JP5232369B2 - Manufacturing method of package substrate for mounting optical semiconductor element and manufacturing method of optical semiconductor device using the same - Google Patents

Manufacturing method of package substrate for mounting optical semiconductor element and manufacturing method of optical semiconductor device using the same Download PDF

Info

Publication number
JP5232369B2
JP5232369B2 JP2006198489A JP2006198489A JP5232369B2 JP 5232369 B2 JP5232369 B2 JP 5232369B2 JP 2006198489 A JP2006198489 A JP 2006198489A JP 2006198489 A JP2006198489 A JP 2006198489A JP 5232369 B2 JP5232369 B2 JP 5232369B2
Authority
JP
Japan
Prior art keywords
optical semiconductor
manufacturing
semiconductor element
semiconductor device
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006198489A
Other languages
Japanese (ja)
Other versions
JP2007235085A (en
Inventor
直之 浦崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006198489A priority Critical patent/JP5232369B2/en
Publication of JP2007235085A publication Critical patent/JP2007235085A/en
Application granted granted Critical
Publication of JP5232369B2 publication Critical patent/JP5232369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a highly productive and less expensive package substrate for packaging an optical semiconductor element through the reduction of lead time and the number of used materials and manufacturing processes, and to provide a method of manufacturing an optical semiconductor device using the same. <P>SOLUTION: The method manufactures the package substrate for packaging the optical semiconductor element that has a thermosetting resin composition layer for reflecting light, which is formed with two or more recesses serving as optical semiconductor element packaging regions, on a wiring board. The thermosetting resin composition layer for reflecting light is characterized by being formed by transfer molding. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、光半導体素子と蛍光体などの波長変換手段とを組み合わせた光半導体装置を製造するのに有用な光半導体素子搭載用パッケージ基板の製造方法に関する。   The present invention relates to a method for manufacturing a package substrate for mounting an optical semiconductor element useful for manufacturing an optical semiconductor device in which an optical semiconductor element and a wavelength conversion means such as a phosphor are combined.

近年、電子機器の小型化、軽量化、高性能化、多機能化に伴い、電子部品を基板上に高密度に実装することが行われている。高密度に実装するための電子部品としては、例えば、基板上の配線パターンにリフロー半田付け等により接続することが可能なSMD(Surface mounted device)が広く用いられている(例えば、特許文献1参照)。   In recent years, electronic components have been mounted on a substrate with high density as electronic devices have been reduced in size, weight, performance, and functionality. As an electronic component for mounting at high density, for example, SMD (Surface Mounted Device) that can be connected to a wiring pattern on a substrate by reflow soldering or the like is widely used (for example, see Patent Document 1). ).

このような電子部品の一例であるLED(Light Emitting Diode:発光ダイオード)は、光半導体素子と蛍光体を組み合わせた光半導体装置であり、省電力で寿命が長い発光装置として注目されている。   An LED (Light Emitting Diode), which is an example of such an electronic component, is an optical semiconductor device in which an optical semiconductor element and a phosphor are combined, and has attracted attention as a light-emitting device with low power consumption and long life.

SMD型LEDのパッケージ基板について、図面に基づいてその概要を説明する。図4は一般的なSMD型LEDの斜視図である。図4において、1はLED素子搭載用パッケージ基板であり、配線基板2、樹脂層4およびこれらを固着させるための接着シート5からなる。配線基板2の上面には搭載されるLED素子10を接続するための一対の接続端子が形成されており、各端子には銀めっき等の表面処理が施されている。また、樹脂層4には、LED素子10の搭載領域となるカップ形状の貫通穴4d(上部開口4a、下部開口4bおよび側面4cからなる凹部)が形成されており、当該穴の内周面は、その底面に搭載されたLED素子10が発する光を反射させ上方へ導くリフレクタ−としての役割を果たす。また、接着シート5は上記貫通穴4dの下部開口4bに対応する部分が取り除かれている。   The outline | summary of the package substrate of SMD type LED is demonstrated based on drawing. FIG. 4 is a perspective view of a general SMD type LED. In FIG. 4, 1 is a package substrate for LED element mounting, which comprises a wiring substrate 2, a resin layer 4, and an adhesive sheet 5 for fixing them. A pair of connection terminals for connecting the LED element 10 to be mounted is formed on the upper surface of the wiring board 2, and each terminal is subjected to a surface treatment such as silver plating. Further, the resin layer 4 is formed with a cup-shaped through hole 4d (a concave portion including an upper opening 4a, a lower opening 4b, and a side surface 4c) serving as a mounting region of the LED element 10, and an inner peripheral surface of the hole is The LED element 10 mounted on the bottom surface serves as a reflector that reflects and guides the light emitted upward. The adhesive sheet 5 has a portion corresponding to the lower opening 4b of the through hole 4d removed.

また、このようなSMD型LEDは、通常、図5に示すように、複数のLED素子がマトリックス状に実装された配線基板12上に、当該複数のLED素子の搭載位置に対応したカップ形状の貫通穴を有する樹脂層板(リフレクタ−)14を、当該複数のLED素子の搭載位置に対応した穴15aが形成されている接着シート15をはさんで、加熱加圧して接着した後、図6に示す2方向のダイシングライン20に沿って複数のSMD型LEDを個片に切り離すことで得ることができる。このような製造法によれば、SMD型LEDを多数個同時に作製することができる。   In addition, as shown in FIG. 5, such an SMD type LED usually has a cup shape corresponding to the mounting position of the plurality of LED elements on the wiring board 12 on which the plurality of LED elements are mounted in a matrix. After the resin layer plate (reflector) 14 having a through hole is bonded by heating and pressing the adhesive sheet 15 in which holes 15a corresponding to the mounting positions of the plurality of LED elements are formed, FIG. It can be obtained by cutting a plurality of SMD type LEDs into individual pieces along a dicing line 20 in two directions shown in FIG. According to such a manufacturing method, a large number of SMD LEDs can be manufactured simultaneously.

しかしながら、上記した従来のSMD型LEDの製造方法では、貫通穴を有する樹脂層板を作製する工程、穴を有する接着シートを作製する工程、樹脂層板と接着シートとLED素子を搭載した配線基板を位置合わせして一体化する工程といった複数の工程やこれに伴う複数の部材が必要となる。   However, in the above-described conventional SMD type LED manufacturing method, a step of producing a resin layer plate having a through hole, a step of producing an adhesive sheet having a hole, a wiring substrate on which the resin layer plate, the adhesive sheet, and the LED element are mounted A plurality of processes, such as a process of aligning and integrating the components, and a plurality of members associated therewith are required.

また、LED用パッケージ基板における樹脂層板を、耐熱性の高い熱可塑性樹脂を用い、射出成型により製造することが、例えば、特許文献2〜4に開示されているが、400mmのマトリックス状の大型の樹脂層板を一括成型した場合、線膨張率の違いによる応力で反りが発生し易く、その後の実装工程を進めることが困難となる場合がある等の課題があった。また、一般に使用されているリフレクター材料は、酸化チタンを顔料として用いているため、発光波長が短波長領域になると急激にその反射率が低下してしまう。また、紫外線による劣化が原因で可視領域の光に対しても反射率の低下が起こることが課題となっている。
特開2003−218398号公報 特開2005−194513号公報 特開2004−277539号公報 特開2004−075994号公報
Further, the resin lamellae in the package base board for LED, having a high heat-resistant thermoplastic resin, be produced by injection molding, e.g., it is disclosed in Patent Documents 2 to 4, of 400 mm 2 matrix of When a large-sized resin layer plate is molded at once, there is a problem that warpage is likely to occur due to stress due to a difference in linear expansion coefficient, and it may be difficult to proceed with the subsequent mounting process. Moreover, since the reflector material generally used uses titanium oxide as a pigment, when the light emission wavelength is in a short wavelength region, the reflectance is rapidly reduced. Another problem is that the reflectance is reduced even in the visible region due to the deterioration caused by ultraviolet rays.
JP 2003-218398 A JP 2005-194513 A JP 2004-277539 A Japanese Patent Laid-Open No. 2004-075994

上記を鑑みて、本発明は、リードタイムの短縮、使用する部材や工程の低減による生産性の向上、低コスト化が可能な光半導体素子搭載用パッケージ基板の製造方法およびこれを用いた光半導体装置の製造方法を提供することを目的とする。   In view of the above, the present invention provides a method for manufacturing a package substrate for mounting an optical semiconductor element capable of reducing lead time, improving productivity by reducing members and processes to be used, and reducing costs, and an optical semiconductor using the same. An object is to provide a method for manufacturing a device.

