酸、飽和脂肪酸や芳香族カルボン酸であり、例えば、酢酸、プロピオン酸、酪酸、吉草酸、ヘキサン酸、ラウリル酸、パルミチン酸、ステアリン酸、安息香酸、フタル酸、テレフタル酸、アクリル酸、コハク酸、マレイン酸などがある。本発明においては、公知の有機カルボン酸とホスゲンガスの反応方法に準じて、無溶媒で、あるいは、溶媒を使用し、触媒の存在下で反応槽に有機カルボン酸を仕込み、ホスゲンガスを導入してホスゲン化する。   The organic carboxylic acid in the present invention is an unsaturated fatty acid, a saturated fatty acid or an aromatic carboxylic acid, for example, acetic acid, propionic acid, butyric acid, valeric acid, hexanoic acid, lauric acid, palmitic acid, stearic acid, benzoic acid, There are phthalic acid, terephthalic acid, acrylic acid, succinic acid and maleic acid. In the present invention, in accordance with a known method for reacting an organic carboxylic acid and phosgene gas, the organic carboxylic acid is charged into the reaction vessel in the presence of a catalyst without solvent or using a solvent, and phosgene gas is introduced to phosgene. Turn into.

溶媒としては、通常使用される公知のものが使用でき、例えば、ベンゼン、トルエン、キシレン、モノクロルベンゼン、ジクロルベンゼンなどの炭化水素類、エーテル、テトラヒドロフラン、カルボン酸クロライドなどがある。溶媒を使用すると生成物が着色しにくい利点があるが、一方、溶媒回収設備が必要になったり、反応系が希釈されホスゲン化に要する時問が長くなったり、生産性が低下するなどの不利もあり、反応槽に原料の有機カルボン酸と触媒を入れ、無溶媒下で撹伴しながらホスゲンガスを導入するのが効率的である。触媒としては、公知の触媒が使用できるが、ジメチルホルムアミドなどの低級脂肪酸アミドあるいはイミダゾールが経済的で好ましく、有機カルボン酸に対して1.5重量%以下を添加すれば十分である。   As the solvent, conventionally known solvents can be used, and examples thereof include hydrocarbons such as benzene, toluene, xylene, monochlorobenzene, dichlorobenzene, ether, tetrahydrofuran, carboxylic acid chloride and the like. The use of a solvent has the advantage that the product is less likely to be colored, but there are disadvantages such as the need for solvent recovery equipment, the time required for phosgenation by diluting the reaction system, and a decrease in productivity. Therefore, it is efficient to introduce the raw organic carboxylic acid and catalyst into the reaction vessel and introduce phosgene gas while stirring in the absence of solvent. As the catalyst, known catalysts can be used, but lower fatty acid amides such as dimethylformamide or imidazole are economical and preferable, and it is sufficient to add 1.5% by weight or less based on the organic carboxylic acid.

反応温度は、20℃〜120℃が通常採用され、120℃以上になると副反応による収率の低下が目立ち、20℃以下となると反応速度が遅くなり実際的でなくなり、実用的には、30℃〜50℃が望ましい。ホスゲンガスの導入速度は多少変動しても反応に影響しないが、略一定速度で反応槽に導入されるのが反応を安定に進行させるうえで望ましく、先に記載した30℃〜50℃の比較的低温でゆっくり、例えば10時間以上で導入するのが、着色の防止および副反応の防止などの見地から望ましい。   The reaction temperature is usually 20 ° C. to 120 ° C., and when the temperature is 120 ° C. or higher, a decrease in yield due to the side reaction is conspicuous, and when it is 20 ° C. or lower, the reaction rate becomes slow and impractical. C. to 50.degree. C. is desirable. The introduction rate of phosgene gas does not affect the reaction even if it fluctuates somewhat, but it is desirable to introduce the phosgene gas into the reaction vessel at a substantially constant rate in order to allow the reaction to proceed stably. It is desirable to introduce it slowly at a low temperature, for example, for 10 hours or more from the standpoint of preventing coloring and preventing side reactions.

例えば、反応初期にはホスゲンガスの時間当たりの導入量を増加し導入予定量の80%を反応槽に導入し終えた反応終期には、ホスゲンの導入を減らして装置の生産効率を上げることが出来る。しかしながら、ホスゲンの導入速度を変更する場合、反応槽内の減圧度に出来るだけ影響を与えない範囲で、例えば、1分間に1kPa以上の変化を与えない程度に略一定速度で行う必要がある。反応槽内の圧力は、反応槽に連通する排ガス管から排気されて大気圧より0.2kPa以上、好ましくは、0.2kPaないし1.0kPa、さらに好ましくは、0.2kPaから0.5kPa減圧に保持される。大気圧より0.2kPa以下の減圧度になるとホスゲンガスが反応槽外へ漏洩し易くなる。また、1.0kPa以上となると減圧度を保持するための動力が増加するのみでなく、反応終了時の気圧の低下との差が少なくなるために、より精密な操業が要求される。   For example, at the beginning of the reaction, the amount of phosgene gas introduced per hour can be increased, and at the end of the reaction when 80% of the planned introduction amount has been introduced into the reaction vessel, the introduction of phosgene can be reduced to increase the production efficiency of the apparatus. . However, when changing the introduction rate of phosgene, it is necessary to carry out at a substantially constant rate within a range in which the degree of decompression in the reaction tank is not affected as much as possible, for example, so as not to cause a change of 1 kPa or more per minute. The pressure in the reaction tank is exhausted from an exhaust gas pipe communicating with the reaction tank and is 0.2 kPa or more from atmospheric pressure, preferably 0.2 kPa to 1.0 kPa, more preferably 0.2 kPa to 0.5 kPa. Retained. When the degree of decompression is 0.2 kPa or less from atmospheric pressure, phosgene gas tends to leak out of the reaction vessel. Further, when the pressure is 1.0 kPa or more, not only the power for maintaining the degree of decompression increases, but also the difference from the decrease in the atmospheric pressure at the end of the reaction decreases, so that more precise operation is required.

反応槽内は、ホスゲンガス導入前にあらかじめ減圧に保持するのが望ましく、この場合、大気圧より2kPaから4kPa減圧に保持してホスゲンの導入を開始するのが、その後の反応槽内の圧力管理に便利である。ホスゲンは有機カルボン酸と反応し、塩化水素ガス及び炭酸ガスを発生するが、排ガス管から排気されて所定の減圧度に保持される。反応槽内の有機カルボン酸が消費し尽くされると反応系でのガスの発生がなくなるので、反応槽内は急激に、例えば、1分間に0.5kPaから1kPa以上圧力が低下する。この時直ちにホスゲンガスの導入を停止する。   It is desirable to keep the pressure in the reaction tank at a reduced pressure before introducing phosgene gas. In this case, the introduction of phosgene is started by maintaining the pressure at 2 kPa to 4 kPa from the atmospheric pressure for the subsequent pressure management in the reaction tank. Convenient. Phosgene reacts with the organic carboxylic acid to generate hydrogen chloride gas and carbon dioxide gas, but is exhausted from the exhaust gas pipe and maintained at a predetermined degree of reduced pressure. When the organic carboxylic acid in the reaction tank is exhausted, no gas is generated in the reaction system, so that the pressure in the reaction tank drops suddenly, for example, from 0.5 kPa to 1 kPa or more per minute. At this time, the introduction of phosgene gas is stopped immediately.