また、本発明は、硬化後の、可視光から近紫外光の反射率が高い光反射用熱硬化性樹脂組成物を用いた光半導体素子搭載用パッケージ基板の製造方法およびこれを用いた光半導体装置の製造方法を提供することを目的とする。   The present invention also relates to a method for producing a package substrate for mounting an optical semiconductor element using a thermosetting resin composition for light reflection having high reflectivity from visible light to near ultraviolet light after curing, and an optical semiconductor using the same An object is to provide a method for manufacturing a device.

本発明は、下記(1)〜(10)に記載の事項をその特徴とするものである。   The present invention is characterized by the following items (1) to (10).

(1)光半導体素子搭載領域となる凹部が2つ以上形成された光反射用熱硬化性樹脂組成物層を配線基板上に有する光半導体素子搭載用パッケージ基板の製造方法であって、前記光反射用熱硬化性樹脂組成物層をトランスファー成型により形成することを特徴とする、光半導体素子搭載用パッケージ基板の製造方法。   (1) A method for manufacturing a package substrate for mounting an optical semiconductor element, having a light-reflective thermosetting resin composition layer formed with two or more recesses to be an optical semiconductor element mounting region on a wiring board, wherein the light A method for producing a package substrate for mounting an optical semiconductor element, wherein the reflective thermosetting resin composition layer is formed by transfer molding.

(2)前記光反射用熱硬化性樹脂組成物が、(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、(D)無機充填剤、(E)白色顔料及び(F)カップリング剤を必須成分として含み、熱硬化後の、波長800nm〜350nmにおける光反射率が80%以上であり、熱硬化前には室温(25℃)で加圧成型可能なものであることを特徴とする、上記(1)に記載の光半導体素子搭載用パッケージ基板の製造方法。   (2) The light-reflective thermosetting resin composition comprises (A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, (D) an inorganic filler, (E) a white pigment, and (F). It contains a coupling agent as an essential component, has a light reflectance at a wavelength of 800 nm to 350 nm after thermosetting of 80% or more, and can be pressure-molded at room temperature (25 ° C.) before thermosetting. The manufacturing method of a package substrate for mounting an optical semiconductor element according to (1), which is characterized in that

(3)前記(D)無機充填剤が、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、水酸化アルミニウム、硫酸バリウム、炭酸マグネシウム、炭酸バリウムからなる群の中から選ばれる少なくとも1種以上であることを特徴とする、上記(2)に記載の光半導体素子搭載用パッケージ基板の製造方法。   (3) The (D) inorganic filler is at least one selected from the group consisting of silica, alumina, magnesium oxide, antimony oxide, aluminum hydroxide, barium sulfate, magnesium carbonate, and barium carbonate. The method for producing a package substrate for mounting an optical semiconductor element according to (2), which is characterized in that

(4)前記(E)白色顔料が、無機中空粒子であることを特徴とする、上記(2)または(3)に記載の光半導体素子搭載用パッケージ基板の製造方法。   (4) The method for producing a package substrate for mounting an optical semiconductor element according to the above (2) or (3), wherein the (E) white pigment is inorganic hollow particles.

(5)前記(E)白色顔料の平均粒径が、1μm〜50μmの範囲にあることを特徴とする、上記(2)〜(4)のいずれか1項に記載の光半導体素子搭載用パッケージ基板の製造方法。   (5) The package for mounting an optical semiconductor element according to any one of (2) to (4) above, wherein an average particle diameter of the (E) white pigment is in a range of 1 μm to 50 μm. A method for manufacturing a substrate.

(6)前記(D)無機充填剤と前記(E)白色顔料の合計量が、前記光反射用熱硬化性樹脂組成物全体に対して70体積%〜85体積%の範囲であることを特徴とする上記(2)〜(5)のいずれか1項に記載の光半導体素子搭載用パッケージ基板の製造方法。   (6) The total amount of the (D) inorganic filler and the (E) white pigment is in the range of 70% by volume to 85% by volume with respect to the entire thermosetting resin composition for light reflection. The manufacturing method of the package substrate for mounting an optical semiconductor element according to any one of (2) to (5) above.

(7)前記配線基板が、リードフレーム、プリント配線板、フレキシブル配線板、およびメタルベース配線板のいずれかであることを特徴とする、上記(1)〜(6)のいずれか1項に記載の光半導体素子搭載用パッケージ基板の製造方法。   (7) The wiring board according to any one of (1) to (6), wherein the wiring board is any one of a lead frame, a printed wiring board, a flexible wiring board, and a metal base wiring board. Of manufacturing a package substrate for mounting an optical semiconductor element.

(8)上記(1)〜(7)のいずれか1項に記載の製造方法によって得られる光半導体素子搭載用パッケージ基板に形成された2つ以上の凹部の各底面に、光半導体素子を搭載する工程、および前記光半導体素子を封止樹脂により覆う工程、を有することを特徴とする光半導体装置の製造方法。   (8) An optical semiconductor element is mounted on each bottom surface of two or more recesses formed in an optical semiconductor element mounting package substrate obtained by the manufacturing method according to any one of (1) to (7) above. And a step of covering the optical semiconductor element with a sealing resin.

(9)前記樹脂封止工程後、前記光半導体素子を1つ有する光半導体装置単体に分割する工程、をさらに有することを特徴とする、上記(8)に記載の光半導体装置の製造方法。   (9) The method for manufacturing an optical semiconductor device according to (8), further including a step of dividing the optical semiconductor device into a single optical semiconductor device having one optical semiconductor element after the resin sealing step.

(10)前記分割する工程が、ダイシングにより行われることを特徴とする、上記(9)に記載の光半導体装置の製造方法。   (10) The method for manufacturing an optical semiconductor device according to (9), wherein the dividing step is performed by dicing.

本発明によれば、従来必要であった複数の工程をトランスファー成型の一つの工程で行うことが可能となるため、リードタイムの短縮、使用する部材や工程の低減による生産性の向上、低コスト化が可能な光半導体素子搭載用パッケージ基板の製造方法および半導体装置の製造方法を提供することが可能となり、また、反りが少ない光半導体素子搭載用パッケージ基板や半導体装置を提供することが可能となる。   According to the present invention, since it is possible to perform a plurality of processes that were conventionally required in one process of transfer molding, the lead time is shortened, the productivity is improved by reducing the members and processes to be used, and the cost is low. It is possible to provide a method for manufacturing a package substrate for mounting an optical semiconductor element and a method for manufacturing a semiconductor device, and to provide a package substrate for mounting an optical semiconductor element and a semiconductor device with less warpage. Become.

また、上記(2)〜(6)に記載したような光反射用熱硬化性樹脂組成物を用いて凹部を形成することで、硬化後の、可視光から近紫外光の反射率が特に優れた光半導体素子搭載用パッケージ基板や光半導体装置を提供することが可能となる。   Moreover, the reflectance of visible light to near-ultraviolet light after curing is particularly excellent by forming a recess using the thermosetting resin composition for light reflection as described in the above (2) to (6). It is possible to provide an optical semiconductor element mounting package substrate and an optical semiconductor device.

本発明は、配線基板と、当該配線基板上に形成され、光半導体素子搭載領域となる凹部(貫通孔)が所定位置に2つ以上形成されている光反射用熱硬化性樹脂組成物層とを有する光半導体素子搭載用パッケージ基板の製造方法であって、上記光反射用熱硬化性樹脂組成物層をトランスファー成型により一括形成することをその特徴とするものである。   The present invention relates to a wiring board and a thermosetting resin composition layer for light reflection formed on the wiring board and having two or more recesses (through holes) to be an optical semiconductor element mounting region at a predetermined position. A method for producing a package substrate for mounting an optical semiconductor element, characterized in that the thermosetting resin composition layer for light reflection is collectively formed by transfer molding.