ホスゲンガスの導入を停止するためにホスゲンガス導入管のバルブを閉じても、バルブ内や反応槽までのホスゲン導入管などにホスゲンガスが残存しているので、これらは反応槽に導入される。しかし、触媒としてジメチルホルムアミドを使用した場合には、ジメチルホルムアミドとホスゲンが反応してビールスマイヤー試薬が生成し、これが有機カルボン酸クロライドに不溶であるので、このような若干のホスゲンガスが過剰に導入されても実質的に問題とならないし、また、不溶のビールスマイヤー試薬を回収して再使用することが出来る。ホスゲン化終了時における圧力の低下の度合いは、排ガスの吸引能力によって変動するが、通常は0.5kPaから1.5kPa程度の変動であり、十分検出可能である。   Even if the valve of the phosgene gas introduction pipe is closed in order to stop the introduction of the phosgene gas, the phosgene gas remains in the valve, the phosgene introduction pipe to the reaction tank, etc., so these are introduced into the reaction tank. However, when dimethylformamide is used as a catalyst, dimethylformamide and phosgene react with each other to form a Beersmeier reagent, which is insoluble in organic carboxylic acid chloride, so that some of this phosgene gas is introduced excessively. However, there is no substantial problem, and the insoluble beer smear reagent can be recovered and reused. Although the degree of pressure drop at the end of phosgenation varies depending on the exhaust gas suction capability, it is usually a variation of about 0.5 kPa to 1.5 kPa and can be sufficiently detected.

反応槽としては、通常使用される撹拌機及び冷却ジャケットを備えたグラスライニングの反応器が使用でき、ホスゲンガスは反応槽底部の有機カルボン酸の液面以下の位置に導入されるのが望ましい。反応槽の上部には、排ガス管が設置され、排ホスゲンコンデンサ、排ガスセパレータ、塩化水素ガス吸収塔などの除害設備に連結されている。反応槽の圧力感知器は系内のいずれに設置しても、反応槽内の気圧を測定するものとしての有効な感度が得られれば差し支えないが、塩化水素ガスの腐食性を考慮すると、塩化水素ガス吸収塔の後に設けるのが望ましい。   As the reaction vessel, a glass-lined reactor equipped with a commonly used stirrer and cooling jacket can be used, and phosgene gas is desirably introduced at a position below the liquid level of the organic carboxylic acid at the bottom of the reaction vessel. An exhaust gas pipe is installed in the upper part of the reaction tank, and is connected to an abatement equipment such as an exhaust phosgene condenser, an exhaust gas separator, and a hydrogen chloride gas absorption tower. The pressure sensor in the reaction tank can be installed anywhere in the system as long as effective sensitivity can be obtained for measuring the pressure in the reaction tank. It is desirable to provide it after the hydrogen gas absorption tower.

反応終了後は、従来公知の有機カルボン酸のホスゲン化と同様に必要に応じて有機カルボン酸クロライドを分離することができる。たとえば、溶媒を使用した場合には溶媒を蒸留などにより除去し、粗製の有機カルボン酸クロライドを得ることが出来る。   After completion of the reaction, the organic carboxylic acid chloride can be separated as necessary in the same manner as the phosgenation of a conventionally known organic carboxylic acid. For example, when a solvent is used, the solvent can be removed by distillation or the like to obtain a crude organic carboxylic acid chloride.

次に実施例を挙げて本発明を更に詳細に説明する。
(実施例1)排ガス系に反応槽内の圧力感知器を有するグラスライニングを施した8.0立方メートルの撹搾機付き反応槽に、酪酸6200リットル(d=0.959、6008kg、68kモル)、および触媒としてジメチルホルムアミドを40リットル(d=0.9445、37.8kg、0.517モル、0.9モル%)を添加した。反応槽の内温を40±0.5℃に保持し、反応槽内を大気圧より0.5kPa減圧に保持した。その後、ホスゲンガスを55立方メートル/時で反応槽に約26時間を要して導入した。その間反応槽内は大気圧より0.5kPa低く保持し続けた。ホスゲンガスの予定導入量から予想される反応終点近くで反応槽の圧力が1分間に大気圧より1.8kPa急激に低くなったので、自動的にホスゲン導入管のバルブを閉止した。ホスゲン導入管などの残存ホスゲンガスは反応槽に導入された。ホスゲンガスの導入総量は4900リットル(70.6kモル:1.038モル比)であった。
EXAMPLES Next, an Example is given and this invention is demonstrated still in detail.
(Example 1) 6200 liters of butyric acid (d = 0.959, 6008 kg, 68 kmoles) in an 8.0 cubic meter reactor equipped with a glass lining having a pressure sensor in the reactor in the exhaust gas system , And 40 liters of dimethylformamide (d = 0.9445, 37.8 kg, 0.517 mol, 0.9 mol%) as catalyst. The internal temperature of the reaction vessel was kept at 40 ± 0.5 ° C., and the inside of the reaction vessel was kept at a reduced pressure of 0.5 kPa from atmospheric pressure. Thereafter, phosgene gas was introduced into the reaction vessel at 55 cubic meters / hour in about 26 hours. Meanwhile, the inside of the reaction vessel was kept 0.5 kPa lower than the atmospheric pressure. Since the pressure in the reaction vessel rapidly decreased from atmospheric pressure to 1.8 kPa per minute near the reaction end point expected from the expected introduction amount of phosgene gas, the valve of the phosgene introduction pipe was automatically closed. Residual phosgene gas such as a phosgene introduction tube was introduced into the reaction vessel. The total amount of phosgene gas introduced was 4900 liters (70.6 kmol: 1.038 mol ratio).