上記トランスファー成型による形成について、より具体的には、例えば、上記配線基板として、図1(a)に示すような、金属配線401を有するプリント配線板400を用い、これを図1(b)に示すように、所定形状の金型411内に配置し、金型411の樹脂注入口410から光反射用熱硬化性樹脂組成物を注入する。ついで、注入した光反射用熱硬化性樹脂組成物を好ましくは、金型温度170℃〜190℃で60秒〜120秒、アフターキュア温度120℃〜180℃で1時間〜3時間の条件で熱硬化させた後、金型411を外すことで、凹部(光半導体素子搭載領域)420が2つ以上形成された光反射用熱硬化性樹脂組成物層(リフレクター)421を配線基板上に有する光半導体素子搭載用パッケージ基板430を得ることができる(図1(c)、(d))。また、凹部底面の、光半導体素子が接続される端子表面に電気めっき等によりNi/Agめっき104を施すこともできる。また、凹部の形状は、特に限定されないが、搭載されたLED素子10が発する光を反射させて上方へ導くようなカップ形状(円錐台形状)であることが望ましい。   More specifically, with respect to the formation by the transfer molding, for example, a printed wiring board 400 having a metal wiring 401 as shown in FIG. 1A is used as the wiring board, and this is shown in FIG. As shown, it is placed in a mold 411 having a predetermined shape, and a light reflecting thermosetting resin composition is injected from a resin injection port 410 of the mold 411. Next, the injected thermosetting resin composition for light reflection is preferably heated at a mold temperature of 170 ° C. to 190 ° C. for 60 seconds to 120 seconds and an after cure temperature of 120 ° C. to 180 ° C. for 1 hour to 3 hours. After curing, light having a light-reflective thermosetting resin composition layer (reflector) 421 formed with two or more recesses (optical semiconductor element mounting regions) 420 on the wiring board by removing the mold 411. A package substrate 430 for mounting a semiconductor element can be obtained (FIGS. 1C and 1D). Further, the Ni / Ag plating 104 can be applied by electroplating or the like to the terminal surface to which the optical semiconductor element is connected at the bottom of the recess. The shape of the recess is not particularly limited, but it is preferably a cup shape (conical shape) that reflects the light emitted from the mounted LED element 10 and guides it upward.

上記光反射用熱硬化性樹脂組成物としては、公知のものを使用することも可能であるが、好ましくは、熱硬化後の、波長800nm〜350nmにおける光反射率が80%以上であり、熱硬化前には室温(25℃)で加圧成型可能な光反射用熱硬化性樹脂組成物を用い、より好ましくは、(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、(D)無機充填剤、(E)白色顔料及び(F)カップリング剤を必須成分として含み、かつ熱硬化後の、波長800nm〜350nmにおける光反射率が80%以上であり、熱硬化前には室温(25℃)で加圧成型可能な光反射用熱硬化性樹脂組成物を用いる。上記光反射率が80%未満であると、光半導体装置の輝度向上に十分寄与できない傾向がある。より好ましくは、光反射率が90%以上である。また、上記加圧成形は、例えば、室温(約25℃)において、0.5MPa〜2MPaの圧力で、1秒〜5秒程度の条件下で行うことができればよい。また、本発明において用いる光反射用熱硬化性樹脂組成物の熱伝導率は、1W/mK以上であることが好ましい。この熱伝導率が1W/mK未満であると光半導体素子から発生する熱を十分に逃がすことができず、封止樹脂等を劣化させてしまう恐れがある。   As the light-reflective thermosetting resin composition, a known one can be used. Preferably, the light reflectivity at a wavelength of 800 nm to 350 nm after heat curing is 80% or more, and heat Prior to curing, a thermosetting resin composition for light reflection that can be pressure-molded at room temperature (25 ° C.) is used. More preferably, (A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, (D) An inorganic filler, (E) a white pigment, and (F) a coupling agent are included as essential components, and the light reflectivity at a wavelength of 800 nm to 350 nm after thermosetting is 80% or more, and before thermosetting Uses a thermosetting resin composition for light reflection that can be pressure-molded at room temperature (25 ° C.). If the light reflectance is less than 80%, there is a tendency that it cannot sufficiently contribute to the improvement of the luminance of the optical semiconductor device. More preferably, the light reflectance is 90% or more. Moreover, the said press molding should just be able to be performed on the conditions of about 1 second-about 5 second at room temperature (about 25 degreeC) and the pressure of 0.5 Mpa-2 Mpa. Moreover, it is preferable that the heat conductivity of the thermosetting resin composition for light reflection used in the present invention is 1 W / mK or more. If the thermal conductivity is less than 1 W / mK, the heat generated from the optical semiconductor element cannot be sufficiently released, and the sealing resin or the like may be deteriorated.

上記(A)エポキシ樹脂としては、電子部品封止用エポキシ樹脂成形材料で一般に使用されているものを用いることができ、特に制限はないが、例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換ビフェノール等のジグリシジエーテル、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる鎖状脂肪族エポキシ樹脂及び脂環族エポキシ樹脂などがあり、これらは単独でも、2種以上併用してもよい。また、使用するエポキシ樹脂は、比較的着色のないものであることが好ましく、そのようなエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、トリグリシジルイソシアヌレートを挙げることができる。   As said (A) epoxy resin, what is generally used by the epoxy resin molding material for electronic component sealing can be used, Although there is no restriction | limiting in particular, For example, a phenol novolak type epoxy resin, an ortho cresol novolak type epoxy Resin and other phenols and aldehydes novolak resins epoxidized, bisphenol A, bisphenol F, bisphenol S, diglycidiethers such as alkyl-substituted biphenols, diaminodiphenylmethane, isocyanuric acid and other polyamines and epichlorohydrin There are glycidylamine type epoxy resins obtained, chain aliphatic epoxy resins and alicyclic epoxy resins obtained by oxidizing olefinic bonds with peracids such as peracetic acid, and these can be used alone or in combination of two or more. Also good. Moreover, it is preferable that the epoxy resin to be used is relatively uncolored, and examples of such an epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and triglycidyl. Mention may be made of isocyanurates.

上記(B)硬化剤としては、エポキシ樹脂と反応するものであれば、特に制限はないが、例えば、酸無水物系硬化剤、フェノール系硬化剤などが挙げられ、比較的着色のないものであることが好ましい。酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸等が挙げられ、中でも、無水フタル酸、へキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸を用いることが好ましい。また、用いる酸無水物系硬化剤は、その分子量が140〜200程度のものであることが好ましく、また、無色ないし淡黄色の酸無水物であることが好ましい。また、これら硬化剤は単独で用いても、二種以上併用して用いてもよい。エポキシ樹脂と硬化剤との配合割合は、エポキシ樹脂中のエポキシ基1当量に対して、硬化剤におけるエポキシ基と反応可能な活性基(酸無水基又は水酸基)が0.5当量〜1.5当量となるような割合であることが好ましく、0.7当量〜1.2当量となるような割合であることがより好ましい。活性基が0.5当量未満の場合は、エポキシ樹脂組成物の硬化速度が遅くなるとともに、得られる硬化体のガラス転移温度が低くなる場合があり、一方、1.5当量を超える場合は、耐湿性が低下する場合がある。   The (B) curing agent is not particularly limited as long as it reacts with an epoxy resin, and examples thereof include an acid anhydride curing agent and a phenol curing agent. Preferably there is. Examples of the acid anhydride curing agent include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, glutaric anhydride. Examples thereof include acid, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, etc. Among them, phthalic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, and methylhexahydrophthalic anhydride are preferably used. The acid anhydride curing agent to be used preferably has a molecular weight of about 140 to 200, and is preferably a colorless or light yellow acid anhydride. These curing agents may be used alone or in combination of two or more. The mixing ratio of the epoxy resin and the curing agent is such that the active group (acid anhydride group or hydroxyl group) capable of reacting with the epoxy group in the curing agent is 0.5 equivalent to 1.5 to 1 equivalent of the epoxy group in the epoxy resin. The ratio is preferably equivalent, and more preferably 0.7 to 1.2 equivalents. When the active group is less than 0.5 equivalent, the curing rate of the epoxy resin composition is slowed, and the glass transition temperature of the resulting cured product may be low, whereas when it exceeds 1.5 equivalent, Moisture resistance may be reduced.

上記(C)硬化促進剤としては、特に制限はなく、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン、トリ−2,4,6−ジメチルアミノメチルフェノール等の3級アミン類、2−エチル−4−メチルイミダゾール、2−メチルイミダゾールなどのイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート等のリン化合物、4級アンモニウム塩、有機金属塩類及びこれらの誘導体などが挙げられる。これらは単独で使用してもよく、又は併用して用いてもよい。これら硬化促進剤の中では、3級アミン類、イミダゾール類、リン化合物を用いることが好ましい。硬化促進剤の含有率は、エポキシ樹脂に対して、0.01重量%〜8.0重量%であることが好ましく、より好ましくは、0.1重量%〜3.0重量%であることがより好ましい。硬化促進剤の含有率が、0.01重量%未満では、充分な硬化促進効果を得られない場合があり、また、8.0重量%を超えると、得られる硬化体に変色が見られる場合がある。   The (C) curing accelerator is not particularly limited, and examples thereof include 1,8-diaza-bicyclo (5,4,0) undecene-7, triethylenediamine, tri-2,4,6-dimethylaminomethylphenol. Tertiary amines such as 2-ethyl-4-methylimidazole, imidazoles such as 2-methylimidazole, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o, o-diethylphosphoro Examples include phosphorus compounds such as dithioates, quaternary ammonium salts, organometallic salts, and derivatives thereof. These may be used alone or in combination. Among these curing accelerators, it is preferable to use tertiary amines, imidazoles, and phosphorus compounds. The content of the curing accelerator is preferably 0.01% by weight to 8.0% by weight and more preferably 0.1% by weight to 3.0% by weight with respect to the epoxy resin. More preferred. When the content of the curing accelerator is less than 0.01% by weight, a sufficient curing acceleration effect may not be obtained. When the content exceeds 8.0% by weight, discoloration is observed in the obtained cured product. There is.

上記(D)無機充填材としては、例えば、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、水酸化アルミニウム、硫酸バリウム、炭酸マグネシウム、炭酸バリウム等を挙げることができ、これらは単独でも、併用して用いてもよい。熱伝導性、光反射特性、成型性、難燃性の点からは、シリカ、アルミナ、酸化アンチモン、水酸化アルミニウムのうちの2種以上の混合物であることが好ましい。また、無機充填材の粒径は、特に制限はないが、白色顔料とのパッキング効率を考慮すると、平均粒径が1μm〜100μmの範囲であることが好ましい。   Examples of the inorganic filler (D) include silica, alumina, magnesium oxide, antimony oxide, aluminum hydroxide, barium sulfate, magnesium carbonate, and barium carbonate. These may be used alone or in combination. May be. From the viewpoint of thermal conductivity, light reflection characteristics, moldability, and flame retardancy, a mixture of two or more of silica, alumina, antimony oxide, and aluminum hydroxide is preferable. The particle size of the inorganic filler is not particularly limited, but it is preferable that the average particle size is in the range of 1 μm to 100 μm in view of the packing efficiency with the white pigment.

上記(E)白色顔料としては、例えば、アルミナ、酸化マグネシウム、酸化アンチモン、水酸化アルミニウム、硫酸バリウム、炭酸マグネシウム、炭酸バリウム、無機中空粒子等を挙げることができ、これらは単独でも、併用して用いてもよい。無機中空粒子としては、珪酸ソーダガラス、アルミ珪酸ガラス、ホウケイ酸ソーダガラス、シラス等がある。熱伝導性、光反射特性の点からは、アルミナ、酸化マグネシウム、無機中空粒子又はそれらの混合物であることが好ましい。また、白色顔料の粒径は、平均粒径が1〜50μmの範囲にあることが好ましい。平均粒径が1μm未満であると粒子が凝集しやすく、分散性が悪くなる傾向があり、50μmを超えると反射特性が十分に得られなくなる傾向がある。   Examples of the white pigment (E) include alumina, magnesium oxide, antimony oxide, aluminum hydroxide, barium sulfate, magnesium carbonate, barium carbonate, and inorganic hollow particles. These may be used alone or in combination. It may be used. Examples of inorganic hollow particles include sodium silicate glass, aluminum silicate glass, borosilicate soda glass, and shirasu. From the viewpoint of thermal conductivity and light reflection characteristics, alumina, magnesium oxide, inorganic hollow particles, or a mixture thereof is preferable. The white pigment preferably has an average particle size in the range of 1 to 50 μm. When the average particle size is less than 1 μm, the particles tend to aggregate and the dispersibility tends to deteriorate, and when the average particle size exceeds 50 μm, sufficient reflection characteristics tend not to be obtained.

上記(D)無機充填材と上記(E)白色顔料の合計量は、光反射用熱硬化性樹脂組成物全体に対して、70〜85体積%の範囲であることが好ましい。この合計量が70体積%未満であると熱伝導性や光反射特性が不十分になる恐れがあり、85体積%を超えると樹脂組成物の成型性が悪くなり、光半導体素子搭載用基板の作製が困難となる傾向がある。   The total amount of the (D) inorganic filler and the (E) white pigment is preferably in the range of 70 to 85% by volume with respect to the entire thermosetting resin composition for light reflection. If this total amount is less than 70% by volume, the thermal conductivity and light reflection characteristics may be insufficient. If it exceeds 85% by volume, the moldability of the resin composition will be deteriorated, and the optical semiconductor element mounting substrate will be deteriorated. Production tends to be difficult.

上記(F)カップリング剤としては、特に制限はないが、例えば、シラン系カップリング剤、チタネート系カップリング剤等を用いることができ、シランカップリング剤としては、例えば、エポキシシラン系、アミノシラン系、カチオニックシラン系、ビニルシラン系、アクリルシラン系、メルカプトシラン系及びこれらの複合系などを用いることができる。カップリング剤の種類や処理条件は特に制限はないが、カップリング剤の配合量は、光反射用熱硬化性樹脂組成物全体に対して、5重量%以下であることが好ましい。   The (F) coupling agent is not particularly limited. For example, a silane coupling agent, a titanate coupling agent, or the like can be used. Examples of the silane coupling agent include epoxy silanes and aminosilanes. , Cationic silanes, vinyl silanes, acrylic silanes, mercapto silanes, and composites thereof can be used. The type of the coupling agent and the treatment conditions are not particularly limited, but the amount of the coupling agent is preferably 5% by weight or less with respect to the entire thermosetting resin composition for light reflection.

また、上記光反射用熱硬化性樹脂組成物には、必要に応じて、酸化防止剤、離型剤、イオン補足剤等の添加剤を添加してもよい。   Moreover, you may add additives, such as antioxidant, a mold release agent, and an ion supplement agent, to the said thermosetting resin composition for light reflections as needed.

また、本発明において用いる上記配線基板としては、公知のものを使用することができ、特に限定されないが、例えば、上記プリント配線のほかに、リードフレーム、フレキシブル配線板、メタルベース配線板等を用いることができる。   The wiring board used in the present invention may be a known one, and is not particularly limited. For example, in addition to the printed wiring, a lead frame, a flexible wiring board, a metal base wiring board, or the like is used. be able to.

上記プリント配線は、例えば、銅箔付プリプレグに対して、公知の手法を用いて回路となる配線を形成した後、絶縁用の樹脂を回路上に形成して得ることができる。その際、絶縁用の樹脂及びプリプレグに含浸する樹脂には、LED素子からの光を効率よく反射できるように白色の絶縁樹脂を用いることが望ましい。また、上記リードフレームは、例えば、銅、42アロイ等の基板を公知の手法を用いて回路を形成して得ることができる。その際、基板表面にはLED素子からの光を効率よく反射できるように銀めっきを施しておくことが望ましい。また、上記フレキシブル配線板は、例えば、銅箔付のポリイミド基板を公知の手法を用いて回路となる配線を形成した後、絶縁用の樹脂を回路上に形成して得ることができる。その際、絶縁用の樹脂にはLED素子からの光を効率よく反射できるように白色の絶縁樹脂を用いることが望ましい。また、上記メタルベース配線板は、例えば、銅やアルミニウムの基板に絶縁層を形成し、公知の手法を用いて回路となる配線を形成した後、絶縁用の樹脂を回路上に形成して得ることができる。その際、金属基板上の絶縁層及び回路絶縁用の樹脂にはLED素子からの光を効率よく反射できるように白色の絶縁樹脂を用いることが望ましい。   The printed wiring can be obtained, for example, by forming a wiring to be a circuit on a prepreg with a copper foil using a known method and then forming an insulating resin on the circuit. At that time, it is desirable to use a white insulating resin as the insulating resin and the resin impregnated in the prepreg so that the light from the LED element can be efficiently reflected. The lead frame can be obtained, for example, by forming a circuit on a substrate such as copper or 42 alloy using a known technique. At that time, it is desirable to apply silver plating to the surface of the substrate so that light from the LED element can be efficiently reflected. The flexible wiring board can be obtained, for example, by forming a wiring to be a circuit on a polyimide substrate with a copper foil using a known technique and then forming an insulating resin on the circuit. At this time, it is desirable to use a white insulating resin as the insulating resin so that the light from the LED element can be efficiently reflected. The metal base wiring board is obtained, for example, by forming an insulating layer on a copper or aluminum substrate, forming a wiring to be a circuit using a known technique, and then forming an insulating resin on the circuit. be able to. At that time, it is desirable to use a white insulating resin for the insulating layer on the metal substrate and the resin for circuit insulation so that the light from the LED element can be efficiently reflected.