反応後の反応液の組成は次の通りであった。塩化水素含有量:0.13重量%、ホスゲン含有量:検出せず、ジメチルホルムアミド含有量:0.21重量%、無水プロピオン酸含有量:0.11重量%、色相:黄褐色、純度:酪酸クロライド99.71重量%、酪酸からの収率:97.43%   The composition of the reaction solution after the reaction was as follows. Hydrogen chloride content: 0.13% by weight, phosgene content: not detected, dimethylformamide content: 0.21% by weight, propionic anhydride content: 0.11% by weight, hue: tan, purity: butyric acid 99.71% by weight of chloride, yield from butyric acid: 97.43%

(実施例2)7.5立方メートルの反応槽を使用し、プロピオン酸5030リットル(d=0.993、5988kg、80.0kモル)、ジメチルホルムアミド61リットル(1.16モル%)、反応槽の内温35±0.5℃、ホスゲンガス導入速度66立方メートル/時で反応槽に約26時間を要して、実施例1に準じて反応させた。ホスゲンガスの予定導入量から予想される反応終点近くで反応槽の圧力が1分間に大気圧より1.6kPa急激に低くなり自動的にホスゲン導入管のバルブを閉止した。ホスゲンガスの導入総量は4912リットル(7033Kg:71.1kモル)であった。   (Example 2) Using a 7.5 cubic meter reactor, 5030 liters of propionic acid (d = 0.993, 5988 kg, 80.0 kmole), 61 liters of dimethylformamide (1.16 mol%), The reaction was carried out according to Example 1 with an internal temperature of 35 ± 0.5 ° C. and a phosgene gas introduction rate of 66 cubic meters / hour, which required about 26 hours in the reaction vessel. Near the end point of the reaction expected from the expected amount of phosgene gas introduced, the pressure in the reaction vessel suddenly dropped from atmospheric pressure by 1.6 kPa per minute, and the valve of the phosgene introduction pipe was automatically closed. The total amount of phosgene gas introduced was 4912 liters (7033 Kg: 71.1 kmol).

反応後の反応液の組成は次の通りであった。塩化水素含有量:0.23重量%、ホスゲン含有量:検出せず、ジメチルホルムアミド含有量10.65重量%、プロピオン酸含有量:0重量%、無水プロピオン酸含有量:0.78重量%、色相:黄褐色、純度:プロピオン酸クロライド98.2重量%、プロピオン酸からの収率97.7%   The composition of the reaction solution after the reaction was as follows. Hydrogen chloride content: 0.23% by weight, phosgene content: not detected, dimethylformamide content 10.65% by weight, propionic acid content: 0% by weight, propionic anhydride content: 0.78% by weight, Hue: yellowish brown, purity: 98.2% by weight of propionic acid chloride, 97.7% yield from propionic acid

Claims (7)