本発明の光半導体装置の製造方法は、上記本発明の光半導体素子搭載用パッケージ基板の製造方法により得られた光半導体素子搭載用パッケージ基板に形成された2つ以上の凹部の各底面に、光半導体素子を搭載する工程、および当該光半導体素子を透明な封止樹脂により覆う工程、を有することをその特徴とするものである。   The manufacturing method of the optical semiconductor device of the present invention includes a method of manufacturing the optical semiconductor element mounting package substrate of the present invention, wherein each of the bottom surfaces of the two or more recesses formed on the optical semiconductor element mounting package substrate is It is characterized by having a step of mounting the optical semiconductor element and a step of covering the optical semiconductor element with a transparent sealing resin.

より具体的には、例えば、図1(c)および(d)に示す光半導体素子搭載用パッケージ基板430の凹部420の各底面の所定位置に、例えば、図2および図3に示すように、光半導体素子100を搭載し、該光半導体素子100と金属配線105とをボンディングワイヤ102、はんだバンプ107等の公知の方法で電気的に接続した後、公知の蛍光体106を含む透明な封止樹脂101により該光半導体素子100を覆うことで本発明の光半導体装置を製造する。なお、図1(c)および(d)には、光半導体素子を搭載する凹部が9箇所形成された場合について示されているが、本発明がこれに限定されないことはいうまでもない。   More specifically, for example, at a predetermined position on each bottom surface of the recess 420 of the package substrate 430 for mounting an optical semiconductor element shown in FIGS. 1C and 1D, for example, as shown in FIGS. An optical semiconductor element 100 is mounted, and the optical semiconductor element 100 and the metal wiring 105 are electrically connected by a known method such as a bonding wire 102 or a solder bump 107, and then a transparent sealing containing a known phosphor 106 The optical semiconductor device of the present invention is manufactured by covering the optical semiconductor element 100 with the resin 101. 1C and 1D show the case where nine recesses for mounting the optical semiconductor element are formed, it goes without saying that the present invention is not limited to this.

また、上記樹脂封止工程後に、マトリックス状である上記光半導体装置を、ダイシング、レーザ加工、ウォータージェット加工、金型加工等の公知の方法により分割することで、光半導体素子を1つ有する光半導体装置単体(SMD型光半導体装置)を得ることができる。好ましくは、図6に示すような、マトリックス状の光半導体装置にダンシングラインを形成し、これに沿ってダイシングする。   Further, after the resin sealing step, the optical semiconductor device having a matrix shape is divided by a known method such as dicing, laser processing, water jet processing, mold processing, etc., so that light having one optical semiconductor element is obtained. A single semiconductor device (SMD type optical semiconductor device) can be obtained. Preferably, a dancing line is formed in a matrix-shaped optical semiconductor device as shown in FIG. 6, and dicing is performed along this.

(実施例1)
<プリント配線板>
基板厚さ0.6mm及び銅箔厚さ18μmのガラス布−エポキシ樹脂含浸両面銅張り積層板であるMCL−E−679(日立化成工業(株)製、商品名)に、穴あけ、無電解めっきを行い、通常のサブトラクト法によって回路を形成し、銅の回路の保護にソルダーレジストを形成し、プリント配線板を作製した。
Example 1
<Printed wiring board>
MCL-E-679 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a double-sided copper-clad laminate impregnated with glass cloth-epoxy resin impregnated with a substrate thickness of 0.6 mm and copper foil thickness of 18 μm, electroless plating Then, a circuit was formed by a normal subtracting method, a solder resist was formed to protect the copper circuit, and a printed wiring board was produced.

<光反射用熱硬化性樹脂組成物>
下記組成の材料を混練温度20〜30℃、混練時間10分の条件でロール混練を行い、光反射用熱硬化性樹脂組成物を作製した。
<Thermosetting resin composition for light reflection>
A material having the following composition was roll kneaded at a kneading temperature of 20 to 30 ° C. and a kneading time of 10 minutes to prepare a thermosetting resin composition for light reflection.

(A)エポキシ樹脂:トリグリシジルイソシアヌレート
100重量部(エポキシ当量100)
(B)硬化剤:ヘキサヒドロ無水フタル酸
140重量部
(C)硬化促進剤:テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート
2.4重量部
(D)無機充填剤:溶融シリカ(平均粒径20μm)
600重量部
アルミナ(平均粒径1μm)
890重量部
(E)白色顔料:ホウケイ酸ソーダガラス中空粒子(3M製、S60HS、平均粒径27μm)
185重量部
(F)カップリング剤:エポキシシラン
19重量部
(G)酸化防止剤:9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド
1重量部
(A) Epoxy resin: triglycidyl isocyanurate
100 parts by weight (epoxy equivalent 100)
(B) Curing agent: hexahydrophthalic anhydride
140 parts by weight (C) curing accelerator: tetra-n-butylphosphonium-o, o-diethyl phosphorodithioate
2.4 parts by weight (D) inorganic filler: fused silica (average particle size 20 μm)
600 parts by weight
Alumina (average particle size 1μm)
890 parts by weight (E) white pigment: sodium borosilicate glass hollow particles (3M, S60HS, average particle size 27 μm)
185 parts by weight (F) coupling agent: epoxy silane
19 parts by weight (G) antioxidant: 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
1 part by weight

<光半導体素子搭載用パッケージ基板の成型>
上記で得たプリント配線板を図1(b)に示すような形状の金型に位置あわせして取り付け、上記で得た光反射用熱硬化性樹脂組成物を注入した後、金型温度180℃、90秒間、6.9MPaの条件でトランスファー成型機(藤和精機(株)製、TEP150)により加熱加圧成型し、複数の凹部を有する、1600mmのマトリックス状の光半導体素子搭載用パッケージ基板を作製した。
<Molding of package substrate for mounting optical semiconductor elements>
The printed wiring board obtained above is positioned and attached to a mold having a shape as shown in FIG. 1 (b), and the thermosetting resin composition for light reflection obtained above is injected. 1600 mm 2 matrix-shaped substrate for mounting an optical semiconductor element having a plurality of recesses by heat and pressure molding using a transfer molding machine (TEP150, manufactured by Towa Seiki Co., Ltd.) at 6.9 MPa for 90 seconds at 0 ° C. Was made.

<光半導体装置の製造>
上記で得た光半導体素子搭載用パッケージ基板に形成された各凹部底面の回路上に、LED素子をダイボンド材(日立化成工業(株)製、EN4620K)にて固定し、150℃で1時間加熱することによりLED素子を端子上に固着させた。ついで、金線でLED素子と端子を電気的に接続した後、下記組成の透明封止樹脂をポッティングにより各凹部に流し込み、150℃で2時間加熱硬化し、LED素子を樹脂封止した。
<Manufacture of optical semiconductor devices>
The LED element is fixed with a die bond material (EN4620K, manufactured by Hitachi Chemical Co., Ltd.) on the circuit at the bottom of each recess formed on the package substrate for mounting an optical semiconductor element obtained above, and heated at 150 ° C. for 1 hour. As a result, the LED element was fixed on the terminal. Next, after electrically connecting the LED element and the terminal with a gold wire, a transparent sealing resin having the following composition was poured into each concave portion by potting and heat-cured at 150 ° C. for 2 hours to seal the LED element with resin.

(透明封止樹脂組成)
・水素添加ビスフェノールA型エポキシ樹脂:デナコールEX252(ナガセケムテックス社製)
90重量部
・脂環式エポキシ樹脂:CEL−2021P(ダイセル化学社製)
10重量部
・4−メチルヘキサヒドロフタル酸無水物HN−5500E(日立化成工業製)
90重量部
・2、6ジターシャルブチル−4−メチルフェノールBHT
0.4重量部
・2−エチル−4−メチルイミダゾール
0.9重量部
(Transparent sealing resin composition)
・ Hydrogenated bisphenol A epoxy resin: Denacol EX252 (manufactured by Nagase ChemteX Corporation)
90 parts by weight / alicyclic epoxy resin: CEL-2021P (manufactured by Daicel Chemical Industries)
10 parts by weight 4-methylhexahydrophthalic anhydride HN-5500E (manufactured by Hitachi Chemical)
90 parts by weight, 2,6 di-tert-butyl-4-methylphenol BHT
0.4 parts by weight 2-ethyl-4-methylimidazole
0.9 parts by weight

<ダイシング>
上記透明封止樹脂を硬化させた後、マトリックス状の光半導体装置をダイシング装置((株)ディスコ製、DAD381)により個片化し、LED素子を1つ有する単体の光半導体装置(SMD型LED)を複数製造した。
<Dicing>
After the transparent sealing resin is cured, the matrix-shaped optical semiconductor device is separated into pieces by a dicing device (DAD381, manufactured by DISCO Corporation), and a single optical semiconductor device (SMD type LED) having one LED element. Several were manufactured.

(実施例2)
プリント配線板の代わりにリードフレームを用いた以外は、実施例1と同様にして光半導体装置を製造した。
(Example 2)
An optical semiconductor device was manufactured in the same manner as in Example 1 except that a lead frame was used instead of the printed wiring board.

(実施例3)
プリント配線板の代わりにメタルコア基板を用いた以外は、実施例1と同様にして光半導体装置を製造した。
(Example 3)
An optical semiconductor device was manufactured in the same manner as in Example 1 except that a metal core substrate was used instead of the printed wiring board.

(実施例4)
プリント配線板の代わりにフレキシブル基板を用いた以外は、実施例1と同様にして光半導体装置を製造した。
Example 4
An optical semiconductor device was manufactured in the same manner as in Example 1 except that a flexible substrate was used instead of the printed wiring board.

(実施例5)
プリント配線板の代わりに、複数のLED素子をマトリックス状態で動作させるための回路を形成した配線基板を用い、また、樹脂封止後のダイシングを行わなかった以外は、実施例1と同様にして、マトリックス状の光半導体装置を製造した。
(Example 5)
Instead of the printed wiring board, a wiring board on which a circuit for operating a plurality of LED elements in a matrix state was used, and dicing after resin sealing was not performed. A matrix-shaped optical semiconductor device was manufactured.

(比較例1)
光反射用樹脂組成物として、熱可塑性のポリフタルアミドを用い、これを射出成型することにより(金型温度100〜220℃、射出圧力490〜1120kg/cm、保持時間10〜40秒、背圧7〜70kg/cm、サイクル時間20〜60秒、押出器ノズル温度330〜360℃、バレル先端温度320〜350℃、スクリュー回転速度20〜60回転/分)、凹部を有する樹脂層板(リフレクター)を作製した。
(Comparative Example 1)
As a resin composition for light reflection, thermoplastic polyphthalamide is used and injection molded (mold temperature 100 to 220 ° C., injection pressure 490 to 1120 kg / cm 2 , holding time 10 to 40 seconds, back Pressure 7-70 kg / cm 2 , cycle time 20-60 seconds, extruder nozzle temperature 330-360 ° C., barrel tip temperature 320-350 ° C., screw rotation speed 20-60 rotations / minute), resin layer plate having recesses ( Reflector) was produced.

(比較例2)
光反射用樹脂組成物として、熱可塑性のポリフタルアミドを用い、これを比較例1と同様の条件で射出成型することにより作製した複数の凹部を有する樹脂層板(リフレクター)と、複数のLEDを所定位置に搭載したプリント配線板との間に、上記樹脂基板の貫通穴の位置に合わせて穴開けした接着シート(日立化成工業(株)製、AS−3000)を位置合わせして挟み、これを170℃、0.2MPa、60分の条件で加熱加圧硬化することより一体化し、光半導体装置を製造した。
(Comparative Example 2)
A resin layer plate (reflector) having a plurality of recesses produced by injection molding of thermoplastic polyphthalamide under the same conditions as in Comparative Example 1 as a resin composition for light reflection, and a plurality of LEDs The adhesive sheet (Hitachi Chemical Industry Co., Ltd., AS-3000) drilled in accordance with the position of the through hole of the resin substrate is sandwiched between the printed wiring board mounted at a predetermined position, This was integrated by heating and pressure curing under conditions of 170 ° C., 0.2 MPa, 60 minutes to produce an optical semiconductor device.

実施例1〜5により製造された光半導体素子搭載用パッケージ基板は、その反りが0.5mm未満であり、また、当該パッケージ基板に形成された複数の凹部底面に光半導体素子を搭載し、これを樹脂封止して製造したマトリックス状の半導体装置からは、そのダイシングによりSMD型LEDを効率的に多数製造することが可能であった。   The package substrate for mounting an optical semiconductor element manufactured according to Examples 1 to 5 has a warpage of less than 0.5 mm, and the optical semiconductor element is mounted on the bottom surfaces of a plurality of recesses formed on the package substrate. From a matrix semiconductor device manufactured by resin-sealing, it was possible to efficiently manufacture a large number of SMD LEDs by dicing.

一方、比較例1で製造した凹部を有する樹脂層板は、大きな反りが発生し、マトリックス状樹脂層板(リフレクター)とプリント配線板の間に剥離が生じ、その後の実装工程等を行うことが困難であった。また、比較例2においては、実施例と同様の光半導体装置を製造することができたが、複数の工程と複数の部材を用いる必要があるため、実施例と比較して効率が悪く、経済的ではない。   On the other hand, the resin layer board having the recesses produced in Comparative Example 1 is greatly warped, and peeling occurs between the matrix-like resin layer board (reflector) and the printed wiring board, making it difficult to perform subsequent mounting processes and the like. there were. In Comparative Example 2, an optical semiconductor device similar to that of the example could be manufactured. However, since it is necessary to use a plurality of steps and a plurality of members, the efficiency is lower than that of the example and the economy is low. Not right.

本発明のマトリックス状光半導体素子搭載用パッケージ基板の製造工程を示す概略図である。It is the schematic which shows the manufacturing process of the package substrate for matrix-shaped optical semiconductor element mounting of this invention. 本発明により得られる光半導体装置の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the optical semiconductor device obtained by this invention. 本発明により得られる光半導体装置(封止樹脂除く)の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the optical semiconductor device (except sealing resin) obtained by this invention. 一般的なSMD型LEDの構造を示す斜視図である。It is a perspective view which shows the structure of general SMD type LED. 従来のマトリックス状光半導体素子搭載用パッケージ基板の製造工程の概略図である。It is the schematic of the manufacturing process of the conventional package substrate for matrix-shaped optical semiconductor element mounting. マトリックス状光半導体素子搭載用パッケージ基板のダイシング前の状態を示す斜視図である。It is a perspective view which shows the state before dicing of the package substrate for mounting a matrix type optical semiconductor element.

符号の説明Explanation of symbols

1 LED素子搭載用パッケージ基板
2 配線基板
4 樹脂層(リフレクタ−)
4a 上部開口
4b 下部開口
4c 側面
4d 貫通穴
5 接着シート
10 LED素子
12 LED素子実装済み配線基板
14 樹脂層板(リフレクタ−)
15 接着シート
15a 穴
20 ダイシングライン
100 光半導体素子(LED素子)
101 封止樹脂
102 ボンディングワイヤ
103 リフレクター
104 Ni/Agめっき
105 金属配線
106 蛍光体
107 はんだバンプ
110 光半導体装置
400 プリント配線板
401 金属配線
402 層間接続穴
403 ソルダーレジスト
410 樹脂注入口
411 金型
420 凹部(光半導体素子搭載領域)
421 光反射用熱硬化性樹脂硬化物(リフレクター)
430 マトリックス状の光半導体素子搭載用パッケージ基板
1 LED device mounting package substrate 2 Wiring substrate 4 Resin layer (reflector)
4a Upper opening 4b Lower opening 4c Side surface 4d Through hole 5 Adhesive sheet 10 LED element 12 Wiring board 14 with LED element mounted Resin layer board (reflector)
15 Adhesive sheet 15a Hole 20 Dicing line 100 Optical semiconductor element (LED element)
101 Sealing resin 102 Bonding wire 103 Reflector 104 Ni / Ag plating 105 Metal wiring 106 Phosphor 107 Solder bump 110 Optical semiconductor device 400 Printed wiring board 401 Metal wiring 402 Interlayer connection hole 403 Solder resist 410 Resin injection port 411 Mold 420 Recess (Optical semiconductor device mounting area)
421 Thermosetting resin cured material for light reflection (reflector)
430 Matrix-like package substrate for mounting optical semiconductor elements