排ホスゲンコンデンサ、排ガスセパレータ、塩化水素ガス吸収塔が排ガス管を介して上部に連結された反応槽にホスゲンガスを導入するクロル化方法において、ホスゲンガスを反応槽内に導入し、副生するガスを吸引して反応槽内の圧力を大気圧より減圧した状態に保持して反応槽内の圧力を検知し、反応槽内の気圧が急激に低下した時点で、上記反応槽内へのホスゲンの導入を停止することを特徴とするクロル化方法。 In a chlorination method in which phosgene gas is introduced into a reaction tank in which an exhaust phosgene condenser, an exhaust gas separator, and a hydrogen chloride gas absorption tower are connected to the upper part through an exhaust gas pipe, phosgene gas is introduced into the reaction tank and a by-product gas is sucked in. The pressure in the reaction tank is maintained at a pressure lower than the atmospheric pressure, and the pressure in the reaction tank is detected. When the atmospheric pressure in the reaction tank rapidly decreases, phosgene is introduced into the reaction tank. A chlorination method characterized by stopping. ホスゲンガスを略一定速度で反応槽に導入する請求項1に記載のクロル化方法。   The chlorination method according to claim 1, wherein phosgene gas is introduced into the reaction vessel at a substantially constant rate. 反応槽内の圧力の低下速度が1分間当たり0.5kPa以上になったらホスゲンの導入を停止することを特徴とする請求項1または請求項2に記載のクロル化方法。   The chlorination method according to claim 1 or 2, wherein the introduction of phosgene is stopped when the rate of pressure decrease in the reaction tank becomes 0.5 kPa or more per minute. 反応槽内の圧力を大気圧より0.2kPaから1.0kPa減圧することを特徴とする請求項1から請求項3のいずれかに記載のクロル化方法。   The chlorination method according to any one of claims 1 to 3, wherein the pressure in the reaction vessel is reduced from atmospheric pressure to 0.2 kPa to 1.0 kPa. 上記クロル化方法は、有機カルボン酸を酸クロライドにする方法であることを特徴とする請求項1から請求項4のいずれかに記載のクロル化方法。   The chlorination method according to any one of claims 1 to 4, wherein the chlorination method is a method of converting an organic carboxylic acid into an acid chloride. 反応槽にホスゲンガスを導入するクロル化方法の反応終点を検知する方法において、ホスゲンガスを反応槽内に導入し、副生するガスを吸引して反応槽内の圧力を大気圧より0.2kPaから1.0kPa減圧した状態に保持して反応槽内の圧力を検知し、反応槽内の気圧が急激に低下した時点で、クロル化方法の反応終点を検知する方法。   In the method of detecting the reaction end point of the chlorination method in which phosgene gas is introduced into the reaction vessel, phosgene gas is introduced into the reaction vessel, the gas produced as a by-product is sucked, and the pressure in the reaction vessel is changed from 0.2 kPa to 1 at atmospheric pressure. A method of detecting the reaction end point of the chlorination method when the pressure in the reaction vessel is detected while maintaining the pressure reduced to 0.0 kPa, and the atmospheric pressure in the reaction vessel is rapidly reduced. ホスゲンガスを略一定速度で反応槽に導入することを特徴とする請求項6に記載のクロル化方法の反応終点を検知する方法。   The method for detecting the reaction end point of the chlorination method according to claim 6, wherein phosgene gas is introduced into the reaction vessel at a substantially constant rate.
JP2008042723A 2008-02-25 2008-02-25 Chlorination method and detection method of reaction end point Active JP5235082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008042723A JP5235082B2 (en) 2008-02-25 2008-02-25 Chlorination method and detection method of reaction end point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008042723A JP5235082B2 (en) 2008-02-25 2008-02-25 Chlorination method and detection method of reaction end point

Publications (2)

Publication Number Publication Date
JP2009196957A JP2009196957A (en) 2009-09-03
JP5235082B2 true JP5235082B2 (en) 2013-07-10

Family

ID=41140886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042723A Active JP5235082B2 (en) 2008-02-25 2008-02-25 Chlorination method and detection method of reaction end point

Country Status (1)