Claims (8)

光半導体素子搭載領域となるマトリックス状に並ぶ2つ以上の凹部が一体に成型された光半導体素子搭載用パッケージ基板を、光反射用熱硬化性樹脂組成物層を配線基板上にトランスファー成型により形成することにより製造する工程、
前記光半導体素子搭載用パッケージ基板にマトリックス状に並ぶ凹部の各底面に、光半導体素子を搭載する工程、
前記光半導体素子を封止樹脂により覆う工程、および
前記樹脂封止工程後、前記光半導体素子を1つ有する光半導体装置単体に分割する工程、を有することを特徴とする、光半導体装置の製造方法。
Forming an optical semiconductor element mounting package substrate in which two or more recesses arranged in a matrix as an optical semiconductor element mounting region are integrally formed, and forming a light- reflective thermosetting resin composition layer on the wiring substrate by transfer molding The process of manufacturing by
A step of mounting an optical semiconductor element on each bottom surface of the recesses arranged in a matrix on the optical semiconductor element mounting package substrate;
A step of covering the optical semiconductor element with a sealing resin; and a step of dividing the optical semiconductor element into a single optical semiconductor device having one optical semiconductor element after the resin sealing step. Method.
前記光反射用熱硬化性樹脂組成物が、(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤、(D)無機充填剤、(E)白色顔料及び(F)カップリング剤を必須成分として含み、熱硬化後の、波長800nm〜350nmにおける光反射率が80%以上であり、熱硬化前には室温(25℃)で加圧成型可能なものであることを特徴とする、請求項1に記載の光半導体装置の製造方法。   The light-reflective thermosetting resin composition comprises (A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, (D) an inorganic filler, (E) a white pigment, and (F) a coupling agent. As an essential component, the light reflectance at a wavelength of 800 nm to 350 nm after thermosetting is 80% or more, and can be pressure-molded at room temperature (25 ° C.) before thermosetting. A method for manufacturing an optical semiconductor device according to claim 1. 前記(D)無機充填剤が、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、水酸化アルミニウム、硫酸バリウム、炭酸マグネシウム、炭酸バリウムからなる群の中から選ばれる少なくとも1種以上であることを特徴とする、請求項2に記載の光半導体装置の製造方法。   The (D) inorganic filler is at least one selected from the group consisting of silica, alumina, magnesium oxide, antimony oxide, aluminum hydroxide, barium sulfate, magnesium carbonate, and barium carbonate. A method for manufacturing an optical semiconductor device according to claim 2. 前記(E)白色顔料が、無機中空粒子であることを特徴とする、請求項2または3に記載の光半導体装置の製造方法。   The method for manufacturing an optical semiconductor device according to claim 2, wherein the (E) white pigment is inorganic hollow particles. 前記(E)白色顔料の平均粒径が、1μm〜50μmの範囲にあることを特徴とする、請求項2〜4のいずれか1項に記載の光半導体装置の製造方法。   5. The method of manufacturing an optical semiconductor device according to claim 2, wherein an average particle diameter of the (E) white pigment is in a range of 1 μm to 50 μm. 前記(D)無機充填剤と前記(E)白色顔料の合計量が、前記光反射用熱硬化性樹脂組成物全体に対して70体積%〜85体積%の範囲であることを特徴とする請求項2〜5のいずれか1項に記載の光半導体装置の製造方法。   The total amount of the (D) inorganic filler and the (E) white pigment is in the range of 70% by volume to 85% by volume with respect to the entire thermosetting resin composition for light reflection. Item 6. The method for manufacturing an optical semiconductor device according to any one of Items 2 to 5. 前記配線基板が、リードフレーム、プリント配線板、フレキシブル配線板、およびメタルベース配線板のいずれかであることを特徴とする、請求項1〜6のいずれか1項に記載の光半導体装置の製造方法。   The optical semiconductor device according to claim 1, wherein the wiring board is any one of a lead frame, a printed wiring board, a flexible wiring board, and a metal base wiring board. Method. 前記分割する工程が、ダイシングにより行われることを特徴とする、請求項1〜7のいずれか1項に記載の光半導体装置の製造方法。   The method for manufacturing an optical semiconductor device according to claim 1, wherein the dividing step is performed by dicing.
JP2006198489A 2006-02-03 2006-07-20 Manufacturing method of package substrate for mounting optical semiconductor element and manufacturing method of optical semiconductor device using the same Active JP5232369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006198489A JP5232369B2 (en) 2006-02-03 2006-07-20 Manufacturing method of package substrate for mounting optical semiconductor element and manufacturing method of optical semiconductor device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006026961 2006-02-03
JP2006026961 2006-02-03
JP2006198489A JP5232369B2 (en) 2006-02-03 2006-07-20 Manufacturing method of package substrate for mounting optical semiconductor element and manufacturing method of optical semiconductor device using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013019536A Division JP5956937B2 (en) 2006-02-03 2013-02-04 Method for manufacturing package substrate for mounting optical semiconductor element

Publications (2)

Publication Number Publication Date
JP2007235085A JP2007235085A (en) 2007-09-13
JP5232369B2 true JP5232369B2 (en) 2013-07-10

Family

ID=38555319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006198489A Active JP5232369B2 (en) 2006-02-03 2006-07-20 Manufacturing method of package substrate for mounting optical semiconductor element and manufacturing method of optical semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP5232369B2 (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059856A1 (en) * 2006-11-15 2008-05-22 Hitachi Chemical Co., Ltd. Heat curable resin composition for light reflection, process for producing the resin composition, and optical semiconductor element mounting substrate and optical semiconductor device using the resin composition
TWI472549B (en) * 2007-09-25 2015-02-11 Hitachi Chemical Co Ltd Thermosetting light reflecting resin composition, optical semiconductor element-mounting substrate using the same, method for manufacturing the same, and optical semiconductor device
US8212271B2 (en) * 2007-10-11 2012-07-03 Hitachi Chemical Co., Ltd. Substrate for mounting an optical semiconductor element, manufacturing method thereof, an optical semiconductor device, and manufacturing method thereof
JP2009117019A (en) * 2007-10-15 2009-05-28 Fujifilm Corp Method for cleaning heat mode type recording medium layer, method for manufacturing product having recess and projection, method for manufacturing light emitting element and method for manufacturing optical element
JP5352171B2 (en) * 2007-10-15 2013-11-27 富士フイルム株式会社 LIGHT EMITTING ELEMENT MANUFACTURING METHOD AND OPTICAL ELEMENT MANUFACTURING METHOD
JP2009129801A (en) * 2007-11-27 2009-06-11 Denki Kagaku Kogyo Kk Metal-based circuit board
JP4623322B2 (en) 2007-12-26 2011-02-02 信越化学工業株式会社 White thermosetting silicone resin composition for forming optical semiconductor case, optical semiconductor case and molding method thereof
JP2010021533A (en) 2008-06-09 2010-01-28 Shin-Etsu Chemical Co Ltd White heat-curable silicone resin composition for forming optical semiconductor case, and optical semiconductor case
JP2010018786A (en) 2008-06-09 2010-01-28 Shin-Etsu Chemical Co Ltd White heat-curable silicone resin composition for forming optical semiconductor case, and optical semiconductor case
JP2010074124A (en) * 2008-08-18 2010-04-02 Hitachi Chem Co Ltd Optical semiconductor device, method for manufacturing package substrate for mounting optical semiconductor element, and method for manufacturing optical semiconductor device using package substrate
JP5217800B2 (en) 2008-09-03 2013-06-19 日亜化学工業株式会社 Light emitting device, resin package, resin molded body, and manufacturing method thereof
JP2010100800A (en) * 2008-09-24 2010-05-06 Hitachi Chem Co Ltd Resin composition for printed wiring board of optical member, and copper-clad laminate
US8343616B2 (en) * 2008-09-30 2013-01-01 Hitachi Chemical Company, Ltd. Coating agent, substrate for mounting optical semiconductor element using same, and optical semiconductor device
JP2010177375A (en) * 2009-01-28 2010-08-12 Citizen Electronics Co Ltd Light-emitting device and manufacturing method of the same
JP5379503B2 (en) * 2009-02-04 2013-12-25 アピックヤマダ株式会社 LED package, LED package manufacturing method, and mold
DE102009008738A1 (en) * 2009-02-12 2010-08-19 Osram Opto Semiconductors Gmbh Semiconductor device and method for manufacturing a semiconductor device
JP5544739B2 (en) * 2009-03-31 2014-07-09 日立化成株式会社 Thermosetting resin composition for light reflection, optical semiconductor element mounting substrate using the same, manufacturing method thereof, and optical semiconductor device
JP6133004B2 (en) * 2009-03-31 2017-05-24 日立化成株式会社 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP5302117B2 (en) * 2009-06-22 2013-10-02 スタンレー電気株式会社 LIGHT EMITTING DEVICE MANUFACTURING METHOD, LIGHT EMITTING DEVICE, AND LIGHT EMITTING DEVICE MOUNTING BOARD
JP2011009519A (en) * 2009-06-26 2011-01-13 Hitachi Chem Co Ltd Optical semiconductor device and method for manufacturing the optical semiconductor device
JP5397195B2 (en) * 2009-12-02 2014-01-22 日立化成株式会社 Manufacturing method of substrate for mounting optical semiconductor element and manufacturing method of optical semiconductor device
JP5381684B2 (en) * 2009-12-22 2014-01-08 日亜化学工業株式会社 Method for manufacturing light emitting device
EP2551929A4 (en) * 2010-03-23 2013-08-14 Asahi Rubber Inc Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate
JP2011204897A (en) 2010-03-25 2011-10-13 Toshiba Lighting & Technology Corp Light emitting module
CN106067511A (en) 2010-03-30 2016-11-02 大日本印刷株式会社 Resin lead frame, semiconductor device and manufacture method thereof
JP5844252B2 (en) 2010-04-02 2016-01-13 株式会社カネカ Curable resin composition, curable resin composition tablet, molded product, semiconductor package, semiconductor component, and light emitting diode
JP5533203B2 (en) 2010-04-30 2014-06-25 日亜化学工業株式会社 Light emitting device and method for manufacturing light emitting device
JP5760379B2 (en) * 2010-10-25 2015-08-12 日立化成株式会社 Optical semiconductor device manufacturing method and optical semiconductor device
WO2012060336A1 (en) 2010-11-02 2012-05-10 大日本印刷株式会社 Led-element mounting lead frame, resin-attached lead frame, method of manufacturing semiconductor device, and semiconductor-element mounting lead frame
KR101263805B1 (en) * 2011-04-04 2013-05-13 엘지이노텍 주식회사 Optical component package and manufacturing method thereof
JP5682497B2 (en) 2011-07-29 2015-03-11 信越化学工業株式会社 Method for manufacturing surface-mounted light-emitting device and reflector substrate
TWI426628B (en) * 2011-08-30 2014-02-11 Fusheng Electronics Corp Mounting frame for led and method for making the same
WO2013047606A1 (en) 2011-09-30 2013-04-04 株式会社カネカ Molded resin body for surface-mounted light-emitting device, manufacturing method thereof, and surface-mounted light-emitting device
JP2012069977A (en) * 2011-11-08 2012-04-05 Citizen Electronics Co Ltd Light emitting device and method for manufacturing the same
JP5814175B2 (en) 2012-04-16 2015-11-17 信越化学工業株式会社 Thermosetting silicone resin composition for LED reflector, LED reflector and optical semiconductor device using the same
JP5756054B2 (en) 2012-04-16 2015-07-29 信越化学工業株式会社 Thermosetting resin composition for LED reflector, LED reflector and optical semiconductor device using the same
JP2014013879A (en) * 2012-06-06 2014-01-23 Nitto Denko Corp Light reflecting member for optical semiconductor, and substrate for mounting optical semiconductor and optical semiconductor device using the same
JP5527450B2 (en) * 2013-03-06 2014-06-18 日亜化学工業株式会社 Light emitting device, resin package, resin molded body, and manufacturing method thereof
JP2013145908A (en) * 2013-03-06 2013-07-25 Nichia Chem Ind Ltd Light-emitting device, resin package, resin molding and method for manufacturing them
US8999737B2 (en) 2013-08-27 2015-04-07 Glo Ab Method of making molded LED package
US9142745B2 (en) 2013-08-27 2015-09-22 Glo Ab Packaged LED device with castellations
WO2015031179A1 (en) 2013-08-27 2015-03-05 Glo Ab Molded led package and method of making same
JP5825390B2 (en) * 2014-04-11 2015-12-02 日亜化学工業株式会社 Light emitting device, resin package, resin molded body, and manufacturing method thereof
JP6056934B2 (en) * 2015-10-09 2017-01-11 日亜化学工業株式会社 Light emitting device, resin package, resin molded body, and manufacturing method thereof
WO2019057534A1 (en) * 2017-09-19 2019-03-28 Lumileds Holding B.V. Light emitting device and manufacturing method thereof
JP6888709B2 (en) * 2020-04-09 2021-06-16 日亜化学工業株式会社 Manufacturing method of light emitting device and light emitting device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138009A (en) * 1991-11-22 1993-06-01 Japan Synthetic Rubber Co Ltd Production of spherical inorganic hollow particles
JP2874524B2 (en) * 1992-09-03 1999-03-24 松下電工株式会社 Epoxy molding compound for sealing
US5492863A (en) * 1994-10-19 1996-02-20 Motorola, Inc. Method for forming conductive bumps on a semiconductor device
JP3624503B2 (en) * 1995-12-14 2005-03-02 日亜化学工業株式会社 Planar light source
JPH11163412A (en) * 1997-11-25 1999-06-18 Matsushita Electric Works Ltd Led illuminator
JP3851441B2 (en) * 1998-04-23 2006-11-29 日東電工株式会社 Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device
JPH11340517A (en) * 1998-05-22 1999-12-10 Sanken Electric Co Ltd Semiconductor light-emitting device
JP3925835B2 (en) * 2000-04-10 2007-06-06 株式会社日立製作所 Electromagnetic wave absorber, its production method and various uses using it
JP2001342325A (en) * 2000-05-31 2001-12-14 Sumitomo Bakelite Co Ltd Epoxy resin composition for photosemiconductor sealing and optical semiconductor device
DE10041328B4 (en) * 2000-08-23 2018-04-05 Osram Opto Semiconductors Gmbh Packaging unit for semiconductor chips
JP3844196B2 (en) * 2001-06-12 2006-11-08 シチズン電子株式会社 Manufacturing method of light emitting diode
JP2003218398A (en) * 2002-01-18 2003-07-31 Citizen Electronics Co Ltd Surface mount type light emitting diode and its manufacturing method
JP2003218399A (en) * 2002-01-22 2003-07-31 Rohm Co Ltd Semiconductor light emission device with reflection case
JP2004101959A (en) * 2002-09-10 2004-04-02 Fuji Photo Film Co Ltd Material for image formation and manufacturing method therefor

Also Published As

Publication number Publication date
JP2007235085A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP5232369B2 (en) Manufacturing method of package substrate for mounting optical semiconductor element and manufacturing method of optical semiconductor device using the same
US10950767B2 (en) Light-emitting device and method of preparing same, optical semiconductor element mounting package, and optical semiconductor device using the same
US8212271B2 (en) Substrate for mounting an optical semiconductor element, manufacturing method thereof, an optical semiconductor device, and manufacturing method thereof
JP5060707B2 (en) Thermosetting resin composition for light reflection
JP5303097B2 (en) Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.
JP5397195B2 (en) Manufacturing method of substrate for mounting optical semiconductor element and manufacturing method of optical semiconductor device
JP2007297601A (en) Thermosetting resin composition for light reflection, substrate for loading photosemiconductor device using the same, method for producing the same, and photosemiconductor device
JP5565477B2 (en) Method for manufacturing package substrate for mounting optical semiconductor element and method for manufacturing optical semiconductor device using the package substrate
JP2011009519A (en) Optical semiconductor device and method for manufacturing the optical semiconductor device
JP2011091311A (en) Method for manufacturing optical semiconductor device, method for manufacturing substrate for mounting optical semiconductor element, and optical semiconductor device
JP6021416B2 (en) Lead frame with reflector for optical semiconductor device, optical semiconductor device using the same, and manufacturing method thereof
JP5956937B2 (en) Method for manufacturing package substrate for mounting optical semiconductor element
JP5967135B2 (en) Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using the same, manufacturing method thereof, and optical semiconductor device.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120313

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120319

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5232369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350