Country Link
JP (1) JP5235082B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5775347B2 (en) * 2011-03-31 2015-09-09 出光興産株式会社 Control method for continuous production of polycarbonate oligomer
JP5775346B2 (en) * 2011-03-31 2015-09-09 出光興産株式会社 Control method for continuous production of polycarbonate oligomer
JP5775345B2 (en) * 2011-03-31 2015-09-09 出光興産株式会社 Control method for continuous production of polycarbonate oligomer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1415980A (en) * 1973-01-02 1975-12-03 Gen Electric Process for preparing acid chlorides
NL175521C (en) * 1973-04-26 1984-11-16 Hoechst Ag PROCESS FOR PREPARING CARBONIC ACID CHLORIDES
FR2337121B1 (en) * 1975-12-31 1978-07-28 Poudres & Explosifs Ste Nale HOT PHOSGENATION OF ACIDS TO ACID CHLORIDES WITH CARBOXYLIC ACID DIAMIDES AS CATALYSTS
JPH0830045B2 (en) * 1988-11-07 1996-03-27 協和油化株式会社 Method for producing alicyclic diamines
US6306658B1 (en) * 1998-08-13 2001-10-23 Symyx Technologies Parallel reactor with internal sensing
JP2000143605A (en) * 1998-11-17 2000-05-26 Showa Denko Kk Production of cyanobenzoic acid chlorides
FR2818640B1 (en) * 2000-12-22 2004-02-13 Poudres & Explosifs Ste Nale PROCESS FOR THE SYNTHESIS OF ALIPHATIC, CYCLOALIPHATIC OR ARALIPHATIC CHLOROFORMIATES
JP2006002000A (en) * 2004-06-16 2006-01-05 Oshima Shipbuilding Co Ltd Methane hydrate generation device and methane gas supply system

Also Published As

Publication number Publication date
JP2009196957A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
KR100234571B1 (en) Terephthalic acid production.
CN100582078C (en) Method of making halophthalic acids and halophthalic anhydrides
JP5235082B2 (en) Chlorination method and detection method of reaction end point
US11358928B2 (en) Method for producing pentamethylene diisocyanate
EP2006274B1 (en) Method for producing 3,3,3-trifluoropropionic acid chloride
CN105408299B (en) Pass through the method for the esterification continuous production light acrylate of thick ester level acrylic acid
US20080293964A1 (en) Process for Preparing High Purity Terephthalic Acid
JP4401105B2 (en) Method for producing chlorine and method for producing aromatic polycarbonate
TW201835018A (en) Process
CN108586243B (en) Method for indirectly synthesizing organic carbonate from carbon dioxide and organic amine
CN109970793A (en) A kind of process synthesizing 15 triphenylphosphine salt of carbon
CN104487423B (en) Crystal and its manufacturing method containing unsaturated carboxylic acid amide compound
CN106431897B (en) A kind of new synthesis process of 2,4,6- trimethylbenzene chloroacetic chloride
CN113735806B (en) Method for preparing chlorophthalic anhydride by solvent-free liquid phase catalytic oxidation
KR101467648B1 (en) Method for producing aryloxy titanium composition, and aryloxy titanium composition
US8519181B2 (en) Preparation of acetic acid
JPWO2017150622A1 (en) Method for producing solution composition containing monoetherified product, solution composition, and method for producing polymerizable compound
WO2007080903A1 (en) Method for producing thiazole compound
JP7203045B2 (en) Method for producing fluorine-containing organic compound
KR19990062895A (en) The formation of boron trifluoride and sulfuric acid from boron trifluoride hydrate
PL80337B1 (en) Process for producing isopropanol and acetone [us3767711a]
CN220071640U (en) Device for continuously synthesizing alcohol alkali metal salt in three steps
KR101072879B1 (en) Process for preparing high purity terephthaloyl chloride
WO2021117434A1 (en) Method for producing purified hydrogen cyanide
PT1490318E (en) Liquid phase oxidation of halogenated ortho-xylenes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R150 Certificate of patent or registration of utility model

Ref document number: 5235082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250